1
|
Jaskulak M, Zimowska M, Rolbiecka M, Zorena K. Understanding the role of endocrine disrupting chemicals as environmental obesogens in the obesity epidemic: A comprehensive overview of epidemiological studies between 2014 and 2024. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 299:118401. [PMID: 40412253 DOI: 10.1016/j.ecoenv.2025.118401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 05/19/2025] [Accepted: 05/20/2025] [Indexed: 05/27/2025]
Abstract
The prevalence of obesity has reached epidemic proportions worldwide, posing a significant public health concern due to its association with various chronic diseases and healthcare costs. In addition to traditional risk factors such as diet and physical activity, emerging evidence suggests that environmental pollutants, termed obesogens, may contribute to the obesity epidemic. Obesogens are endocrine-disrupting chemicals (EDCs) that can alter lipid homeostasis, promote adipogenesis, and disrupt metabolic regulation, leading to increased adiposity and obesity risk. This review explores available data from human studies published in the last decade, along with the mechanisms underlying obesogenic action, including their effects on adipocyte differentiation, adipose tissue development, and metabolic regulation. Overall, 75 studies were analyzed. Early-life exposure during critical developmental windows has been shown to increase obesity risk later in life, potentially through epigenetic modifications and transgenerational effects. Epidemiological studies provide evidence of associations between prenatal or early-life exposure and increased obesity risk in offspring. Additionally, study found more consistent associations between exposure to some EDCs (including phthalates, parabens, and bisphenols) and obesity or metabolic outcomes in children and women, while results for other chemicals (i.e. PFAS and organochlorine pesticides) were more heterogeneous, especially in adolescents and adults. Key findings indicate consistent associations between phthalate exposure and obesity in children, with mixed results for adults. Future research should focus on elucidating the full spectrum of obesogens, their mechanisms of action, and their implications for obesity risk across generations. This knowledge will inform preventive strategies and public health interventions aimed at addressing the obesity epidemic and its associated health burden.
Collapse
Affiliation(s)
- Marta Jaskulak
- Department of Immunobiology and Environmental Microbiology, Department of Health Sciences, Medical University of Gdansk, Poland.
| | - Malwina Zimowska
- Department of Immunobiology and Environmental Microbiology, Department of Health Sciences, Medical University of Gdansk, Poland
| | - Marta Rolbiecka
- Department of Immunobiology and Environmental Microbiology, Department of Health Sciences, Medical University of Gdansk, Poland
| | - Katarzyna Zorena
- Department of Immunobiology and Environmental Microbiology, Department of Health Sciences, Medical University of Gdansk, Poland
| |
Collapse
|
2
|
Yang L, Li L, Ji H, Wang Y, Xi J, Liu X, Xie Z, Yuan W, Miao M, Liang H. Maternal per- and polyfluoroalkyl substances exposure, cord blood lipidomics and infant anthropometry: A mediation analysis. ENVIRONMENTAL RESEARCH 2025; 271:121074. [PMID: 39922253 DOI: 10.1016/j.envres.2025.121074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/22/2025] [Accepted: 02/06/2025] [Indexed: 02/10/2025]
Abstract
Maternal exposure to per- and polyfluoroalkyl substances (PFAS) has been associated with offspring adiposity; however, underlying mechanisms remain unclear. In this study, we quantified 11 PFAS in maternal plasma collected between 12 and 16 gestational weeks and 104 lipid metabolites in the cord blood of 525 mother-infant pairs. Principal components of multiple PFAS compounds, extracted by principal component analysis, were employed to investigate the effect of the PFAS mixture. Infant anthropometric indicators included weight, length, waist/arm circumference, and abdominal/triceps/subscapular skinfold thickness at birth and 6 and 12 months old. Multiple linear regression showed that maternal PFAS exposure was primarily associated with increased glycerophospholipids and decreased fatty acyls and bile acids in cord blood. Four glycerophospholipids (16:0 PI, 16:0-18:1 PI, 18:0-20:4 PI, and 18:0-18:1 PS), fatty acyls (5(S)-HETE, 15(S)-HETE, 13-HDoHE, and dhkPGF2), and bile acids (GCA, TCA, TCDA, and TDCA) partially mediated the positive associations of the first principle component of PFAS compounds (with positive loadings for all PFAS compounds), PFNA, and PFUdA with infant skinfold thickness with mediating proportions ranging from 15.24% to 33.39%. Our findings provide novel insights into mechanisms underlying the effects of maternal PFAS exposure on infant growth.
Collapse
Affiliation(s)
- Lan Yang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Public Health, Fudan University, Shanghai, 200237, China
| | - Likang Li
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Public Health, Fudan University, Shanghai, 200237, China
| | - Honglei Ji
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Public Health, Fudan University, Shanghai, 200237, China
| | - Yan Wang
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jianya Xi
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Public Health, Fudan University, Shanghai, 200237, China
| | - Xiaofang Liu
- NHC Specialty Laboratory of Food Safety Risk Assessment and Standard Development, Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, China
| | - Zhenzhen Xie
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Public Health, Fudan University, Shanghai, 200237, China
| | - Wei Yuan
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Public Health, Fudan University, Shanghai, 200237, China
| | - Maohua Miao
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Public Health, Fudan University, Shanghai, 200237, China.
| | - Hong Liang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Public Health, Fudan University, Shanghai, 200237, China.
| |
Collapse
|
3
|
Fan T, Han T, Gu A, Jin J, Cui Q, Guo J, Zhang X, Yu H, Shi W. Novel Approach to Screen Endocrine-Disrupting Chemicals via Endocrine-Enhanced Reduced Human Transcriptome. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:4845-4856. [PMID: 40042996 DOI: 10.1021/acs.est.4c13159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Endocrine-disrupting chemicals (EDCs) can interfere with multiple pathways and trigger different modes of action. Thus, the traditional EDC in vitro screening processes often require a battery of bioassays to cover multiple target pathways. Here we developed an endocrine-enhanced reduced human transcriptome (ERHT) focused on hormone receptor signaling induced by the EDCs regulating specific genes. ERHT was developed based on 1200 prioritized genes covering 110 endocrine-related biological pathways across eight potential adverse outcomes. The ability of this approach to identify EDCs was derived from machine learning of 1068 dose-dependent transcriptome profiles and enhanced by quantifying chemical-induced critical pathway responses, and thus, it demonstrated excellent classification performance (AUC = 0.84 ± 0.03) in internal cross-validation. We ultimately applied this approach to known EDCs and inactive substances to validate the reliability of this approach. Through external validation on 210 chemicals, the extrapolation accuracy exceeded 80%, demonstrating the outstanding practical performance of this approach. Meanwhile, the pathway responses induced by the same chemical were consistent with the experimental results reported by multiple sequencing platforms, highlighting the robustness of this approach. The above results demonstrate that this approach can provide novel insights for EDCs' high-throughput screening and comprehensive toxic mechanisms through biological pathways.
Collapse
Affiliation(s)
- Tianle Fan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Tianhao Han
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Aoran Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jinsha Jin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Qian Cui
- Nanjing Yangtze River Delta Green Development Institute, Nanjing 210093, China
| | - Jing Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Hongxia Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Wei Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
- Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, China
| |
Collapse
|
4
|
Li ZH, Hu CY, Dai SW, Ma HY, Zhang SY, Sun C, Li JH, Huang K, Chen ML, Gao GP, Zhang XJ. Sex-specific associations between maternal exposure to metal mixtures and fetal growth trajectories: A prospective birth cohort study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178291. [PMID: 39733573 DOI: 10.1016/j.scitotenv.2024.178291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/03/2024] [Accepted: 12/23/2024] [Indexed: 12/31/2024]
Abstract
BACKGROUND The associations of prenatal metals exposure with birth outcomes have been widely assessed. However, evidence on the associations between metal mixtures and fetal intrauterine growth trajectories is scarce. OBJECTIVES This study aimed to explore the associations of metal mixtures with fetal intrauterine growth trajectories overall and by sex. METHODS We analyzed data from the Ma'anshan birth cohort, which included a total of 1041 pregnant woman. The concentrations of 12 metals in maternal blood were measured during early pregnancy, and fetal intrauterine growth indicators were standardized and assessed at 16, 23, 30, 34, and 38 weeks of gestation. We used generalized linear regression and linear mixed models to identify the key fetal growth indicator (biparietal diameter (BPD)), and applied GBTM to characterize BPD SD-scores trajectories. To further assess the individual and combined effects of metals, we conducted multivariable logistic regression and repeated holdouts weighted quantile sum (WQS) regression analyses, respectively. Finally, we performed a sex-stratified analysis to explore sex-specific associations. RESULTS The sex-stratified multivariable logistic regression analysis indicated that in male fetal, cobalt (Co) (OR: 0.60, 95 % CI: 0.38, 0.92) was negatively associated with the high-growth BPD-SD scores trajectory. In contrast, Co (OR: 2.39, 95 % CI: 1.40, 4.45) showed a positive association in female fetal. Results from the WQS showed that early pregnancy metal mixture exposure was associated with BPD-SD scores at 16, 34, and 38 weeks in female fetal. The results highlighted Zn and Co as key metals associated with high-growth BPD SD-scores trajectory. We also identified a significant interaction between early pregnancy metal mixtures and sex on high-growth BPD SD-scores trajectories. The WQS*sex interaction term had a mean odds ratio of 1.271 (95 % CI: 1.027, 1.619). CONCLUSION This study suggests that exposure to prenatal metal mixtures affects fetal intrauterine growth trajectories with sexual dimorphism.
Collapse
Affiliation(s)
- Zhen-Hua Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Cheng-Yang Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, China; Department of Humanistic Medicine, School of Humanistic Medicine, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Si-Wei Dai
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Hui-Ya Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, China; Management & Checkup Center, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei 230022, Anhui, China
| | - Si-Yu Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Chen Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Jia-Hui Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Kai Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, China; Department of Hospital Infection Prevention and Control, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei 230601, China
| | - Mao-Lin Chen
- Department of Gynecology and Obstetrics, Ma'anshan Maternal and Child Health Hospital, Ma'anshan 243000, China
| | - Guo-Peng Gao
- Department of Child Health Care, Ma'anshan Maternal and Child Health Hospital, Ma'anshan 243000, China
| | - Xiu-Jun Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, China; MOE Key Laboratory of Population Health Across Life Cycle, 81 Meishan Road, Hefei 230032, Anhui, China.
| |
Collapse
|
5
|
Li Z, Wang G, Braun JM, Hong X, Choi G, O'Leary SP, Yu CH, Pearson C, Adams WG, Fan ZT, Buckley JP, Wang X. Associations of early life per- and polyfluoroalkyl substances (PFAS) exposure with body mass index and risk of overweight or obesity at age 2-18 years: Mixture analysis in the prospective Boston Birth Cohort. ENVIRONMENT INTERNATIONAL 2025; 195:109206. [PMID: 39705976 PMCID: PMC11786237 DOI: 10.1016/j.envint.2024.109206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/08/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are a class of widespread persistent chemicals, which may have obesogenic effects during the fetal period. This study investigated the long-term association of maternal plasma PFAS concentrations at delivery and their mixture with child body mass index (BMI) and the risk of Overweight or Obesity (OWO) at the age of 2-18 years. METHODS The study included 1189 mother-child dyads from the prospective Boston Birth Cohort. Eight PFAS were measured in maternal plasma samples collected 24-72 h after delivery. Outcomes were BMI Z-score and OWO status of children at 2-18 years. The exposure-outcome associations were evaluated with linear and modified Poisson mixed-effects regression for individual PFAS and Bayesian kernel machine regression and quantile-based g-computation models for PFAS mixture. We explored the effect modification by maternal pre-pregnancy OWO, child age, sex, and race. RESULTS Maternal plasma samples had PFAS detection frequencies from 87 % to 100 % and geometric means ranging from 0.11 to 3.67 ng/mL. PFHpS and PFHxS were associated with higher child BMI Z-score. Such associations were stronger in children aged 6-12 years and 13-18 years than in 2-5 years. Stratified by maternal pre-pregnancy OWO, significant associations of the PFAS mixture with child BMI Z-score were only found in children of non-OWO mothers. In children aged 13-18 years, children with both high maternal plasma PFDeA, PFNA, and PFOA concentrations and maternal OWO had the highest risks of OWO compared to children with either only. Such synergistic effects were not found in younger children. CONCLUSIONS Early life exposure to individual PFAS and their mixture were associated with a higher risk of childhood OWO, with stronger associations observed in older child age groups and in children of non-OWO mothers. Synergistic effects of PFAS exposures and maternal pre-pregnancy OWO became evident in adolescence.
Collapse
Affiliation(s)
- Zeyu Li
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Guoying Wang
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Joseph M Braun
- Department of Epidemiology, Brown University, Providence, RI, USA
| | - Xiumei Hong
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Giehae Choi
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Shawn P O'Leary
- Environmental and Chemical Laboratory Services, Public Health and Environmental Laboratories, New Jersey Department of Health, Trenton, NJ, USA
| | - Chang Ho Yu
- Environmental and Chemical Laboratory Services, Public Health and Environmental Laboratories, New Jersey Department of Health, Trenton, NJ, USA
| | - Colleen Pearson
- Department of Pediatrics, Boston University Chobanian and Avedisian School of Medicine and Boston Medical Center, Boston, MA, USA
| | - William G Adams
- Department of Pediatrics, Boston University Chobanian and Avedisian School of Medicine and Boston Medical Center, Boston, MA, USA
| | - Zhihua Tina Fan
- Environmental and Chemical Laboratory Services, Public Health and Environmental Laboratories, New Jersey Department of Health, Trenton, NJ, USA
| | - Jessie P Buckley
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Xiaobin Wang
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
6
|
Dai Y, Ding J, Wang Z, Zhang B, Guo Q, Guo J, Qi X, Lu D, Chang X, Wu C, Zhang J, Zhou Z. Associations of prenatal and concurrent exposure to phenols mixture with anthropometric measures and blood pressure during childhood: A time-varying mixture approach. ENVIRONMENTAL RESEARCH 2024; 261:119766. [PMID: 39127330 DOI: 10.1016/j.envres.2024.119766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Environmental phenols were recognized as endocrine disrupting chemicals (EDCs). However, their impact on childhood anthropometric measures and blood pressure (BP) is still inconclusive. Limited studies have simultaneously considered prenatal and childhood exposures in analyzing mixtures of phenols. OBJECTIVE We investigated the relationships between combined prenatal and childhood exposures (two periodic exposures) to phenol mixtures and anthropometric measure and BP, to further identify the vulnerable periods of phenol exposure and to explore the important individual contribution of each phenol. METHODS We analyzed 434 mother-child dyads from the Sheyang Mini Birth Cohort Study (SMBCS). The urinary concentrations of 11 phenolic compounds were measured using gas chromatography tandem mass spectrometry. Generalized linear regression models (GLMs) and hierarchical Bayesian Kernel Machine Regression (hBKMR) were used to examine the effects of individual phenolic compounds at each period and of two periodic exposures. RESULTS In the single-chemical analysis, prenatal or childhood exposure to specific phenols, especially Benzopheone-3 (BP3), 4-tert-Octylphenol (4-tOP), and Benzyl paraben (BePB) were associated with BMI z-scores (BAZ), Waist-to-height ratio (WHtR), and BP. In the hBKMR models, two periodic exposures to phenol mixtures had a U-shaped association with WHtR, primarily driven by childhood BePB exposure. Moreover, among the phenol mixtures analysis, childhood 4-tOP exposure was identified as the primary contributor to the positive association with diastolic BP. Concurrent exposure to phenol mixtures resulted in greater susceptibility. CONCLUSIONS We found that prenatal and childhood exposure to phenol mixtures might influence childhood obesity and elevate blood pressure levels. Concurrent exposure to 4-tOP may be the primary driver of the positive associations with BP.
Collapse
Affiliation(s)
- Yiming Dai
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Jiayun Ding
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Zheng Wang
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Boya Zhang
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Qin Guo
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Jianqiu Guo
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Xiaojuan Qi
- Zhejiang Provincial Center for Disease Control and Prevention, No. 3399 Binsheng Road, Hangzhou, 310051, China
| | - Dasheng Lu
- Shanghai Municipal Center for Disease Control and Prevention, No. 1380 Zhongshan West Road, Shanghai, 200336, China
| | - Xiuli Chang
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Chunhua Wu
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China
| | - Jiming Zhang
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China.
| | - Zhijun Zhou
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai, 200032, China.
| |
Collapse
|
7
|
Zhang J, Wang Z, Li X, Zhang Y, Yuan J, Wang Z, Xu F, Chen Y, Li C. Association between phthalates exposure and myocardial damage in the general population: A cross-sectional study. ENVIRONMENTAL RESEARCH 2024; 261:119632. [PMID: 39025350 DOI: 10.1016/j.envres.2024.119632] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Cardiovascular consequences of phthalates exposure have been given increasing attention, but the association of phthalates with subclinical cardiovascular disease (CVD) was unknown. Accordingly, this study aimed to investigate the association between phthalates exposure and high-sensitivity cardiac troponin I (hs-cTnI), a marker of myocardial injury, which was detectable in the subclinical stage of CVD. METHODS Participants aged 6 years or older with available urinary phthalates metabolites and serum hs-cTnI concentrations were included in the National Health and Nutrition Examination Survey 2003-2004 cycle. Multivariable linear regression and weighted quantiles sum (WQS) regression were used to assess the association of hs-cTnI with individual phthalates and their co-exposure. Di-2-ethylhexylphthalate (ΣDEHP), high-molecular-weight phthalate (ΣHMWP), and low-molecular-weight phthalate (ΣLMWP) were defined as the molecular sum of phthalates metabolites in urine. RESULTS 2241 participants were finally included. The percent change of serum hs-cTnI concentrations related to per 1-standard deviation increase of logarithmic urinary phthalates concentrations was 3.4% (0.1-6.7, P = 0.04) for ΣDEHP, 3.6% (0.3-6.9, P = 0.03) for ΣHMWP, and 3.5% (0.2-6.8, P = 0.04) for ΣLMWP. Co-exposure to phthalates metabolites expressed as the WQS index also demonstrated a positive association with hs-cTnI. A similar association pattern was found in the population with no prior CVD. CONCLUSIONS This study indicated the potential of phthalates to myocardial injury which may occur even before clinically apparent CVD was identified, emphasizing the significance of reducing phthalates in the prevention of CVD.
Collapse
Affiliation(s)
- Jiajun Zhang
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Key Laboratory: Magnetic Field-free Medicine & Functional Imaging (MF), Qilu Hospital of Shandong University, Jinan, China; NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Jinan, China
| | - Zhen Wang
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Key Laboratory: Magnetic Field-free Medicine & Functional Imaging (MF), Qilu Hospital of Shandong University, Jinan, China; NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaoxing Li
- Department of Geriatrics, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Yiwen Zhang
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Key Laboratory: Magnetic Field-free Medicine & Functional Imaging (MF), Qilu Hospital of Shandong University, Jinan, China; NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Jinan, China
| | - Jiaquan Yuan
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Key Laboratory: Magnetic Field-free Medicine & Functional Imaging (MF), Qilu Hospital of Shandong University, Jinan, China; NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Jinan, China
| | - Zerui Wang
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Key Laboratory: Magnetic Field-free Medicine & Functional Imaging (MF), Qilu Hospital of Shandong University, Jinan, China; NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Jinan, China
| | - Feng Xu
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Key Laboratory: Magnetic Field-free Medicine & Functional Imaging (MF), Qilu Hospital of Shandong University, Jinan, China; NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Jinan, China
| | - Yuguo Chen
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Key Laboratory: Magnetic Field-free Medicine & Functional Imaging (MF), Qilu Hospital of Shandong University, Jinan, China; NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Jinan, China.
| | - Chuanbao Li
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China; Shandong Key Laboratory: Magnetic Field-free Medicine & Functional Imaging (MF), Qilu Hospital of Shandong University, Jinan, China; NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
8
|
Hu CY, Alcala CS, Lamadrid-Figueroa H, Tamayo-Ortiz M, Mercado-Garcia A, Rivera Rivera N, Just AC, Gennings C, Téllez-Rojo MM, Wright RO, Wright RJ, Carroll KN, Rosa MJ. Associations of prenatal exposure to phthalates and their mixture with lung function in Mexican children. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134863. [PMID: 38885590 PMCID: PMC11250751 DOI: 10.1016/j.jhazmat.2024.134863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/28/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024]
Abstract
Early life phthalates exposure has been associated with adverse respiratory outcomes. However, evidence linking prenatal phthalates exposure and childhood lung function has been inconclusive. Additionally, few studies have examined phthalates exposure as a mixture and explored sexually dimorphic associations. We aimed to investigate sex-specific associations of prenatal phthalates mixtures with childhood lung function using the PROGRESS cohort in Mexico (N = 476). Prenatal phthalate concentrations were measured in maternal urine collected during the 2nd and 3rd trimesters. Children's lung function was evaluated at ages 8-13 years. Individual associations were assessed using multivariable linear regression, and mixture associations were modeled using repeated holdout WQS regression and hierarchical BKMR; data was stratified by sex to explore sex-specific associations. We identified significant interactions between 2nd trimester phthalates mixture and sex on FEV1 and FVC z-scores. Higher 2nd trimester phthalate concentrations were associated with higher FEV1 (β = 0.054, 95 %CI: 0.005, 0.104) and FVC z-scores (β = 0.074, 95 % CI: 0.024, 0.124) in females and with lower measures in males (FEV1, β = -0.017, 95 %CI: -0.066, 0.026; FVC, β = -0.014, 95 %CI: -0.065, 0.030). This study indicates that prenatal exposure to phthalates is related to childhood lung function in a sex-specific manner.
Collapse
Affiliation(s)
- Cheng-Yang Hu
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY 10029, USA; Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Cecilia S Alcala
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY 10029, USA
| | - Hector Lamadrid-Figueroa
- Department of Perinatal Health, Center for Population Health Research, National Institute of Public Health (INSP), Av. Universidad #655 Col. Santa Maria Ahuacatitlan C.P. 62100, Cuernavaca, Morelos, Mexico
| | - Marcela Tamayo-Ortiz
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY 10032, USA
| | - Adriana Mercado-Garcia
- Center for Nutrition and Health Research, National Institute of Public Health, Av. Universidad #655 Col. Santa Maria Ahuacatitlan C.P. 62100, Cuernavaca, Morelos, Mexico
| | - Nadya Rivera Rivera
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY 10029, USA
| | - Allan C Just
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY 10029, USA; Department of Epidemiology, Brown University School of Public Health, 121 S Main St, Providence, RI 02903, USA
| | - Chris Gennings
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY 10029, USA
| | - Martha María Téllez-Rojo
- Center for Nutrition and Health Research, National Institute of Public Health, Av. Universidad #655 Col. Santa Maria Ahuacatitlan C.P. 62100, Cuernavaca, Morelos, Mexico
| | - Robert O Wright
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY 10029, USA; Department of Public Health, Icahn School of Medicine at Mount Sinai, 1184 Fifth Avenue, New York, NY 10029, USA; Institute for Climate Change, Environmental Health, and Exposomics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY 10029, USA
| | - Rosalind J Wright
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY 10029, USA; Department of Public Health, Icahn School of Medicine at Mount Sinai, 1184 Fifth Avenue, New York, NY 10029, USA; Institute for Climate Change, Environmental Health, and Exposomics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY 10029, USA
| | - Kecia N Carroll
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY 10029, USA; Department of Public Health, Icahn School of Medicine at Mount Sinai, 1184 Fifth Avenue, New York, NY 10029, USA
| | - Maria José Rosa
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY 10029, USA.
| |
Collapse
|
9
|
Zhang Z, Zhong Q, Qian Z, Zeng X, Zhang J, Xu X, Hylkema MN, Nolte IM, Snieder H, Huo X. Alterations of gut microbiota and its metabolomics in children with 6PPDQ, PBDE, PCB, and metal(loid) exposure. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134862. [PMID: 38885585 DOI: 10.1016/j.jhazmat.2024.134862] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024]
Abstract
The composition and metabolites of the gut microbiota can be altered by environmental pollutants. However, the effect of co-exposure to multiple pollutants on the human gut microbiota has not been sufficiently studied. In this study, gut microorganisms and their metabolites were compared between 33 children from Guiyu, an e-waste dismantling and recycling area, and 34 children from Haojiang, a healthy environment. The exposure level was assessed by estimating the daily intake (EDI) of polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), 6PPD-quinone (6PPDQ), and metal(loid)s in kindergarten dust. Significant correlations were found between the EDIs of 6PPDQ, BDE28, PCB52, Ni, Cu, and the composition of gut microbiota and specific metabolites. The Bayesian kernel machine regression model showed negative correlations between the EDIs of five pollutants (6PPDQ, BDE28, PCB52, Ni, and Cu) and the composition of gut microbiota. The EDIs of these five pollutants were positively correlated with the levels of the metabolite 2,4-diaminobutyric acid, while negatively correlated with the levels of d-erythro-sphingosine and d-threitol. Our study suggests that exposure to 6PPDQ, BDE28, PCB52, Ni, and Cu in kindergarten dust is associated with alterations in the composition and metabolites of the gut microbiota. These alterations may be associated with children's health.
Collapse
Affiliation(s)
- Zhuxia Zhang
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, Guangzhou 511443, Guangdong, China
| | - Qi Zhong
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, Guangzhou 511443, Guangdong, China; Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Ziyi Qian
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, Guangzhou 511443, Guangdong, China
| | - Xiang Zeng
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, Guangzhou 511443, Guangdong, China; School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province 310053, China
| | - Jian Zhang
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, Guangzhou 511443, Guangdong, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Machteld N Hylkema
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, the Netherlands
| | - Ilja M Nolte
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, the Netherlands
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, the Netherlands
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, Guangzhou 511443, Guangdong, China; Laboratory of Environmental Medicine and Developmental Toxicology, the First Affiliated Hospital of Jinan University, Guangzhou 510630, Guangdong, China.
| |
Collapse
|
10
|
Birolli WG, Lanças FM, dos Santos Neto ÁJ, Silveira HCS. Determination of pesticide residues in urine by chromatography-mass spectrometry: methods and applications. Front Public Health 2024; 12:1336014. [PMID: 38932775 PMCID: PMC11199415 DOI: 10.3389/fpubh.2024.1336014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/22/2024] [Indexed: 06/28/2024] Open
Abstract
Introduction Pollution has emerged as a significant threat to humanity, necessitating a thorough evaluation of its impacts. As a result, various methods for human biomonitoring have been proposed as vital tools for assessing, managing, and mitigating exposure risks. Among these methods, urine stands out as the most commonly analyzed biological sample and the primary matrix for biomonitoring studies. Objectives This review concentrates on exploring the literature concerning residual pesticide determination in urine, utilizing liquid and gas chromatography coupled with mass spectrometry, and its practical applications. Method The examination focused on methods developed since 2010. Additionally, applications reported between 2015 and 2022 were thoroughly reviewed, utilizing Web of Science as a primary resource. Synthesis Recent advancements in chromatography-mass spectrometry technology have significantly enhanced the development of multi-residue methods. These determinations are now capable of simultaneously detecting numerous pesticide residues from various chemical and use classes. Furthermore, these methods encompass analytes from a variety of environmental contaminants, offering a comprehensive approach to biomonitoring. These methodologies have been employed across diverse perspectives, including toxicological studies, assessing pesticide exposure in the general population, occupational exposure among farmers, pest control workers, horticulturists, and florists, as well as investigating consequences during pregnancy and childhood, neurodevelopmental impacts, and reproductive disorders. Future directions Such strategies were essential in examining the health risks associated with exposure to complex mixtures, including pesticides and other relevant compounds, thereby painting a broader and more accurate picture of human exposure. Moreover, the implementation of integrated strategies, involving international research initiatives and biomonitoring programs, is crucial to optimize resource utilization, enhancing efficiency in health risk assessment.
Collapse
Affiliation(s)
- Willian Garcia Birolli
- Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo, Brazil
- Chromatography Group, São Carlos Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Fernando Mauro Lanças
- Chromatography Group, São Carlos Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
11
|
Qiao JC, Li ZH, Ma YB, Ma HY, Zhang MY, Zhang XJ, Hu CY. Associations of per- and polyfluoroalkyl substances (PFAS) and their mixture with risk of rheumatoid arthritis in the U.S. adult population. Environ Health 2024; 23:38. [PMID: 38609943 PMCID: PMC11015572 DOI: 10.1186/s12940-024-01073-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are known environmental contaminants with immunosuppressive properties. Their connection to rheumatoid arthritis (RA), a condition influenced by the immune system, is not well studied. This research explores the association between PFAS exposure and RA prevalence. METHODS This research utilized data from the NHANES, encompassing a sample of 10,496 adults from the 2003-2018 cycles, focusing on serum levels of several PFAS. The presence of RA was determined based on self-reports. This study used multivariable logistic regression to assess the relationship between individual PFAS and RA risk, adjusting for covariates to calculate odds ratios (ORs). The combined effects of PFAS mixtures were evaluated using BKMR, WQS regression, and quantile g-computation. Additionally, sex-specific associations were explored through stratified analysis. RESULTS Higher serum PFOA (OR = 0.88, 95% CI: 0.79, 0.98), PFHxS (OR = 0.91, 95% CI: 0.83, 1.00), PFNA (OR = 0.87, 95% CI: 0.77, 0.98), and PFDA (OR = 0.89, 95% CI: 0.81, 0.99) concentration was related to lower odds of RA. Sex-specific analysis in single chemical models indicated the significant inverse associations were only evident in females. BKMR did not show an obvious pattern of RA estimates across PFAS mixture. The outcomes of sex-stratified quantile g-computation demonstrated that an increase in PFAS mixture was associated with a decreased odds of RA in females (OR: 0.76, 95% CI: 0.62, 0.92). We identified a significant interaction term of the WQS*sex in the 100 repeated hold out WQS analysis. Notably, a higher concentration of the PFAS mixture was significantly associated with reduced odds of RA in females (mean OR = 0.93, 95% CI: 0.88, 0.98). CONCLUSIONS This study indicates potential sex-specific associations of exposure to various individual PFAS and their mixtures with RA. Notably, the observed inverse relationships were statistically significant in females but not in males. These findings contribute to the growing body of evidence indicating that PFAS may have immunosuppressive effects.
Collapse
Affiliation(s)
- Jian-Chao Qiao
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Zhen-Hua Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Yu-Bo Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Hui-Ya Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
- Management & Checkup Center, the First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui, 230022, China
| | - Meng-Yue Zhang
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Xiu-Jun Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, 81 Meishan Road, Hefei, 230032, China.
| | - Cheng-Yang Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, 81 Meishan Road, Hefei, 230032, China.
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New York, NY, 10029, USA.
- Department of Humanistic Medicine, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.
| |
Collapse
|
12
|
Sun S, Xie Z, Song X, Wen S, Yuan W, Miao M, Ji H, Liang H. Prenatal exposure to Per- and polyfluoroalkyl substances and adiposity measures of children at 4 and 6 years: A prospective birth cohort in China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115751. [PMID: 38042132 DOI: 10.1016/j.ecoenv.2023.115751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/13/2023] [Accepted: 11/25/2023] [Indexed: 12/04/2023]
Abstract
There is growing evidence that prenatal exposure to Per- and polyfluoroalkyl substances (PFAS) was associated with childhood obesity, but evidence on multiple adiposity measures including arm circumference (AC), and waist circumference (WC) among Chinese children is limited. We investigated the associations of prenatal exposure to PFAS with adiposity measures of children at 4 and 6 years of age in the Shanghai-Minhang Birth Cohort Study. A total of 573 mother-child pairs with maternal PFAS concentrations and at least one measurement of adiposity measures of children were included in the present study. Eleven PFAS were assessed in maternal fasting blood samples. Information on children's weight, height, AC, and WC was collected at follow-ups. Weight for age Z score (WAZ), body mass index for age Z score (BMIz), and children overweight were calculated based on the World Health Organization Child Growth Standards. Multivariate linear regression, Poisson regression with robust error variance, and Bayesian Kernel Machine Regression (BKMR) models were used to examine the associations of prenatal exposure to PFAS with children's adiposity measures. Eight PFAS with detection rates above 85 % were included in the analyses. In the multivariate linear regression models, maternal PFNA concentrations were associated with a greater AC (β = 0.29, 95 % Confidence Interval (CI): 0.04-0.55) in 4-year-old children and with an increase in WAZ (β = 0.26, 95 % CI: 0.06-0.46), BMIz (β = 0.31, 95 % CI: 0.09-0.53), AC (β = 0.49, 95 % CI: 0.08-0.90), and WC (β = 1.47, 95 % CI: 0.41-2.52) in 6-year-old children. We also observed the associations of maternal concentrations of PFOS, PFNA, PFUdA, and PFTrDA with the increased risk of children overweight in 6-year-old children. BKMR models further supported the findings from multivariate linear regression and Poisson regression models, and identified PFNA as the most important contributor. Moreover, the associations described above were generally more pronounced in girls. In conclusion, prenatal exposure to PFAS was associated with an increased risk of children's adiposity with a sex-specific manner, and PFNA contributed most to the associations after controlling for the effect of co-exposure to other PFAS compounds, especially among girls at 6 years of age.
Collapse
Affiliation(s)
- Songlin Sun
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Public Health, Fudan University, Shanghai 200237, China
| | - Zhenzhen Xie
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Public Health, Fudan University, Shanghai 200237, China
| | - Xiuxia Song
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Sheng Wen
- Hubei Provincial Key Laboratory of Applied Toxicology, National Reference Laboratory of Dioxin, Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei 430079, China
| | - Wei Yuan
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Maohua Miao
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Honglei Ji
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China.
| | - Hong Liang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China.
| |
Collapse
|