1
|
Chang J, Fang W, Chen L, Zhang P, Zhang G, Zhang H, Liang J, Wang Q, Ma W. Toxicological effects, environmental behaviors and remediation technologies of herbicide atrazine in soil and sediment: A comprehensive review. CHEMOSPHERE 2022; 307:136006. [PMID: 35973488 DOI: 10.1016/j.chemosphere.2022.136006] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/18/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Atrazine has become one of the most popular applied triazine herbicides in the world due to its high herbicidal efficiency and low price. With its large-dosage and long-term use on a global scale, atrazine can cause widespread and persistent contamination of soil and sediment. This review systematically evaluates the toxicological effects, environmental risks, environmental behaviors (adsorption, transport and transformation, and bioaccumulation) of atrazine, and the remediation technologies of atrazine-contaminated soil and sediment. For the adsorption behavior of atrazine on soil and sediment, the organic matter content plays an extremely important role in the adsorption process. Various models and equations such as the multi-media fugacity model and solute transport model are used to analyze the migration and transformation process of atrazine in soil and sediment. It is worth noting that certain transformation products of atrazine in the environment even have stronger toxicity and mobility than its parent. Among various remediation technologies, the combination of microbial remediation and phytoremediation for atrazine-contaminated soil and sediment has wide application prospects. Although other remediation technologies such as advanced oxidation processes (AOPs) can also efficiently remove atrazine from soil, some potential problems still need to be further clarified. Finally, some related challenges and prospects are proposed.
Collapse
Affiliation(s)
- Jianning Chang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Wei Fang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Le Chen
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Panyue Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Guangming Zhang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin, 300130, China.
| | - Haibo Zhang
- College of Resources and Environment, Shanxi Agricultural University, Taigu, 030801, China
| | - Jinsong Liang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Qingyan Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Weifang Ma
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
2
|
Baillard V, Delignette-Muller ML, Sulmon C, Bittebiere AK, Mony C, Couée I, Gouesbet G, Devin S, Billoir E. How does interspecific competition modify the response of grass plants against herbicide treatment? A hierarchical concentration-response approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146108. [PMID: 33714095 DOI: 10.1016/j.scitotenv.2021.146108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
Ecological interactions are rarely taken into account in environmental risk assessment. The objective of this work was to assess how interspecific competition affects the way plant species react to herbicides and more specifically how it modifies the concentration-response curves that can be built using ecotoxicological bioassays. To do this, we relied on the results of ecotoxicological bioassays on six herbaceous species exposed to isoproturon under two conditions: in presence and in absence of a competitor. At the end of the experiments, eleven endpoints were measured. We modelled these data using a hierarchical modelling framework designed to assess the effects of competition on each of the four parameters of the concentration response curves (e.g. the level of response at the control or the concentration at the inflection point of the curve) simultaneously for the six species. The modelled effects could be of three types, 1) competition had no effect on the parameter, 2) competition had the same effect on the parameter for all species and 3) competition had a different effect on the parameter for each species. Our main hypothesis was that different species would react differently to competition. Results showed that about a half of the estimated parameters showed a modification under competition pressure among which only a fourth showed a species-specific effect, the three other fourth showing the same effect between the different species. Our initial hypothesis was thus not supported as species tended to react in the same way to competition. The competition effect on plants was mainly negative, thus showing that they were more affected by isoproturon under competition pressure. This study therefore establishes how competition modifies plant responses to chemical stress and how this interaction varies from one species to the other.
Collapse
Affiliation(s)
| | - Marie Laure Delignette-Muller
- Université de Lyon, Université Lyon 1, CNRS, VetAgro Sup, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, 69622 Villeurbanne, France
| | - Cécile Sulmon
- Univ Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)] - UMR 6553, F-35000 Rennes, France
| | - Anne-Kristel Bittebiere
- Université de Lyon 1, CNRS, UMR 5023 LEHNA, 43 Boulevard du 11 novembre 1918, Villeurbanne Cedex 69622, France
| | - Cendrine Mony
- Univ Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)] - UMR 6553, F-35000 Rennes, France
| | - Ivan Couée
- Univ Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)] - UMR 6553, F-35000 Rennes, France
| | - Gwenola Gouesbet
- Univ Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)] - UMR 6553, F-35000 Rennes, France
| | - Simon Devin
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France
| | - Elise Billoir
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France
| |
Collapse
|
3
|
Serra AA, Bittebière AK, Mony C, Slimani K, Pallois F, Renault D, Couée I, Gouesbet G, Sulmon C. Local-scale dynamics of plant-pesticide interactions in a northern Brittany agricultural landscape. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 744:140772. [PMID: 32711307 DOI: 10.1016/j.scitotenv.2020.140772] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/24/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
Soil pollution by anthropogenic chemicals is a major concern for sustainability of crop production and of ecosystem functions mediated by natural plant biodiversity. Understanding the complex effects of soil pollution requires multi-level and multi-scale approaches. Non-target and agri-environmental plant communities of field margins and vegetative filter strips are confronted with agricultural xenobiotics through soil contamination, drift, run-off and leaching events that result from chemical applications. Plant-pesticide dynamics in vegetative filter strips was studied at field scale in the agricultural landscape of a long-term ecological research network in northern Brittany (France). Vegetative filter strips effected significant pesticide abatement between the field and riparian compartments. However, comparison of pesticide usage modalities and soil chemical analysis revealed the extent and complexity of pesticide persistence in fields and vegetative filter strips, and suggested the contribution of multiple sources (yearly carry-over, interannual persistence, landscape-scale contamination). In order to determine the impact of such persistence, plant dynamics was followed in experimentally-designed vegetative filter strips of identical initial composition (Agrostis stolonifera, Anthemis tinctoria/Cota tinctoria, Centaurea cyanus, Fagopyrum esculentum, Festuca rubra, Lolium perenne, Lotus corniculatus, Phleum pratense, Trifolium pratense). After homogeneous vegetation establishment, experimental vegetative filter strips underwent rapid changes within the following two years, with Agrostis stolonifera, Festuca rubra, Lolium perenne and Phleum pratense becoming dominant and with the establishment of spontaneous vegetation. Co-inertia analysis showed that plant dynamics and soil residual pesticides could be significantly correlated, with the triazole fungicide epoxiconazole, the imidazole fungicide prochloraz and the neonicotinoid insecticide thiamethoxam as strong drivers of the correlation. However, the correlation was vegetative-filter-strip-specific, thus showing that correlation between plant dynamics and soil pesticides likely involved additional factors, such as threshold levels of residual pesticides. This situation of complex interactions between plants and soil contamination is further discussed in terms of agronomical, environmental and health issues.
Collapse
Affiliation(s)
- Anne-Antonella Serra
- Univ Rennes, Université de Rennes 1, CNRS, ECOBIO [(Ecosystems-Biodiversity-Evolution)] - UMR 6553, Campus de Beaulieu, 263 avenue du Général Leclerc, F-35042 Rennes Cedex, France
| | - Anne-Kristel Bittebière
- Université de Lyon 1, CNRS, UMR 5023 LEHNA, 43 Boulevard du 11 novembre 1918, F-69622 Villeurbanne Cedex, France
| | - Cendrine Mony
- Univ Rennes, Université de Rennes 1, CNRS, ECOBIO [(Ecosystems-Biodiversity-Evolution)] - UMR 6553, Campus de Beaulieu, 263 avenue du Général Leclerc, F-35042 Rennes Cedex, France
| | - Kahina Slimani
- Univ Rennes, Université de Rennes 1, CNRS, ECOBIO [(Ecosystems-Biodiversity-Evolution)] - UMR 6553, Campus de Beaulieu, 263 avenue du Général Leclerc, F-35042 Rennes Cedex, France
| | - Frédérique Pallois
- Univ Rennes, Université de Rennes 1, CNRS, ECOBIO [(Ecosystems-Biodiversity-Evolution)] - UMR 6553, Campus de Beaulieu, 263 avenue du Général Leclerc, F-35042 Rennes Cedex, France
| | - David Renault
- Univ Rennes, Université de Rennes 1, CNRS, ECOBIO [(Ecosystems-Biodiversity-Evolution)] - UMR 6553, Campus de Beaulieu, 263 avenue du Général Leclerc, F-35042 Rennes Cedex, France
| | - Ivan Couée
- Univ Rennes, Université de Rennes 1, CNRS, ECOBIO [(Ecosystems-Biodiversity-Evolution)] - UMR 6553, Campus de Beaulieu, 263 avenue du Général Leclerc, F-35042 Rennes Cedex, France.
| | - Gwenola Gouesbet
- Univ Rennes, Université de Rennes 1, CNRS, ECOBIO [(Ecosystems-Biodiversity-Evolution)] - UMR 6553, Campus de Beaulieu, 263 avenue du Général Leclerc, F-35042 Rennes Cedex, France
| | - Cécile Sulmon
- Univ Rennes, Université de Rennes 1, CNRS, ECOBIO [(Ecosystems-Biodiversity-Evolution)] - UMR 6553, Campus de Beaulieu, 263 avenue du Général Leclerc, F-35042 Rennes Cedex, France
| |
Collapse
|
4
|
Serra AA, Miqueau A, Ramel F, Couée I, Sulmon C, Gouesbet G. Species- and organ-specific responses of agri-environmental plants to residual agricultural pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 694:133661. [PMID: 31756788 DOI: 10.1016/j.scitotenv.2019.133661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/19/2019] [Accepted: 07/28/2019] [Indexed: 06/10/2023]
Abstract
Soil pollution by anthropogenic chemicals is a major concern for sustainability of crop production and of ecosystem functions mediated by natural plant biodiversity. The complex effects on plants are however difficult to apprehend. Plant communities of field margins, vegetative filter strips or rotational fallows are confronted with agricultural pollutants through residual soil contamination and/or through drift, run-off and leaching events that result from chemical applications. Exposure to xenobiotics and heavy metals causes biochemical, physiological and developmental effects. However, the range of doses, modalities of exposure, metabolization of contaminants into derived xenobiotics, and combinations of contaminants result in variable and multi-level effects. Understanding these complex plant-pollutant interactions cannot directly rely on toxicological or agronomical approaches that focus on the effects of field-rate pesticide applications. It must take into account exposure at root level, sublethal concentrations of bioactive compounds and functional biodiversity of the plant species that are affected. The present study deals with agri-environmental plant species of field margins, vegetative filter strips or rotational fallows in European agricultural landscapes. Root and shoot physiological and growth responses were compared under controlled conditions that were optimally adjusted for each plant species. Contrasted responses of growth inhibition, no adverse effect or growth enhancement depended on species, organ and nature of contaminant. However, all of the agricultural contaminants under study (pesticides, pesticide metabolites, heavy metals, polycyclic aromatic hydrocarbons) had significant effects under conditions of sublethal exposure on at least some of the plant species. The fungicide tebuconazole and polycyclic aromatic hydrocarbon fluoranthene, which gave highest levels of responses, induced both activation or inhibition effects, in different plant species or in different organs of the same plant species. These complex effects are discussed in terms of dynamics of agri-environmental plants and of ecological consequences of differential root-shoot growth under conditions of soil contamination.
Collapse
Affiliation(s)
- Anne-Antonella Serra
- Univ Rennes, Université de Rennes 1, CNRS, ECOBIO [(Ecosystems-Biodiversity-Evolution)] - UMR 6553, Campus de Beaulieu, 263 avenue du Général Leclerc, F-35042 Rennes Cedex, France
| | - Amélie Miqueau
- Univ Rennes, Université de Rennes 1, CNRS, ECOBIO [(Ecosystems-Biodiversity-Evolution)] - UMR 6553, Campus de Beaulieu, 263 avenue du Général Leclerc, F-35042 Rennes Cedex, France
| | - Fanny Ramel
- Univ Rennes, Université de Rennes 1, CNRS, ECOBIO [(Ecosystems-Biodiversity-Evolution)] - UMR 6553, Campus de Beaulieu, 263 avenue du Général Leclerc, F-35042 Rennes Cedex, France
| | - Ivan Couée
- Univ Rennes, Université de Rennes 1, CNRS, ECOBIO [(Ecosystems-Biodiversity-Evolution)] - UMR 6553, Campus de Beaulieu, 263 avenue du Général Leclerc, F-35042 Rennes Cedex, France.
| | - Cécile Sulmon
- Univ Rennes, Université de Rennes 1, CNRS, ECOBIO [(Ecosystems-Biodiversity-Evolution)] - UMR 6553, Campus de Beaulieu, 263 avenue du Général Leclerc, F-35042 Rennes Cedex, France
| | - Gwenola Gouesbet
- Univ Rennes, Université de Rennes 1, CNRS, ECOBIO [(Ecosystems-Biodiversity-Evolution)] - UMR 6553, Campus de Beaulieu, 263 avenue du Général Leclerc, F-35042 Rennes Cedex, France
| |
Collapse
|
5
|
El Amrani A, Couée I, Berthomé R, Ramel F, Gouesbet G, Sulmon C. Involvement of polyamines in sucrose-induced tolerance to atrazine-mediated chemical stress in Arabidopsis thaliana. JOURNAL OF PLANT PHYSIOLOGY 2019; 238:1-11. [PMID: 31121522 DOI: 10.1016/j.jplph.2019.04.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 05/10/2023]
Abstract
Treatment of Arabidopsis thaliana seedlings with the PSII-inhibiting herbicide atrazine results in xenobiotic and oxidative stress, developmental arrest, induction of senescence and cell death processes. In contrast, exogenous sucrose supply confers a high level of atrazine stress tolerance, in relation with genome-wide modifications of transcript levels and regulation of genes involved in detoxification, defense and repair. However, the regulation mechanisms related to exogenous sucrose, involved in this sucrose-induced tolerance, are largely unknown. Characterization of these mechanisms was carried out through a combination of transcriptomic, metabolic, functional and mutant analysis under different conditions of atrazine exposure. Exogenous sucrose was found to differentially regulate genes involved in polyamine synthesis. ARGININE DECARBOXYLASE ADC1 and ADC2 paralogues, which encode the rate-limiting enzyme (EC 4.1.1.19) of the first step of polyamine biosynthesis, were strongly upregulated by sucrose treatment in the presence of atrazine. Such regulation occurred concomitantly with significant changes of major polyamines (putrescine, spermidine, spermine). Physiological characterization of a mutant affected in ADC activity and exogenous treatments with sucrose, putrescine, spermidine and spermine further showed that modification of polyamine synthesis and of polyamine levels could play adaptive roles in response to atrazine stress, and that putrescine and spermine had antagonistic effects, especially in the presence of sucrose. This interplay between sucrose, putrescine and spermine is discussed in relation with survival and anti-death mechanisms in the context of chemical stress exposure.
Collapse
Affiliation(s)
- Abdelhak El Amrani
- Univ Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)] - UMR 6553, Campus de Beaulieu, Bâtiment 14A, 263 avenue du Général Leclerc, F-35000, Rennes, France
| | - Ivan Couée
- Univ Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)] - UMR 6553, Campus de Beaulieu, Bâtiment 14A, 263 avenue du Général Leclerc, F-35000, Rennes, France
| | - Richard Berthomé
- LIPM, Université de Toulouse, INRA, CNRS, INPT, Castanet-Tolosan, France
| | - Fanny Ramel
- Univ Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)] - UMR 6553, Campus de Beaulieu, Bâtiment 14A, 263 avenue du Général Leclerc, F-35000, Rennes, France
| | - Gwenola Gouesbet
- Univ Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)] - UMR 6553, Campus de Beaulieu, Bâtiment 14A, 263 avenue du Général Leclerc, F-35000, Rennes, France
| | - Cécile Sulmon
- Univ Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)] - UMR 6553, Campus de Beaulieu, Bâtiment 14A, 263 avenue du Général Leclerc, F-35000, Rennes, France.
| |
Collapse
|
6
|
Alberto D, Couée I, Sulmon C, Gouesbet G. Root-level exposure reveals multiple physiological toxicity of triazine xenobiotics in Arabidopsis thaliana. JOURNAL OF PLANT PHYSIOLOGY 2017; 212:105-114. [PMID: 28282526 DOI: 10.1016/j.jplph.2017.01.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 06/06/2023]
Abstract
Herbicides are pollutants of great concern due to environmental ubiquity resulting from extensive use in modern agriculture and persistence in soil and water. Studies at various spatial scales have also highlighted frequent occurrences of major herbicide breakdown products in the environment. Analysis of plant behavior toward such molecules and their metabolites under conditions of transient or persistent soil pollution is important for toxicity evaluation in the context of environmental risk assessment. In order to understand the mechanisms underlying the action of such environmental contaminants, the model plant Arabidopsis thaliana, which has been shown to be highly responsive to pesticides and other xenobiotics, was confronted with varying levels of the widely-used herbicide atrazine and of two of its metabolites, desethylatrazine and hydroxyatrazine, which are both frequently detected in water streams of agriculturally-intensive areas. After 24h of exposure to varying concentrations covering the range of triazine concentrations detected in the environment, root-level contaminations of atrazine, desethylatrazine and hydroxyatrazine were found to affect early growth and development in various dose-dependent and differential manners. Moreover, these differential effects of atrazine, desethylatrazine and hydroxyatrazine pointed to the involvement of distinct mechanisms directly affecting respiration and root development. The consequences of the identification of additional targets, in addition to the canonical photosystem II target, are discussed in relation with the ecotoxicological assessment of environmental xenobiotic contamination.
Collapse
Affiliation(s)
- Diana Alberto
- Université de Rennes 1, Centre National de la Recherche Scientifique, UMR CNRS 6553 ECOBIO, Campus de Beaulieu, bâtiment 14A, 263 avenue du Général Leclerc, F-35042 Rennes Cedex, France
| | - Ivan Couée
- Université de Rennes 1, Centre National de la Recherche Scientifique, UMR CNRS 6553 ECOBIO, Campus de Beaulieu, bâtiment 14A, 263 avenue du Général Leclerc, F-35042 Rennes Cedex, France
| | - Cécile Sulmon
- Université de Rennes 1, Centre National de la Recherche Scientifique, UMR CNRS 6553 ECOBIO, Campus de Beaulieu, bâtiment 14A, 263 avenue du Général Leclerc, F-35042 Rennes Cedex, France.
| | - Gwenola Gouesbet
- Université de Rennes 1, Centre National de la Recherche Scientifique, UMR CNRS 6553 ECOBIO, Campus de Beaulieu, bâtiment 14A, 263 avenue du Général Leclerc, F-35042 Rennes Cedex, France
| |
Collapse
|
7
|
Erinle KO, Jiang Z, Ma B, Li J, Chen Y, Ur-Rehman K, Shahla A, Zhang Y. Exogenous calcium induces tolerance to atrazine stress in Pennisetum seedlings and promotes photosynthetic activity, antioxidant enzymes and psbA gene transcripts. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 132:403-12. [PMID: 27391035 DOI: 10.1016/j.ecoenv.2016.06.035] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 06/20/2016] [Accepted: 06/20/2016] [Indexed: 05/25/2023]
Abstract
Calcium (Ca) has been reported to lessen oxidative damages in plants by upregulating the activities of antioxidant enzymes. However, atrazine mediated reactive oxygen species (ROS) reduction by Ca is limited. This study therefore investigated the effect of exogenously applied Ca on ROS, antioxidants activity and gene transcripts, the D1 protein (psbA gene), and chlorophyll contents in Pennisetum seedlings pre-treated with atrazine. Atrazine toxicity increased ROS production and enzyme activities (ascorbate peroxidase APX, peroxidase POD, Superoxide dismutase SOD, glutathione-S-transferase GST); but decreased antioxidants (APX, POD, and Cu/Zn SOD) and psbA gene transcripts. Atrazine also decreased the chlorophyll contents, but increased chlorophyll (a/b) ratio. Contrarily, Ca application to atrazine pre-treated seedlings lowered the harmful effects of atrazine by reducing ROS levels, but enhancing the accumulation of total chlorophyll contents. Ca-protected seedlings in the presence of atrazine manifested reduced APX and POD activity, whereas SOD and GST activity was further increased with Ca application. Antioxidant gene transcripts that were down-regulated by atrazine toxicity were up-regulated with the application of Ca. Calcium application also resulted in up-regulation of the D1 protein. In conclusion, ability of calcium to reverse atrazine-induced oxidative damage and calcium regulatory role on GST in Pennisetum was presented.
Collapse
Affiliation(s)
- Kehinde Olajide Erinle
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Zhao Jiang
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Bingbing Ma
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Jinmei Li
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Yukun Chen
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Khalil Ur-Rehman
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Andleeb Shahla
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Ying Zhang
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
8
|
Nuttens A, Chatellier S, Devin S, Guignard C, Lenouvel A, Gross E. Does nitrate co-pollution affect biological responses of an aquatic plant to two common herbicides? AQUATIC TOXICOLOGY 2016; 177:355-64. [PMID: 0 DOI: 10.1016/j.aquatox.2016.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 06/06/2016] [Accepted: 06/10/2016] [Indexed: 05/03/2023]
|
9
|
Guo Y, Zhao P, Zhang W, Li X, Chen X, Chen D. Catalytic improvement and structural analysis of atrazine chlorohydrolase by site-saturation mutagenesis. Biosci Biotechnol Biochem 2016; 80:1336-43. [DOI: 10.1080/09168451.2016.1156481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Abstract
To improve the catalytic activity of atrazine chlorohydrolase (AtzA), amino acid residues involved in substrate binding (Gln71) and catalytic efficiency (Val12, Ile393, and Leu395) were targeted to generate site-saturation mutagenesis libraries. Seventeen variants were obtained through Haematococcus pluvialis-based screening, and their specific activities were 1.2–5.2-fold higher than that of the wild type. For these variants, Gln71 tended to be substituted by hydrophobic amino acids, Ile393 and Leu395 by polar ones, especially arginine, and Val12 by alanine, respectively. Q71R and Q71M significantly decreased the Km by enlarging the substrate-entry channel and affecting N-ethyl binding. Mutations at sites 393 and 395 significantly increased the kcat/Km, probably by improving the stability of the dual β-sheet domain and the whole enzyme, owing to hydrogen bond formation. In addition, the contradictory relationship between the substrate affinity improvement by Gln71 mutation and the catalytic efficiency improvement by the dual β-sheet domain modification was discussed.
Collapse
Affiliation(s)
- Yuan Guo
- College of Life Sciences, Nankai University, Tianjin, China
| | - Panjie Zhao
- College of Life Sciences, Nankai University, Tianjin, China
| | - Wenhao Zhang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaolong Li
- College of Life Sciences, Nankai University, Tianjin, China
| | - Xiwen Chen
- College of Life Sciences, Nankai University, Tianjin, China
| | - Defu Chen
- College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
10
|
Udiković-Kolić N, Scott C, Martin-Laurent F. Evolution of atrazine-degrading capabilities in the environment. Appl Microbiol Biotechnol 2012; 96:1175-89. [DOI: 10.1007/s00253-012-4495-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 10/02/2012] [Accepted: 10/03/2012] [Indexed: 11/30/2022]
|
11
|
Dosnon-Olette R, Couderchet M, Oturan MA, Oturan N, Eullaffroy P. Potential use of Lemna minor for the phytoremediation of isoproturon and glyphosate. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2011; 13:601-12. [PMID: 21972506 DOI: 10.1080/15226514.2010.525549] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Pesticides are being detected in water bodies on an increasingly frequent basis. The present study focused on toxicity and phytoremediation potential of aquatic plants to remove phytosanitary products from contaminated water. We investigated the capacity of Lemna minor (L. minor) to eliminate two herbicides isoproturon and glyphosate from their medium. Since phytoremediation relies on healthy plants, pesticide toxicity was evaluated by exposing plants to 5 concentrations (0-20 microg L(-1) for isoproturon and 0-120 microg L(-1) for glyphosate) in culture media for 4 d using growth rate and chlorophyll a fluorescence as endpoints. At exposure concentrations of 10 microg x L(-1) for isoproturon and 80 microg x L(-1) for glyphosate, effects on growth rate and chlorophyll fluorescence were minor (< 25%), so that this initial concentration was selected to study herbicide removal After a 4-d incubation, removal yields were 25% and 8% for isoproturon and glyphosate, respectively.
Collapse
Affiliation(s)
- Rachel Dosnon-Olette
- Laboratoire Plantes, Pesticides et Développement Durable (PPDD), Université de Reims Champagne-Ardenne, Reims Cedex, France
| | | | | | | | | |
Collapse
|
12
|
Xu J, Yin H, Yang L, Xie Z, Liu X. Differential salt tolerance in seedlings derived from dimorphic seeds of Atriplex centralasiatica: from physiology to molecular analysis. PLANTA 2011; 233:859-71. [PMID: 21225279 DOI: 10.1007/s00425-010-1347-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 12/22/2010] [Indexed: 05/09/2023]
Abstract
Seed dimorphism provides plants with alternative strategies for survival in unfavorable environments. Here, we investigated the physiological responses and differential gene expression caused by salinity exposure in Atriplex centralasiatica plants grown from the two different seed morphs. Seedlings derived from yellow seeds (YS) showed a greater salt tolerance than those derived from brown seeds (BS). Salt treatment induced nitric oxide (NO) synthesis in roots, and seedlings derived from YS produced greater amounts of NO than did those from BS. Analyses of NO scavenging during salt stress revealed that NO contributed to the differential salt tolerance in seedlings derived from the two seed morphs by modulating antioxidative enzyme activity, hydrogen peroxide accumulation and the ion equilibrium. We also applied transcriptomics and subsequent microarray analysis to evaluate the differential gene expression during salt treatment. These genes encoded proteins related to osmotic and ionic homeostasis, redox equilibrium and signal transduction. A select group of genes including GH3.3, CAT1/2, TIP1, SIHP1 and EXP1 were further confirmed with RT-PCR analysis. These results revealed that the enhanced salt tolerance of seedlings from YS appeared to be governed by a superior ability to achieve ionic homeostasis and redox equilibrium, a rapid response to salt stress, and ultimately better growth potential. NO serves as a vital regulator in these processes.
Collapse
Affiliation(s)
- Jin Xu
- Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Huaizhong RD 286, Shijiazhuang 050021, China.
| | | | | | | | | |
Collapse
|
13
|
Jiang L, Ma L, Sui Y, Han SQ, Wu ZY, Feng YX, Yang H. Effect of manure compost on the herbicide prometryne bioavailability to wheat plants. JOURNAL OF HAZARDOUS MATERIALS 2010; 184:337-344. [PMID: 20828929 DOI: 10.1016/j.jhazmat.2010.08.041] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 07/29/2010] [Accepted: 08/11/2010] [Indexed: 05/11/2023]
Abstract
Soil amendment with manure compost may influence environmental behaviors and bioavailability of toxic organic chemicals (e.g. pesticide and polycyclic aromatic hydrocarbons). Dynamic parameters like adsorption, kinetics, mobility and degradation of pesticides have been intensively investigated. However, the current methods to evaluate the ultimate real bioavailability of pesticides to crops using physiochemical or biological approaches are limited. In this study, we developed a set of comprehensive and cost-effective parameters relevant to crop response to prometryne (s-triazine herbicide) to assess the accumulation and genotoxicity of the pesticide. Wheat plants exposed to 8 mg kg(-1) prometryne for 10 d showed stunt growth, reduced chlorophyll content and damaged membrane lipid. Concomitant treatment with 5% pig manure compost (PMC) alleviated the toxic effect on the plant. Prometryne in soils was readily accumulated by wheat. However, such an accumulation was significantly inhibited by PMC application. Because excessively accumulated prometryne triggered oxidative damage to plants, the biochemical responses of several antioxidant enzymes along with their molecular expressions were determined. In most cases, the activities and transcriptional expression of the enzymes were activated upon the exposure to prometryne but the process was prevented by PMC application. The set of biological parameters tested in this study were very sensitive and cost-effective, and therefore can be used to evaluate the degree of pesticide contamination to plants and other organisms.
Collapse
Affiliation(s)
- Lei Jiang
- Department of Applied Chemistry, College of Science, Nanjing Agricultural University, Nanjing, China; Jiangsu Key Laboratory of Pesticide Science, College of Science, Nanjing Agricultural University, Nanjing, China; Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, China
| | - Li Ma
- Department of Applied Chemistry, College of Science, Nanjing Agricultural University, Nanjing, China
| | - Ying Sui
- Department of Applied Chemistry, College of Science, Nanjing Agricultural University, Nanjing, China
| | - Su Qing Han
- Department of Applied Chemistry, College of Science, Nanjing Agricultural University, Nanjing, China
| | - Zhen Yu Wu
- Department of Applied Chemistry, College of Science, Nanjing Agricultural University, Nanjing, China
| | - Yu Xiao Feng
- Department of Applied Chemistry, College of Science, Nanjing Agricultural University, Nanjing, China
| | - Hong Yang
- Department of Applied Chemistry, College of Science, Nanjing Agricultural University, Nanjing, China; Jiangsu Key Laboratory of Pesticide Science, College of Science, Nanjing Agricultural University, Nanjing, China; Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, China.
| |
Collapse
|
14
|
Dosnon-Olette R, Couderchet M, El Arfaoui A, Sayen S, Eullaffroy P. Influence of initial pesticide concentrations and plant population density on dimethomorph toxicity and removal by two duckweed species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2010; 408:2254-2259. [PMID: 20156640 DOI: 10.1016/j.scitotenv.2010.01.057] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 01/23/2010] [Accepted: 01/25/2010] [Indexed: 05/28/2023]
Abstract
Aquatic plants take up, transform and sequester organic contaminants and may therefore be used in phytoremediation for the removal of pollutants from wastewaters. A better understanding of factors affecting the rate of contaminant uptake by aquatic plants is needed to improve engineered systems for removal of pollutants from wastewaters. This work focused on the influence of initial concentrations of pesticide and population density of plants on toxicity and uptake of the fungicide dimethomorph by two duckweed species. An increased sensitivity to dimethomorph was observed with increasing duckweed population density. Less light, due to crowding, may explain this higher sensitivity and reduced removal rate. A positive relationship was also found between toxicity or contaminant uptake and initial pesticide concentration with a maximal removal of 41 and 26 microg g(-1) fresh weight of dimethomorph (at 600 microg L(-1) of dimethomorph and an initial density of 0.10g E-flask(-1)) by Lemna minor and Spirodela polyrhiza, respectively. This research also indicated that these aquatic plants can efficiently eliminate organic contaminants and may ultimately serve as phytoremediation agents in the natural environment.
Collapse
Affiliation(s)
- Rachel Dosnon-Olette
- Laboratoire Plantes, Pesticides et Développement Durable (PPDD), URVVC-SE EA 2069, Université de Reims Champagne-Ardenne, BP 1039, 51687 Reims, Cedex 2, France
| | | | | | | | | |
Collapse
|
15
|
Dosnon-Olette R, Trotel-Aziz P, Couderchet M, Eullaffroy P. Fungicides and herbicide removal in Scenedesmus cell suspensions. CHEMOSPHERE 2010; 79:117-123. [PMID: 20185160 DOI: 10.1016/j.chemosphere.2010.02.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 02/01/2010] [Accepted: 02/02/2010] [Indexed: 05/28/2023]
Abstract
Remediation capacities of two freshwater microalgae, Scenedesmus obliquus and Scenedesmus quadricauda, were assessed for the removal of two fungicides (dimethomorph and pyrimethanil) and one herbicide (isoproturon) from their medium. To ensure these studies were performed with healthy algae, pesticide effects where first apprehended on chlorophyll a fluorescence emission and growth rate. After a 4d-exposure to 600 microg L(-1) of dimethomorph or pyrimethanil, or to 10 microg L(-1) of isoproturon, algal growth rate and some of their photosynthetic processes were weakly affected (< 30% variation). The pesticide removal percentage of Scenedesmus cells reached a maximum of 10%, 24% and 58% for pyrimethanil, dimethomorph and isoproturon, respectively. In parallel, the maximum removal rate was 36 and 40 microg x 10(-9) cells for dimethomorph, 17 and 26 microg x 10(-9) cells for pyrimethanil, 2 and 2 microg x 10(-9) cells for isoproturon, in the presence of Sc. obliquus and Sc. quadricauda, respectively. Results showed that Sc. quadricauda was more effective in the removal of dimethomorph and pyrimethanil compared to Sc. obliquus.
Collapse
Affiliation(s)
- Rachel Dosnon-Olette
- Laboratoire Plantes Pesticides et Développement Durable (PPDD), URVVC-SE EA 2069, Université de Reims Champagne-Ardenne, BP 1039, 51687 Reims Cedex 2, France
| | | | | | | |
Collapse
|
16
|
Brentner LB, Mukherji ST, Walsh SA, Schnoor JL. Localization of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4,6-trinitrotoluene (TNT) in poplar and switchgrass plants using phosphor imager autoradiography. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2010; 158:470-5. [PMID: 19782446 DOI: 10.1016/j.envpol.2009.08.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 07/29/2009] [Accepted: 08/29/2009] [Indexed: 05/20/2023]
Abstract
Phosphor imager autoradiography is a technique for rapid, sensitive analysis of the localization of xenobiotics in plant tissues. Use of this technique is relatively new to research in the field of plant science, and the potential for enhancing visualization and understanding of plant uptake and transport of xenobiotics remains largely untapped. Phosphor imager autoradiography is used to investigate the uptake and translocation of the explosives 1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4,6-trinitrotoluene within Populus deltoides x nigra DN34 (poplar) and Panicum vigratum Alamo (switchgrass). In both plant types, TNT and/or TNT-metabolites remain predominantly in root tissues while RDX and/or RDX-metabolites are readily translocated to leaf tissues. Phosphor imager autoradiography is further investigated for use in semi-quantitative analysis of uptake of TNT by switchgrass.
Collapse
Affiliation(s)
- Laura B Brentner
- Chemical Engineering and Environmental Engineering Program, Yale University, New Haven, CT 06513, USA.
| | | | | | | |
Collapse
|
17
|
Dosnon-Olette R, Couderchet M, Eullaffroy P. Phytoremediation of fungicides by aquatic macrophytes: toxicity and removal rate. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2009; 72:2096-2101. [PMID: 19732953 DOI: 10.1016/j.ecoenv.2009.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 07/02/2009] [Accepted: 08/17/2009] [Indexed: 05/28/2023]
Abstract
The rate of removal of two fungicides (dimethomorph and pyrimethanil) from water by five macrophyte species (L. minor, S. polyrhiza, C. aquatica, C. palustris and E. canadensis) was assessed in laboratory tests. In order to assure that these studies were performed with healthy plants the effects of the fungicides on chlorophyll fluorescence were studied as well. At exposure concentrations of 600microgL(-1) the effects of the fungicides on chlorophyll fluorescence were minor, so that this initial concentration level was selected for the fungicide removal rate tests. The removal yields during the 4-d test periods varied from 10% to 18% and 7% to 12% for dimethomorph and pyrimethanil, respectively. The maximum removal rate during the 4-d test period was 48microgg(-1) fresh weight (FW) for dimethomorph and 33microgg(-1) FW for pyrimethanil. L. minor and S. polyrhiza showed the highest removal efficiency for the two fungicides.
Collapse
Affiliation(s)
- Rachel Dosnon-Olette
- Laboratoire Plantes, Pesticides et Développement Durable (PPDD), URVVC-SE EA 2069, Université de Reims Champagne-Ardenne, BP 1039, 51687 Reims Cedex 2, France
| | | | | |
Collapse
|
18
|
Ramel F, Sulmon C, Bogard M, Couée I, Gouesbet G. Differential patterns of reactive oxygen species and antioxidative mechanisms during atrazine injury and sucrose-induced tolerance in Arabidopsis thaliana plantlets. BMC PLANT BIOLOGY 2009; 9:28. [PMID: 19284649 PMCID: PMC2661893 DOI: 10.1186/1471-2229-9-28] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Accepted: 03/13/2009] [Indexed: 05/17/2023]
Abstract
BACKGROUND Besides being essential for plant structure and metabolism, soluble carbohydrates play important roles in stress responses. Sucrose has been shown to confer to Arabidopsis seedlings a high level of tolerance to the herbicide atrazine, which causes reactive oxygen species (ROS) production and oxidative stress. The effects of atrazine and of exogenous sucrose on ROS patterns and ROS-scavenging systems were studied. Simultaneous analysis of ROS contents, expression of ROS-related genes and activities of ROS-scavenging enzymes gave an integrative view of physiological state and detoxifying potential under conditions of sensitivity or tolerance. RESULTS Toxicity of atrazine could be related to inefficient activation of singlet oxygen (1O2) quenching pathways leading to 1O2 accumulation. Atrazine treatment also increased hydrogen peroxide (H2O2) content, while reducing gene expressions and enzymatic activities related to two major H2O2-detoxification pathways. Conversely, sucrose-protected plantlets in the presence of atrazine exhibited efficient 1O2 quenching, low 1O2 accumulation and active H2O2-detoxifying systems. CONCLUSION In conclusion, sucrose protection was in part due to activation of specific ROS scavenging systems with consequent reduction of oxidative damages. Importance of ROS combination and potential interferences of sucrose, xenobiotic and ROS signalling pathways are discussed.
Collapse
Affiliation(s)
- Fanny Ramel
- Centre National de la Recherche Scientifique, Université de Rennes I, UMR 6553 ECOBIO, Campus de Beaulieu, bâtiment 14A, F-35042 Rennes Cedex, France
| | - Cécile Sulmon
- Centre National de la Recherche Scientifique, Université de Rennes I, UMR 6553 ECOBIO, Campus de Beaulieu, bâtiment 14A, F-35042 Rennes Cedex, France
| | - Matthieu Bogard
- Centre National de la Recherche Scientifique, Université de Rennes I, UMR 6553 ECOBIO, Campus de Beaulieu, bâtiment 14A, F-35042 Rennes Cedex, France
- INRA, UMR 1095 Génétique, Diversité et Ecophysiologie des Céréales, 234-avenue du Brezet, F-63100 Clermont-Ferrand, France
| | - Ivan Couée
- Centre National de la Recherche Scientifique, Université de Rennes I, UMR 6553 ECOBIO, Campus de Beaulieu, bâtiment 14A, F-35042 Rennes Cedex, France
| | - Gwenola Gouesbet
- Centre National de la Recherche Scientifique, Université de Rennes I, UMR 6553 ECOBIO, Campus de Beaulieu, bâtiment 14A, F-35042 Rennes Cedex, France
| |
Collapse
|
19
|
Ramel F, Sulmon C, Cabello-Hurtado F, Taconnat L, Martin-Magniette ML, Renou JP, El Amrani A, Couée I, Gouesbet G. Genome-wide interacting effects of sucrose and herbicide-mediated stress in Arabidopsis thaliana: novel insights into atrazine toxicity and sucrose-induced tolerance. BMC Genomics 2007; 8:450. [PMID: 18053238 PMCID: PMC2242805 DOI: 10.1186/1471-2164-8-450] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Accepted: 12/05/2007] [Indexed: 01/06/2023] Open
Abstract
Background Soluble sugars, which play a central role in plant structure and metabolism, are also involved in the responses to a number of stresses, and act as metabolite signalling molecules that activate specific or hormone-crosstalk transduction pathways. The different roles of exogenous sucrose in the tolerance of Arabidopsis thaliana plantlets to the herbicide atrazine and oxidative stress were studied by a transcriptomic approach using CATMA arrays. Results Parallel situations of xenobiotic stress and sucrose-induced tolerance in the presence of atrazine, of sucrose, and of sucrose plus atrazine were compared. These approaches revealed that atrazine affected gene expression and therefore seedling physiology at a much larger scale than previously described, with potential impairment of protein translation and of reactive-oxygen-species (ROS) defence mechanisms. Correlatively, sucrose-induced protection against atrazine injury was associated with important modifications of gene expression related to ROS defence mechanisms and repair mechanisms. These protection-related changes of gene expression did not result only from the effects of sucrose itself, but from combined effects of sucrose and atrazine, thus strongly suggesting important interactions of sucrose and xenobiotic signalling or of sucrose and ROS signalling. Conclusion These interactions resulted in characteristic differential expression of gene families such as ascorbate peroxidases, glutathione-S-transferases and cytochrome P450s, and in the early induction of an original set of transcription factors. These genes used as molecular markers will eventually be of great importance in the context of xenobiotic tolerance and phytoremediation.
Collapse
Affiliation(s)
- Fanny Ramel
- Centre National de la Recherche Scientifique, Université de Rennes 1, UMR 6553 ECOBIO, Campus de Beaulieu, bâtiment 14A, F-35042 Rennes Cedex, France.
| | | | | | | | | | | | | | | | | |
Collapse
|