1
|
Fang Z, Zhou B, Zheng G, Chen X, Liu M, Zhang H, He F, Chen H, Hao G. Environment-wide association study of cardiovascular and all-cause mortality: Analysis of the National Health and Nutrition Examination Survey, 1999-2018. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125770. [PMID: 39894157 DOI: 10.1016/j.envpol.2025.125770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 01/10/2025] [Accepted: 01/28/2025] [Indexed: 02/04/2025]
Abstract
Environmental toxicants are increasingly suspected to influence cardiovascular (CV) and all-cause mortality, but previous studies mostly focused on one or a few chemicals. We examined the associations of a wide array of environmental chemicals with CV and all-cause mortality using an exposome-wide approach and the potential mediating role of inflammation in these associations. Data from the National Health and Nutrition Examination Survey (1999-2018) were randomly 60:40 split into a training set and a test set. The mortality rates were determined by the National Center for Health Statistics through a process of correlation with the National Death Index records. Based on the 10th revision of (ICD-10) codes, deaths due to heart disease (ICD 100-I09, I11, I13, and I20-I51) or cerebrovascular disease (I60-I69) were defined as CV mortality. Using the NHANES data, with a median 9.42-year follow-up period, we found that higher concentrations of 2-hydroxynaphthalene (2-NAP) and 2-hydroxyfluorene (2-FLU) in the urine, heavy metal cadmium (Cd), and cotinine in the blood were associated with increased risks of both CV and all-cause mortality. We further found 11 chemicals, including polycyclic aromatic hydrocarbons (1-hydroxynaphthalene, 3-hydroxyfluorene, and 9-hydroxyfluorene), 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) in the urine; hydroxycotinine, heavy metals lead, volatile organic compounds (benzene, ethylbenzene, styrene, toluene and 2,5-Dimethylfuran) in the blood were positively associated with all-cause mortality. Furthermore, we found that C-reactive protein levels partially mediate those associations. In summary, exposure to certain environmental chemicals was associated with CV and all-cause mortality, and C-reactive protein plays a mediation role in those associations. Our findings provided more evidence for preventing and controlling important environmental chemicals to improve people's health.
Collapse
Affiliation(s)
- Zhenger Fang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Biying Zhou
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Guangjun Zheng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Xia Chen
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Mingliang Liu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Haofeng Zhang
- Department of Epidemiology and Statistics, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Fudong He
- Department of Epidemiology and Statistics, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Haiyan Chen
- Department of Parasitic Disease and Endemic Disease Control and Prevention, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Guang Hao
- Department of Epidemiology and Statistics, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
2
|
Peng FJ, Lin CA, Wada R, Bodinier B, Iglesias-González A, Palazzi P, Streel S, Guillaume M, Chadeau-Hyam M, Appenzeller BMR. Cardiovascular risk factors in relation to hair polycyclic aromatic hydrocarbons in the NESCAV study. ENVIRONMENT INTERNATIONAL 2024; 194:109170. [PMID: 39637532 DOI: 10.1016/j.envint.2024.109170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 10/31/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
Previous studies have found associations between exposure to polycyclic aromatic hydrocarbons (PAHs) and cardiovascular risk factors. However, the internal dose of PAH exposure was often examined by quantifying monohydroxylated metabolites of PAHs (OH-PAHs) in urine, which can only reflect recent exposure. On the other hand, hair covers wider temporal windows than urine and has been demonstrated to be a suitable matrix for PAH exposure assessment. Using hair analysis, here we investigated the associations between PAH exposure and obesity, diabetes, hypertension, dyslipidemia, and metabolic syndrome (MetS) and its components in a cross-sectional study of adults aged 18-69 years and enrolled in the Nutrition, Environment and Cardiovascular Health (NESCAV) survey conducted in 2007-2009 in Luxembourg. In addition, we also examined hair cotinine and nicotine because they are well-established biomarkers of tobacco smoke exposure. Associations were explored separately for men (n = 265) and women (n = 347) by logistic regression with adjustment for potential confounders. We found positive associations of OH-PAHs with diabetes in both men and women, positive and inverse associations with obesity and positive associations with hypertension/elevated blood pressure and dyslipidemia/elevated triglycerides (TG) in men, and inverse associations with hypertension but positive associations with MetS, elevated waist circumference and reduced high-density lipoprotein cholesterol (HDL-C) in women. These results may suggest that men and women differ in cardiometabolic responses to environmental PAH exposure. As regards hair cotinine and nicotine, they were associated with diabetes/elevated fasting plasma glucose, elevated blood pressure, and dyslipidemia/elevated TG/reduced HDL-C in men and women. Our results suggest that exposure to PAHs and tobacco smoke may be associated with cardiometabolic health risk. Future prospective studies are warranted to corroborate these findings.
Collapse
Affiliation(s)
- Feng-Jiao Peng
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison 1445, Strassen, Luxembourg
| | - Chia-An Lin
- MRC/PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Rin Wada
- MRC/PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Barbara Bodinier
- MRC/PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Alba Iglesias-González
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison 1445, Strassen, Luxembourg
| | - Paul Palazzi
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison 1445, Strassen, Luxembourg
| | - Sylvie Streel
- Public Health Sciences Department, University of Liege, Liège, Belgium
| | - Michèle Guillaume
- Public Health Sciences Department, University of Liege, Liège, Belgium
| | - Marc Chadeau-Hyam
- MRC/PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
| | - Brice M R Appenzeller
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison 1445, Strassen, Luxembourg.
| |
Collapse
|
3
|
Fang L, Kong F, Ou K, Hong L, Wang C, Tong X. Induction of insulin resistance in female mice due to prolonged phenanthrene exposure: Unveiling the low-dose effect and potential mechanisms. ENVIRONMENTAL RESEARCH 2024; 260:119597. [PMID: 39002631 DOI: 10.1016/j.envres.2024.119597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Phenanthrene (Phe) is a commonly occurring polycyclic aromatic hydrocarbon (PAH) found in various food sources and drinking water. Previous studies have shown that long-term exposure to Phe in male mice leads to insulin resistance in a dose-dependent manner. However, the effect of Phe on glucose homeostasis in female mice remains unknown. To address this knowledge gap, female Kunming mice were exposed to Phe through their drinking water at concentrations of 0.05, 0.5, and 5 ng/mL. After 270 d of exposure, we surprisingly discovered a low-dose effect of Phe on insulin resistance in female mice, which differed from the effect observed in male mice and showed sexual dimorphism. Specifically, insulin resistance was only observed in the 0.05 ng/mL treatment, and this low-dose effect was also reflected in the concentration of Phe in white adipose tissue (WAT). Differences in metabolic enzyme activities in the liver may potentially explain this effect. The observed sexual dimorphism in Phe exposure could be attributed to variations in estrogen (E2) level and estrogen receptor beta (ERβ) expression in WAT. These findings highlight the association between environmental factors and the development of insulin resistance, emphasizing the pathogenic effect of even low doses of Phe. Moreover, sex dependent-effect should be given more attention when studying the toxic effects of environmental pollutants.
Collapse
Affiliation(s)
- Lu Fang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, PR China
| | - Feifei Kong
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, PR China
| | - Kunlin Ou
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Luning Hong
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, PR China
| | - Chonggang Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Xiaomei Tong
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, PR China.
| |
Collapse
|
4
|
Amponsah AS, Lutterodt HE, Ankar-Brewoo GM, Ofosu IW. Smoked and Fermented Bushmeat (Mpunam) Products: Risk Assessment of Polycyclic Aromatic Hydrocarbons (PAHs) Resulting From Processing. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2024; 2024:5514988. [PMID: 39445031 PMCID: PMC11498977 DOI: 10.1155/2024/5514988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024]
Abstract
The polycyclic aromatic hydrocarbons (PAHs) congener concentrations and risk upon human exposure to smoked bushmeat products were analyzed. GC/MS MRM and QuEChERS methods were used for the analysis. This work has become necessary due to the need for more information concerning the quantitative determination of these compounds and their health risk assessment. The 16 PAH congeners identified were acenaphthylene (ACA), naphthalene (NAP), acenaphthene (ACE), fluorene (FLU), anthracene (ANT), phenanthrene (PHE), fluoranthene (FLT), pyrene (PYR), benzo[b]fluoranthene (BBF), benzo[k]fluoranthene (BKF), benzo[a]anthracene (BAA), chrysene (CHR), indeno(1,2,3-cd)pyrene (IND), dibenzo(a,h)anthracene (DAA), benzo(g,h,i)pyrene (BGP), and benzo[a]pyrene (BAP). At the 5% and 95% daily intake levels, BAP was at 3.34 and 17.39 μg/kg(bw)/day, ΣPAH4 was at 25.11 and 109.15 μg/kg(bw)/day, and ΣPAH8 was at 55.76 and 236.68 μg/kg(bw)/day, respectively. BAP, ΣPAH4, and ΣPAH8 concentration exceeded the European Union limits, as BAP concentration was as low as 6.09 μg/kg and as high as 34.19. The exposure values were significantly high. Specifically, the margin of exposure for BAP was as low as 2.09 × 10-2; for ΣPAH4, it was 1.36 × 10--2; and for ΣPAH8, it was 1.95 × 10-2 all at the 95% level. These figures are substantially lower than the benchmark of 10,000, indicating a higher ILTCR. Furthermore, the ILTCR ranged from a minimum of 47.77 to a maximum of 248.53 at the 5% and 95% levels, respectively. This study makes smoked bushmeat a public health concern because the higher figures obtained indicate higher carcinogenicity upon consumption.
Collapse
Affiliation(s)
- A. S. Amponsah
- Department of Hospitality and Tourism, Sunyani Technical University, Sunyani, Ghana
- Food Systems Chemistry, Toxicology, and Risks Studies, Department of Food Science and Technology, College of Science, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - H. E. Lutterodt
- Food Systems Chemistry, Toxicology, and Risks Studies, Department of Food Science and Technology, College of Science, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - G. M. Ankar-Brewoo
- Food Systems Chemistry, Toxicology, and Risks Studies, Department of Food Science and Technology, College of Science, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - I. W. Ofosu
- Food Systems Chemistry, Toxicology, and Risks Studies, Department of Food Science and Technology, College of Science, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| |
Collapse
|
5
|
Chen Y, Li Y, Gu W, Liu S, Wang Y, Jiao B, Wang M, Long Y, Miao K, Niu Y, Duan H, Tang S, Zheng Y, Dai Y. The key metabolic signatures and biomarkers of polycyclic aromatic hydrocarbon-induced blood glucose elevation in chinese individuals exposed to diesel engine exhaust. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116997. [PMID: 39260215 DOI: 10.1016/j.ecoenv.2024.116997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/19/2024] [Accepted: 09/01/2024] [Indexed: 09/13/2024]
Abstract
Due to the complexity of environmental exposure factors and the low levels of exposure in the general population, identifying the key environmental factors associated with diabetes and understanding their potential mechanisms present significant challenges. This study aimed to identify key polycyclic aromatic hydrocarbons (PAHs) contributing to increased fasting blood glucose (FBG) concentrations and to explore their potential metabolic mechanisms. We recruited a highly PAH-exposed diesel engine exhaust testing population and healthy controls. Our findings found a positive association between FBG concentrations and PAH metabolites, identifying 1-OHNa, 2-OHPh, and 9-OHPh as major contributors to the rise in FBG concentrations induced by PAH mixtures. Specifically, each 10 % increase in 1-OHNa, 2-OHPh, and 9-OHPh concentrations led to increases in FBG concentrations of 0.201 %, 0.261 %, and 0.268 %, respectively. Targeted metabolomics analysis revealed significant alterations in metabolic pathways among those exposed to high levels of PAHs, including sirtuin signaling, asparagine metabolism, and proline metabolism pathway. Toxic function analysis highlighted differential metabolites involved in various dysglycemia-related conditions, such as cardiac arrhythmia and renal damage. Mediation analysis revealed that 2-aminooctanoic acid mediated the FBG elevation induced by 2-OHPh, while 2-hydroxyphenylacetic acid and hypoxanthine acted as partial suppressors. Notably, 2-aminooctanoic acid was identified as a crucial intermediary metabolic biomarker, mediating significant portions of the associations between the multiple different structures of OH-PAHs and elevated FBG concentrations, accounting for 16.73 %, 10.84 %, 10.00 %, and 11.90 % of these effects for 1-OHPyr, 2-OHFlu, the sum concentrations of 2- and 9-OHPh, and the sum concentrations of total OH-PAHs, respectively. Overall, our study explored the potential metabolic mechanisms underlying the elevated FBG induced by PAHs and identified 2-aminooctanoic acid as a pivotal metabolic biomarker, presenting a potential target for intervention.
Collapse
Affiliation(s)
- Yuanyuan Chen
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yanting Li
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, Shandong 266021, China
| | - Wen Gu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Shuai Liu
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Yican Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Bo Jiao
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Mengmeng Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yuehan Long
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Ke Miao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yong Niu
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Huawei Duan
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Song Tang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yuxin Zheng
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao, Shandong 266021, China
| | - Yufei Dai
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China.
| |
Collapse
|
6
|
Zhang S, Chen Z, Jiang X, Zhou S, Liu Y, Liu M, Dai X, Lu B, Yi G, Yin W. Lifestyle factors modified the mediation role of liver fibrosis in the association between occupational physical activity and blood pressure. Front Public Health 2024; 12:1383065. [PMID: 38989121 PMCID: PMC11233708 DOI: 10.3389/fpubh.2024.1383065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/06/2024] [Indexed: 07/12/2024] Open
Abstract
Objectives The study aimed to estimate the role of liver fibrosis in the association between occupational physical activity (OPA) and blood pressure (BP), which is modified by lifestyle factors. Methods The questionnaire survey and physical examination were completed among 992 construction workers in Wuhan, China. Associations between OPA or lifestyle factors and liver fibrosis indices and blood pressure were assessed using generalized additive models. The mediation analysis was used to evaluate the role of liver fibrosis in the association between OPA and lifestyle factors and BP. Results Moderate/high OPA group workers had an increased risk of liver fibrosis [odds ratio (OR) = 1.69, 95% confidence intervals (CI): 1.16-2.47, P < 0.05] compared with low OPA group workers. Smoking or drinking alcohol was related to liver fibrosis (aspartate aminotransferase to platelet ratio index: OR = 2.22, 95% CI: 1.07-4.62 or OR = 2.04, 95% CI: 1.00-4.15; P < 0.05). Compared with non-drinkers, drinkers were related to a 2.35-mmHg increase in systolic blood pressure (95% CI: 0.09-4.61), and a 1.60-mmHg increase in diastolic blood pressure (95% CI: 0.08-3.13; P < 0.05). We found a significant pathway, "OPA → liver fibrosis → blood pressure elevation," and lifestyle factors played a regulatory role in the pathway. Conclusion OPA or lifestyle factors were associated with liver fibrosis indices or BP in construction workers. Furthermore, the association between OPA and BP may be partially mediated by liver fibrosis; lifestyle factors strengthen the relationship between OPA and BP and the mediation role of liver fibrosis in the relationship.
Collapse
Affiliation(s)
- Shangyi Zhang
- Wuhan Prevention and Treatment Center for Occupational Diseases (School of Public Health of Joint Training Base for Graduate Students, Hubei University of Medicine), Wuhan, Hubei, China
- School of Public Health, Hubei University of Medicine, Shiyan, Hubei, China
| | - Zhenlong Chen
- Wuhan Prevention and Treatment Center for Occupational Diseases (School of Public Health of Joint Training Base for Graduate Students, Hubei University of Medicine), Wuhan, Hubei, China
| | - Xinman Jiang
- Wuhan Prevention and Treatment Center for Occupational Diseases (School of Public Health of Joint Training Base for Graduate Students, Hubei University of Medicine), Wuhan, Hubei, China
| | - Shenglan Zhou
- Wuhan Prevention and Treatment Center for Occupational Diseases (School of Public Health of Joint Training Base for Graduate Students, Hubei University of Medicine), Wuhan, Hubei, China
| | - Yanru Liu
- Wuhan Prevention and Treatment Center for Occupational Diseases (School of Public Health of Joint Training Base for Graduate Students, Hubei University of Medicine), Wuhan, Hubei, China
| | - Mingsheng Liu
- Wuhan Prevention and Treatment Center for Occupational Diseases (School of Public Health of Joint Training Base for Graduate Students, Hubei University of Medicine), Wuhan, Hubei, China
- School of Public Health, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xiayun Dai
- Wuhan Prevention and Treatment Center for Occupational Diseases (School of Public Health of Joint Training Base for Graduate Students, Hubei University of Medicine), Wuhan, Hubei, China
| | - Bifeng Lu
- Wuhan Prevention and Treatment Center for Occupational Diseases (School of Public Health of Joint Training Base for Graduate Students, Hubei University of Medicine), Wuhan, Hubei, China
| | - Guilin Yi
- Wuhan Prevention and Treatment Center for Occupational Diseases (School of Public Health of Joint Training Base for Graduate Students, Hubei University of Medicine), Wuhan, Hubei, China
| | - Wenjun Yin
- Wuhan Prevention and Treatment Center for Occupational Diseases (School of Public Health of Joint Training Base for Graduate Students, Hubei University of Medicine), Wuhan, Hubei, China
- School of Public Health, Hubei University of Medicine, Shiyan, Hubei, China
| |
Collapse
|
7
|
Liu K, Bai Y, Wu D, Zhang Z, Liao X, Wu H, Deng Q. Healthy lifestyle and essential metals attenuated association of polycyclic aromatic hydrocarbons with heart rate variability in coke oven workers. Int J Hyg Environ Health 2024; 256:114323. [PMID: 38237548 DOI: 10.1016/j.ijheh.2024.114323] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 02/06/2024]
Abstract
Whether adopting healthy lifestyles and maintaining moderate levels of essential metals could attenuate the reduction of heart rate variability (HRV) related to polycyclic aromatic hydrocarbons (PAHs) exposure are largely unknown. In this study, we measured urinary metals and PAHs as well as HRV, and constructed a healthy lifestyle score in 1267 coke oven workers. Linear regression models were used to explore the association of healthy lifestyle score and essential metals with HRV, and interaction analysis was performed to investigate the potential interaction between healthy lifestyle score, essential metals, and PAHs on HRV. Mean age of the participants was 41.9 years (84.5% male). Per one point higher healthy lifestyle score was associated with a 2.5% (95% CI, 1.0%-3.9%) higher standard deviation of all normal to normal intervals (SDNN), 2.1% (95% CI, 0.5%-3.6%) higher root mean square of successive differences in adjacent NN intervals (r-MSSD), 4.3% (95% CI, 0.4%-8.2%) higher low frequency, 4.4% (95% CI, 0.2%-8.5%) higher high frequency, and 4.4% (95% CI, 1.2%-7.6%) higher total power, respectively. Urinary level of chromium was positively associated with HRV indices, with the corresponding β (95% CI) (%) was 5.17 (2.84, 7.50) for SDNN, 4.29 (1.74, 6.84) for r-MSSD, 12.26 (6.08, 18.45) for low frequency, 12.61 (5.87, 19.36) for high frequency, and 11.31 (6.19, 16.43) for total power. Additionally, a significant interaction was found between healthy lifestyle score and urinary total hydroxynaphthalene on SDNN (Pinteraction = 0.04), and higher level of urinary chromium could attenuate the adverse effect of total hydroxynaphthalene level on HRV (all Pinteraction <0.05). Findings of our study suggest adopting healthy lifestyle and maintaining a relatively high level of chromium might attenuate the reduction of HRV related to total hydroxynaphthalene exposure.
Collapse
Affiliation(s)
- Kang Liu
- Department of Preventive Medicine, School of Public Health, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China
| | - Yansen Bai
- Department of Preventive Medicine, School of Public Health, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China
| | - Degang Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China
| | - Zhaorui Zhang
- Department of Preventive Medicine, School of Public Health, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China
| | - Xiaojing Liao
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Haimei Wu
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Qifei Deng
- Department of Epidemiology and Biostatistics, School of Public Health, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China.
| |
Collapse
|
8
|
Zhao C, Guan X, Zhang Q, Meng L, Lin W, Yang R, Li Y, Jiang G. Parent and halogenated polycyclic aromatic hydrocarbons exposure in aluminum smelter workers: Serum levels, accumulation trends, and association with health indicators. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169655. [PMID: 38159767 DOI: 10.1016/j.scitotenv.2023.169655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and their halogenated derivatives (HPAHs) can be unintentionally formed and released during industrial thermal processes. However, information on internal exposure and health risks of PAHs and HPAHs for thermal industry workers is very limited. In this study, serum samples from 220 aluminum smelter workers in East China were analyzed, and the relationship between the levels of these pollutants and various health indicators was also assessed. The workers had markedly higher serum concentrations of PAHs and HPAHs than the controls. The serum concentrations of ∑13PAHs and ∑9HPAHs increased with increasing age and occupational exposure duration in male workers. A positive correlation was observed between the ∑13PAH and ∑9HPAH serum concentrations, and the concentration of ∑13PAHs was approximately 50 times higher than that of ∑9HPAHs. For benzo[a]pyrene equivalent (BaPeq)-based risk assessment, the contribution of PAHs and HPAHs to the risk was 80 % and 20 % in the workers. PAHs and HPAHs showed a positive association with pulmonary hypofunction, hypertension and abnormal electrocardiogram. This study indicates occupational exposure to these toxic pollutants remains a significant issue and provides evidence that elevated serum levels of ∑13PAHs and ∑9HPAHs may be associated with an increased risk of lung and cardiovascular diseases.
Collapse
Affiliation(s)
- Chuxuan Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoling Guan
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310000, China
| | - Lingling Meng
- Department of Nursing, The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China
| | - Wei Lin
- Department of Public Scientific Research Platform, Institute of Basic Medicine, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong 250014, China; Department of Critical-care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China.
| | - Ruiqiang Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingming Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Liao D, Xiong S, An S, Tao L, Dai L, Tian Y, Chen W, He C, Xu P, Wu N, Liu X, Zhang H, Hu Z, Deng M, Liu Y, Li Q, Shang X, Shen X, Zhou Y. Association of urinary polycyclic aromatic hydrocarbon metabolites with gestational diabetes mellitus and gestational hypertension among pregnant women in Southwest China: A cross-sectional study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123206. [PMID: 38145636 DOI: 10.1016/j.envpol.2023.123206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023]
Abstract
The association of polycyclic aromatic hydrocarbons (PAHs) with gestational diabetes mellitus (GDM) and gestational hypertension during pregnancy has not yet been established. To investigate the association between PAH exposure and GDM and gestational hypertension, we conducted a cross-sectional study of 4206 pregnant women from the Zunyi birth cohort in southwestern China. Gas chromatography/mass spectrometry was used to detect the urinary levels of 10 monohydroxylated PAHs (OH-PAHs). GDM and gestational hypertension were diagnosed and the relevant information was documented by specialist obstetricians and gynecologists. Logistic regression and restricted cubic spline regression were employed to investigate their single and nonlinear associations. Stratified analyses of pregnancy and body mass index data were conducted to determine their moderating effects on the abovementioned associations. Compared with the first quartile of urinary ∑OH-PAHs, the third or fourth quartile in all study participants was associated with an increased risk of GDM (quartile 3: odds ratio [OR] = 1.35, 95% confidence interval [CI]: 1.03-1.77) and gestational hypertension (quartile 3: OR = 1.88, 95% CI: 1.26-2.81; quartile 4: OR = 1.58, 95% CI: 1.04-2.39), respectively. Nonlinear associations of 1-OH-PYR with GDM (cutoff level: 0.02 μg/g creatinine [Cr]) and 1-OH-PHE with gestational hypertension (cutoff level: 0.06 μg/g Cr) were also observed. In pregnant women with overweight or obesity, 1-OH-PHE and 3-OH-PHE were more strongly associated with gestational hypertension. Our results indicate that exposure to PAH during pregnancy may significantly increase the maternal risks of GDM and gestational hypertension; however, this finding still needs to be confirmed through larger-scale prospective studies and biological evidence.
Collapse
Affiliation(s)
- Dengqing Liao
- School of Public Health, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, China
| | - Shimin Xiong
- School of Public Health, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, China
| | - Songlin An
- School of Public Health, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, China
| | - Lin Tao
- School of Public Health, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, China
| | - Lulu Dai
- School of Public Health, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, China
| | - Yingkuan Tian
- Medical Department, Xingyi People's Hospital, Xingyi, 562400, China
| | - Wei Chen
- School of Public Health, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, China
| | - Caidie He
- School of Public Health, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, China
| | - Pei Xu
- School of Public Health, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, China
| | - Nian Wu
- School of Public Health, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, China
| | - Xiang Liu
- School of Public Health, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, China
| | - Haonan Zhang
- School of Public Health, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, China
| | - Zhongmei Hu
- School of Public Health, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, China; Reproductive Centre, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Mingyu Deng
- School of Public Health, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, China; Department of Obstetrics and Gynecology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Yijun Liu
- School of Public Health, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, China
| | - Quan Li
- Department of Obstetrics and Gynecology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Xuejun Shang
- Department of Andrology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, 210002, China
| | - Xubo Shen
- School of Public Health, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, China
| | - Yuanzhong Zhou
- School of Public Health, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, China.
| |
Collapse
|
10
|
Zhang A, Zhang H, Mi L, Ding L, Jiang Z, Yu F, Tang M. Diabetes: a potential mediator of associations between polycyclic aromatic hydrocarbon exposure and stroke. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-32324-y. [PMID: 38332417 DOI: 10.1007/s11356-024-32324-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
Epidemiological evidence suggests associations between exposure to polycyclic aromatic hydrocarbons (PAHs) and cardiovascular diseases (CVD), while diabetes is a common risk factor for CVD. The present study aims to clarify the effect of high PAH exposure on diabetes and stroke in general population. A total of 7849 individuals aged 20 years or older from the National Health and Nutrition Examination Survey 2007-2016 were included in the study. The logistic regression analysis modeled the association between PAH exposure and diabetes as well as stroke. The analysis yielded odds ratios (ORs) and 95% confidence intervals (CIs). The study also evaluated the potential mediating role of diabetes in the relation between PAH exposure and stroke via mediating effect analyses. Of the 7849 eligible participants, 1424 cases of diabetes and 243 cases of stroke were recorded. After adjusting for covariates including age, gender, smoking status, drinking status, education level, marital status, physical activity, hypertension, low-density lipoprotein cholesterol, and BMI, the ORs for stroke in the highest quartile (Q4) of total urinary PAHs were 1.97 (95% CI 1.11-3.52, P = 0.022) as compared to the lowest quartile (Q1) of total urinary PAHs. The ORs for diabetes in the Q4 of total urinary PAHs were 1.56 (95% CI 1.15-2.12, P = 0.005), while the ORs between Q4 and Q1 for stroke and diabetes concerning exposure to 2-hydroxynaphthalene were 2.23 (95% CI 1.17-4.25, P = 0.016) and 1.40 (95% CI 1.07-1.82, P = 0.015), respectively. The mediation analysis found that diabetes accounted for 5.00% of the associations between urinary PAHs and the prevalence of stroke. Urinary metabolites of PAH have been linked to stroke and diabetes. Increasing the risk of diabetes may play a significant role in mediating the association between exposure to PAHs and increased risk of stroke. Monitoring and improving glucose metabolism in individuals with high exposure to PAHs may aid in reducing the prevalence of stroke.
Collapse
Affiliation(s)
- Aikai Zhang
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Cardiovascular Institute, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, 100037, China
| | - Hongda Zhang
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Cardiovascular Institute, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, 100037, China
| | - Lijie Mi
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Cardiovascular Institute, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, 100037, China
| | - Lei Ding
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Cardiovascular Institute, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, 100037, China
| | - Zihan Jiang
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Cardiovascular Institute, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, 100037, China
| | - Fengyuan Yu
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Cardiovascular Institute, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, 100037, China
| | - Min Tang
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Cardiovascular Institute, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, 100037, China.
| |
Collapse
|
11
|
Styszko K, Pamuła J, Pac A, Sochacka-Tatara E. Biomarkers for polycyclic aromatic hydrocarbons in human excreta: recent advances in analytical techniques-a review. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:7099-7113. [PMID: 37530922 PMCID: PMC10517897 DOI: 10.1007/s10653-023-01699-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/17/2023] [Indexed: 08/03/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental pollutants that are generated by the incomplete combustion of organic materials. The main anthropogenic sources of PAHs are the combustion of solid fuels for heating purposes, illegal waste incineration, road transport and industries based on fossil fuels. PAHs can easily enter the body because they are present in all elements of the environment, including water, soil, air, and food. Due to their ubiquitous presence, PAHs, may exert a harmful effect on human health. Assessing PAH exposure through biomonitoring mostly involve techniques to measure the concentration of 1-hydroxypyrene in human urine. Nevertheless, through recent progress in analytical techniques, other common metabolites of PAHs in human biospecimens can be detected. A scientific literature search was conducted to determine which hydroxy derivatives of PAHs are markers of PAHs exposure and to reveal the leading sources of these compounds. Techniques for analyzing biological samples to identify OH-PAHs are also discussed. The most frequently determined OH-PAH in human urine is 1-hydroxypyrene, the concentration of which reaches up to a dozen ng/L in urine. Apart from this compound, the most frequently determined biomarkers were naphthalene and fluorene metabolites. The highest concentrations of 1- and 2-hydroxynaphthalene, as well as 2-hydroxyfluorene, are associated with occupational exposure and reach approximately 30 ng/L in urine. High molecular weight PAH metabolites have been identified in only a few studies. To date, PAH metabolites in feces have been analyzed only in animal models for PAH exposure. The most frequently used analytical method is HPLC-FLD. However, compared to liquid chromatography, the LOD for gas chromatography methods is at least one order of magnitude lower. The hydroxy derivatives naphthalene and fluorene may also serve as indicators of PAH exposure.
Collapse
Affiliation(s)
- Katarzyna Styszko
- Department of Coal Chemistry and Environmental Sciences, Faculty of Energy and Fuels, AGH University of Science and Technology, al. Mickiewicza 30, 30-059, Kraków, Poland.
| | - Justyna Pamuła
- Department of Geoengineering and Water Management, Faculty of Environmental Engineering and Energy, Cracow University of Technology, Kraków, Poland
| | - Agnieszka Pac
- Chair of Epidemiology and Preventive Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Elżbieta Sochacka-Tatara
- Chair of Epidemiology and Preventive Medicine, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
12
|
Kelishadi R, Hovsepian S, Amin MM, Mozafarian N, Sedaghat S, Hashemipour M. Association of Polycyclic Aromatic Hydrocarbons Urine Metabolites with Type 1 Diabetes. J Diabetes Res 2023; 2023:6692810. [PMID: 37396492 PMCID: PMC10313469 DOI: 10.1155/2023/6692810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/22/2023] [Accepted: 05/31/2023] [Indexed: 07/04/2023] Open
Abstract
Purpose Polycyclic aromatic hydrocarbons (PAHs) are believed to be a possible factor in the development of cancer, ischemic heart disease, obesity, and cardiovascular disease. The objective of this study was to explore the association between certain metabolites of urinary PAH and type 1 diabetes (T1D). Methods In Isfahan City, a case-control study was carried out involving 147 T1D patients and an equal number of healthy individuals. The study measured the levels of urinary metabolites of PAHs, specifically 1-hydroxynaphthalene, 2-hydroxynaphthalene, and 9-hydroxyphenanthrene, in both the case and control groups. The levels of these metabolites were then compared between the two groups to assess any potential association between the biomarkers and T1D. Results The mean (SD) age of participants in the case and control groups was 8.4 (3.7) and 8.6 (3.7) years old, respectively, (P > 0.05). In terms of gender distribution, 49.7% and 46% of participants in the case and control groups were girls, respectively (P > 0.05). Geometric mean (95% CI) concentrations were: 36.3 (31.4-42) μg/g creatinine for 1-hydroxynaphthalene, 29.4 (25.6-33.8) μg/g creatinine for 2-hydroxynaphthalene, and 72.26 (63.3-82.5) μg/g creatinine for NAP metabolites. After controlling for variables such as the child's age, gender, maternal and paternal education, duration of breastfeeding, exposure to household passive smoking, formula feeding, cow's milk consumption, body mass index (BMI), and five dietary patterns, it was observed that individuals in the highest quartile of 2-hydroxynaphthalene and NAP metabolites had a significantly greater odd ratio for diabetes compared to those in the lowest quartile (P < 0.05). Conclusion Based on the findings of this study, it is suggested that exposure to PAH might be linked to an increased risk of T1D in children and adolescents. To clarify a potential causal relationship related to these findings, further prospective studies are needed.
Collapse
Affiliation(s)
- Roya Kelishadi
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Silva Hovsepian
- Metabolic Liver Disease Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Mehdi Amin
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nafiseh Mozafarian
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Mahin Hashemipour
- Metabolic Liver Disease Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
13
|
Huang X, Li Z, Zhang T, Zhu J, Wang X, Nie M, Harada K, Zhang J, Zou X. Research progress in human biological monitoring of aromatic hydrocarbon with emphasis on the analytical technology of biomarkers. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 257:114917. [PMID: 37094484 DOI: 10.1016/j.ecoenv.2023.114917] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
Aromatic hydrocarbons are unsaturated compounds containing carbon and hydrogen that form single aromatic ring, or double, triple, or multiple fused rings. This review focuses on the research progress of aromatic hydrocarbons represented by polycyclic aromatic hydrocarbons (including halogenated polycyclic aromatic hydrocarbons), benzene and its derivatives including toluene, ethylbenzene, xylenes (o-, m- and p-), styrene, nitrobenzene, and aniline. Due to the toxicity, widespread coexistence, and persistence of aromatic hydrocarbons in the environment, accurate assessment of exposure to aromatic hydrocarbons is essential to protect human health. The effects of aromatic hydrocarbons on human health are mainly derived from three aspects: different routes of exposure, the duration and relative toxicity of aromatic hydrocarbons, and the concentration of aromatic hydrocarbons which should be below the biological exposure limit. Therefore, this review discusses the primary exposure routes, toxic effects on humans, and key populations, in particular. This review briefly summarizes the different biomarker indicators of main aromatic hydrocarbons in urine, since most aromatic hydrocarbon metabolites are excreted via urine, which is more feasible, convenient, and non-invasive. In this review, the pretreatment and analytical techniques are compiled systematically for the qualitative and quantitative assessments of aromatic hydrocarbons metabolites such as gas chromatography and high-performance liquid chromatography with multiple detectors. This review aims to identify and monitor the co-exposure of aromatic hydrocarbons that provides a basis for the formulation of corresponding health risk control measures and guide the adjustment of the exposure dose of pollutants to the population.
Collapse
Affiliation(s)
- Xinyi Huang
- Department of Public Health Laboratory Science, West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu 610041, China
| | - Zhuoya Li
- Department of Public Health Laboratory Science, West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu 610041, China
| | - Tianai Zhang
- Department of Public Health Laboratory Science, West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu 610041, China
| | - Jing Zhu
- Department of Public Health Laboratory Science, West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu 610041, China
| | - Xuan Wang
- Department of Public Health Laboratory Science, West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu 610041, China
| | - Manqing Nie
- Department of Public Health Laboratory Science, West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu 610041, China
| | - Kouji Harada
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Jing Zhang
- Department of Public Health Laboratory Science, West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu 610041, China.
| | - Xiaoli Zou
- Department of Public Health Laboratory Science, West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
14
|
Sun Y, Kan Z, Zhang ZF, Song L, Jiang C, Wang J, Ma WL, Li YF, Wang L, Liu LY. Association of occupational exposure to polycyclic aromatic hydrocarbons in workers with hypertension from a northeastern Chinese petrochemical industrial area. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121266. [PMID: 36780976 DOI: 10.1016/j.envpol.2023.121266] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 01/18/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Elevated urinary polycyclic aromatic hydrocarbon metabolites have been linked to an increased risk of cardiovascular diseases (CVDs). However, for petrochemical workers with potentially high PAH exposure, it remains largely unknown whether the link will be amplified. Thus, this work aimed to investigate 14 urinary mono-hydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) in 746 petrochemical workers working in a Chinese petrochemical industrial area and their association with the risk of hypertension using the binary logistic regression. Metabolites of naphthalene, fluorene, phenanthrene, and pyrene were frequently detected in the 746 urine samples analyzed (>98%), with Σ10OH-PAH concentration in the range of 0.906-358 ng/mL. 2-hydroxynaphthalene accounted for the largest proportion of ten detected OH-PAHs (60.8% of Σ10OH-PAHs). There were significant correlations between these metabolites and other factors, including gender, age, and body mass index. Diastolic blood pressure, not systolic blood pressure, was significant positively associated with the urinary Σ10OH-PAH concentrations of the petrochemical workers. Elevated urinary 2/3-OH-Flu was significantly associated with an increased risk of hypertension (adjusted odds ratio: 1.96, 95% confidence interval: 1.20-3.18, p = 0.007), suggesting that PAH exposure in petrochemical workers was a driving factor of hypertension. In the stratified analysis, the association was more pronounced in those who were overweight with older age. Although the PAH exposure risk in petrochemical workers based on the estimated daily intakes was relatively low. Given the long-term impact, we call attention to CVDs of petrochemical workers.
Collapse
Affiliation(s)
- Yu Sun
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS)/International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Ze Kan
- Heilongjiang Institute of Labor Hygiene and Occupational Diseases/The Second Hospital of Heilongjiang Province, Harbin, 150028, China
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS)/International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Li Song
- Heilongjiang Institute of Labor Hygiene and Occupational Diseases/The Second Hospital of Heilongjiang Province, Harbin, 150028, China
| | - Chao Jiang
- Heilongjiang Institute of Labor Hygiene and Occupational Diseases/The Second Hospital of Heilongjiang Province, Harbin, 150028, China
| | - Ji Wang
- Heilongjiang Institute of Labor Hygiene and Occupational Diseases/The Second Hospital of Heilongjiang Province, Harbin, 150028, China
| | - Wan-Li Ma
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS)/International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS)/International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China; IJRC-PTS-NA, Toronto, M2N 6X9, Canada
| | - Li Wang
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Li-Yan Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS)/International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
15
|
Bosch AJT, Rohm TV, AlAsfoor S, Low AJY, Keller L, Baumann Z, Parayil N, Stawiski M, Rachid L, Dervos T, Mitrovic S, Meier DT, Cavelti-Weder C. Lung versus gut exposure to air pollution particles differentially affect metabolic health in mice. Part Fibre Toxicol 2023; 20:7. [PMID: 36895000 PMCID: PMC9996885 DOI: 10.1186/s12989-023-00518-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/14/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Air pollution has emerged as an unexpected risk factor for diabetes. However, the mechanism behind remains ill-defined. So far, the lung has been considered as the main target organ of air pollution. In contrast, the gut has received little scientific attention. Since air pollution particles can reach the gut after mucociliary clearance from the lungs and through contaminated food, our aim was to assess whether exposure deposition of air pollution particles in the lung or the gut drive metabolic dysfunction in mice. METHODS To study the effects of gut versus lung exposure, we exposed mice on standard diet to diesel exhaust particles (DEP; NIST 1650b), particulate matter (PM; NIST 1649b) or phosphate-buffered saline by either intratracheal instillation (30 µg 2 days/week) or gavage (12 µg 5 days/week) over at least 3 months (total dose of 60 µg/week for both administration routes, equivalent to a daily inhalation exposure in humans of 160 µg/m3 PM2.5) and monitored metabolic parameters and tissue changes. Additionally, we tested the impact of the exposure route in a "prestressed" condition (high-fat diet (HFD) and streptozotocin (STZ)). RESULTS Mice on standard diet exposed to particulate air pollutants by intratracheal instillation developed lung inflammation. While both lung and gut exposure resulted in increased liver lipids, glucose intolerance and impaired insulin secretion was only observed in mice exposed to particles by gavage. Gavage with DEP created an inflammatory milieu in the gut as shown by up-regulated gene expression of pro-inflammatory cytokines and monocyte/macrophage markers. In contrast, liver and adipose inflammation markers were not increased. Beta-cell secretory capacity was impaired on a functional level, most likely induced by the inflammatory milieu in the gut, and not due to beta-cell loss. The differential metabolic effects of lung and gut exposures were confirmed in a "prestressed" HFD/STZ model. CONCLUSIONS We conclude that separate lung and gut exposures to air pollution particles lead to distinct metabolic outcomes in mice. Both exposure routes elevate liver lipids, while gut exposure to particulate air pollutants specifically impairs beta-cell secretory capacity, potentially instigated by an inflammatory milieu in the gut.
Collapse
Affiliation(s)
- Angela J T Bosch
- Department of Biomedicine, University of Basel, 4031, Basel, Switzerland
| | - Theresa V Rohm
- Department of Biomedicine, University of Basel, 4031, Basel, Switzerland
| | - Shefaa AlAsfoor
- Department of Biomedicine, University of Basel, 4031, Basel, Switzerland
| | - Andy J Y Low
- Department of Biomedicine, University of Basel, 4031, Basel, Switzerland
| | - Lena Keller
- Department of Biomedicine, University of Basel, 4031, Basel, Switzerland
| | - Zora Baumann
- Department of Biomedicine, University of Basel, 4031, Basel, Switzerland
| | - Neena Parayil
- Department of Biomedicine, University of Basel, 4031, Basel, Switzerland
| | - Marc Stawiski
- Department of Biomedicine, University of Basel, 4031, Basel, Switzerland
| | - Leila Rachid
- Department of Biomedicine, University of Basel, 4031, Basel, Switzerland
| | - Thomas Dervos
- Department of Biomedicine, University of Basel, 4031, Basel, Switzerland
| | - Sandra Mitrovic
- Department of Laboratory Medicine, University Hospital Basel, 4031, Basel, Switzerland
| | - Daniel T Meier
- Department of Biomedicine, University of Basel, 4031, Basel, Switzerland
| | - Claudia Cavelti-Weder
- Department of Biomedicine, University of Basel, 4031, Basel, Switzerland. .,Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, 4031, Basel, Switzerland. .,Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), Rämistrasse 100, 8009, Zurich, Switzerland.
| |
Collapse
|
16
|
Deng F, Guo C, Zeng W, Zhong Y, Luo X, Pan X, Zhang L, Tan L. Supported liquid extraction and ultra-high performance liquid chromatography-tandem mass spectrometry for the determination of urinary polycyclic aromatic hydrocarbon metabolites and their application for human biomonitoring. J Pharm Biomed Anal 2023; 224:115201. [PMID: 36549260 DOI: 10.1016/j.jpba.2022.115201] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/29/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a class of highly lipophilic and ubiquitous, persistent organic pollutants with carcinogenic and mutagenic toxicities. They are a great public health concern, and avoiding exposure to them is a high priority. Human biomonitoring is critical for the evaluation of exposure levels to PAHs by the general population. In this work, we demonstrated the biomonitoring of eleven hydroxylated PAHs (OHPAHs) in urine samples from 226 volunteers from Guangzhou, and evaluated the health risks. The urinary PAH metabolites were released by enzymatic deconjugation, separated, and enriched by supported liquid extraction, and then quantified by ultra-high performance liquid chromatography-tandem mass spectrometry. The limit of quantification of the individual OHPAHs ranged from 10 ng/L to 40 ng/L, and satisfactory recoveries were obtained, ranging from 92.6% to 97.6%. The detection frequencies of the OHPAHs were 100%, and naphthalene metabolites were found at the highest concentrations with a geometric mean of 8.61 μg/L. The mean total OHPAH level in the urine samples of males (13.2 μg/L) was significantly higher than that of females (5.84 μg/L). Pearson correlation analyses indicated significant and positive correlations among urinary OHPAHs. The total estimated daily intake of PAHs was calculated, and a low health risk was obtained by evaluating their hazard quotients and hazard indexes.
Collapse
Affiliation(s)
- Fenfang Deng
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Chongshan Guo
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Wei Zeng
- Waters Technologies (Shanghai) Ltd., Shanghai 201203, China
| | - Yi Zhong
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Xiaoyan Luo
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Xinhong Pan
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Lin Zhang
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Lei Tan
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China; School of Public Health, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
17
|
Zhang X, Li Z. Developing a profile of urinary PAH metabolites among Chinese populations in the 2010s. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159449. [PMID: 36244474 DOI: 10.1016/j.scitotenv.2022.159449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/24/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) pose significant health risks. However, no nationwide cohort has been established to consistently record biomonitoring data on PAH exposure in the Chinese population. Biomonitoring data from 56 published studies were combined in this study to develop a profile of urinary PAH metabolites among Chinese population in the 2010s. The stacked column charts described the composition profiles of hydroxylated PAHs (OH-PAHs) in general, special, and occupational populations. Hydroxynaphthalene (OH-Nap) and hydroxyfluorene (OH-Flu) accounted for more than half of the urinary OH-PAH in general and special populations. The urine of the occupational populations contained a significant amount of hydroxyphenanthrene (OH-Phe) and 1-hydroxypyrene (1-OHPyr). Furthermore, this study analyzed the distribution profiles of non-occupationally exposed populations, such as spatial distribution, age distribution, and trends over time. The population of the Southern region had higher urinary OH-PAH concentrations than the population of the Northern region. Adults (45-55 years old) had the highest level of internal PAH exposure. Between 2010 and 2018, the overall trend of urinary OH-PAHs in Chinese general populations decreased. The cumulative distribution function (CDF) revealed that 1-OHNap and 1-OHPyr were better at distinguishing internal PAH exposure among different populations. The sum of OH-Flu and OH-Phe in urine can be used to assess the impact of indoor and outdoor environments on human exposure to PAHs. Our findings suggest that more emphasis should be placed on collecting biomonitoring data for adults of all ages (particularly in the Northern region) and vulnerable populations. In conclusion, this study advocates for the establishment of a nationwide cohort study of Chinese populations as soon as possible in the future to evaluate the Chinese population's exposure to environmental contaminants.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Zijian Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong 518107, China.
| |
Collapse
|
18
|
Jena AB, Samal RR, Dandapat J, Subudhi U. Thermodynamics of benzoquinone-induced conformational changes in nucleic acids and human serum albumin. Chem Biol Interact 2023; 369:110281. [PMID: 36436547 DOI: 10.1016/j.cbi.2022.110281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/06/2022] [Accepted: 11/21/2022] [Indexed: 11/26/2022]
Abstract
Biological macromolecules such as proteins, nucleic acids, carbohydrates and lipids, play a crucial role in biochemical and molecular processes. Thus, the study of the structure-function relationship of biomolecules in presence of ligands is an important aspect of structural biology. The current communication describes the chemico-biological interaction between benzene metabolite para-benzoquinone (BQ) with B-form of nucleic acids (B-DNA) and human serum albumin (HSA). The binding ability of HSA towards bromocresol green (BCG) was significantly suppressed when exposed to increasing concentrations of BQ in the presence of various physiological buffers. Further, the native fluorescence of HSA was drastically reduced and the secondary structures of HSA were significantly compromised with increasing concentrations of BQ. In vitro and in silico studies also revealed that BQ binds to domains I and II of HSA and thus altering the conformation of HSA which may potentially affect plasma osmotic pressure, as well as the binding and transport of numerous endogenous and exogenous molecules. Similarly, BQ interacts directly to the GC region of B-DNA particularly in the minor groove which was also assessed by computational docking studies. Isothermal titration calorimetry data suggest higher binding affinity of BQ towards DNA than HSA. Various spectroscopic observations also suggest that BQ binds to DNA preferably in the minor grooves. Thus, the results revealed that BQ may play a key role in inducing mutagenicity, either by formation of adducts on GC regions or by accelerating oxidative damage to biomacromolecules through chemico-biological interactions.
Collapse
Affiliation(s)
- Atala B Jena
- Department of Biotechnology, Utkal University, Bhubaneswar, 751004, Odisha, India; Centre of Excellence in Integrated Omics & Computational Biology, Utkal University, Bhubaneswar, 751004, Odisha, India
| | - Rashmi R Samal
- Biochemistry & Biophysics Laboratory, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar, 751013, Odisha, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Jagneshwar Dandapat
- Department of Biotechnology, Utkal University, Bhubaneswar, 751004, Odisha, India; Centre of Excellence in Integrated Omics & Computational Biology, Utkal University, Bhubaneswar, 751004, Odisha, India.
| | - Umakanta Subudhi
- Biochemistry & Biophysics Laboratory, CSIR-Institute of Minerals & Materials Technology, Bhubaneswar, 751013, Odisha, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| |
Collapse
|
19
|
Cui J, Zhang T, Zhang C, Xue Z, Chen D, Kong X, Zhao C, Guo Y, Li Z, Liu X, Duan J, Peng W, Zhou X, Yu H. Long-term exposure to low concentrations of polycyclic aromatic hydrocarbons and alterations in platelet indices: A longitudinal study in China. PLoS One 2022; 17:e0276944. [PMID: 36322595 PMCID: PMC9629616 DOI: 10.1371/journal.pone.0276944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022] Open
Abstract
Long-term exposure to low polycyclic aromatic hydrocarbon (PAH) concentration may ave detrimental effects, including changing platelet indices. Effects of chronic exposure to low PAH concentrations have been evaluated in cross-sectional, but not in longitudinal studies, to date. We aimed to assess the effects of long-term exposure to the low-concentration PAHs on alterations in platelet indices in the Chinese population. During 2014–2017, we enrolled 222 participants who had lived in a village in northern China, 1–2 km downwind from a coal plant, for more than 25 years, but who were not employed by the plant or related businesses. During three follow-ups, annually in June, demographic information and urine and blood samples were collected. Eight PAHs were tested: namely 2-hydroxynaphthalene, 1-hydroxynaphthalene, 2-hydroxyfluorene, 9-hydroxyfluorene (9-OHFlu), 2-hydroxyphenanthrene (2-OHPh), 1-hydroxyphenanthrene (1-OHPh), 1-hydroxypyrene (1-OHP), and 3-hydroxybenzo [a] pyrene. Five platelet indices were measured: platelet count (PLT), platelet distribution width (PDW), mean platelet volume (MPV), platelet crit, and the platelet-large cell ratio. Generalized mixed and generalized linear mixed models were used to estimate correlations between eight urinary PAH metabolites and platelet indices. Model 1 assessed whether these correlations varied over time. Models 2 and 3 adjusted for additional personal information and personal habits. We found the following significant correlations: 2-OHPh (Model1 β1 = 18.06, Model2 β2 = 18.54, Model β3 = 18.54), 1-OHPh (β1 = 16.43, β2 = 17.42, β3 = 17.42), 1-OHP(β1 = 13.93, β2 = 14.03, β3 = 14.03) with PLT, as well as 9-OHFlu with PDW and MPV (odds ratio or Model3 ORPDW[95%CI] = 1.64[1.3–2.06], ORMPV[95%CI] = 1.33[1.19–1.48]). Long-term exposure to low concentrations of PAHs, indicated by2-OHPh, 1-OHPh, 1-OHP, and 9-OHFlu, as urinary biomarkers, affects PLT, PDW, and MPV. 9-OHFlu increased both PDW and MPV after elimination of the effects of other PAH exposure modes.
Collapse
Affiliation(s)
- Jing Cui
- Department of Health Statistics, Shanxi Provincial Key Laboratory of Major Diseases Risk Assessment, School of Public Health, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Ting Zhang
- Department of Radiological and Environmental Medicine, State Environmental Protection Key Laboratory of Environment and Health (Taiyuan), China Institute for Radiation Protection (CIRP), Taiyuan, Shanxi, China
| | - Chao Zhang
- Department of Radiological and Environmental Medicine, State Environmental Protection Key Laboratory of Environment and Health (Taiyuan), China Institute for Radiation Protection (CIRP), Taiyuan, Shanxi, China
| | - Zhenwei Xue
- Department of Radiological and Environmental Medicine, State Environmental Protection Key Laboratory of Environment and Health (Taiyuan), China Institute for Radiation Protection (CIRP), Taiyuan, Shanxi, China
| | - Durong Chen
- Department of Health Statistics, Shanxi Provincial Key Laboratory of Major Diseases Risk Assessment, School of Public Health, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Xiaona Kong
- Department of Radiological and Environmental Medicine, State Environmental Protection Key Laboratory of Environment and Health (Taiyuan), China Institute for Radiation Protection (CIRP), Taiyuan, Shanxi, China
| | - Caili Zhao
- Department of Health Statistics, Shanxi Provincial Key Laboratory of Major Diseases Risk Assessment, School of Public Health, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Yufeng Guo
- Department of Radiological and Environmental Medicine, State Environmental Protection Key Laboratory of Environment and Health (Taiyuan), China Institute for Radiation Protection (CIRP), Taiyuan, Shanxi, China
| | - Zimeng Li
- Department of Health Statistics, Shanxi Provincial Key Laboratory of Major Diseases Risk Assessment, School of Public Health, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Xiaoming Liu
- Department of Radiological and Environmental Medicine, State Environmental Protection Key Laboratory of Environment and Health (Taiyuan), China Institute for Radiation Protection (CIRP), Taiyuan, Shanxi, China
| | - Jiefang Duan
- Department of Health Statistics, Shanxi Provincial Key Laboratory of Major Diseases Risk Assessment, School of Public Health, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Wenjie Peng
- Department of Health Statistics, Shanxi Provincial Key Laboratory of Major Diseases Risk Assessment, School of Public Health, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Xiaolin Zhou
- Department of Radiological and Environmental Medicine, State Environmental Protection Key Laboratory of Environment and Health (Taiyuan), China Institute for Radiation Protection (CIRP), Taiyuan, Shanxi, China
- * E-mail: (HY); (XZ)
| | - Hongmei Yu
- Department of Health Statistics, Shanxi Provincial Key Laboratory of Major Diseases Risk Assessment, School of Public Health, Shanxi Medical University, Taiyuan, People’s Republic of China
- * E-mail: (HY); (XZ)
| |
Collapse
|
20
|
Nie X, Yang S, Mu G, Wang M, Ye Z, Zhou M, Dai W, Chen W. AMER3 variants modify the U-shaped association of urinary total hydroxyphenanthrene with fasting plasma glucose: A newfound gene-environment interaction. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119898. [PMID: 35940488 DOI: 10.1016/j.envpol.2022.119898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/25/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
As a polycyclic aromatic hydrocarbon, environmental exposure to phenanthrene is widespread worldwide. The potential effects and mechanism of phenanthrene exposure on fasting plasma glucose (FPG) have not been well determined. In this study, we aim to explore the effects of phenanthrene exposure and AMER3 variants on fasting plasma glucose (FPG) through a longitudinal epidemiological study. Repeated measurements of five urinary hydroxyphenanthrene (OHPh) for 5739 participants with 7083 observations from the Wuhan-Zhuhai cohort were performed to analyze the relationships between total OHPh (ΣOHPh) and FPG using linear mixed models and restricted cubic spline functions. Then, we genotyped 2777 participants (4104 observations) using the Infinium OmniZhongHua-8 BeadChip and included all 14 single nucleotide polymorphisms (SNPs) within the AMER3 gene to analyze the interaction of the AMER3 on the relationship between ΣOHPh and FPG. We observed a U-shaped relationship between ΣOHPh and FPG, and the turning point of ΣOHPh was 2.512 μg/mmol Cr. When lower than the turning point, ΣOHPh was negatively associated with FPG, while higher than the turning point, ΣOHPh was positively associated with FPG. Furthermore, we observed interactions (Pint <0.05) between two common variants (rs72854995 and rs72854999) of the AMER3 and ΣOHPh on FPG change: the U-shaped relationship was still observed in the GG genotype groups but not in the allele A carriers. Our results suggested that the AMER3 gene can modify the U-shaped relationship between phenanthrenes exposure and FPG, which showed a new gene-environment interaction and will provide a new perspective on the relationship between phenanthrene exposure and FPG.
Collapse
Affiliation(s)
- Xiuquan Nie
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Shijie Yang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Ge Mu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Mengyi Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Zi Ye
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Min Zhou
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Wencan Dai
- Zhuhai Center for Disease Control and Prevention, Zhuhai, Guangdong, 519060, China
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
21
|
Yang X, Xue Q, Wen Y, Huang Y, Wang Y, Mahai G, Yan T, Liu Y, Rong T, Wang Y, Chen D, Zeng S, Yang CX, Pan XF. Environmental polycyclic aromatic hydrocarbon exposure in relation to metabolic syndrome in US adults. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 840:156673. [PMID: 35700788 DOI: 10.1016/j.scitotenv.2022.156673] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
The present study examined the associations of polycyclic aromatic hydrocarbon (PAH) exposure with metabolic syndrome (MetS) and its components. Data were from 5181 US adults recruited in the National Health and Nutrition Examine Survey 2001-2012. Environmental PAH exposure was estimated as concentrations of urinary PAH metabolites. Weighted quantile sum (WQS) regression and modified Poisson regression were separately conducted to estimate the associations of mixed and single PAH metabolites with MetS and its components. WQS regression analyses showed that participants with higher mixed PAH exposure had increased prevalence of MetS (prevalence ratio, 1.12; 95 % confidence interval, 1.06, 1.19), elevated waist circumference (1.07; 1.02, 1.12), elevated fasting blood glucose (1.07; 1.00, 1.14), elevated triglycerides (1.19; 1.09, 1.30), and reduced high-density lipoprotein cholesterol (1.11; 1.03, 1.20). In the models for single PAH metabolites, higher levels of 1-hydroxynaphthalene (1.15; 1.00, 1.32), 2-hydroxynaphthalene (1.20; 1.05, 1.38), 1-hydroxyphenanthrene (1.18; 1.04, 1.34), 2-hydroxyphenanthrene (1.38; 1.22, 1.57), and 1-pyrene (1.19; 1.05, 1.34) were respectively associated with increased prevalence of MetS (highest tertile vs lowest tertile). In addition, linear trends were noted for the associations of these PAH metabolites with MetS (all P for linear association ≤0.047). Smokers, drinkers, and participants with poor diet quality showed stronger associations between certain PAH metabolite with MetS. The findings suggest that the prevalence of MetS and its components increases when PAH exposure is at a high level, and that lifestyle factors, such as cigarette smoking, alcohol consumption, and diet quality, could modify the positive associations of certain PAH exposure with MetS.
Collapse
Affiliation(s)
- Xue Yang
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China; Non-communicable Diseases Research Center, West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu, Sichuan, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China; Shuangliu Institute of Women's and Children's Health, Shuangliu Maternal and Child Health Hospital, Chengdu, Sichuan, China
| | - Qingping Xue
- Department of Epidemiology and Biostatistics, School of Public Health, Chengdu Medical College, Chengdu, Sichuan, China
| | - Ying Wen
- Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Yichao Huang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
| | - Yi Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Gaga Mahai
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tong Yan
- Center for Obesity and Metabolic Health, The Third People's Hospital of Chengdu & The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Yanjun Liu
- Center for Obesity and Metabolic Health, The Third People's Hospital of Chengdu & The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China; Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu & The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Tao Rong
- Department of Endocrinology and Metabolism, The Third People's Hospital of Chengdu & The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Yixin Wang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Da Chen
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, China
| | - Shuqin Zeng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chun-Xia Yang
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China; Non-communicable Diseases Research Center, West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu, Sichuan, China
| | - Xiong-Fei Pan
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China; Shuangliu Institute of Women's and Children's Health, Shuangliu Maternal and Child Health Hospital, Chengdu, Sichuan, China.
| |
Collapse
|
22
|
Zhao L, Zhou M, Zhao Y, Yang J, Pu Q, Yang H, Wu Y, Lyu C, Li Y. Potential Toxicity Risk Assessment and Priority Control Strategy for PAHs Metabolism and Transformation Behaviors in the Environment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10972. [PMID: 36078713 PMCID: PMC9517862 DOI: 10.3390/ijerph191710972] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
In this study, 16 PAHs were selected as the priority control pollutants to summarize their environmental metabolism and transformation processes, including photolysis, plant degradation, bacterial degradation, fungal degradation, microalgae degradation, and human metabolic transformation. Meanwhile, a total of 473 PAHs by-products generated during their transformation and degradation in different environmental media were considered. Then, a comprehensive system was established for evaluating the PAHs by-products' neurotoxicity, immunotoxicity, phytotoxicity, developmental toxicity, genotoxicity, carcinogenicity, and endocrine-disrupting effect through molecular docking, molecular dynamics simulation, 3D-QSAR model, TOPKAT method, and VEGA platform. Finally, the potential environmental risk (phytotoxicity) and human health risks (neurotoxicity, immunotoxicity, genotoxicity, carcinogenicity, developmental toxicity, and endocrine-disrupting toxicity) during PAHs metabolism and transformation were comprehensively evaluated. Among the 473 PAH's metabolized and transformed products, all PAHs by-products excluding ACY, CHR, and DahA had higher neurotoxicity, 152 PAHs by-products had higher immunotoxicity, and 222 PAHs by-products had higher phytotoxicity than their precursors during biological metabolism and environmental transformation. Based on the TOPKAT model, 152 PAH by-products possessed potential developmental toxicity, and 138 PAH by-products had higher genotoxicity than their precursors. VEGA predicted that 247 kinds of PAH derivatives had carcinogenic activity, and only the natural transformation products of ACY did not have carcinogenicity. In addition to ACY, 15 PAHs produced 123 endocrine-disrupting substances during metabolism and transformation. Finally, the potential environmental and human health risks of PAHs metabolism and transformation products were evaluated using metabolic and transformation pathway probability and degree of toxic risk as indicators. Accordingly, the priority control strategy for PAHs was constructed based on the risk entropy method by screening the priority control pathways. This paper assesses the potential human health and environmental risks of PAHs in different environmental media with the help of models and toxicological modules for the toxicity prediction of PAHs by-products, and thus designs a risk priority control evaluation system for PAHs.
Collapse
Affiliation(s)
- Lei Zhao
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Mengying Zhou
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Yuanyuan Zhao
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Jiawen Yang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Qikun Pu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Hao Yang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Yang Wu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| | - Cong Lyu
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Yu Li
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China
| |
Collapse
|
23
|
Lin XY, Liu YX, Zhang YJ, Shen HM, Guo Y. Polycyclic aromatic hydrocarbon exposure and DNA oxidative damage of workers in workshops of a petrochemical group. CHEMOSPHERE 2022; 303:135076. [PMID: 35649444 DOI: 10.1016/j.chemosphere.2022.135076] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/12/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
The petrochemical industry has promoted the development of economy, while polycyclic aromatic hydrocarbons (PAHs) produced by the industry become the threat for environment and humans. Data on human occupational exposure in petrochemical industry are limited. In the present study, urinary hydroxylated PAH metabolites (OH-PAHs) and a biomarker of DNA oxidative damage (8-hydroxy-2'-deoxyguanosine (8-OHdG)) were measured in 546 workers of a petrochemical group in Northeast China, to investigate PAH exposure and related potential health risk. The concentrations of ∑9OH-PAH in all workers were 0.25-175 μg/g Cre with a median value of 4.41 μg/g Cre. Metabolites of naphthalene were the predominant compounds. The levels of PAH metabolites were significantly different for workers with different jobs, which were the highest for recycling workers (13.7 μg/g Cre) and the lowest for agency managers (5.12 μg/g Cre). Besides, higher levels of OH-PAHs were usually found in males and older workers. There was a dose-response relationship between levels of 8-OHdG and ∑9OH-PAHs (p < 0.01). No difference was observed in concentrations of 8-OHdG for workers of different gender or ages, work history as well as noise. Furthermore, workers simultaneously exposed to other potential pollutants and higher levels of ∑9OH-PAH had significantly higher levels of 8-OHdG compared with those in the corresponding subgroups. Our results suggested that exposure to PAHs or co-exposure to PAHs and potential toxics in the petrochemical plant may cause DNA damage. We call for more researches on the associations among noise, chemical pollution and oxidative stress to workers in the real working environment.
Collapse
Affiliation(s)
- Xiao-Ya Lin
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Yan-Xiang Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Ying-Jie Zhang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Hui-Min Shen
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Ying Guo
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
24
|
Wang X, Li A, Xu Q. The Association between Urinary Polycyclic Aromatic Hydrocarbons Metabolites and Type 2 Diabetes Mellitus. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19137605. [PMID: 35805265 PMCID: PMC9265723 DOI: 10.3390/ijerph19137605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 02/04/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are considered to be endocrine disruptors. In this study, the evidence on the association between PAHs and diabetes was systematically reviewed. PubMed, EMBASE, and ISI Web of Science were systematically searched for studies reporting the association between PAHs and diabetes. Of the 698 articles identified through the search, nine cross-sectional studies were included. Seven were conducted in the general population and two in coke oven workers. Fixed-effects and random-effects models were used to calculate the total effect. Subgroup analysis was further carried out according to the types of PAH metabolites. The results showed that the odds of diabetes were significantly higher for the highest category of urinary naphthalene (NAP), fluorine (FLU), phenanthrene (PHEN), and total mono-hydroxylated (OH-PAH) metabolites compared to the lowest category. The pooled odds ratios (OR) and 95% confidence intervals (CI) were 1.52 (95%CI: 1.19, 1.94), 1.53 (95%CI: 1.36, 1.71), 1.43 (95%CI: 1.28, 1.60), and 1.49 (95%CI: 1.07, 2.08), respectively. In coke oven workers, 4-hydroxyphenanthrene (4-OHPh) was significantly correlated with an increased risk of diabetes. Exposure measurements, outcome definitions, and adjustment for confounders were heterogeneous between studies. The results of the current study demonstrate a potentially adverse effect of PAHs on diabetes. Further mechanistic studies and longitudinal studies are needed to confirm whether PAH metabolite levels are causative, and hence associative, with increased diabetes incidences.
Collapse
Affiliation(s)
- Xue Wang
- Department of Allergy & Clinical Immunology, National Clinical Research Center for Immunologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China;
| | - Ang Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China;
- Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Qun Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China;
- Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
- Correspondence:
| |
Collapse
|
25
|
Ji W, Xue M, Zhang Y, Yao H, Wang Y. A Machine Learning Based Framework to Identify and Classify Non-alcoholic Fatty Liver Disease in a Large-Scale Population. Front Public Health 2022; 10:846118. [PMID: 35444985 PMCID: PMC9013842 DOI: 10.3389/fpubh.2022.846118] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/23/2022] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common serious health problem worldwide, which lacks efficient medical treatment. We aimed to develop and validate the machine learning (ML) models which could be used to the accurate screening of large number of people. This paper included 304,145 adults who have joined in the national physical examination and used their questionnaire and physical measurement parameters as model's candidate covariates. Absolute shrinkage and selection operator (LASSO) was used to feature selection from candidate covariates, then four ML algorithms were used to build the screening model for NAFLD, used a classifier with the best performance to output the importance score of the covariate in NAFLD. Among the four ML algorithms, XGBoost owned the best performance (accuracy = 0.880, precision = 0.801, recall = 0.894, F-1 = 0.882, and AUC = 0.951), and the importance ranking of covariates is accordingly BMI, age, waist circumference, gender, type 2 diabetes, gallbladder disease, smoking, hypertension, dietary status, physical activity, oil-loving and salt-loving. ML classifiers could help medical agencies achieve the early identification and classification of NAFLD, which is particularly useful for areas with poor economy, and the covariates' importance degree will be helpful to the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Weidong Ji
- Department of Medical Information, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Mingyue Xue
- Hospital of Traditional Chinese Medicine Affiliated to the Fourth Clinical Medical College of Xinjiang Medical University, Urumqi, China
| | - Yushan Zhang
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Hua Yao
- Center of Health Management, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yushan Wang
- Center of Health Management, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- *Correspondence: Yushan Wang
| |
Collapse
|
26
|
Rahman HH, Niemann D, Munson-McGee SH. Association of chronic kidney disease with exposure to polycyclic aromatic hydrocarbons in the US population. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:24024-24034. [PMID: 34822075 DOI: 10.1007/s11356-021-17479-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are environmental pollutants formed from the incomplete combustion of carbon-containing products. Exposure can occur through ingestion or inhalation and has been linked to depression, stroke, liver disease, asthma, diabetes, heart failure, and cancer. Few studies have investigated the association between exposure to PAHs and chronic kidney disease (CKD) in humans. This study aims to investigate the association between seven urinary PAH concentrations (1-hydroxynaphthalene, 2-hydroxynaphthalene, 3-hydroxyfluorene 2-hydroxyfluorene, 1-hydroxyphenanthrene, 1-hydroxypyrene, and 2 & 3-hydroxyphenanthrene) and CKD in the US adult population. A cross-sectional analysis using the 2015-2016 National Health and Nutrition Examination Survey (NHANES) dataset was conducted. CKD was defined with estimated glomerular filtration rate (eGFR) and albumin to creatinine ratio (ACR). Participants with an eGFR < 60 ml/min/1.73m2 or ACR > 30 mg/gm were considered to have CKD. A specialized complex survey design analysis package using R version 4.0.3 was used in the data analysis. Multivariate logistic regression was used to study the correlation between seven forms of urinary PAH concentrations and CKD associated with abnormal eGFR or ACR. The models were adjusted for lifestyle and demographic factors. The study included a total of 4117 adults aged ≥ 20 years, with 49.6% males and 50.4% females. Urinary 2-hydroxynaphthalene (OR: 1.600, 95% CI: 1.141, 2.243) was significantly associated with an increased odds of CKD; the other six forms of urinary PAHs were not associated with CKD. Non-Hispanic Black (OR: 1.569, 95% CI: 1.168, 2.108), age of 60 years and older (OR: 2.546, 95% CI: 1.865, 3.476), and BMIs of underweight (OR: 2.386, 95% CI: 1.259, 4.524) and obese (OR: 1.407, 95% CI: 1.113, 1.778) all had significantly increased odds for CKD. Our study concluded that urinary 2-hydroxynaphthalene, a form of PAH, is significantly associated with CKD.
Collapse
Affiliation(s)
| | - Danielle Niemann
- Burrell College of Osteopathic Medicine, 3501 Arrowhead Dr, Las Cruces, NM, 88003, USA
| | | |
Collapse
|
27
|
Wei H, Sun J, Shan W, Xiao W, Wang B, Ma X, Hu W, Wang X, Xia Y. Environmental chemical exposure dynamics and machine learning-based prediction of diabetes mellitus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150674. [PMID: 34597539 DOI: 10.1016/j.scitotenv.2021.150674] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/10/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND With dramatically increasing prevalence, diabetes mellitus has imposed a tremendous toll on individual well-being. Humans are exposed to various environmental chemicals, which have been postulated as underappreciated but potentially modifiable diabetes risk factors. OBJECTIVES To determine the utility of environmental chemical exposure in predicting diabetes mellitus. METHODS A total of 8501 eligible participants from NHANES 2005-2016 were randomly assigned to a discovery (N = 5953) set and a validation (N = 2548) set. We applied random forest (RF) and least absolute shrinkage and selection operator (LASSO) regression with 10-fold cross-validation in the discovery set to select features, and built an optimal model to predict diabetes mellitus, blood insulin, fasting plasma glucose (FPG) and 2-h plasma glucose after oral glucose tolerance test (2-h PG after OGTT). RESULTS The machine learning model using LASSO regression predicted diabetes with an area under the receiver operating characteristics (AUROC) of 0.80 and 0.78 in the discovery set and validation set, respectively. The linear model predicted blood insulin level with an R2 of 0.42 and 0.40 in the discovery set and validation set, respectively. For FPG, the discovery set and validation set yielded an R2 of 0.16 and 0.15, respectively. For 2-h PG after OGTT, the discovery set and validation set yielded an R2 of 0.18 and 0.17, respectively. CONCLUSION We used environmental chemical exposure, constructed machine learning models and achieved relatively accurate prediction for diabetes, emphasizing the predictive value of widespread environmental chemicals for complicated diseases.
Collapse
Affiliation(s)
- Hongcheng Wei
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jie Sun
- Department of Endocrinology, Drum Tower hospital affiliated to Nanjing University Medical School, No 321 Zhongshan Road, Nanjing 210008, China
| | - Wenqi Shan
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Wenwen Xiao
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Bingqian Wang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xuan Ma
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Weiyue Hu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
28
|
Srivastava S. Effects of Environmental Polycyclic Aromatic Hydrocarbons Exposure and Pro-Inflammatory Activity on Type 2 Diabetes Mellitus in US Adults. OPEN JOURNAL OF AIR POLLUTION 2022; 11:29-46. [PMID: 35844632 PMCID: PMC9283753 DOI: 10.4236/ojap.2022.112003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are formed due to natural and anthropogenic activities and known for their potential impact and persistence in the environment. PAHs exposure has been linked to cause adverse health effect including lung cancer, heart conditions and genetic mutations. The understanding of metabolic effects of PAHs exposure is less clear especially in the presence of pro-inflammatory stress like alcoholism or diabetes. The aim of this article is to understand the metabolic effects of PAHs exposure on Type 2 Diabetes Mellitus (T2DM) by analyzing the clinical biomarkers data retrieved from the National Health and Nutrition Examination Survey, Center for Disease Control (CDC NHANES) (2015–16). This study has also accessed the interactive impact of PAHs and other proinflammatory factors, like alcohol intake on the metabolic syndrome on T2DM. We investigated urinary levels of hydroxylated PAHs metabolites (OH-PAHs) along with demographic, clinical and laboratory data. Generalize linear model Univariate factorial ANOVA was used to evaluate the group differences in the demographics, PAH exposure, drinking patterns, clinical data, and biomarker levels. Linear regression model was used to analyze the association of biomarkers, PAH exposure and drinking data. Multivariable regression model was used for multi-independent model to assess comorbidity association and their effect sizes on the clinical outcomes. The results indicated that BMI (p = 0.002), and age (≤0.001) are independent demographic risk factors for T2DM in high PAHs exposure. Acute proinflammatory activity characterized by CRP, is augmented by elevated monocyte levels (p ≤ 0.001) and stepwise addition of 1-Hydroxynapthelene (p = 0.005), and 2-Hydroxynapthelene (p = 0.001) independently. Prevalence of highest average drinks over time is observed in the high PAHs exposure; with males drinking almost twice compared to females in highly exposed population. Pathway response of T2DM shows sexual dimorphism; with males showing association with triglycerides (p ≤ 0.001), and females with CRP (p = 0.015) independently with HbA1C. The arrangement of CRP, absolute monocyte levels, serum triglycerides and average drinks over time predict the HbA1C levels (adjusted R2 = 0.226, p ≤ 0.001) in individuals with high PAHs exposure. Findings from this investigation support the pathological role of high exposure of PAHs in the exacerbation of metabolic disorder syndrome involving T2DM. Sexual dimorphism is reflected in alcohol drinking, with males drinking more in the high PAHs exposure group. Alcohol drinking as an independent factor was associated with the T2DM indicator, HbA1C in individuals with high PAHs exposure.
Collapse
Affiliation(s)
- Shweta Srivastava
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, United States of America
| |
Collapse
|
29
|
Exposure to polycyclic aromatic hydrocarbons and volatile organic compounds is associated with a risk of obesity and diabetes mellitus among Korean adults: Korean National Environmental Health Survey (KoNEHS) 2015-2017. Int J Hyg Environ Health 2021; 240:113886. [PMID: 34864598 DOI: 10.1016/j.ijheh.2021.113886] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 01/06/2023]
Abstract
Environmental pollutants have been known to increase the risks of not only respiratory and cardiovascular disease but also metabolic diseases such as obesity and diabetes mellitus (DM). Polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs) such as benzene and toluene are major constituents of environmental pollution. In the present study, we employed the population of the Korean National Environmental Health Survey (KoNEHS) Cycle 3 conducted between 2015 and 2017, and assessed the associations of urinary biomarkers for PAHs and VOCs exposure with obesity and DM. A total of 3787 adult participants were included and the urinary concentrations of four PAH metabolites and two VOC metabolites were measured. For correcting urine dilution, a covariate-adjusted standardization method was used. The highest quartiles of urinary 2-hydroxynaphthalene (2-NAP) [OR (95% confidence interval (CI)) = 1.46 (1.13, 1.87)] and sum of PAH metabolites [OR (95% CI) = 1.45 (1.13, 1.87)] concentrations were associated with a higher risk of obesity [body mass index (BMI)≥25 kg/m2]. BMI was positively associated with urinary 2-NAP [β (95% CI) = 0.25 (0.09, 0.41), p = 0.003] and sum of PAH metabolites [β (95% CI) = 0.29 (0.08, 0.49), p = 0.006] concentrations. The risk of DM was increased with increasing quartile of 2-hydroxyfluorene (2-OHFlu) and trans, trans-muconic acid (t,t-MA) (p for trend<0.05 and < 0.001, respectively). The highest quartile of t,t-MA showed a significantly higher risk of DM [OR (95% CI) = 2.77 (1.74, 4.42)] and obesity [OR (95% CI) = 1.42 (1.06, 1.90)]. Urinary t,t,-MA level was positively associated with BMI [(β (95% CI) = 0.51 (0.31, 0.71), p < 0.001] and non-alcoholic fatty liver disease index [(β (95% CI) = 0.09 (0.06, 0.12), p < 0.001]. In conclusion, the benzene metabolites t,t-MA and PAH metabolite 2-OHFlu were associated with an increased risk of DM. Urinary biomarkers for PAHs and VOCs were positively associated with BMI in the Korean adult population. Further studies to validate these observations in other populations are warranted.
Collapse
|
30
|
Wu S, Chen Z, Yang L, Zhang Y, Luo X, Guo J, Shao Y. Particle-bound PAHs induced glucose metabolism disorders through HIF-1 pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149132. [PMID: 34311363 DOI: 10.1016/j.scitotenv.2021.149132] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/29/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Vehicle exhaust, as one of the most important compositions of air pollution, induced various adverse health effects, especially diabetes, on human beings. Even though monitoring and epidemiological data indicates that particle-bound polycyclic aromatic hydrocarbons (PAHs) is an inducing factor of diabetes, the specific causative mechanisms are still unclear. In the current study, the concentration of particulate matters (PMs, including PM1.0, PM2.5 and PM10.0) and PAHs was investigated at rush hour of weekday in three urban underground parking garages (UPGs). To evaluate the impacts of particle-bound PAHs on human beings, analysis of non-target metabolomics and unmetabolized PAHs were conducted for UPG and non-UPG worker urine samples. The results showed that the highest concentrations of PMs and total PAHs were found at the UPG entrance. The concentrations of unmetabolized 5-6 rings PAHs in the UPG worker urine were significantly higher than that in non-UPG worker urine samples, which induced glucose metabolism disorders through hypoxia-inducible factor 1 (HIF-1) signaling pathway. This could be a reason for particle-bound PAHs induced-diabetes on road workers, drivers and garage staff. These findings can serve as a step towards air pollution management and the pathological mechanism analysis of environmental factor induced-diseases.
Collapse
Affiliation(s)
- Siqi Wu
- Key Laboratory of the Three Gorges Reservoir Eco-environment, Ministry of Education, Chongqing University, 174 Shazheng Road Shapingba, 400045 Chongqing, China
| | - Zhongli Chen
- Key Laboratory of the Three Gorges Reservoir Eco-environment, Ministry of Education, Chongqing University, 174 Shazheng Road Shapingba, 400045 Chongqing, China
| | - Li Yang
- Key Laboratory of the Three Gorges Reservoir Eco-environment, Ministry of Education, Chongqing University, 174 Shazheng Road Shapingba, 400045 Chongqing, China
| | - Yulin Zhang
- Chongqing University Cancer Hospital, 181 Hanyu Road, Shapingba disctrict, 400030 Chongqing, China; Chongqing Cancer Institute, 181 Hanyu Road, Shapingba disctrict, 400030 Chongqing, China; Chongqing Cancer Hospital, 181 Hanyu Road, Shapingba disctrict, 400030 Chongqing, China
| | - Xiaohe Luo
- The Center of Clinical Research of Endocrinology and Metabolic Diseases in Chongqing, 404000 Chongqing, China; Department of Laboratory Medicine, Chongqing University Three Gorges Hospital, School of Medicine, Chongqing University, 404000 Chongqing, China
| | - Jinsong Guo
- Key Laboratory of the Three Gorges Reservoir Eco-environment, Ministry of Education, Chongqing University, 174 Shazheng Road Shapingba, 400045 Chongqing, China
| | - Ying Shao
- Key Laboratory of the Three Gorges Reservoir Eco-environment, Ministry of Education, Chongqing University, 174 Shazheng Road Shapingba, 400045 Chongqing, China.
| |
Collapse
|
31
|
Yang L, Dai X, Wu L, Xu T, Chen Z, Min Z, Liao Y, Ni L, Yao Y, Yi G, Chen Z, Yin W. Stress hormone biosynthesis-based genes and lifestyle moderated the association of noise exposure with blood pressure in a cohort of Chinese tobacco factory workers: A cross-sectional analysis. Int J Hyg Environ Health 2021; 239:113868. [PMID: 34700202 DOI: 10.1016/j.ijheh.2021.113868] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/21/2021] [Accepted: 10/18/2021] [Indexed: 11/18/2022]
Abstract
When evaluating noise-related cardiovascular risk, noise is generally solely assessed as the major stressor. However, cardiovascular effect of other simultaneous exposure events, such as unhealthy lifestyle and genetic variation, is easily neglected. The aim of this study is to estimate the combined effect of noise and lifestyle on blood pressure alteration, particularly under different genetic background. This study included 536 workers from a tobacco factory in Wuhan, China, who were divided into high exposure group and low exposure group according to noise measurement in their working area. All participants took annual physical examination and questionnaire survey to provide information on individual systolic and diastolic blood pressure (SBP and DBP) and lifestyle (smoking, drinking and physical activity). Single nucleotide polymorphism at genes related to stress hormone production were determined. Moderated moderation models were constructed to investigate the interaction effect of noise exposure and lifestyle factors on blood pressure with regard to different genetic background. We identified an expected trend in association between noise exposure and SBP among active smokers (P = 0.086). The moderated moderation analysis showed significant three-way interaction effect (COMT rs4680 × smoking status × noise exposure levels) on SBP or DBP (both P < 0.05). For COMT rs4680 GA+AA genotype carriers, active smoking significantly moderated the association between noise exposure and SBP or DBP (both P < 0.05). The results indicated that for COMT rs4680 A allele carriers, tobacco and noise exposure contribute collectively to blood pressure alteration, supporting that stress hormone production may play a certain role in the smoke-and-noise-induced cardiovascular effect.
Collapse
Affiliation(s)
- Luoyao Yang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, Hubei, PR China
| | - Xiayun Dai
- Wuhan Prevention and Treatment Center for Occupational Diseases, Jianghan Bei Lu 18, Wuhan, 430015, Hubei, PR China
| | - Lisha Wu
- Wuhan Prevention and Treatment Center for Occupational Diseases, Jianghan Bei Lu 18, Wuhan, 430015, Hubei, PR China
| | - Tian Xu
- Wuhan Prevention and Treatment Center for Occupational Diseases, Jianghan Bei Lu 18, Wuhan, 430015, Hubei, PR China
| | - Zhuowang Chen
- Wuhan Prevention and Treatment Center for Occupational Diseases, Jianghan Bei Lu 18, Wuhan, 430015, Hubei, PR China
| | - Zhiteng Min
- Wuhan Prevention and Treatment Center for Occupational Diseases, Jianghan Bei Lu 18, Wuhan, 430015, Hubei, PR China
| | - Yonggang Liao
- Wuhan Prevention and Treatment Center for Occupational Diseases, Jianghan Bei Lu 18, Wuhan, 430015, Hubei, PR China
| | - Lei Ni
- Wuhan Prevention and Treatment Center for Occupational Diseases, Jianghan Bei Lu 18, Wuhan, 430015, Hubei, PR China
| | - Yong Yao
- Wuhan Prevention and Treatment Center for Occupational Diseases, Jianghan Bei Lu 18, Wuhan, 430015, Hubei, PR China
| | - Guilin Yi
- Wuhan Prevention and Treatment Center for Occupational Diseases, Jianghan Bei Lu 18, Wuhan, 430015, Hubei, PR China
| | - Zhenlong Chen
- Wuhan Prevention and Treatment Center for Occupational Diseases, Jianghan Bei Lu 18, Wuhan, 430015, Hubei, PR China
| | - Wenjun Yin
- Wuhan Prevention and Treatment Center for Occupational Diseases, Jianghan Bei Lu 18, Wuhan, 430015, Hubei, PR China; Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, Hubei, PR China.
| |
Collapse
|
32
|
Nie X, Mu G, Yang S, Ye Z, Wang M, Wang D, Ma J, Guo Y, Wang B, Dai W, Chen W. The methylation of the AMER3 gene mediates the negative association between urinary polycyclic aromatic hydrocarbon metabolites and fasting plasma glucose in non-smokers: A new clue for the development of hypoglycemic agents. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126548. [PMID: 34328084 DOI: 10.1016/j.jhazmat.2021.126548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/08/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) have been reported to cause various health damages. However, some PAH derivatives are still used as agents, and some of them have hypoglycemic effects. Till now, few studies explored the relationship between urinary PAH metabolites and fasting plasma glucose (FPG). In this study, A total of 2682 non-smokers in the second follow-up of the Wuhan-Zhuhai cohort were included to explore the relationship between urinary PAH metabolites and FPG. FPG related epigenome-wide association study (EWAS) was conducted among 212 never smokers, and the mediation analysis was performed to find potential mediator cytosine-phosphoguanine (CpG) sites in the above relationship. The concentration of total urinary PAH metabolites was 3.60 (2.37, 5.85) μg/mmol Cr. The urinary PAH metabolites were negatively associated with FPG. Each 1-U increase in ln-transformed levels of 1-hydroxynaphthalene, 4-hydroxyphenanthrene, 9-hydroxyphenanthrene, or 2- hydroxyphenanthrene was associated with 0.008-, 0.007-, 0.010-, or 0.010- unit decreased in ln-transformed levels of FPG, respectively (all p < 0.05). We found 28 new CpG sites related to FPG (FDR <0.05) through EWAS. Mediation analysis found that cg11350141 on AMER3 mediated 41.91% of the negative association of total urinary PAH metabolites with FPG. These results provide a new clue for the development of hypoglycemic agents.
Collapse
Affiliation(s)
- Xiuquan Nie
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ge Mu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Shijie Yang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zi Ye
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Mengyi Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Dongming Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jixuan Ma
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yanjun Guo
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Bin Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wencan Dai
- Zhuhai Center for Disease Control and Prevention, Zhuhai, Guangdong 519060, China
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
33
|
Díaz de León-Martínez L, Ortega-Romero MS, Barbier OC, Pérez-Herrera N, May-Euan F, Perera-Ríos J, Rodríguez-Aguilar M, Flores-Ramírez R. Evaluation of hydroxylated metabolites of polycyclic aromatic hydrocarbons and biomarkers of early kidney damage in indigenous children from Ticul, Yucatán, Mexico. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:52001-52013. [PMID: 33997934 DOI: 10.1007/s11356-021-14460-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are environmental persistent chemicals, produced by the incomplete combustion of solid fuels, found in smoke. PAHs are considered carcinogenic, teratogenic, and genotoxic. Children are susceptible to environmental pollutants, particularly those living in high-exposure settings. Therefore, the main objective of this study was to evaluate the exposure to PAHs through hydroxylated metabolites of PAHs (OH-PAHs), 1-hydroxynaphtalene (1-OH-NAP), and 2-hydroxynaphtalene (2-OH-NAP); 2-,3-, and 9-hydroxyfluorene (2-OH-FLU, 3-OH-FLU, 9-OH-FLU); 1-,2-,3-, and 4-hydroxyphenanthrene (1-OH-PHE, 2-OH-PHE, 3-OH-PHE, 4-OH-PHE); and 1-hydroxypyrene (1-OH-PYR), as well as kidney health through biomarkers of early kidney damage (osteopontin (OPN), neutrophil gelatinase-associated lipocalin (NGAL), α1-microglobulin (α1-MG), and cystatin C (Cys-C)) in children from an indigenous community dedicated to footwear manufacturing and pottery in Ticul, Yucatán, Mexico. The results show a high exposure to PAHs from the found concentrations of OH-PAHs in urine in 80.5% of the children in median concentrations of 18.4 (5.1-71.0) μg/L of total OH-PAHs, as well as concentrations of kidney damage proteins in 100% of the study population in concentrations of 4.8 (3-12.2) and 7.9 (6.5-13.7) μg/g creatinine of NGAL and Cys-C respectively, and 97.5% of the population with concentrations of OPN and α1-MG at mean concentrations of 207.3 (119.8-399.8) and 92.2 (68.5-165.5) μg/g creatinine. The information provided should be considered and addressed by the health authorities to establish continuous biomonitoring and programs to reduce para-occupational exposure in the vulnerable population, particularly children, based on their fundamental human right to health.
Collapse
Affiliation(s)
- Lorena Díaz de León-Martínez
- Center for Applied Research on Environment and Health (CIAAS), Avenida Sierra Leona No. 550, CP 78210, Colonia Lomas Segunda Sección, San Luis Potosí, SLP, Mexico
| | - Manolo S Ortega-Romero
- Toxicology Department, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, México
| | - Olivier C Barbier
- Toxicology Department, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, México
| | | | - Fernando May-Euan
- Medicine Faculty, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | - Javier Perera-Ríos
- Medicine Faculty, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | - Maribel Rodríguez-Aguilar
- Department of Pharmacy, Health Sciences Division, Universidad de Quintana Roo, Av. Erick Paolo Martínez, Chetumal, Quintana Roo, Mexico.
| | - Rogelio Flores-Ramírez
- CONACYT Research Fellow, Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Avenida Sierra Leona No. 550, CP 78210, Colonia Lomas Segunda Sección, San Luis Potosí, SLP, Mexico.
| |
Collapse
|
34
|
Chen G, Huo X, Luo X, Cheng Z, Zhang Y, Xu X. E-waste polycyclic aromatic hydrocarbon (PAH) exposure leads to child gut-mucosal inflammation and adaptive immune response. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:53267-53281. [PMID: 34031825 DOI: 10.1007/s11356-021-14492-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023]
Abstract
Polycyclic aromatic hydrocarbon (PAH) exposure alters immunological responses. Research concerning PAH exposure on intestinal immunity of children in electronic waste (e-waste) areas is scarce. The aim of this study was to evaluate the effects of polycyclic aromatic hydrocarbon (PAH) pollutants on intestinal mucosal immunity of children in e-waste areas. Results showed higher hydroxylated PAH (OH-PAH) concentrations in e-waste-exposed children, accompanied with higher sialyl Lewis A (SLA) level, absolute lymphocyte and monocyte counts, decreased of percentage of CD4+ T cells, and had a higher risk of diarrhea. OH-PAH concentrations were negative with child growth. 1-OHNap mediated through WBCs, along with 1-OHPyr, was correlated with an increase SLA concentration. 2-OHFlu, 1-OHPhe, 2-OHPhe, 1-OHPyr, and 6-OHChr were positively correlated with secretory immunoglobulin A (sIgA) concentration. Our results indicated that PAH pollutants caused inflammation, affected the intestinal epithelium, and led to transformation of microfold cell (M cell). M cells initiating mucosal immune responses and the subsequent increasing sIgA production might be an adaptive immune respond of children in the e-waste areas. To our knowledge, this is the first study of PAH exposure on children intestinal immunity in e-waste area, showing that PAH exposure plays a negative role in child growth and impairs the intestinal immune function.
Collapse
Affiliation(s)
- Guangcan Chen
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, 22 Xinling Rd, Shantou, 515041, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, Guangdong, China
| | - Xiuli Luo
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, 22 Xinling Rd, Shantou, 515041, Guangdong, China
| | - Zhiheng Cheng
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, 22 Xinling Rd, Shantou, 515041, Guangdong, China
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Yuling Zhang
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, 22 Xinling Rd, Shantou, 515041, Guangdong, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, 22 Xinling Rd, Shantou, 515041, Guangdong, China.
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, Guangdong, China.
| |
Collapse
|
35
|
Nwaozuzu CC, Partick-Iwuanyanwu KC, Abah SO. Systematic Review of Exposure to Polycyclic Aromatic Hydrocarbons and Obstructive Lung Disease. J Health Pollut 2021; 11:210903. [PMID: 34434595 PMCID: PMC8383797 DOI: 10.5696/2156-9614-11.31.210903] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/14/2021] [Indexed: 05/25/2023]
Abstract
BACKGROUND There is fast-growing epidemiologic evidence of the effects of environmental chemicals on respiratory health. Polycyclic aromatic hydrocarbons (PAHs) have been linked with airway obstruction common in asthma and/or asthma exacerbation, and chronic bronchitis and emphysema. OBJECTIVES A systematic review of the association between exposure to PAHs and obstructive lung diseases is not yet available. The present systematic review aims to evaluate the evidence available in epidemiological studies that have associated PAHs with obstructive lung diseases such as asthma, chronic bronchitis, emphysema. METHODS We performed a systematic literature search on PubMed, Google Scholar, and Scopus databases using relevant keywords and guided by predesigned eligibility criteria. RESULTS From the total of 30 articles reviewed, 16 articles examined the link between PAHs and lung function in both adults and children. Twelve articles investigated the association between PAHs and asthma, asthma biomarkers, and/or asthma symptoms in children. Two articles studied the relationship between PAHs and fractional exhaled nitric oxide (FeNO), a biomarker of airway inflammation and the relationship between PAHs and obstructive lung diseases and infections, respectively. One study assessed exposure to daily ambient PAHs and cough occurrence. DISCUSSION Twenty-seven studies found an association between PAHs and asthma and reduced lung function. In children it is reinforced by studies on prenatal and postnatal exposure, whereas in adults, reductions in lung function tests marked by low forced expiratory volume in 1 second, (FEV1), forced vital capacity (FVC), and forced expiratory flow (FEF25-75%) were the major health outcomes. Some studies recorded contrasting results: insignificant and/or no association between the two variables of interest. The studies reviewed had limitations ranging from small sample size, to the use of cross-sectional rather than longitudinal study design. CONCLUSIONS The literature reviewed in the present study largely suggest positive correlations between PAHs and obstructive lung diseases marked mainly by asthma and reduced respiratory function. This review was registered with PROSPERO (Registration no: CRD42020212894). COMPETING INTERESTS The authors declare no competing financial interests.
Collapse
Affiliation(s)
- Chinemerem C. Nwaozuzu
- Africa Center of Excellence in Public Health and Toxicological Research, University of Port Harcourt, Port Harcourt, Nigeria
| | - Kingsley C. Partick-Iwuanyanwu
- Africa Center of Excellence in Public Health and Toxicological Research, University of Port Harcourt, Port Harcourt, Nigeria
- Department of Biochemistry, University of Port Harcourt, Port Harcourt, Nigeria
| | - Stephen O. Abah
- Department of Community Medicine, Ambrose Ali University, Ekpoma, Edo State, Nigeria
| |
Collapse
|
36
|
El-Sikaily A, Helal M. Environmental pollution and diabetes mellitus. World J Meta-Anal 2021; 9:234-256. [DOI: 10.13105/wjma.v9.i3.234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/17/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus (DM) is a chromic metabolic disease that affects a large segment of the population worldwide. Physical inactivity, poor nutrition, and genetic predisposition are main risk factors for disease development. In the last decade, it was clear to the scientific community that DM development is linked to a novel disease inducer that was later defined as diabetogenic factors of pollution and endocrine disrupting agents. Environmental pollution is exponentially increasing in uncontrolled manner in several countries. Environmental pollutants are of diverse nature and toxicities, including polyaromatic hydrocarbons (PAHs), pesticides, and heavy metals. In the current review, we shed light on the impact of each class of these pollutants and the underlined molecular mechanism of diabetes induction and biological toxicities. Finally, a brief overview about the connection between coronavirus disease 2019 and diabetes pandemics is presented.
Collapse
Affiliation(s)
- Amany El-Sikaily
- National Institute of Oceanography and Fisheries (NIOF), Cairo 21513, Egypt
| | - Mohamed Helal
- National Institute of Oceanography and Fisheries (NIOF), Cairo 21513, Egypt
| |
Collapse
|
37
|
Li J, Li X, Xia Y, Fan H, Fan D, Xi X, Ye Q, Zhu Y, Xiao C. Subgroup analysis of the relationship between polycyclic aromatic hydrocarbons and rheumatoid arthritis: Data from the National Health and Nutrition Examination Survey, 2003-2014. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 775:145841. [PMID: 33621881 DOI: 10.1016/j.scitotenv.2021.145841] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 02/09/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
The present study examined potential effect modifiers between polycyclic aromatic hydrocarbon (PAH) exposure and the development of rheumatoid arthritis (RA) and elucidated the relationship between PAHs and RA in subgroups using data from the National Health and Nutrition Examination Survey (NHANES) (2003-2014). The relatedness between eight PAH metabolites and RA in the whole population and different subgroups was tested using multivariable logistic regression analyses. This study included 6297 participants, including 400 RA patients and 5897 non-RA control participants, with full data. Compared to the lowest quartiles, risk of RA was increased in population with the highest quartiles of 1-hydroxynaphthalene (1-NAP), 2-NAP, 2-hydroxyfluorene (2-FLU), and 3-FLU in a bias factor corrected model. The associations between urinary PAH metabolites and RA were prominent in female, young and middle-aged, obese, smoking and alcohol-consuming populations in the subgroup analysis. Our results demonstrated that PAH exposure was related to RA, and the relationship between urinary PAH metabolites and RA differed between subgroups and depended on specific PAH metabolites.
Collapse
Affiliation(s)
- Jiang Li
- Department of Laboratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Xiaoya Li
- The Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100193, China; Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Ya Xia
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China; School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - HuiZhen Fan
- Department of Gastroenterology, People's Hospital of Yichun, Jiangxi Yichun 336000, China
| | - Danping Fan
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100730, China
| | - Xiaoyu Xi
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China; School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qinbin Ye
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China; School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yiyong Zhu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Cheng Xiao
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China; Department of Emergency, China Japan Friendship Hospital, Beijing 100029, China.
| |
Collapse
|
38
|
Sun S, Mao W, Tao S, Zou X, Tian S, Qian S, Yao C, Zhang G, Chen M. Polycyclic Aromatic Hydrocarbons and the Risk of Kidney Stones in US Adults: An Exposure-Response Analysis of NHANES 2007-2012. Int J Gen Med 2021; 14:2665-2676. [PMID: 34188522 PMCID: PMC8232959 DOI: 10.2147/ijgm.s319779] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/01/2021] [Indexed: 12/23/2022] Open
Abstract
Background Polycyclic aromatic hydrocarbons (PAHs) exposure may cause various diseases. However, the association between PAHs exposure and kidney stones remains unclear. The purpose of this study was to examine the relationship between PAHs and the risk of kidney stones in the US population. Methods The study included a total of 30,442 individuals (≥20 years) from the 2007–2012 National Health and Nutrition Examination Survey (NHANES). Nine urinary PAHs were included in this study. Logistic regression and dose–response curves were used to evaluate the association between PAHs and the risk of kidney stones. Results We selected 4385 participants. The dose–response curves showed a significant positive association between total PAHs, 2-hydroxynaphthalene, 1-hydroxyphenanthrene, 2-hydroxyphenanthrene, 9-hydroxyfluorene and the risk of kidney stones after adjusting for confounding factors. Compared with the low group, an increased risk of kidney stones was observed in the high group of total PAHs [OR (95% CI), 1.32 (1.06–1.64), P=0.013], 2-hydroxynaphthalene [OR (95% CI), 1.37 (1.10–1.71), P=0.005], 1-hydroxyphenanthrene [OR (95% CI), 1.24 (1.00–1.54), P=0.046] and 9-hydroxyfluorene [OR (95% CI), 1.36 (1.09–1.70), P=0.007]. Conclusion High levels of PAHs were positively associated with the risk of kidney stones in the US population.
Collapse
Affiliation(s)
- Si Sun
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, 210009, People's Republic of China
| | - Weipu Mao
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, 210009, People's Republic of China.,Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, 210009, People's Republic of China.,Department of Urology, Nanjing Lishui District People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, 211200, People's Republic of China
| | - Shuchun Tao
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, 210009, People's Republic of China
| | - Xiangyu Zou
- Department of Urology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, People's Republic of China
| | - Shengwei Tian
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, 210009, People's Republic of China
| | - Siwei Qian
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, 210009, People's Republic of China
| | - Chi Yao
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, 210009, People's Republic of China
| | - Guangyuan Zhang
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, 210009, People's Republic of China.,Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, 210009, People's Republic of China
| | - Ming Chen
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, 210009, People's Republic of China.,Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, 210009, People's Republic of China.,Department of Urology, Nanjing Lishui District People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, 211200, People's Republic of China
| |
Collapse
|
39
|
Guo J, Zhang Y, Li B, Wang C. In utero exposure to phenanthrene induced islet cell dysfunction in adult mice: Sex differences in the effects and potential causes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:145295. [PMID: 33513515 DOI: 10.1016/j.scitotenv.2021.145295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/08/2021] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
Epidemiological studies show that the burden of polycyclic aromatic hydrocarbons in human body is associated with the occurrence of insulin resistance and diabetes. In the present study, pregnant mice were exposed to phenanthrene (Phe) at doses of 0, 60 and 600 μg/kg body weight of by gavage once every 3 days. The female F1 mice at 120 days of age showed no change in their fasting glucose levels (FGLs) but exhibited significantly decreased homeostasis model assessment (HOMA) β-cell (49% and 43%) and significantly downregulated pancreatic proinsulin gene (ins2) transcription. The downregulation of transcription factors, such as PDX1, PAX4 and FGF21, indicated impaired development and function of β-cells. The significantly reduced α-cell mass in 60 and 600 μg/kg groups, and the significantly downregulated expression of proglucagon gene gcg and ARX in the 600 μg/kg group suggested that the development and function of α-cells had been impacted. The males exhibited significantly increased FGLs (1.14- and 1.15-fold) in Phe exposed treatments and significantly elevated HOMA β-cell (3.15-fold) in the 600 μg/kg group. Upregulated ins2 transcription and FGF21 protein in male mice prenatally exposed to 600 μg/kg Phe suggested that these animals appeared compensatory enhancement in β-cell function. The reduced serum estradiol levels and downregulated pancreatic estrogen receptor α and β were responsible for the dysfunction of β-cells in the females. In the males, the significantly elevated androgen levels in the 600 μg/kg group might be related to the upregulated ins2 transcription, and the increased expression of pancreatic FGF21 further demonstrated the enhancement of β-cell potential. The results will be helpful for assessing the risk of developing diabetes in adulthood after prenatal exposure to phenanthrene.
Collapse
Affiliation(s)
- Jiaojiao Guo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Ying Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Bingshui Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Chonggang Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China.
| |
Collapse
|
40
|
Guo J, Huang J, Wang Q, Fang L, Zhang S, Li B, Lv L, Chen M, Wang C. Maternal exposure to phenanthrene during gestation disturbs glucose homeostasis in adult mouse offspring. CHEMOSPHERE 2021; 270:128635. [PMID: 33757275 DOI: 10.1016/j.chemosphere.2020.128635] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/08/2020] [Accepted: 10/11/2020] [Indexed: 05/21/2023]
Abstract
Epidemiological studies have indicated that polycyclic aromatic hydrocarbons were related to diabetes and insulin resistance. However, studies in mammals on the development of diabetes caused by polycyclic aromatic hydrocarbons are lacking. Pregnant mice were orally exposed to phenanthrene (0, 60 and 600 μg kg-1 body weight) once every 3 days during gestation. In adult mouse offspring, in-utero phenanthrene exposure caused glucose intolerance and decreased insulin levels in females, while caused elevated fasting blood glucose and insulin levels in males. Serum resistin and interleukin-6 levels were elevated in offspring of both sexes. Serum adiponectin levels were decreased in females but increased in males. The insulin receptor signals were upregulated in the liver and downregulated in the skeletal muscle of F1 females, while they were inhibited in both tissues of F1 males. The visceral fat weight and body weight of the treated mice were not increased, suggesting that phenanthrene is not an obesogen, which is supported by the nonsignificant alteration in pparγ transcription in visceral adipose tissue. The transcription of retn in visceral adipose tissue was upregulated in both sexes, and that of adipoq was downregulated in females but upregulated in males, which were matched with the promoter methylation levels of these genes. The results indicated that phenanthrene exposure during gestation could disturb adipocytokine levels via epigenetic modification in adult offspring, and further influence glucose metabolism. These results might be helpful for understanding nonobesogenic pollutant-induced insulin resistance and preventing against diabetes without obesity.
Collapse
Affiliation(s)
- Jiaojiao Guo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Jie Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Qian Wang
- College of Environment & Ecology, Xiamen University, Xiamen, PR China
| | - Lu Fang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Shenli Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Bingshui Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Liangju Lv
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Meng Chen
- College of Environment & Ecology, Xiamen University, Xiamen, PR China.
| | - Chonggang Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China.
| |
Collapse
|
41
|
Zhang B, Liu L, Guo L, Guo S, Zhao X, Liu G, Li Q, Jiang L, Pan B, Nie J, Yang J. Telomere length mediates the association between polycyclic aromatic hydrocarbons exposure and abnormal glucose level among Chinese coke oven plant workers. CHEMOSPHERE 2021; 266:129111. [PMID: 33310362 DOI: 10.1016/j.chemosphere.2020.129111] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 06/12/2023]
Abstract
INTRODUCTION Diabetes is a chronic and complex disease determined by environmental and genetic factors. This study aimed to investigate the association between polycyclic aromatic hydrocarbons (PAHs) exposure and fasting blood glucose levels and telomere length among coke-oven plant workers, to explore potential role of telomere length (TL) in the association between PAHs exposure and abnormal glucose level. METHODS The cross-sectional survey was conducted in 2017. The high-performance liquid chromatography mass spectrometry (HPLC-MS) was used to detect 11 urine biomarkers of PAHs exposure. TL was measured using the Real-time quantitative polymerase chain reaction (RT-qPCR) method. Logistic regression model, the modified Poisson regression models, and mediation analysis were used to evaluate the associations between PAHs exposure, TL, and abnormal glucose. RESULTS The results showed that the urinary 1-hydroxypyrene (1-PYR) was positively related to abnormal glucose in a dose-dependent manner (Ptrend = 0.007), the prevalence ratio of abnormal glucose was 8% (95% CI: 1.01-1.16) higher in 3rd tertile of urinary 1-PYR levels. Urinary 1-PYR in the 2nd tertile and 3rd tertile were associated with a 53% (OR = 0.47, 95% CI: 0.28-0.79) and 59% (OR = 0.41, 95% CI: 0.23-0.76) higher risk of shortening TL. And there was a negatively association between 1-PYR and TL in a dose-dependent manner (Ptrend = 0.045). We observed that the association between 1-PYR and abnormal glucose was more significantly positive among participants with median TL level (Ptrend = 0.006). In addition, mediation analysis showed the TL could explain 11.7% of the effect of abnormal glucose related to PAHs exposure. CONCLUSIONS Our findings suggested the effect of abnormal glucose related to PAHs exposure was mediated by telomere length in coke oven plant workers.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China
| | - Lu Liu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China
| | - Lan Guo
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China
| | - Shugang Guo
- Shanxi Provincial Center for Disease Control and Prevention, China
| | - Xinyu Zhao
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China
| | - Gaisheng Liu
- Center of Occupational Disease Prevention, Xishan Coal Electricity (Group) Co., Ltd., China
| | - Qiang Li
- Center of Occupational Disease Prevention, Xishan Coal Electricity (Group) Co., Ltd., China
| | - Liuquan Jiang
- Center of Occupational Disease Prevention, Xishan Coal Electricity (Group) Co., Ltd., China
| | - Baolong Pan
- General Hospital of Taiyuan Iron & Steel (Group) Co., Ltd., China
| | - Jisheng Nie
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China
| | - Jin Yang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China.
| |
Collapse
|
42
|
Liu B, Chen Y, Li S, Xu Y, Wang Y. Relationship between urinary metabolites of polycyclic aromatic hydrocarbons and risk of papillary thyroid carcinoma and nodular goiter: A case-control study in non-occupational populations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116158. [PMID: 33310200 DOI: 10.1016/j.envpol.2020.116158] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/31/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
Exposure to polycyclic aromatic hydrocarbons (PAHs) has been linked to the development of certain diseases. However, the relationship between PAH exposure and thyroid disorders remains unknown. We measured 10 of the most common hydroxylated PAHs (OH-PAHs) in the urine of thyroid nodular goiter (NG) patients, papillary thyroid carcinoma (PTC) patients, and healthy controls by gas chromatography-triple-quadrupole mass spectrometry (GC-MS/MS). We found that the concentrations of 2-hydroxyfluorene (2-OH-FLU), 2-hydroxydibenzofuran (2-OH-DBF), and 1-hydroxyphenanthrene (1-OH-PHE) in the NG group, and of 2-hydroxynaphthalene (2-OH-NAP), 2-OH-DBF, and 1-OH-PHE in the PTC group were significantly higher than those in controls. In addition, participants in the high tertiles of 2-OH-FLU and 1-OH-PHE had higher risk of NG. Besides these two OH-PAHs, elevated risk of NG was observed in women in the high tertiles of 1-hydroxynaphthalene (1-OH-NAP), 2-OH-NAP, 2-OH-DBF, and 3-hydroxyfluorene (3-OH-FLU). Furthermore, participants in the high tertiles of seven OH-PAHs, namely, 1-OH-NAP, 2-OH-NAP, 2-OH-DBF, 2-OH-FLU, 3-OH-FLU, 3/9-hydroxyphenanthrene (3/9-OH-PHE), and 1-OH-PHE, had elevated risk of PTC, and females in these high tertiles had an even higher risk of PTC. Our findings suggest that PAH exposure may increase the risk of NG/PTC, and there may be a gender-specific effect of PAH exposure on the development of NG/PTC.
Collapse
Affiliation(s)
- Boying Liu
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China; Department of Clinical Epidemiology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Yanyan Chen
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Siyao Li
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Yuanyuan Xu
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Yi Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
43
|
Cheng M, Zhou Y, Wang B, Mu G, Ma J, Zhou M, Wang D, Yang M, Cao L, Xie L, Wang X, Nie X, Yu L, Yuan J, Chen W. IL-22: A potential mediator of associations between urinary polycyclic aromatic hydrocarbon metabolites with fasting plasma glucose and type 2 diabetes. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123278. [PMID: 32634658 DOI: 10.1016/j.jhazmat.2020.123278] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
Previous studies found that exposure to polycyclic aromatic hydrocarbons (PAHs) was associated with type 2 diabetes (T2D) prevalence. However, the potential mechanism is still unclear. In this study, we investigated 3031 Chinese urban adults to discover the relationship between PAH exposure and plasma Interleukin-22 (IL-22) and potential role of IL-22 in the association between PAH and fasting plasma glucose (FPG) or risk of T2D. After adjustment for potential confounders, significant dose-response relationships were observed between several urinary PAH metabolites with FPG and the prevalence of T2D. Each 1-U increase in ln-transformed value of 2-hydroxynaphthalene (2-OHNa), 2-hydroxyphenanthrene (2-OHPh), 3-hydroxyphenanthrene (3-OHPh), 4-hydroxyphenanthrene (4-OHPh), 9-hydroxyphenanthrene (9-OHPh), 1-hydroxypyrene (1-OHP) or total PAH metabolites was significantly associated with a 0.053, 0.026, 0.037, 0.045, 0.051, 0.041 or 0.047 unit decrease in IL-22 level, respectively. In addition, plasma IL-22 level was negatively associated with FPG and prevalence of T2D in a dose-dependent manner. Mediation analysis showed that IL-22 mediated 8.48 %, 3.87 %, 6.64 %, 6.47 %, and 8.67 % of the associations between urinary 2-OHNa, 1-OHPh, 3-OHPh, 4-OHPh, and 9-OHPh with the prevalence of T2D, respectively. These results indicated that urinary PAHs metabolites were inversely associated with plasma levels of IL-22, but positively related to FPG and the T2D prevalence. Downregulation of IL-22 might play a significant role in mediating PAHs exposure-associated risk increasement of T2D.
Collapse
Affiliation(s)
- Man Cheng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yun Zhou
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bin Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ge Mu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jixuan Ma
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Min Zhou
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dongming Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meng Yang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Limin Cao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Li Xie
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xing Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiuquan Nie
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - LingLing Yu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Yuan
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Weihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
44
|
Fang L, Guo J, Wang Q, Ou K, Zou M, Lv L, Chen M, Wang C. Chronic Exposure to Environmental Level Phenanthrene Induces Non-Obesity-Dependent Insulin Resistance in Male Mice. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15225-15234. [PMID: 33171048 DOI: 10.1021/acs.est.0c04171] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Epidemiological evidence shows that the body burden of polycyclic aromatic hydrocarbons (PAHs) is related to the disruption of glucose homeostasis. However, the contribution of PAHs to the development of diabetes remains poorly documented. In the current work, male Kunming mice received phenanthrene (Phe) (5, 50, and 500 ng/kg) by gavage administration once every 2 days for 28 weeks. The significant elevation of homeostasis model assessment-insulin resistance (HOMA-IR) and HOMA-β cell, accompanied by hyperinsulinemia, indicated the occurrence of insulin resistance. The suppression of the insulin receptor signaling pathway in skeletal muscle might be responsible for glucose intolerance. Under the nonobese state, the serum levels of resistin, tumor necrosis factor-α, and interleukin-6 were elevated, whereas the levels of adiponectin were reduced. These changes in adipocytokine levels were consistent with their transcription in white adipose tissue. The promoter methylation levels of Retn (encoding resistin) and Adipoq (encoding adiponectin) were inversely correlated with their mRNA levels, indicating that Phe exposure could cause the disruption of adipocytokine secretion via epigenetic modification. The results would be helpful for understanding the pathogenesis in the development of T2DM caused by nonobesogenic pollutants.
Collapse
Affiliation(s)
- Lu Fang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, PR China
| | - Jiaojiao Guo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, PR China
| | - Qian Wang
- College of Environment & Ecology, Xiamen University, Xiamen 361102, PR China
| | - Kunlin Ou
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, PR China
| | - Minwen Zou
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, PR China
| | - Liangju Lv
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, PR China
| | - Meng Chen
- College of Environment & Ecology, Xiamen University, Xiamen 361102, PR China
| | - Chonggang Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, PR China
| |
Collapse
|
45
|
Jain RB. Contributions of dietary, demographic, disease, lifestyle and other factors in explaining variabilities in concentrations of selected monohydroxylated polycyclic aromatic hydrocarbons in urine: Data for US children, adolescents, and adults. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115178. [PMID: 32688109 DOI: 10.1016/j.envpol.2020.115178] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/23/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
Data from National Health and Nutrition Examination Survey for 2003-2014 for US children aged 6-11 years (N = 2097), adolescents aged 12-19 ears (N = 2642), and adults aged ≥ 20 years (N = 9170) were analyzed to investigate the effects of dietary, demographic, disease, lifestyle, and other factors on concentrations of nine metabolites of polycyclic aromatic hydrocarbons (PAH) in urine. PAHs analyzed were: 1-hydroxynaphthalene, 2-hydroxynaphthalene, 2-hydroxyfluorene, 3-hydroxyfluorene, 9-hydroxyfluorene, 1-hydroxyphenanthrene, 2-hydroxyphenanthrene, 3-hydroxyphenanthrene, and 1-hydroxypyrene. Adults with diabetes were found to have higher adjusted levels of 1-hydroxynaphthalene (4139 vs. 3622 ng/L, p < 0.01) than nondiabetics. Adults with albuminuria had higher adjusted levels of 1-hydroxynaphthalene (4140 vs.3621 ng/L, p < 0.01) and 2-hydroxynaphthalene (6039 vs. 5468 ng/L, p < 0.01) than those without albuminuria. Children with albuminuria had lower adjusted levels of 9-hydroxyfluorene (162 vs. 187 ng/L, p = 0.04), 1-hydroxyphenanthrene (92 vs. 108 ng/L, p < 0.01), and 1-hydroxypyrene (118 vs. 138 ng/L, p < 0.01) than those without albuminuria. The ratios of smoker to nonsmoker adjusted levels for adults varied from a low of 1.4 for 2-hydroxyphenanthrene to a high of 5.6 for 3-hydroxyfluorene. Exposure to environmental tobacco smoke at home was associated with higher levels of most OH-PAHs among children, adolescents, and adults. Consumption of red meat not processed at high temperatures was associated with increased levels of 1-hydroxypyrene (β = 0.00040, p = 0.01), 1-, 2-, and 3-hydroxyphenanthrene, 3-, and 9-hydroxyfluorene. Consumption of red meat processed at high temperatures was associated with increased levels of 2-hydroxynaphthalene (β = 0.00046, p = 0.02) among adults. Consumption of fish processed at high temperatures was associated with decreased levels of 1-hydroxynaphtahlene (β = - 0.00088, p < 0.01), 2-, 3-, and 9-hydroxyfluorene, 1-, 2-, and 3-hydroxyphenanthrene. Among adults, alcohol consumption and caffeine may be associated with increased levels of certain OH-PAHs. Oxidative stress and inflammation associated with exposure to PAHs are associated with albuminuria and have the potential to lead to the development of diabetes.
Collapse
Affiliation(s)
- Ram B Jain
- 2959 Estate View Ct, Dacula, Ga, 30019, USA.
| |
Collapse
|
46
|
Zhang H, Han Y, Qiu X, Wang Y, Li W, Liu J, Chen X, Li R, Xu F, Chen W, Yang Q, Fang Y, Fan Y, Wang J, Zhang H, Zhu T. Association of internal exposure to polycyclic aromatic hydrocarbons with inflammation and oxidative stress in prediabetic and healthy individuals. CHEMOSPHERE 2020; 253:126748. [PMID: 32464779 DOI: 10.1016/j.chemosphere.2020.126748] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/02/2020] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are key air pollutants that may contribute to the risk of numerous diseases by inducing inflammation and oxidative stress. Individuals with metabolic disorders may be more susceptible to PAH-induced inflammation and oxidative stress. To test this hypothesis, we designed a panel study involving 60 patients with pre-type 2 diabetes (pre-T2D) and 60 reference participants, and conducted up to seven repeated clinical examinations. Urinary metabolites of PAHs (i.e., OH-PAHs), measured as indicators of total PAH exposure, showed significant associations with markers of respiratory and systemic inflammation, including exhaled nitric oxide, interleukin (IL)-6 in exhaled breath condensate, and blood IL-2 and IL-8 levels and leucocyte count. The most significant effect was on urinary malondiadehyde (MDA), a marker of lipid peroxidation; a onefold increase of OH-PAHs was associated with 9.2-46.0% elevation in MDA in pre-T2D participants and 9.8-31.2% increase in healthy references. Pre-T2D participants showed greater increase in MDA, suggesting that metabolic disorder enhanced the oxidative damage induced by PAH exposure. This study revealed the association between PAH exposure and markers of inflammation and oxidative stress, and the enhanced responses of pre-T2D patients suggested that individuals with metabolic disorders were more susceptible to the adverse health effects of PAH exposure.
Collapse
Affiliation(s)
- Hanxiyue Zhang
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, And Center for Environment and Health, Peking University, Beijing, 100871, PR China
| | - Yiqun Han
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, And Center for Environment and Health, Peking University, Beijing, 100871, PR China; Department of Epidemiology and Biostatistics, MRC Centre for Environment and Health, Imperial College London, London, UK
| | - Xinghua Qiu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, And Center for Environment and Health, Peking University, Beijing, 100871, PR China.
| | - Yanwen Wang
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, And Center for Environment and Health, Peking University, Beijing, 100871, PR China
| | - Weiju Li
- Peking University Hospital, Peking University, Beijing, 100871, PR China
| | - Jinming Liu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, And Center for Environment and Health, Peking University, Beijing, 100871, PR China
| | - Xi Chen
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, And Center for Environment and Health, Peking University, Beijing, 100871, PR China
| | - Ran Li
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, And Center for Environment and Health, Peking University, Beijing, 100871, PR China
| | - Fanfan Xu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, And Center for Environment and Health, Peking University, Beijing, 100871, PR China
| | - Wu Chen
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, And Center for Environment and Health, Peking University, Beijing, 100871, PR China
| | - Qiaoyun Yang
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, And Center for Environment and Health, Peking University, Beijing, 100871, PR China
| | - Yanhua Fang
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, And Center for Environment and Health, Peking University, Beijing, 100871, PR China
| | - Yunfei Fan
- Peking University Hospital, Peking University, Beijing, 100871, PR China
| | - Junxia Wang
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, And Center for Environment and Health, Peking University, Beijing, 100871, PR China
| | - Hongyin Zhang
- Peking University Hospital, Peking University, Beijing, 100871, PR China
| | - Tong Zhu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, And Center for Environment and Health, Peking University, Beijing, 100871, PR China
| |
Collapse
|
47
|
Cao L, Zhou Y, Tan A, Shi T, Zhu C, Xiao L, Zhang Z, Yang S, Mu G, Wang X, Wang D, Ma J, Chen W. Oxidative damage mediates the association between polycyclic aromatic hydrocarbon exposure and lung function. Environ Health 2020; 19:75. [PMID: 32616062 PMCID: PMC7331238 DOI: 10.1186/s12940-020-00621-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 06/08/2020] [Indexed: 05/07/2023]
Abstract
BACKGROUND Exposure to polycyclic aromatic hydrocarbons (PAHs) is related to decreased lung function. However, whether oxidative damage is involved in this relationship remains unclear. This study was aimed to explore the potential mediating role of oxidative DNA or lipid damage in the association between PAH exposure and lung function. METHODS The urinary levels of monohydroxy polycyclic aromatic hydrocarbon metabolites (OH-PAHs) and lung function parameters were measured among 3367 participants from the baseline of the Wuhan-Zhuhai cohort. Urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) and 8-isoprostane (8-iso-PGF2α) were determined to evaluate the individuals' oxidative DNA and lipid damage degrees, respectively. Linear mixed models were used to investigate the associations of urinary OH-PAHs, 8-OHdG and 8-iso-PGF2α with lung function parameters. Mediation analysis was further conducted to assess the potential role of oxidative damage in the association between urinary OH-PAHs and lung function. RESULTS Each one-percentage increase in the sum of urinary OH-PAHs, high-molecular-weight or low-molecular-weight OH-PAHs (ƩOH-PAHs, ƩHMW OH-PAH or ƩLMW OH-PAHs, respectively) was associated with a 0.2152-, 0.2076- or 0.1985- ml decrease in FEV1, and a 0.1891-, 0.2195- or 0.1634- ml decrease in FVC, respectively. Additionally, significantly positive dose-response relationships of ƩOH-PAHs, ƩHMW OH-PAH and ƩLMW OH-PAHs with urinary 8-OHdG or 8-iso-PGF2α, as well as an inverse dose-response relationship between urinary 8-OHdG and FVC, were observed (all P for trend < 0.05). Mediation analysis indicated that urinary 8-OHdG mediated 14.22% of the association between ƩHMW OH-PAH and FVC. CONCLUSION Higher levels of oxidative DNA damage might be involved in the decreased levels of FVC caused by high-molecular-weight PAH exposure.
Collapse
Affiliation(s)
- Limin Cao
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yun Zhou
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Aijun Tan
- Zhuhai Center for Disease Control and Prevention, Zhuhai, 519000, Guangdong, China
| | - Tingming Shi
- Hubei Center for Disease Control and Prevention, Wuhan, 430079, Hubei, China
| | - Chunmei Zhu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Lili Xiao
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zhuang Zhang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Shijie Yang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Ge Mu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Xing Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Dongming Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Jixuan Ma
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
48
|
Li J, Fan H, Liu K, Li X, Fan D, Lu X, Xia Y, Cao Y, Xiao C. Associations of urinary polycyclic aromatic hydrocarbons with albuminuria in U.S. adults, NHANES 2003-2014. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 195:110445. [PMID: 32203772 DOI: 10.1016/j.ecoenv.2020.110445] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/01/2020] [Accepted: 03/04/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Polycyclic aromatic hydrocarbons (PAHs) exposure has been shown to be a risk factor for many diseases. However, studies on the association between PAHs exposure and kidney disease are limited. The aim of this study was to explore the association between urinary PAHs and albuminuria based on a national representative sample from the general U.S. METHOD The data utilized were extracted from the 2003-2014 National Health and Nutrition Examination Survey (NHANES). Eight urinary PAHs were detected as PAH metabolites (OH-PAHs). Multivariable logistic regression analyses were applied to examine the association between urinary OH-PAHs and urinary albumin-creatinine ratio (ACR). All models were adjusted for confounding demographic, anthropometric and lifestyle factors. RESULT A total of 8149 NHANES (2003-2014) participants with complete data were eligible. Compared with the lowest quartile, an increased prevalence of high ACR level (>3 mg/mmol) was observed in the participants with the highest quartile of 2-hydroxynaphthalene [OR (95% CI), 1.56 (1.28-1.90), P < 0.001], 3-hydroxyfluorene [OR (95% CI), 1.29 (1.06-1.58), P = 0.011] and 2-hydroxyfluorene [OR (95% CI), 1.47 (1.20-1.80), P < 0.001] levels after adjusting for confounding factors. In subgroup analysis, significantly high OH-PAHs leveland a strong relationship between OH-PAHs and ACR were observed in current smokers in the adjusted model. CONCLUSION High levels of urinary OH-PAHs were positively associated with high levels of ACR in the U.S. POPULATION Our finding provided evidence that PAHs exposure might potentially be related to albuminuria and therefore might have implications for environmental governance and prevention/treatment of this condition.
Collapse
Affiliation(s)
- Jiang Li
- Department of Laboratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Huizhen Fan
- Department of Gastroenterology, People's Hospital of Yichun City, Jiangxi, Yichun, 336000, China
| | - Kunpeng Liu
- Department of Anesthesiology, Peking University International Hospital, Beijing, China
| | - Xiaoya Li
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Danping Fan
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Xiangchen Lu
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China; Beijing University of Chinese Medicine, Beijing, China
| | - Ya Xia
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China; Beijing University of Chinese Medicine, Beijing, China
| | - Yongtong Cao
- Department of Laboratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Cheng Xiao
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China; Department of Emergency, China-Japan Friendship Hospital, Beijing, 100029, China.
| |
Collapse
|
49
|
Khosravipour M, Khosravipour H. The association between urinary metabolites of polycyclic aromatic hydrocarbons and diabetes: A systematic review and meta-analysis study. CHEMOSPHERE 2020; 247:125680. [PMID: 32069705 DOI: 10.1016/j.chemosphere.2019.125680] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/13/2019] [Accepted: 12/15/2019] [Indexed: 06/10/2023]
Abstract
To examine the association between urinary metabolites of polycyclic aromatic hydrocarbons (OH-PAHs) and diabetes, online databases, including PubMed, Scopus, and Web of Science, were searched on July 17, 2019. Of the 668 articles identified through searching, six cross-sectional studies involving 24,406 participants were included. The pooled odds ratio (OR) and 95% confidence interval (CI) were calculated using a random-effect model. Heterogeneity was measured by reporting the I-square index. Moreover, subgroup analysis according to types of metabolites was performed. We found a significantly higher odds of diabetes in the highest versus the lowest category of urinary naphthalene (NAP), fluorine (FLU), phenanthrene (PHEN), and total OH-PAH metabolites. The pooled OR (95% CI) was estimated at 1.47 (1.17, 1.78), 1.50 (1.29, 1.71), 1.41 (1.21, 1.60), and 1.61 (1.01, 2.21), respectively. We also found a significant association per 1-fold increase in FLU (OR = 1.09, 95% CI [1.00, 1.19]) and PHEN (OR = 1.19, 95% CI [1.08, 1.30]) metabolites. In subgroup analysis stratified by types of OH-PAH metabolites, A significant stronger odds of diabetes was observed in the highest versus the lowest category of 2-PHEN (OR = 1.66, 95% CI [1.32, 2.00]), 2-NAP (OR = 1.66, 95% CI [1.16, 2.17]), 2-FLU (OR = 1.62, 95% CI [1.28, 1.97]), and 9-FLU (OR = 1.62, 95% CI [1.21, 2.04]) metabolites. Furthermore, there was a meaningfully greater likelihood of diabetes per 1-fold increase in 2-FLU (OR = 1.34, 95% CI [1.10, 1.57]), 2-PHEN (OR = 1.33, 95% CI [1.14, 1.51]), and 3-PHEN (OR = 1.19, 95% CI [1.04, 1.34]) metabolites. In conclusion, our study suggests the significant odds of association between urinary OH-PAH metabolites and diabetes.
Collapse
Affiliation(s)
- Masoud Khosravipour
- Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Hadis Khosravipour
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
50
|
Cao L, Wang D, Wen Y, He H, Chen A, Hu D, Tan A, Shi T, Zhu K, Ma J, Zhou Y, Chen W. Effects of environmental and lifestyle exposures on urinary levels of polycyclic aromatic hydrocarbon metabolites: A cross-sectional study of urban adults in China. CHEMOSPHERE 2020; 240:124898. [PMID: 31557644 DOI: 10.1016/j.chemosphere.2019.124898] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/11/2019] [Accepted: 09/17/2019] [Indexed: 05/08/2023]
Abstract
Urinary polycyclic aromatic hydrocarbon (PAH) metabolites, biomarkers of internal PAH exposure, are commonly used to explore the effects of PAH on human health. However, the correlation between environmental PAH exposure and the species or levels of urinary PAH metabolites remains unclear. We collected detailed information on PAH exposure sources, including cigarette smoking, cooking, traffic and diet habits via structured questionnaires, and determined 12 urinary monohydroxylated PAH metabolites (OH-PAHs) among 4092 participants from the Wuhan-Zhuhai cohort. Linear mixed models and generalized linear models were conducted to explore the associations of urinary metabolite levels with single or multiple PAH exposure sources. We also calculated the standardized regression coefficients to further compare the contributions of different sources to urinary OH-PAH levels. Our results showed that increasing levels of urinary 1-, 2-hydroxynaphthalene (1-, 2- OHNa) and 2-hydroxyfluorene (2-OHFlu) were significantly correlated with tobacco smoking (all P < 0.01). The concentrations of 1-, 2- OHNa and 9-hydroxyfluorene (9-OHFlu) were positively correlated with dietary intake (all P < 0.05). Individuals who spent a long time in traffic showed elevated levels of 9-OHFlu and 1-hydroxyphenanthrene (1-OHPh) compared with individuals who spent a short time in traffic (all P < 0.05). Self-cooking was associated only with elevated 1-hydroxypyrene (1-OHP) levels. Moreover, good kitchen ventilation resulted in significantly decreased urinary low-molecular-weight OH-PAH levels. These findings suggested that cigarette smoking, self-cooking, high dietary PAH intake and a long time spent in traffic were associated with increased levels of specific urinary PAH metabolites, and good kitchen ventilation effectively reduced the exposure to low-molecular-weight PAHs in self-cooking participants.
Collapse
Affiliation(s)
- Limin Cao
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Dongming Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yuhan Wen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Heng He
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Ailian Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Dan Hu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Aijun Tan
- Zhuhai Center for Disease Control and Prevention, Zhuhai, Guangdong, 519060, China
| | - Tingming Shi
- Hubei Center for Disease Control and Prevention, Wuhan, Hubei, 430079, China
| | - Kejing Zhu
- Zhuhai Center for Disease Control and Prevention, Zhuhai, Guangdong, 519060, China
| | - Jixuan Ma
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yun Zhou
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|