1
|
Zhang Z, Huang S, Chen H, Wang J. Deciphering the pollution risks, sources and their links of heavy metals in soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175331. [PMID: 39117223 DOI: 10.1016/j.scitotenv.2024.175331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/29/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
Heavy metals in soils pose serious ecological and health risks. To make efficient strategies for mitigating the underlying hazards, it is critical to reveal the pollution sources and their links with the risks. Researchers have investigated source identification and risk evaluation of heavy metals in soils, yet few have systematically deciphered the source-sink relationship of soil metals and the links between source apportionment and risk assessment. In the study, an integrated technological framework has been proposed to address the gaps, and applied to characterize the pollution risks, sources and their links of soil metals in a typical coal resource city in China. The assessment using geochemical tool and ecological risk index shows the soils in study area are polluted by Cd, Hg, Cr, As and Pb in varied degrees, and particularly, Cd and Hg present significant ecological risk. Two advanced receptor models (multivariate curve resolution-weighted alternating least-squares and multilinear engine 2) are comparatively applied for apportioning the potential sources of soil metals, and the results suggest the two models have identified similar sources (r2 > 0.90), including agricultural activities, atmospheric depositions and industrial discharges with contributions of 35.5 %-38.3 %, 30.3 %-35.1 %, and 26.6 %-34.1 %, respectively. Then, apportionment results of the two models are jointly employed for evaluating the source-specific health risks of metals in the environment using a probabilistic risk assessment model. The risk levels within the area are overall acceptable or tolerable, and relatively, the industrial discharges present higher contribution on the non-carcinogenic and carcinogenic risks of soil metals to public. Findings will help the managers to design targeted policies for reducing the risks of soil metals, and the framework proposed provides a useful guideline to better understand the source-risk relationship of soil metals in other environments worldwide.
Collapse
Affiliation(s)
- Zhirou Zhang
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing 100875, China
| | - Shiqi Huang
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing 100875, China
| | - Haiyang Chen
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing 100875, China.
| | - Jinsheng Wang
- Advanced Institute of Natural Science, Beijing Normal University at Zhuhai, 519087, China.
| |
Collapse
|
2
|
Liu Y, Chen H, Zhang Z, Wang J. Development of an integrated framework for dissecting source-oriented ecological and health risks of heavy metals in soils. CHEMOSPHERE 2024; 364:143299. [PMID: 39251159 DOI: 10.1016/j.chemosphere.2024.143299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Heavy metals (HMs) in soils pose significant risks on ecosystem and human health. To design targeted regulatory measures for mitigating and controlling the risk, it is necessary to accurately identify the pollution sources and environmental risks of soil HMs, as well as to reveal the linkages between them. To date, yet systematic investigation aimed at deciphering the links between source apportionment of soil HMs and their associated environmental risks is still lacking. To fill the gap, an integrated framework has been developed in this study and applied for dissecting the source-sink relationship and source-oriented ecological and health risks of soil HMs in Shanxi, a province with rich coal resource, in which long-term coal mining activities in history has resulted in soil HMs pollution and unavoidably posed environmental risks. Two advanced receptor models, multivariate curve resolution alternating least squares based on maximum likelihood principal component analysis (MCR-ALS/MLPCA) and multilinear engine 2 (ME2), have been employed for apportioning the potential sources, and their apportionment results are jointly incorporated into a modified ecological risk index and a probabilistic health risk assessment model for identifying the source-oriented ecological and health risks posed by soil metals. The results show that the soils in study area have been polluted by HMs (i.e., Cd, Cr, Hg and As) to varying degrees. Industrial activities (35%-35.8%), agricultural activities (11.1%-20.5%), atmospheric deposition (10.5%-13%) and mix source (31.5%-42.6%) are apportioned as the main contributors of soil HMs in the area. The source-oriented ecological risk assessment suggests Hg has presented significant ecological risk and largely contributed by the sources from atmospheric deposition and industrial activities. The source-oriented health risk assessment shows the non-carcinogenic hazard level and carcinogenic risk posed by soil HMs in the study area are acceptable. Relatively, industrial activities and mix source have contributed more on the health risks.
Collapse
Affiliation(s)
- YiYi Liu
- Engineering Research Center of Groundwater Pollution Control and Remediation (Ministry of Education), College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing, 100875, China
| | - HaiYang Chen
- Engineering Research Center of Groundwater Pollution Control and Remediation (Ministry of Education), College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing, 100875, China.
| | - ZhiRou Zhang
- Engineering Research Center of Groundwater Pollution Control and Remediation (Ministry of Education), College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing, 100875, China
| | - JinSheng Wang
- Advanced Institute of Natural Science, Beijing Normal University at Zhuhai, 519087, China.
| |
Collapse
|
3
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Vleminckx C, Wallace H, Barregård L, Benford D, Broberg K, Dogliotti E, Fletcher T, Rylander L, Abrahantes JC, Gómez Ruiz JÁ, Steinkellner H, Tauriainen T, Schwerdtle T. Update of the risk assessment of inorganic arsenic in food. EFSA J 2024; 22:e8488. [PMID: 38239496 PMCID: PMC10794945 DOI: 10.2903/j.efsa.2024.8488] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2024] Open
Abstract
The European Commission asked EFSA to update its 2009 risk assessment on arsenic in food carrying out a hazard assessment of inorganic arsenic (iAs) and using the revised exposure assessment issued by EFSA in 2021. Epidemiological studies show that the chronic intake of iAs via diet and/or drinking water is associated with increased risk of several adverse outcomes including cancers of the skin, bladder and lung. The CONTAM Panel used the benchmark dose lower confidence limit based on a benchmark response (BMR) of 5% (relative increase of the background incidence after adjustment for confounders, BMDL05) of 0.06 μg iAs/kg bw per day obtained from a study on skin cancer as a Reference Point (RP). Inorganic As is a genotoxic carcinogen with additional epigenetic effects and the CONTAM Panel applied a margin of exposure (MOE) approach for the risk characterisation. In adults, the MOEs are low (range between 2 and 0.4 for mean consumers and between 0.9 and 0.2 at the 95th percentile exposure, respectively) and as such raise a health concern despite the uncertainties.
Collapse
|
4
|
Lu Z, Zhao C, Yang J, Ma Y, Qiang M. Paternal exposure to arsenic and sperm DNA methylation of imprinting gene Meg3 in reproductive-aged men. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:3055-3068. [PMID: 36152128 DOI: 10.1007/s10653-022-01394-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/10/2022] [Indexed: 06/01/2023]
Abstract
BACKGROUND Prenatal exposure to arsenic and mercury have been associated with adverse pregnancy outcomes that might be in part mediated by dynamic modification of imprinting gene that are emerging mechanism. OBJECTIVES The objective of this study was to examine the impacts of paternal exposure to arsenic and co-exposure to arsenic and mercury on human sperm DNA methylation status of imprinting genes, respectively. METHODS A total of 352 male subjects (23-52 years old) were recruited and demographic data were obtained through questionnaires. Urinary arsenic and mercury levels were measured using hydride generation-atomic fluorescence spectrometer. Multivariate regression model was employed to investigate the relationship between urinary arsenic levels and sperm DNA methylation status at H19, Meg3 and Peg3, measured by pyrosequencing, and evaluating the interaction with mercury. RESULTS After adjusting potential confounds factors by multivariate regression model, the results indicated a significantly positive relationship between urinary arsenic levels and the methylation status of Meg3 at both mean level (β = + 0.125, p < 0.001) and all individual CpGs, i.e., CpG1 (β = + 0.094, p < 0.001), CpG2 (β = + 0.132, p < 0.001), CpG3 (β = + 0.121, p < 0.001), CpG4 (β = + 0.142, p < 0.001), CpG5 (β = + 0.111, p < 0.001), CpG6 (β = + 0.120, p < 0.001), CpG7 (β = + 0.143, p < 0.001), CpG8 (β = + 0.139, p < 0.001) of Meg3 DMRs. The interaction effects analysis indicated the interaction effects of arsenic and mercury on Meg3 were not existing. CONCLUSIONS Paternal nonoccupational exposure to arsenic induces the altered DNA methylation status of Meg3 in human sperm DNA. In addition, the interaction effects of arsenic and mercury on Meg3 were not existing. These findings would implicate the sensibility of sperm epigenome for environmental pollutions.
Collapse
Affiliation(s)
- Zhaoxu Lu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China.
- Children's Hospital Capital Institute of Pediatrics, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Graduate School of Peking Union Medical College, Beijing, 100005, China.
| | - Chuo Zhao
- School of Public Health, Hebei University, Baoding, 071000, Hebei, China
| | - Jia Yang
- Department of Children and Adolescences Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yufeng Ma
- Department of Children and Adolescences Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Mei Qiang
- Department of Children and Adolescences Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
5
|
Vanadium: A Review of Different Extraction Methods to Evaluate Bioavailability and Speciation. MINERALS 2022. [DOI: 10.3390/min12050642] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The excessive input of heavy metals such as vanadium (V) into the environment has been one of the consequences of global industrial development. Excessive exposure to V can pose a potential threat to ecological safety and human health. Due to the heterogeneous composition and reactivity of the various elements in soils and sediments, quantitative analysis of the chemical speciation of V in different environmental samples is very complicated. The analysis of V chemical speciation can further reveal the bioavailability of V and accurately quantify its ecotoxicity. This is essential for assessing for exposure and for controlling ecological risks of V. Although the current investigation technologies for the chemical speciation of V have grown rapidly, the lack of comprehensive comparisons and systematic analyses of these types of technologies impedes a more comprehensive understanding of ecosystem safety and human health risks. In this review, we studied the chemical and physical extraction methods for V from multiple perspectives, such as technological, principle-based, and efficiency-based, and their application to the evaluation of V bioavailability. By sorting out the advantages and disadvantages of the current technologies, the future demand for the in situ detection of trace heavy metals such as V can be met and the accuracy of heavy metal bioavailability prediction can be improved, which will be conducive to development in the fields of environmental protection policy and risk management.
Collapse
|
6
|
Li J, Lin S, Wu J, Pei L, Shang X. OUP accepted manuscript. Int Health 2022; 15:299-308. [PMID: 35521756 PMCID: PMC10153556 DOI: 10.1093/inthealth/ihac027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/15/2022] [Accepted: 04/18/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Maternal exposure to pesticides during early pregnancy is associated with increased risks of birth defects, while the association between maternal exposure to chemical fertilizer during pregnancy and the risk of birth defects remains unknown. METHODS Data were from a population-based birth defects surveillance system between 2007 and 2012 in Pingding County, Shanxi Province, northern China. A total of 14 074 births with 235 birth defects were used to estimate spatial clustering and correlations at the village level. A population-based case-control study of 157 cases with birth defects and 204 controls was performed to investigate the association between maternal chemical fertilizer exposure and the risk of birth defects by a two-level logistic model. RESULTS The total prevalence of birth defects between 2007 and 2012 was 167.0/10 000 births. The spatial analysis indicated a remarkable high-risk area of birth defects in the southeast of Pingding County and the use of chemical fertilizer was associated with the risk of birth defects at the village level. After adjusting for confounders at the individual level, mothers who live in villages with chemical fertilizer application ≥65 tons/y had an increased risk of birth defects (adjusted odds ratio 2.06 [95% confidence interval 1.23 to 3.46]) compared with those of <65 tons/y. CONCLUSIONS Our findings suggest that the risk of birth defects may be associated with the use of chemical fertilizer in rural northern China. The findings must be cautiously interpreted and need to be investigated on larger samples.
Collapse
Affiliation(s)
| | | | - Jilei Wu
- Institute of Population Research/China Center on Population Health and Development, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing,100871, China
| | - Lijun Pei
- Corresponding authors: Tel: +86 010-62751974; E-mail:
| | - Xuejun Shang
- Corresponding authors: Tel: +86 025-84815775; E-mail:
| |
Collapse
|
7
|
Mu X, Chen X, Liu J, Yuan L, Wang D, Qian L, Qian Y, Shen G, Huang Y, Li X, Li Y, Lin X. A multi-omics approach reveals molecular mechanisms by which phthalates induce cardiac defects in zebrafish (Danio rerio). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:113876. [PMID: 32806432 DOI: 10.1016/j.envpol.2019.113876] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 12/16/2019] [Accepted: 12/22/2019] [Indexed: 06/11/2023]
Abstract
The potential risks of phthalates affecting human and animal health as well as the environment are emerging as serious concerns worldwide. However, the mechanism by which phthalates induce developmental effects is under debate. Herein, we found that embryonic exposure of zebrafish to di-(2-ethylhexyl) phthalate (DEHP) and di-butyl phthalate (DBP) increased the rate of heart defects including abnormal heart rate and pericardial edema. Changes in the transcriptional profile demonstrated that genes involved in the development of the heart, such as tbx5b, nppa, ctnt, my17, cmlc1, were significantly altered by DEHP and DBP at 50 μg/L, which agreed with the abnormal cardiac outcomes. Methylated DNA immunoprecipitation sequencing (MeDIP-Seq) further showed that significant hypomethylation of nppa and ctnt was identified after DEHP and DBP exposure, which was consistent with the up-regulation of these genes. Notably, hypermethylation on the promoter region (<1 kb) of tbx5b was found after DEHP and DBP exposure, which might be responsible for its decrease in transcription. In conclusion, phthalates have the potential to induce cardiac birth defects, which might be associated with the transcriptional regulation of the involved developmental factors such as tbx5b. These findings would contribute to understand the molecular pathways that mediated the cardiac defects caused by phthalates.
Collapse
Affiliation(s)
- Xiyan Mu
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China.
| | - Xiaofeng Chen
- College of Sciences, China Agricultural University, People's Republic of China
| | - Jia Liu
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Lilai Yuan
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Donghui Wang
- College of Life Sciences, Peking University, Beijing, People's Republic of China
| | - Le Qian
- College of Sciences, China Agricultural University, People's Republic of China
| | - Yu Qian
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Gongming Shen
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Ying Huang
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Xuxing Li
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Yingren Li
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Xiangming Lin
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| |
Collapse
|
8
|
Molina-Frechero N, Nevarez-Rascón M, Tremillo-Maldonado O, Vergara-Onofre M, Gutiérrez-Tolentino R, Gaona E, Castañeda E, Jarquin-Yañez L, Bologna-Molina R. Environmental Exposure of Arsenic in Groundwater Associated to Carcinogenic Risk in Underweight Children Exposed to Fluorides. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:724. [PMID: 31979150 PMCID: PMC7036991 DOI: 10.3390/ijerph17030724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/10/2020] [Accepted: 01/17/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND The purpose of this study was to determine the concentration of inorganic arsenic (As) in the potable water available to the population to be able to estimate the non-carcinogenic risks for underweight children and the carcinogenic risk for adults exposed to As intake who live in the Mezquital municipality, Durango, Mexico. METHODS The As content was quantifed in the water supply sources for human use and its intake was estimated in Mezquital population, southern Durango. With the data obtained, the hazard quotient (HQ) was calculated to determine the non-carcinogenic risk to develop chronic systemic effects in underweight children. The Environmental Protection Agency (EPA) reference health values estimating As exposure risk are from 0.0003 mg/kg/day (non-carcinogenic) to 1.5 mg/kg/day (carcinogenic risk). RESULTS The analyzed waters presented as concentrations that varied from 0.3 to 10.2 µg/L, with a mean of 7.35 µg/L (CI 95% 6.27-8.38). The exposure dose was 0.4 to 1.36, and the HQ was 1.90 to 6.48 mg/kg/day, the estimated carcinogenic risk from adults varied from 1.28 to 4.37E-4, with values of 3.74-4.37E-4 mg/kg/day in central area. CONCLUSIONS The children are at risk to develop chronic systemic effects due to ingestion of As from water.
Collapse
Affiliation(s)
- Nelly Molina-Frechero
- Division of Biological and Health Sciences, Universidad Autónoma Metropolitana, Mexico City 04460, Mexico; (N.M.-F.); (M.V.-O.); (R.G.-T.); (E.G.); (E.C.)
| | | | - Omar Tremillo-Maldonado
- Research Department, Faculty of Dentistry, Universidad Juárez del Estado de Durango, Durango 34000, Mexico;
| | - Marcela Vergara-Onofre
- Division of Biological and Health Sciences, Universidad Autónoma Metropolitana, Mexico City 04460, Mexico; (N.M.-F.); (M.V.-O.); (R.G.-T.); (E.G.); (E.C.)
| | - Rey Gutiérrez-Tolentino
- Division of Biological and Health Sciences, Universidad Autónoma Metropolitana, Mexico City 04460, Mexico; (N.M.-F.); (M.V.-O.); (R.G.-T.); (E.G.); (E.C.)
| | - Enrique Gaona
- Division of Biological and Health Sciences, Universidad Autónoma Metropolitana, Mexico City 04460, Mexico; (N.M.-F.); (M.V.-O.); (R.G.-T.); (E.G.); (E.C.)
| | - Enrique Castañeda
- Division of Biological and Health Sciences, Universidad Autónoma Metropolitana, Mexico City 04460, Mexico; (N.M.-F.); (M.V.-O.); (R.G.-T.); (E.G.); (E.C.)
| | - Lizet Jarquin-Yañez
- Center of Applied Research in Environment and Health, CIACYT, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78120, Mexico;
| | - Ronell Bologna-Molina
- Research Department, Faculty of Dentistry, Universidad Juárez del Estado de Durango, Durango 34000, Mexico;
- Molecular Pathology, School of Dentistry, Universidad de la República, Montevideo 11600, Uruguay
| |
Collapse
|
9
|
Morphological evidence of neurotoxic effects in chicken embryos after exposure to perfluorooctanoic acid (PFOA) and inorganic cadmium. Toxicology 2019; 427:152286. [DOI: 10.1016/j.tox.2019.152286] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 08/01/2019] [Accepted: 09/02/2019] [Indexed: 01/09/2023]
|
10
|
Li K, Luo J, Ding T, Dou X, Hu Y, Zhang X, Yang M. Multielements determination and metal transfer investigation in herb medicine Bupleuri Radix by inductively coupled plasma-mass spectrometry. Food Sci Nutr 2018; 6:2005-2014. [PMID: 30510701 PMCID: PMC6261210 DOI: 10.1002/fsn3.701] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 12/11/2022] Open
Abstract
Bupleuri Radix is a famous traditional Chinese medicine (TCM) and an important raw material in TCM patent prescriptions. It is widely used in several countries, including China, Japan, South Korea, and America. However, the impact of heavy metal transfer rules on TCMs remains unknown. In this study, a total of 45 paired original medicines (OMs), decoction pieces (DPs), and vinegar-processed (VPs) samples were simultaneously determined via inductively coupled plasma-mass spectrometry after a microwave digestion. The concentrations of the elements were shown at three levels: (a) Al and Fe at the mg/g level; (b) Pb, Cu, Ba, Mn, Cr, and Ni at the mg/kg level; (c) Co, As, Cd, and Hg at μg/kg level. It is worth noting that the Cu levels were found to exceed the maximum concentration set by Chinese legislation (20.0 mg/kg). In addition, Mn, Ni, and Cu levels were higher in samples from the Gansu province than those from other provinces. The accumulation of the heavy metals decreased in the order of OMs > DPs > VPs; this was especially true for the Al and Fe levels. Furthermore, the results indicate that decocting the samples may reduce the intake of heavy metals. The element transfer ratios for decoctions were under 50% compared to herbal medicines and decreased in the order of Co > As > Mn > Hg > other metals. Our study strongly suggests that long-term and regular monitoring for heavy metals in the plant is necessary.
Collapse
Affiliation(s)
- Kunlun Li
- School of Life Science and EngineeringSouthwest Jiaotong UniversityChengduChina
- Institute of Medicinal Plant DevelopmentChinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| | - Jiaoyang Luo
- Institute of Medicinal Plant DevelopmentChinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| | - Tong Ding
- Institute of Medicinal Plant DevelopmentChinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| | - Xiaowen Dou
- Institute of Medicinal Plant DevelopmentChinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| | - Yuli Hu
- Institute of Medicinal Plant DevelopmentChinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| | - Xingguo Zhang
- School of Life Science and EngineeringSouthwest Jiaotong UniversityChengduChina
| | - Meihua Yang
- Institute of Medicinal Plant DevelopmentChinese Academy of Medical SciencesPeking Union Medical CollegeBeijingChina
| |
Collapse
|
11
|
Missimer TM, Teaf CM, Beeson WT, Maliva RG, Woolschlager J, Covert DJ. Natural Background and Anthropogenic Arsenic Enrichment in Florida Soils, Surface Water, and Groundwater: A Review with a Discussion on Public Health Risk. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E2278. [PMID: 30336588 PMCID: PMC6210428 DOI: 10.3390/ijerph15102278] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/19/2018] [Accepted: 10/14/2018] [Indexed: 11/16/2022]
Abstract
Florida geologic units and soils contain a wide range in concentrations of naturally-occurring arsenic. The average range of bulk rock concentrations is 1 to 13.1 mg/kg with concentrations in accessary minerals being over 1000 mg/kg. Florida soils contain natural arsenic concentrations which can exceed 10 mg/kg in some circumstances, with organic-rich soils often having the highest concentrations. Anthropogenic sources of arsenic have added about 610,000 metric tons of arsenic into the Florida environment since 1970, thereby increasing background concentrations in soils. The anthropogenic sources of arsenic in soils include: pesticides (used in Florida beginning in the 1890's), fertilizers, chromated copper arsenate (CCA)-treated wood, soil amendments, cattle-dipping vats, chicken litter, sludges from water treatment plants, and others. The default Soil Cleanup Target Level (SCTL) in Florida for arsenic in residential soils is 2.1 mg/kg which is below some naturally-occurring background concentrations in soils and anthropogenic concentrations in agricultural soils. A review of risk considerations shows that adverse health impacts associated with exposure to arsenic is dependent on many factors and that the Florida cleanup levels are very conservative. Exposure to arsenic in soils at concentrations that exceed the Florida default cleanup level set specifically for residential environments does not necessarily pose a meaningful a priori public health risk, given important considerations such as the form of arsenic present, the route(s) of exposure, and the actual circumstances of exposure (e.g., frequency, duration, and magnitude).
Collapse
Affiliation(s)
- Thomas M Missimer
- Emergent Technologies Institute, U. A. Whitaker College of Engineering, Florida Gulf Coast University, 16301 Innovation Lane, Fort Myers, FL 33913, USA.
| | - Christopher M Teaf
- Center for Biomedical & Toxicological Research, Florida State University, Tallahassee, FL 32310, USA.
| | - William T Beeson
- Beeson Consulting, Inc., 12836 Kedleston Circle, Fort Myers, FL 33912, USA.
| | - Robert G Maliva
- Emergent Technologies Institute, U. A. Whitaker College of Engineering, Florida Gulf Coast University, 16301 Innovation Lane, Fort Myers, FL 33913, USA.
- WSP USA Inc., 1567 Hayley Lane, Suite 202, Fort Myers, FL 33907, USA.
| | - John Woolschlager
- Emergent Technologies Institute, U. A. Whitaker College of Engineering, Florida Gulf Coast University, 16301 Innovation Lane, Fort Myers, FL 33913, USA.
| | - Douglas J Covert
- Hazardous Substance & Waste Management Research, 2976 Wellington Circle West, Tallahassee, FL 32309, USA.
| |
Collapse
|
12
|
Arriaza B, Amarasiriwardena D, Standen V, Yáñez J, Van Hoesen J, Figueroa L. Living in poisoning environments: Invisible risks and human adaptation. Evol Anthropol 2018; 27:188-196. [PMID: 30369007 DOI: 10.1002/evan.21720] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 07/17/2018] [Accepted: 08/02/2018] [Indexed: 11/05/2022]
Abstract
This article describes the hidden natural chemical contaminants present in a unique desert environment and their health consequences on ancient populations. Currently, millions of people are affected worldwide by toxic elements such as arsenic. Using data gathered from Atacama Desert mummies, we discuss long-term exposure and biocultural adaptation to toxic elements. The rivers that bring life to the Atacama Desert are paradoxically laden with arsenic and other minerals that are invisible and tasteless. High intake of these toxic elements results in severe health and behavioral problems, and even death. We demonstrate that Inca colonies, from Camarones 9 site, were significantly affected by chemical contaminants in their food and water. It appears however, some modern-day Andean populations resist the elevated levels of arsenic exposure as a result of positive selection mediated via the arsenic methyltransferase enzyme and display more tolerance to high chemical doses. This article further debate the effects of natural pollution and biocultural adaptation of past populations.
Collapse
Affiliation(s)
- Bernardo Arriaza
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Chile
| | | | - Vivien Standen
- Departamento de Antropología, Universidad de Tarapacá, Arica, Chile
| | - Jorge Yáñez
- Departamento de Química Analítica e Inorgánica, Laboratorio de Trazas Elementales & Especiación (LABTRES), Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
| | | | | |
Collapse
|
13
|
Cao H, Wei X, Guo X, Song C, Luo Y, Cui Y, Hu X, Zhang Y. Screening high-risk clusters for developing birth defects in mothers in Shanxi Province, China: application of latent class cluster analysis. BMC Pregnancy Childbirth 2015; 15:343. [PMID: 26694165 PMCID: PMC4687365 DOI: 10.1186/s12884-015-0783-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 12/10/2015] [Indexed: 11/10/2022] Open
Abstract
Background Few studies on cluster-based synthetic effects of multiple risk factors for birth defects have been reported. The present study aimed to identify maternal exposure clusters, explore the association between clusters of risk factors and birth defects, and further screen women with high risk for birth defects among expectant mothers. Methods Data were drawn from a large-scale, retrospective epidemiological survey of birth defects from 2006 to 2008 in six counties of Shanxi Province, China, using a three-level stratified random cluster sampling technique. Overall risk factors were extracted using eight synthetic variables summed and examined as a total risk factor score: maternal delivery age, genetic factors, medical history, nutrition and folic acid deficiency, maternal illness in pregnancy, drug use in pregnancy, environmental risk factors in pregnancy, and unhealthy maternal lifestyle in pregnancy. Latent class cluster analysis was used to identify maternal exposure clusters based on these synthetic variables. Adjusted odds ratios (AOR) were used to explore associations between clusters and birth defects, after adjusting for confounding variables using logistic regression. Results Three latent maternal exposure clusters were identified: a high-risk (6.15 %), a moderate-risk (22.39 %), and a low-risk (71.46 %) cluster. The prevalence of birth defects was 14.08 %, 0.85 %, and 0.52 % for the high-, middle- and low-risk clusters respectively. After adjusting for maternal demographic variables, women in the high-risk cluster were nearly 31 times (AOR: 30.61, 95 % CI: [24.87, 37.67]) more likely to have an infant with birth defects than low-risk women. Conclusions A high-risk group of mothers in an area with a high risk for birth defects were screened in our study. Targeted interventions should be conducted with women of reproductive age to improve neonatal birth outcomes in areas with a high risk of birth defects.
Collapse
Affiliation(s)
- Hongyan Cao
- Division of Health Statistics, School of Public Health, Shanxi Medical University, No. 56 South Xinjian Road, Taiyuan, Shanxi, 030001, PR China.
| | - Xiaoyuan Wei
- Division of Health Statistics, School of Public Health, Shanxi Medical University, No. 56 South Xinjian Road, Taiyuan, Shanxi, 030001, PR China.
| | - Xingping Guo
- Population and Family planning Commission of Shanxi province, No. 11 North Beiyuan Road, Taiyuan, Shanxi, 030006, PR China.
| | - Chunying Song
- Population and Family planning Commission of Shanxi province, No. 11 North Beiyuan Road, Taiyuan, Shanxi, 030006, PR China.
| | - Yanhong Luo
- Division of Health Statistics, School of Public Health, Shanxi Medical University, No. 56 South Xinjian Road, Taiyuan, Shanxi, 030001, PR China.
| | - Yuehua Cui
- Division of Health Statistics, School of Public Health, Shanxi Medical University, No. 56 South Xinjian Road, Taiyuan, Shanxi, 030001, PR China. .,Department of Statistics and Probability, Michigan State University, East Lansing, MI, 48824, USA.
| | - Xianming Hu
- Department of Developmental Pediatrics, Affiliated Children's Hospital of Shanxi Medical University, No. 15 North Xinmin Road, Taiyuan, Shanxi, 030013, PR China.
| | - Yanbo Zhang
- Division of Health Statistics, School of Public Health, Shanxi Medical University, No. 56 South Xinjian Road, Taiyuan, Shanxi, 030001, PR China.
| |
Collapse
|
14
|
Lewis J, Gonzales M, Burnette C, Benally M, Seanez P, Shuey C, Nez H, Nez C, Nez S. Environmental exposures to metals in Native communities and implications for child development: basis for the Navajo birth cohort study. JOURNAL OF SOCIAL WORK IN DISABILITY & REHABILITATION 2015; 14:245-69. [PMID: 26151586 DOI: 10.1080/1536710x.2015.1068261] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Two disparate statistics often cited for the Western United States raise concern about risks for developmental disabilities in Native American children. First, 13 of the states with the highest percentage of Native American population are located in the Western United States (U.S. Census Bureau, 2012 ). Second, more than 161,000 abandoned hard-rock mines are located in 12 Western states (General Accounting Office, 2014 ). Moreover, numerous studies have linked low-level metals exposure with birth defects and developmental delays. Concern has emerged among tribal populations that metals exposure from abandoned mines might threaten development of future generations.
Collapse
Affiliation(s)
- Johnnye Lewis
- a University of New Mexico Health Sciences Center , Albuquerque , New Mexico , USA
| | - Melissa Gonzales
- a University of New Mexico Health Sciences Center , Albuquerque , New Mexico , USA
| | - Courtney Burnette
- a University of New Mexico Health Sciences Center , Albuquerque , New Mexico , USA
| | - Malcolm Benally
- a University of New Mexico Health Sciences Center , Albuquerque , New Mexico , USA
| | - Paula Seanez
- b Growing in Beauty, Window Rock Agency , Navajo Nation Office of Special Education and Rehabilitation Services , Window Rock , Arizona , USA
| | - Christopher Shuey
- c Uranium Impact Assessment Program , Southwest Research and Information Center , Albuquerque , New Mexico , USA
| | - Helen Nez
- d Tachee Uranium Concerns Committee , Blue Gap , Arizona , USA
| | - Christopher Nez
- d Tachee Uranium Concerns Committee , Blue Gap , Arizona , USA
| | - Seraphina Nez
- d Tachee Uranium Concerns Committee , Blue Gap , Arizona , USA
| |
Collapse
|