1
|
Yang M, Li A, Mei Y, Li H, An Z, Zhou Q, Zhao J, Li Y, Li K, Zhao M, Xu J, Guo H, Xu Q. Effect of PFAS serum exposure pattern on the lipid metabolism: Time to step-forward in causal inference in epidemiology. J Environ Sci (China) 2025; 155:163-176. [PMID: 40246456 DOI: 10.1016/j.jes.2024.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 12/22/2024] [Accepted: 12/25/2024] [Indexed: 04/19/2025]
Abstract
Associations of per- and polyfluoroalkyl substances (PFAS) on lipid metabolism have been documented but research remains scarce regarding effect of PFAS on lipid variability. To deeply understand their relationship, a step-forward in causal inference is expected. To address these, we conducted a longitudinal study with three repeated measurements involving 201 participants in Beijing, among which 100 eligible participants were included for the present study. Twenty-three PFAS and four lipid indicators were assessed at each visit. We used linear mixed models and quantile g-computation models to investigate associations between PFAS and blood lipid levels. A latent class growth model described PFAS serum exposure patterns, and a generalized linear model demonstrated associations between these patterns and lipid variability. Our study found that PFDA was associated with increased TC (β = 0.083, 95% CI: 0.011, 0.155) and HDL-C (β = 0.106, 95% CI: 0.034, 0.178). The PFAS mixture also showed a positive relationship with TC (β = 0.06, 95% CI: 0.02, 0.10), with PFDA contributing most positively. Compared to the low trajectory group, the middle trajectory group for PFDA was associated with VIM of TC (β = 0.756, 95% CI: 0.153, 1.359). Furthermore, PFDA showed biological gradients with lipid metabolism. This is the first repeated-measures study to identify the impact of PFAS serum exposure pattern on the lipid metabolism and the first to estimate the association between PFAS and blood lipid levels in middle-aged and elderly Chinese and reinforce the evidence of their causal relationship through epidemiological studies.
Collapse
Affiliation(s)
- Ming Yang
- Medical Center for Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China; Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China; State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China; Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Ang Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Yayuan Mei
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Haoran Li
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, China; Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Ziwen An
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Environment and Human Health, Hebei Province, Shijiazhuang 050017, China
| | - Quan Zhou
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Jiaxin Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Yanbing Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Kai Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Meiduo Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Jing Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Huicai Guo
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Environment and Human Health, Hebei Province, Shijiazhuang 050017, China.
| | - Qun Xu
- Medical Center for Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China; Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China; State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China; Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|
2
|
Wang M, Wang Z, Liu Y, Li R, Shen Y, Zhuang Z, Wang L, Liu Z, Jing T. Per- and polyfluoroalkyl substances and type 2 diabetes among older adults: Synthesizing cross-sectional population study and meta-analysis. Int J Hyg Environ Health 2025; 266:114560. [PMID: 40064127 DOI: 10.1016/j.ijheh.2025.114560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/31/2024] [Accepted: 03/04/2025] [Indexed: 04/25/2025]
Abstract
The effects of per- and polyfluoroalkyl substances (PFASs) on type 2 diabetes (T2D) remain unclear. We aimed to explore the effects of PFASs exposure on glucose metabolism disorders in older adults. We enrolled 704 elderly individuals aged over 65 years from Wuhan, China. Plasma concentrations of 12 PFASs were measured using liquid chromatography-mass spectrometry. Generalized linear models and quantile-based g computation (qgcomp) were employed to evaluate the effects of individual and combined PFAS exposures on T2D risk. Additionally, a meta-analysis was conducted to consolidate findings reported in the literature for validation purposes. The detection rate of all 12 PFASs exceeded 80%, with median concentrations ranging from 0.01 to 15.22 ng/mL. Single exposure analysis revealed an inverse association between perfluorododecanoic acid (PFDoA) and impaired fasting glucose (IFG), as well as between PFDoA, perfluoroundecanoic acid (PFUdA), perfluorodecanoic acid (PFDA), perfluorononanoic acid (PFNA), and perfluorooctanoic acid (PFOA) and T2D risk (P < 0.05). Quantile-based g-computation analysis showed an inverse association between the PFAS mixture and IFG and T2D risk, although these associations lacked statistical significance. PFDA exhibited the greatest weight in the negative associations with IFG and T2D. Meta-analysis demonstrated an inverse association between PFDA and PFUdA and T2D risk, and PFOA demonstrated an inverted U-shaped nonlinear dose-response relationship with the risk of T2D (Pnonlinear = 0.026). The potential impact of PFAS exposure on glucose metabolism merits attention, underscoring the need for a thorough comprehension of the biological mechanisms underlying PFAS-mediated metabolic effects to facilitate precise risk assessment.
Collapse
Affiliation(s)
- Mengyi Wang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Zhu Wang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Yan Liu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Ruifang Li
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Yang Shen
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Zhijia Zhuang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Lulu Wang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Zhe Liu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Tao Jing
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China.
| |
Collapse
|
3
|
Raza YN, Moustafa JSES, Zhang X, Wang D, Tomlinson M, Falchi M, Menni C, Bowyer RCE, Steves CJ, Small KS. Longitudinal association of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) exposure with lipid traits, in a healthy unselected population. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2025:10.1038/s41370-025-00773-3. [PMID: 40274963 DOI: 10.1038/s41370-025-00773-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/04/2025] [Accepted: 04/08/2025] [Indexed: 04/26/2025]
Abstract
BACKGROUND Perfluorooctanoic acid (PFOA) and Perfluorooctanesulfonic Acid (PFOS) are synthetic substances with long half-lives. Their presence is widespread and pervasive, and they are noted for their environmental persistence. Research has shown these chemicals to be associated with dyslipidaemia, although few studies have considered the long-term associations in the general population. OBJECTIVES The aim of this study was to consider the longitudinal and cross-sectional associations with lipid phenotypes. METHODS We investigated the association of these chemicals with total cholesterol (TC), low-density lipoprotein (LDL), high-density lipoprotein (HDL), triglycerides (TG), and the total cholesterol: high-density lipoprotein ratio (TC:HDL), in a healthy unselected British population of twins (n = 2069), measured at three timepoints between 1996 and 2014. RESULTS Serum levels of PFOA and PFOS decreased over time during this period. We demonstrate longitudinal associations across serum levels of both PFOA and PFOS, finding positive associations with TC (PFOA:β = 0.51, p = 1.9e-07; PFOS:β = 0.24, p = 3.8e-05) and LDL (PFOA:β = 0.61, p = 1.7e-11; PFOS:β = 0.42, p = 1.6e-14), and consistent negative associations with HDL and PFOA (β = -0.12, p = 0.003) and PFOS (β = -0.25, p = <2e-16). We also observe cross-sectional associations of PFAS with lipids across all three timepoints. IMPACT PFAS remain persistent in the environment, despite regulations, due to their structural properties, leaving humans open to exposure. There is less understanding of how chronic low exposure to these chemicals, particularly within an unselected population, may impact health outcomes. This study reports the longitudinal associations of PFOA and PFOS over an 18-year window with 5 lipid phenotypes, highlighting that despite falling serum levels, PFAS exposure may lead to hyperlipidaemia. We further investigate the cross-sectional associations across three timepoints to understand time-dependent effects, demonstrating associations persist. This work aids our understanding on the long-term effect of chronic PFAS exposure.
Collapse
Affiliation(s)
- Yasrab N Raza
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | | | - Xinyuan Zhang
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Dongmeng Wang
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Max Tomlinson
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Mario Falchi
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Cristina Menni
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
- Department of Pathophysiology and Transplantation, Università Degli Studi di Milano, Via Francesco Sforza, 35, 20122, Milan, Italy
- Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, 20122, Milan, Italy
| | - Ruth C E Bowyer
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Claire J Steves
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Kerrin S Small
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK.
| |
Collapse
|
4
|
Boleydei H, Huot C, Vaneeckhaute C. Exploring per- and polyfluoroalkyl substance distribution in Arctic wastewater treatment lagoons and natural wetlands: First record in Nunavik, Canada. CHEMOSPHERE 2025; 374:144186. [PMID: 39956009 DOI: 10.1016/j.chemosphere.2025.144186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/29/2024] [Accepted: 01/30/2025] [Indexed: 02/18/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS), as emerging and bioaccumulative contaminants, are widely present in water and wastewater systems. Municipal wastewater effluents serve as pathways for PFAS to enter aquatic environments. This study monitors the PFAS in wastewater treatment lagoons, nearby wetlands and bay in a Canadian Arctic community. Eight out of the 40 targeted PFAS were detected in samples collected from raw wastewater, wastewater treatment lagoons, natural wetlands, and Ungava bay. The total PFAS concentrations were in the ranges of 45.9-56.1 ng/L in wastewater treatment lagoons, 36.6-70.8 ng/L in natural wetlands and measured at 7.3 ng/L in the bay. The most prevalent and frequently detected PFAS were 6:2 FTS, PFHxA, and PFNA. At all sites, short-chain PFAS concentrations surpassed long-chain PFAS. Short-chain PFAS peaked at 267.01 ng/L (79.74%), while long-chain PFAS totaled 67.83 ng/L (20.26%). The estimated yearly mass flow rate of total PFAS into the environment through lagoon effluent was 2.33 g/year. The conducted environmental risk assessment for both the effluent of the wastewater treatment lagoons and the three downstream natural wetlands suggests that the risks associated with all PFAS under study posed minimal ecological risk, though long-term evaluation is needed. In conclusion, the findings of this research provide further information on PFAS pollution through wastewater in Arctic regions and may, as such, guide the development of comprehensive regulations to safeguard both human health and the environment, thereby mitigating potential future risks.
Collapse
Affiliation(s)
- Hamid Boleydei
- BioEngine, Research Team on Green Process Engineering and Biorefineries, Chemical Engineering Department, Université Laval, 1065, Avenue de La Médecine, Québec, QC G1V 0A6, Canada; CentrEau, Centre de Recherche sur L'eau, Université Laval, 1065, Avenue de La Médecine, Québec, QC G1V 0A6, Canada.
| | - Caroline Huot
- Santé Publique et Médecine Préventive, Institut National de Santé Publique Du Québec, Québec, Canada.
| | - Céline Vaneeckhaute
- BioEngine, Research Team on Green Process Engineering and Biorefineries, Chemical Engineering Department, Université Laval, 1065, Avenue de La Médecine, Québec, QC G1V 0A6, Canada; CentrEau, Centre de Recherche sur L'eau, Université Laval, 1065, Avenue de La Médecine, Québec, QC G1V 0A6, Canada.
| |
Collapse
|
5
|
Zhang J, Naveed H, Chen K, Chen L. Toxicity of Per- and Polyfluoroalkyl Substances and Their Substitutes to Terrestrial and Aquatic Invertebrates-A Review. TOXICS 2025; 13:47. [PMID: 39853045 PMCID: PMC11769487 DOI: 10.3390/toxics13010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/25/2024] [Accepted: 01/08/2025] [Indexed: 01/26/2025]
Abstract
Per- and polyfluoroalkyl substances (PFASs) have been widely used in daily life but they cause certain impacts on the environment due to their unique carbon-fluorine chemical bonds that are difficult to degrade in the environment. Toxicological studies on PFASs and their alternatives have mainly focused on vertebrates, while terrestrial and aquatic invertebrates have been studied to a lesser extent. As invertebrates at the bottom of the food chain play a crucial role in the whole ecological chain, it is necessary to investigate the toxicity of PFASs to invertebrates. In this paper, the progress of toxicological studies on PFASs and their alternatives in terrestrial and aquatic invertebrates is reviewed, and the accumulation of PFASs, their toxicity in invertebrates, as well as the neurotoxicity and toxicity to reproduction and development are summarized. This provides a reference to in-depth studies on the comprehensive assessment of the toxicity of PFASs and their alternatives, promotes further research on PFASs in invertebrates, and provides valuable recommendations for the use and regulation of alternatives to PFASs.
Collapse
Affiliation(s)
- Jiaxin Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China; (J.Z.); (H.N.); (K.C.)
| | - Hassan Naveed
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China; (J.Z.); (H.N.); (K.C.)
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China; (J.Z.); (H.N.); (K.C.)
| | - Liang Chen
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China; (J.Z.); (H.N.); (K.C.)
| |
Collapse
|
6
|
Zhou X, Wang X, Ou T, Huang L, He B. Association between family economic situation and serum PFAS concentration in American adults with hypertension and hyperlipemia. Sci Rep 2024; 14:20799. [PMID: 39242648 PMCID: PMC11379923 DOI: 10.1038/s41598-024-71664-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024] Open
Abstract
Although there is an association between income status and concentration of perfluoroalkyl and polyfluoroalkyl substance (PFAS), the association remains uncertain in patients with hypertension, hyperlipidemia, and comorbidities. Data from the 2013-2016 National Health and Nutrition Examination Survey were analyzed. A total of 2665 adults were included, and the data included participants' serum PFAS (perfluorooctanoic acid [PFOA], perfluorononaic acid, perfluorodecanoic acid, perfluoroundecanoic acid, perfluorohexane sulfonic acid, and perfluorooctane sulfonic acid) levels and selected covariates. Multivariate linear regression models were used to examine the association between the ratio of family income to poverty (PIR) and individual serum PFAS concentrations in the hypertensive and/or hyperlipidemia groups after adjusting for covariates. The potential effects of sex and age on the results were explored using stratified analysis. A mediating effect model was used to explore the mediating effects of body mass index (BMI) and waist circumference on the association results. After adjusting for potential confounders, for hyperlipidemia and comorbidities (hypertension and hyperlipidemia), serum levels of multiple common PFAS increased by 0.09% (95%Confidence interval [CI] 0.02-0.15%) to 0.13% (95%CI 0.08-0.19%) and 0.10% (95%CI 0.02-0.17%) to 0.12% (95%CI 0.06-0.18%), respectively, with each 1% increase in PIR. The covariate model and stratified analyses results suggested the potential effects of different covariates such as age and sex, leading to changes in the statistical significance of the association results. BMI significantly mediated the effect of PIR on PFOA in hyperlipidemia (13%, P < 0.001). Household income in adults with hyperlipidemia and comorbidities positively correlated with serum PFAS concentration in the United States. Obesity played an indispensable mediating role in the association between economic income and PFAS concentration.
Collapse
Affiliation(s)
- Xingye Zhou
- Hospital Infection Management and Disease Prevention and Control Department, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Xingren Wang
- Department for Endemic and Chronic Disease Control, Hainan Provincial Center for Disease Control and Prevention, Haikou, Hainan, China
| | - Tingting Ou
- Department for Endemic and Chronic Disease Control, Hainan Provincial Center for Disease Control and Prevention, Haikou, Hainan, China
| | - Lei Huang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Bin He
- Hainan Provincial Center for Disease Control and Prevention, 40 Haifu Avenue, Haikou, Hainan, China.
| |
Collapse
|
7
|
Bian J, Xu J, Guo Z, Li X, Ge Y, Tang X, Lu B, Chen X, Lu S. Per- and polyfluoroalkyl substances in Chinese commercially available red swamp crayfish (Procambarus clarkii): Implications for human exposure and health risk assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124369. [PMID: 38876375 DOI: 10.1016/j.envpol.2024.124369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
The extensive utilization of per- and polyfluoroalkyl substances (PFASs) has led to their pervasive presence in the environment, resulting in contamination of aquatic products. Prolonged exposure to PFASs has been linked to direct hepatic and renal damage, along with the induction of oxidative stress, contributing to a spectrum of chronic ailments. Despite the recent surge in popularity of red swamp crayfish as a culinary delicacy in China, studies addressing PFASs' exposure and associated health risks from their consumption remain scarce. To address this gap, our study investigated the PFASs' content in 85 paired edible tissue samples sourced from the five primary red swamp crayfish breeding provinces in China. The health risks associated with dietary exposure were also assessed. Our findings revealed widespread detection of PFASs in crayfish samples, with short-chain perfluoroalkyl carboxylic acids (PFCAs) exhibiting the highest concentrations. Notably, the total PFAS concentration in the hepatopancreas (median: 160 ng/g) significantly exceeded that in muscle tissue (5.95 ng/g), as did the concentration of every single substance. The hazard quotient of perfluorohexanesulfonic acid (PFHxS) via consuming crayfish during peak season exceeded 1. In this case, a potential total non-cancer health risk of PFASs, which is mainly from the hepatopancreas and associated with PFHxS, is also observed (hazard index>1). Thus, it is recommended to avoid consuming the hepatopancreas of red swamp crayfish. Greater attention should be paid to governance technology innovation and regulatory measure strengthening for short-chain PFASs.
Collapse
Affiliation(s)
- Junye Bian
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Jiayi Xu
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Zhihui Guo
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Xinjie Li
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Yiming Ge
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Xinxin Tang
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Bingjun Lu
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Xulong Chen
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Shenzhen Campus of SunYat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
8
|
Kashobwe L, Sadrabadi F, Brunken L, Coelho ACMF, Sandanger TM, Braeuning A, Buhrke T, Öberg M, Hamers T, Leonards PEG. Legacy and alternative per- and polyfluoroalkyl substances (PFAS) alter the lipid profile of HepaRG cells. Toxicology 2024; 506:153862. [PMID: 38866127 DOI: 10.1016/j.tox.2024.153862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/07/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are synthetic chemicals used in various industrial and consumer products. They have gained attention due to their ubiquitous occurrence in the environment and potential for adverse effects on human health, often linked to immune suppression, hepatotoxicity, and altered cholesterol metabolism. This study aimed to explore the impact of ten individual PFAS, 3 H-perfluoro-3-[(3-methoxypropoxy) propanoic acid] (PMPP/Adona), ammonium perfluoro-(2-methyl-3-oxahexanoate) (HFPO-DA/GenX), perfluorobutanoic acid (PFBA), perfluorobutanesulfonic acid (PFBS), perfluorodecanoic acid (PFDA), perfluorohexanoic acid (PFHxA), perfluorohexanesulfonate (PFHxS), perfluorononanoic acid (PFNA), perfluorooctanoic acid (PFOA), and perfluorooctanesulfonic acid (PFOS) on the lipid metabolism in human hepatocyte-like cells (HepaRG). These cells were exposed to different concentrations of PFAS ranging from 10 µM to 5000 µM. Lipids were extracted and analyzed using liquid chromatography coupled with mass spectrometry (LC- MS-QTOF). PFOS at 10 µM and PFOA at 25 µM increased the levels of ceramide (Cer), diacylglycerol (DAG), N-acylethanolamine (NAE), phosphatidylcholine (PC), and triacylglycerol (TAG) lipids, while PMPP/Adona, HFPO-DA/GenX, PFBA, PFBS, PFHxA, and PFHxS decreased the levels of these lipids. Furthermore, PFOA and PFOS markedly reduced the levels of palmitic acid (FA 16.0). The present study shows distinct concentration-dependent effects of PFAS on various lipid species, shedding light on the implications of PFAS for essential cellular functions. Our study revealed that the investigated legacy PFAS (PFOS, PFOA, PFBA, PFDA, PFHxA, PFHxS, and PFNA) and alternative PFAS (PMPP/Adona, HFPO-DA/GenX and PFBS) can potentially disrupt lipid homeostasis and metabolism in hepatic cells. This research offers a comprehensive insight into the impacts of legacy and alternative PFAS on lipid composition in HepaRG cells.
Collapse
Affiliation(s)
- Lackson Kashobwe
- Vrije Universiteit Amsterdam, Amsterdam Institute for Life and Environment (A-LIFE), De Boelelaan 1105, Amsterdam, Netherlands
| | - Faezeh Sadrabadi
- Department of Food Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Lars Brunken
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ana Carolina M F Coelho
- Department of Community Medicine, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Torkjel M Sandanger
- Department of Community Medicine, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Albert Braeuning
- Department of Food Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Thorsten Buhrke
- Department of Food Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Mattias Öberg
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Timo Hamers
- Vrije Universiteit Amsterdam, Amsterdam Institute for Life and Environment (A-LIFE), De Boelelaan 1105, Amsterdam, Netherlands
| | - Pim E G Leonards
- Vrije Universiteit Amsterdam, Amsterdam Institute for Life and Environment (A-LIFE), De Boelelaan 1105, Amsterdam, Netherlands.
| |
Collapse
|
9
|
Zhou W, Bu D, Huang K, Zhang Q, Cui X, Dan Z, Yang Y, Fu Y, Yang Q, Teng Y, Fu J, Zhang A, Fu J, Jiang G. First comprehensive assessment of dietary chlorinated paraffins intake and exposure risk for the rural population of the Tibetan Plateau, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172435. [PMID: 38615758 DOI: 10.1016/j.scitotenv.2024.172435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
Knowledge regarding the occurrence of short-chain and medium-chain chlorinated paraffins (SCCPs and MCCPs) in foodstuffs and their dietary exposure risks for rural Tibetan residents remains largely unknown. Herein, we collected main foodstuffs (including highland barley, vegetables, Tibetan butter, mutton, and yak beef) across the rural Tibetan Plateau and characterized the CP profiles and concentrations. The highest SCCPs concentrations were detected in Tibetan butter (geometric mean (GM): 240.6 ng/g wet weight (ww)), followed by vegetables (59.4 ng/g ww), mutton (51.4 ng/g ww), highland barley (46.3 ng/g ww), and yak beef (31.7 ng/g ww). For MCCPs, the highest concentrations were also detected in Tibetan butter (319.5 ng/g ww), followed by mutton (181.9 ng/g ww), vegetables (127.0 ng/g ww), yak beef (71.2 ng/g ww), and highland barley (30.3 ng/g ww). The predominant congener profiles of SCCPs were C13Cl7-8 in mutton and yak beef, C10Cl7-8 in Tibetan butter, and C10-11Cl6-7 in highland barley and vegetables. The predominant congener profiles of MCCPs were C14Cl7-9 in all sample types. Combined with our previous results of free-range chicken eggs, the median estimated daily intakes (EDIs) of SCCPs and MCCPs via diet for Tibetan rural adults and children was estimated to be 728.8 and 1853.9 ng/kg bw/day and 2565.6 and 5952.8 ng/kg bw/day, respectively. In the worst scenario, MCCPs might induce potential health risks for rural Tibetan population. To our knowledge, this is the first systematic dietary exposure research of SCCPs and MCCPs in the remote rural areas.
Collapse
Affiliation(s)
- Wei Zhou
- School of Ecology and Environment, Tibet University, Lhasa 850000, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Duo Bu
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Kai Huang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Qiangying Zhang
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Xiaomei Cui
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Zeng Dan
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Yinzheng Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yilin Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qianyuan Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yunhe Teng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jie Fu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Aiqian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jianjie Fu
- School of Ecology and Environment, Tibet University, Lhasa 850000, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Guibin Jiang
- School of Ecology and Environment, Tibet University, Lhasa 850000, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
10
|
Schlezinger JJ, Gokce N. Perfluoroalkyl/Polyfluoroalkyl Substances: Links to Cardiovascular Disease Risk. Circ Res 2024; 134:1136-1159. [PMID: 38662859 PMCID: PMC11047059 DOI: 10.1161/circresaha.124.323697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Conservative estimates by the World Health Organization suggest that at least a quarter of global cardiovascular diseases are attributable to environmental exposures. Associations between air pollution and cardiovascular risk have garnered the most headlines and are strong, but less attention has been paid to other omnipresent toxicants in our ecosystem. Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are man-made chemicals that are extensively used in industrial and consumer products worldwide and in aqueous film-forming foam utilized in firefighting. As such, our exposure to PFAS is essentially ubiquitous. Given the long half-lives of these degradation-resistant chemicals, virtually, all people are carrying a body burden of PFAS. Health concerns related to PFAS are growing such that the National Academies of Sciences, Engineering and Medicine has recommended standards for clinical follow-up of individuals with high PFAS blood levels, including prioritizing screening for dyslipidemia. The link between PFAS and dyslipidemia has been extensively investigated, and evidence for associations is compelling. However, dyslipidemia is not the only cardiovascular risk factor with which PFAS is associated. Here, we review the epidemiological evidence for links between PFAS of concern identified by the National Academies of Sciences, Engineering and Medicine and risk factors for cardiovascular disease, including overweight/obesity, glucose intolerance, hypertension, dyslipidemia, and hyperuricemia. Moreover, we review the potential connections of PFAS with vascular disease and atherosclerosis. While observational data support associations between the National Academies of Sciences, Engineering and Medicine PFAS and selected cardiac risk factors, additional research is needed to establish causation and better understand how exposure to PFAS leads to the development of these conditions.
Collapse
Affiliation(s)
| | - Noyan Gokce
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|