1
|
Han S, Xia W, He J, Wu Q, Xu W, Yu J, Chen J, Xie P. Spatiotemporal dynamics of microcystin contamination in fish across the Lake Chaohu basin under the Yangtze River ten-year fishing ban: Ecological and human health implications. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 296:118185. [PMID: 40222110 DOI: 10.1016/j.ecoenv.2025.118185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 04/15/2025]
Abstract
Microcystins (MCs), produced by harmful cyanobacterial blooms, pose a threat to aquatic ecosystems and public health in the Yangtze River basin, including Lake Chaohu, which implemented a ten-year fishing ban in 2021 for ecological restoration. This study provides the first basin-wide assessment of MC contamination in fish muscle tissues from Lake Chaohu and its major tributaries during the ban's initial phase (2022-2023), with comparisons to pre-ban data. Using UHPLC-MS/MS, we quantified MC-LR and MC-RR in fish from four trophic levels (planktivorous, omnivorous, herbivorous, and carnivorous). Results revealed that MC-RR was the predominant variant, and planktivorous fish exhibited the highest MC levels, followed by omnivorous, herbivorous, and carnivorous species, reflecting dynamics of trophic transfer. Overall, fish MC concentrations were significantly lower during the ban compared to pre-ban levels, demonstrating positive initial effects. Seasonal analysis revealed higher MC levels in warmer seasons, but detectable MCs persisted during cold seasons, reflecting ongoing contamination. Spatially, while fish in the lake exhibited higher MC concentrations, contamination was also detected in riverine fish, highlighting the basin-wide spread. Despite a lower overall health risk from fish consumption relative to the pre-ban period, high consumption of planktivorous species, especially during warm seasons and in lake regions, may still pose potential health risks. Additionally, MCs likely pose ecological risks to fish populations. These findings provide a crucial baseline for evaluating the long-term effectiveness of the fishing ban and underscore the need for integrated watershed management to safeguard both ecological and public health.
Collapse
Affiliation(s)
- Shengpan Han
- Donghu Experimental Station of Lake Ecosystems, State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wulai Xia
- Donghu Experimental Station of Lake Ecosystems, State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jun He
- Donghu Experimental Station of Lake Ecosystems, State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Qianhui Wu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Wenli Xu
- Donghu Experimental Station of Lake Ecosystems, State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia Yu
- Ocean College, Hebei Agricultural University, Qinhuangdao 066000, China
| | - Jun Chen
- Donghu Experimental Station of Lake Ecosystems, State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Ping Xie
- Donghu Experimental Station of Lake Ecosystems, State key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; College of Life Sciences, Hebei University, Baoding 071002, China
| |
Collapse
|
2
|
Cai Q, Wang Y, Jie G, Li H. Nanoconfinement Effect and Nanozyme Catalysis Enhance ILu/HOF-14 Electrochemiluminescence for Biosensing. Anal Chem 2025; 97:8592-8599. [PMID: 40220348 DOI: 10.1021/acs.analchem.5c00794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2025]
Abstract
A low collision frequency and an insufficient number of free radicals are the main problems leading to the low electroluminescence (ECL) efficiency of luminol and its derivatives. In order to solve the above issues, this work used nanoconfinement combined with nanozyme catalysis to significantly enhance the ECL efficiency. We assembled isoluminol (ILu) into the hydrogen-bonded organic framework HOF-14 and prepared a novel ECL emitter ILu/HOF-14 for the first time. Surprisingly, compared with the ILu/H2O2 system, the ECL signal of ILu/HOF-14/H2O2 was increased by 33 times. This was because the porous structure of HOF-14 effectively limited the movement of free radicals and increased their collision frequency. Therefore, the reaction rate between free radicals was significantly improved to achieve an ECL signal amplification. To further increase the number of free radicals, we introduced hybrid nanozyme Zn SAC@CuO2 NPs with superior peroxidase (POD)-like activity. It could effectively catalyze the coreactant H2O2 to produce a large amount of ROS (OH• and O2•-), accelerating the reaction rate of ILu with ROS and further improving the ECL signal. Based on the above research, a novel dual-mode biosensing and imaging platform was constructed to detect microcystin-LR (MC-LR). We used the nonspecific trans-cleavage activity of the CRISPR-Cas12a system to enhance the dynamic continuity and signal amplification capability of this biosensing platform, further improving the detection sensitivity and broadening the avenues of molecular diagnostic strategies.
Collapse
Affiliation(s)
- Qianqian Cai
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| | - Yuehui Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| | - Guifen Jie
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| | - Hongkun Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| |
Collapse
|
3
|
Ou-Yang K, He Y, Yang H, Wang L, Zhang Q, Li D, Li L. Microcystin-LR induces fatty liver metabolic disease in zebrafish through the PPARα-NOD1 pathway: In vivo, in vitro, and in silico investigations. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136813. [PMID: 39657491 DOI: 10.1016/j.jhazmat.2024.136813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/01/2024] [Accepted: 12/05/2024] [Indexed: 12/12/2024]
Abstract
Hepatic lipid metabolism dysfunction caused by cyanobacteria bloom-released microcystin-LR (MC-LR) contributes to the development of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis (NASH), thereby severely impacting the health and safety of animals and humans. In this study, the effects and mechanisms of different environmental concentrations of MC-LR (0, 0.1, 1, and 10 μg/L) on fatty liver metabolic disease in zebrafish were investigated using in vivo, in vitro, and in silico models. Exposure to 10 μg/L of MC-LR-induced NASH in zebrafish, characterized by hepatic steatosis, toxic saturated fatty acid (SFA) accumulation, and inflammation. Analyses of the liver transcriptome, molecular docking, molecular dynamics simulation, and in vitro experiments indicated that PPARα might be a key molecular target in MC-LR-induced steatosis and in toxic-SFA accumulation. The results obtained from molecular docking, molecular dynamics simulation, and NOD1-inhibitor experiments further revealed that MC-LR-derived SFAs, such as palmitic acid, could target the NOD1 protein to initiate hepatitis in zebrafish. The benchmark dose model identified palmitic acid as a sensitive indicator of MC-LR-induced NASH, and the point of departure value was estimated to be 1.634 μg/L. In conclusion, our findings offer new insights into the mechanism of MC-LR-induced NASH and aid in the prognosis and treatment of MC-LR-related liver metabolic diseases, as well as in assessing the health risks associated with cyanobacterial blooms.
Collapse
Affiliation(s)
- Kang Ou-Yang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ya He
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Hui Yang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Liangmou Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Qian Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Dapeng Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, PR China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PR China
| | - Li Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, PR China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PR China.
| |
Collapse
|
4
|
Ma Y, Xu D, Gan Y, Chen Z, Chen Y, Han X. Adverse outcome pathway of Alzheimer's disease-like changes resulting from autophagy flux blockade after MC-LR exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 364:125322. [PMID: 39549990 DOI: 10.1016/j.envpol.2024.125322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 11/18/2024]
Abstract
Microcystins (MCs) pollution is a worldwide environmental issue concerning about human health. Microcystin-leucine-arginine (MC-LR), the most common type of MCs produced by cyanobacteria, could enter the brain and bring about damage to the nervous system. Up to date, it is not clear about the mechanism of MC-LR-induced neurotoxicity. Amyloid-β (Aβ) deposits are hallmark of Alzheimer's disease (AD). In this study, we revealed that MC-LR exposure at environment-related doses (1, 7.5, 15 μg/L) could promote Aβ accumulation in mouse brain. Mechanically, we firstly found that Aβ accumulation is closely associated with abnormal Aβ degradation due to autophagy flux blockade and lysosome dysfunctions in neurons after MC-LR exposure. Moreover, an adverse outcome pathway (AOP) framework oriented to neurotoxicity of MC-LR was conducted in this study. MC-LR inhibited the activity of protein phosphatase 2A (PP2A) in neurons, which is regarded as a molecular initiating event (MIE). In addition, the abnormalities in autophagy were observed after MC-LR exposure. The hindered autophagosome-lysosome fusion and disrupted lysosomal function were key events (KEs) after MC-LR exposure, which contributed to proteostasis dysregulation, ultimately leading to Aβ abnormal degradation and learning deficits as adverse outcomes (AO) of neurotoxicity. This study provided novel information about MC-LR neurotoxicity and new insights into understanding the mechanisms underlying the environmental chemicals-induced neurodegeneration diseases, which has deep implications for public health.
Collapse
Affiliation(s)
- Yuhan Ma
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-Embryology, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Dihui Xu
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-Embryology, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Yibin Gan
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-Embryology, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Zining Chen
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-Embryology, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Yabing Chen
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-Embryology, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China.
| | - Xiaodong Han
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-Embryology, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China.
| |
Collapse
|
5
|
Saribal D, Çalis H, Ceylan Z, Depciuch J, Cebulski J, Guleken Z. Investigation of the structural changes in the hippocampus and prefrontal cortex using FTIR spectroscopy in sleep deprived mice. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 321:124702. [PMID: 38917751 DOI: 10.1016/j.saa.2024.124702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 06/27/2024]
Abstract
Sleep is a basic, physiological requirement for living things to survive and is a process that covers one third of our lives. Melatonin is a hormone that plays an important role in the regulation of sleep. Sleep deprivation affect brain structures and functions. Sleep deprivation causes a decrease in brain activity, with particularly negative effects on the hippocampus and prefrontal cortex. Despite the essential role of protein and lipids vibrations, polysaccharides, fatty acid side chains functional groups, and ratios between amides in brain structures and functions, the brain chemical profile exposed to gentle handling sleep deprivation model versus Melatonin exposure remains unexplored. Therefore, the present study, aims to investigate a molecular profile of these regions using FTIR spectroscopy measurement's analysis based on lipidomic approach with chemometrics and multivariate analysis to evaluate changes in lipid composition in the hippocampus, prefrontal regions of the brain. In this study, C57BL/6J mice were randomly assigned to either the control or sleep deprivation group, resulting in four experimental groups: Control (C) (n = 6), Control + Melatonin (C + M) (n = 6), Sleep Deprivation (S) (n = 6), and Sleep Deprivation + Melatonin (S + M) (n = 6). Interventions were administered each morning via intraperitoneal injections of melatonin (10 mg/kg) or vehicle solution (%1 ethanol + saline), while the S and S + M groups underwent 6 h of daily sleep deprivation from using the Gentle Handling method. All mice were individually housed in cages with ad libitum access to food and water within a 12-hour light-dark cycle. Results presented that the brain regions affected by insomnia. The structure of phospholipids, changed. Yet, not only changes in lipids but also in amides were noticed in hippocampus and prefrontal cortex tissues. Additionally, FTIR results showed that melatonin affected the lipids as well as the amides fraction in cortex and hippocampus collected from both control and sleep deprivation groups.
Collapse
Affiliation(s)
- Devrim Saribal
- Department of Biophysics, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Hakan Çalis
- Department of Internal Medicine, Bağcılar State Hospital, Istanbul, Turkey
| | - Zeynep Ceylan
- Samsun University, Faculty of Engineering, Department of Industrial Engineering, Samsun, Turkey
| | - Joanna Depciuch
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin 20-093, Poland; Institute of Nuclear Physics, PAS, 31342 Krakow, Poland
| | - Jozef Cebulski
- Institute of Physics, University of Rzeszow, 35-959 Rzeszow, Poland
| | - Zozan Guleken
- Department of Physiology, Faculty of Medicine, Gaziantep Islam Science and Technology University, Gaziantep, Turkey.
| |
Collapse
|
6
|
Li B, Wang Z, Chuan H, Li J, Xie P, Liu Y. Introducing fluorescent probe technology for detecting microcystin-LR in the water and cells. Anal Chim Acta 2024; 1288:342188. [PMID: 38220314 DOI: 10.1016/j.aca.2023.342188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/14/2023] [Accepted: 12/29/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND For a long time, the environment hazards caused by cyanobacteria bloom and associated microcystins have attracted attention worldwide. Microcystin-LR (MC-LR) is the most widely distributed and most toxic toxin. At present, numerous MC-LR detection methods exist many drawbacks. Therefore, a quick and accurate method for identifying and detecting MC-LR is crucial and necessary. In this work, we strived to introduce a novel fluorescence assay to detect MC-LR in the water and cells. RESULTS According to the special spatial configuration and physicochemical properties of MC-LR, we designed and constructed six fluorescent probes. The design concepts of the probes were exhaustively elaborated. MC-YdTPA, MC-YdTPE, MC-RdTPA, and MC-RdTPE could show significant fluorescence enhancement in MC-LR solution. Significantly, MC-YdTPA, MC-YdTPE, and MC-RdTPA could also response well in the cells treated with MC-LR, demonstrating these fluorescent probes' values. The recognition mechanism between probes and MC-LR were also deeply explored: (1) The polyphenylene ring structure of probes may have nested or hydrogen bond weak interaction with the ring structure of MC-LR. (2) The probes can generate a reaction to the hydrogen ions ionized by MC-LR. SIGNIFICANCE We proposed the novel ideas for designing MC-LR probes. This research can provide valuable experiences and important assistance in synthesizing MC-LR fluorescent probes. We expect that this work may bring new ideas to develop fluorescent probes for researching MC-LR in vivo and in vitro.
Collapse
Affiliation(s)
- Bingyan Li
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, PR China
| | - Zhaomin Wang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, PR China
| | - Huiyan Chuan
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, PR China
| | - Jing Li
- Yunnan International Joint R&D Center of Smart Agriculture and Water Security, School of Water Conservancy, Yunnan Agricultural University, Kunming, 650201, PR China
| | - Ping Xie
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, PR China; Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, PR China.
| | - Yong Liu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650500, PR China.
| |
Collapse
|