1
|
Chen D, Yu H, Li H, Li G, An T. Associations Between Aromatic Compounds and Hepatorenal Biomarkers Among Coking Workers: Insights from Mediation Analysis. TOXICS 2025; 13:298. [PMID: 40278614 PMCID: PMC12031308 DOI: 10.3390/toxics13040298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/28/2025] [Accepted: 04/04/2025] [Indexed: 04/26/2025]
Abstract
Coking activities produce high concentrations of aromatic compounds (ACs) and related substances, which may have impacts on human health. However, the health effects of these substances on humans exposed to coking sites have not been fully elucidated. A total of 637 people were recruited to participate in this cross-sectional study. Using multiple linear regression and Bayesian kernel machine regression, we investigated the relationships between the urinary parent or metabolite forms of ACs (including metabolites of PAHs and their derivatives, nitrophenols, and chlorophenols) and hepatorenal biomarkers (HRBs), including total bilirubin, aspartate aminotransferase/alanine aminotransferase, serum uric acid, creatinine, albumin/globulin, and urea. The HRBs adopted in this study can effectively represent the status of human liver and kidney function. Mediation analysis was performed to investigate the possible mediating relationship between ACs and HRBs using oxidative stress markers as mediators. Our study indicated that ACs were significantly associated with increases in TBIL, AST/ALT, A/G, and UA, as well as a significant decrease in Cr. UREA showed no association with ACs among coking workers. The oxidative stress markers 8-hydroxy-2'-deoxyguanosine, 8-iso-prostaglandin-F2α, and 8-iso,15(R)-prostaglandinF2α mediated the induction of ACs on TBIL. Our results suggest that AC exposure in coking workers may be associated with adverse changes in hepatorenal biomarkers. This study highlights the significant impact of ACs from coking activities on workers' hepatorenal biomarkers, providing crucial evidence for health risk assessment and prevention in affected populations.
Collapse
Affiliation(s)
- Dongming Chen
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; (D.C.); (H.L.); (G.L.); (T.A.)
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Hang Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; (D.C.); (H.L.); (G.L.); (T.A.)
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Hailing Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; (D.C.); (H.L.); (G.L.); (T.A.)
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; (D.C.); (H.L.); (G.L.); (T.A.)
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; (D.C.); (H.L.); (G.L.); (T.A.)
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
2
|
Mitra T, Gulati R, Ramachandran K, Rajiv R, Enninga EAL, Pierret CK, Kumari R S, Janardhanan R. Endocrine disrupting chemicals: gestational diabetes and beyond. Diabetol Metab Syndr 2024; 16:95. [PMID: 38664841 PMCID: PMC11046910 DOI: 10.1186/s13098-024-01317-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Gestational Diabetes Mellitus (GDM) has been on the rise for the last two decades along with the growing incidence of obesity. The ubiquitous use of Endocrine-Disrupting Chemicals (EDCs) worldwide has been associated with this increase in GDM incidence. Epigenetic modifications such as DNA methylation, histone acetylation, and methylation have been associated with prenatal exposure to EDCs. EDC exposure can also drive a sustained disruption of the hypothalamus-pituitary-thyroid axis and various other signaling pathways such as thyroid signaling, PPARγ signaling, PI3K-AKT signaling. This disruption leads to impaired glucose metabolism, insulin resistance as well as β-cell dysfunction, which culminate into GDM. Persistent EDC exposure in pregnant women also increases adipogenesis, which results in gestational weight gain. Importantly, pregnant mothers transfer these EDCs to the fetus via the placenta, thus leading to other pregnancy-associated complications such as intrauterine growth restriction (IUGR), and large for gestational age neonates. Furthermore, this early EDC exposure of the fetus increases the susceptibility of the infant to metabolic diseases in early life. The transgenerational impact of EDCs is also associated with higher vascular tone, cognitive aberrations, and enhanced susceptibility to lifestyle disorders including reproductive health anomalies. The review focuses on the impact of environmental toxins in inducing epigenetic alterations and increasing the susceptibility to metabolic diseases during pregnancy needs to be extensively studied such that interventions can be developed to break this vicious cycle. Furthermore, the use of EDC-associated ExomiRs from the serum of patients can help in the early diagnosis of GDM, thereby leading to triaging of patients based on increasing risk factor of the clinicopathological condition.
Collapse
Affiliation(s)
- Tridip Mitra
- Division of Medical Research, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology, 603 203, Kattankulathur, Tamil Nadu, India
| | - Richa Gulati
- Division of Medical Research, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology, 603 203, Kattankulathur, Tamil Nadu, India
| | - Krithika Ramachandran
- Division of Medical Research, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology, 603 203, Kattankulathur, Tamil Nadu, India
| | - Rohan Rajiv
- Dietrich School of Arts and Sciences, University of Pittsburgh, 15260, Pittsburgh, PA, USA
| | | | - Chris K Pierret
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Sajeetha Kumari R
- Department of Obstetrics and Gynecology, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology, 603 203, Kattankulathur, Tamil Nadu, India
| | - Rajiv Janardhanan
- Division of Medical Research, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology, 603 203, Kattankulathur, Tamil Nadu, India.
| |
Collapse
|
3
|
Zeng JY, Zhang M, Chen XH, Liu C, Deng YL, Chen PP, Miao Y, Cui FP, Shi T, Lu TT, Liu XY, Wu Y, Li CR, Liu CJ, Zeng Q. Prenatal exposures to phthalates and bisphenols in relation to oxidative stress: single pollutant and mixtures analyses. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:13954-13964. [PMID: 38267646 DOI: 10.1007/s11356-024-32032-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/12/2024] [Indexed: 01/26/2024]
Abstract
Prenatal exposures to phthalates and bisphenols have been shown to be linked with adverse birth outcomes. Oxidative stress (OS) is considered a potential mechanism. The objective of this study was to explore the individual and mixtures of prenatal exposures to phthalates and bisphenols in associations with OS biomarkers. We measured eight phthalate metabolites and three bisphenols in the urine samples from 105 pregnant women in Wuhan, China. Urinary 8-hydroxydeoxyguanosine (8-OHdG), 8-isoprostaglandin F2α (8-isoPGF2α), and 4-hydroxy-2-nonenal-mercapturic acid (HNE-MA) were determined as OS biomarkers. The OS biomarkers in associations with the individual chemicals were estimated by linear regression models and restricted cubic spline (RCS) models, and their associations with the chemical mixtures were explored by quantile g-computation (qg-comp) models. In single-pollutant analyses, five phthalate metabolites including monomethyl phthalate (MMP), monoethyl phthalate (MEP), mono-(2-ethylhexyl) phthalate (MEHP), (2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), and mono (2-ethyl-5-oxohexyl) phthalate (MEOHP) were positively associated with urinary 8-OHdG levels (all FDR-adjusted P = 0.06). These associations were further confirmed by the RCS models and were linear (P for overall association ≤ 0.05 and P for non-linear association > 0.05). In mixture analyses, qg-comp models showed that a one-quartile increase in the chemical mixtures of phthalate metabolites and bisphenols was positively associated with urinary levels of 8-OHdG and 8-isoPGF2α, and bisphenol A (BPA) and bisphenol F (BPF) were the most contributing chemicals, respectively. Prenatal exposures to individual phthalates and mixtures of phthalates and bisphenols were associated with higher OS levels.
Collapse
Affiliation(s)
- Jia-Yue Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Min Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Xu-Hui Chen
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing, People's Republic of China
| | - Chong Liu
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan-Ling Deng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Pan-Pan Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Yu Miao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Fei-Peng Cui
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Tian Shi
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Ting-Ting Lu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Xiao-Ying Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Yang Wu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Cheng-Ru Li
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Chang-Jiang Liu
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute, Chongqing, People's Republic of China
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
4
|
Li H, Yao C, He C, Yu H, Yue C, Zhang S, Li G, Ma S, Zhang X, Cao Z, An T. Coking-Produced Aromatic Compounds in Urine of Exposed and Nonexposed Populations: Exposure Levels, Source Identification, and Model-Based Health Implications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15379-15391. [PMID: 37775339 DOI: 10.1021/acs.est.3c04906] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Coking contamination in China is complex and poses potential health risks to humans. In this study, we collected urine samples from coking plant workers, nearby residents, and control individuals to analyze 25 coking-produced aromatic compounds (ACs), including metabolites of polycyclic aromatic hydrocarbons (PAHs) and their derivatives, chlorophenols, and nitrophenols. The median concentration of total ACs in urine of workers was 102 μg·g-1 creatinine, significantly higher than that in the other two groups. Hydroxy-PAHs and hydroxy hetero-PAHs were the dominant ACs. Workers directly exposed from coking industrial processes, i.e., coking, coal preparation, and chemical production processes, showed higher concentrations of hydroxy-PAHs and hydroxy hetero-PAHs (excluding 5-hydroxyisoquinoline), while those from indirect exposure workshops had higher levels of other ACs, indicating different sources in the coking plant. The AC mixture in workers demonstrated positive effects on DNA damage and lipid peroxidation with 5-hydroxyisoquinoline and 3-hydroxycarbazole playing a significant role using a quantile g-computation model. Monte Carlo simulation revealed that coking contamination elevated the carcinogenic risk for exposed workers by 5-fold compared to controls with pyrene, pentachlorophenol, and carbazole contributing the most, and workers from coking process are at the highest risk. This study enhances understanding of coking-produced AC levels and provides valuable insights into coking contamination control.
Collapse
Affiliation(s)
- Hailing Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Chunyang Yao
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Chang He
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Hang Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Congcong Yue
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Shu Zhang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Shengtao Ma
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xin Zhang
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Zhiguo Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
5
|
Wang Y, Wan Y, Cao M, Wang A, Mahai G, He Z, Xu S, Xia W. Urinary 2,4-dichlorophenoxyacetic acid in Chinese pregnant women at three trimesters: Variability, exposure characteristics, and association with oxidative stress biomarkers. CHEMOSPHERE 2022; 304:135266. [PMID: 35688197 DOI: 10.1016/j.chemosphere.2022.135266] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 05/15/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
Widespread exposure to herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) could have potential adverse health effects on pregnant women. However, related data are scarce. This study aimed to characterize 2,4-D exposure among three trimesters of pregnancy and to explore the relationship of 2,4-D with oxidative stress biomarkers [i.e., 8-hydroxy-2'-deoxyguanosine (8-OHdG), 8-hydroxy guanosine (8-OHG), and 4-hydroxy nonenal mercapturic acid (HNEMA)] in urine. The present study analyzed 3675 urine samples of 1225 women (across the three trimesters of pregnancy) in Wuhan, central China. 2,4-D was detectable in 97.4% of the urine samples. The median unadjusted concentration of 2,4-D was 0.12 ng/mL, and the corresponding concentration adjusted by urinary specific gravity (SG-adjusted) was 0.13 ng/mL. The intraclass correlation coefficient of 2,4-D (SG-adjusted concentrations) was 0.07 across the three trimesters. Significantly higher urinary levels of 2,4-D were found in samples from younger pregnant women/samples collected during winter. In addition, significantly positive association between urinary concentrations of oxidative stress biomarkers and 2,4-D were found in repeated analysis; an interquartile range increase in 2,4-D was significantly (p < 0.001) associated with a 20.8% increase in 8-OHG, a 26.7% increase in 8-OHdG, and a 30.7% increase in HNEMA, respectively. Such associations were also found in trimester-specific analyses. This is the first time to quantify the urinary 2,4-D of pregnant women in China, and this study found significantly positive associations of 2,4-D with oxidative stress biomarkers. Further studies are needed to verify such associations and explore other potential adverse effects of 2,4-D exposure.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Yanjian Wan
- Institute of Environmental Health, Wuhan Centers for Disease Control and Prevention, Wuhan, Hubei 430024, PR China.
| | - Meiling Cao
- Institute of Environmental Health, Wuhan Centers for Disease Control and Prevention, Wuhan, Hubei 430024, PR China.
| | - Aizhen Wang
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Gaga Mahai
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Zhenyu He
- Institute of Environmental Health, Wuhan Centers for Disease Control and Prevention, Wuhan, Hubei 430024, PR China.
| | - Shunqing Xu
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Wei Xia
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| |
Collapse
|
6
|
Human risk assessment of 4-n-nonylphenol (4-n-NP) using physiologically based pharmacokinetic (PBPK) modeling: analysis of gender exposure differences and application to exposure analysis related to large exposure variability in population. Arch Toxicol 2022; 96:2687-2715. [PMID: 35723719 DOI: 10.1007/s00204-022-03328-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/01/2022] [Indexed: 11/02/2022]
Abstract
As a toxic substance, 4-n-nonylphenol (4-n-NP) or 4-nonylphenol (4-NP) is widely present in the environment. 4-n-NP is a single substance with a linear-alkyl side chain, but 4-NP usually refers to a random mixture containing various branched types. Unfortunately, human risk assessment and/or exposure level analysis for 4-n-NP (or 4-NP) were almost nonexistent, and related research was urgently needed. This study aimed to analyze the various exposures of 4-n-NP (or 4-NP) through development of a physiologically based-pharmacokinetic (PBPK) model considering gender difference in pharmacokinetics of 4-n-NP and its application to human risk assessment studies. A PBPK model was newly developed considering gender differences in 4-n-NP pharmacokinetics and applied to a human risk assessment for each gender. Exposure analysis was performed using a PBPK model that considered gender differences in 4-n-NP (or 4-NP) exposure and high variabilities in several countries. Furthermore, an extended application was attempted as a human risk assessment for random mixture 4-NP, which is difficult to accurately evaluate in reality. External-exposure and margin-of-safety estimated with the same internal exposure amount differed between genders, meaning the need for a differentiated risk assessment considering gender. Exposure analysis based on biomonitoring data confirmed large variability in exposure to 4-n-NP (or 4-NP) by country, group, and period. External-exposures estimated using PBPK model varied widely, ranging from 0.039 to 63.875 mg/kg/day (for 4-n-NP or 4-NP). By country, 4-n-NP (or 4-NP) exposure was higher in females than in males and the margin-of-safety tended to be low. Overall, exposure to 4-n-NP (or 4-NP) in populations was largely not safe, suggesting need for ongoing management and monitoring. Considering low in vivo accumulation confirmed by PBPK model, risk reduction of 4-n-NP is possible by reducing its use.
Collapse
|
7
|
Ringbeck B, Bury D, Ikeda-Araki A, Ait Bamai Y, Ketema RM, Miyashita C, Brüning T, Kishi R, Koch HM. Nonylphenol exposure in 7-year-old Japanese children between 2012 and 2017- Estimation of daily intakes based on novel urinary metabolites. ENVIRONMENT INTERNATIONAL 2022; 161:107145. [PMID: 35168185 DOI: 10.1016/j.envint.2022.107145] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/23/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Nonylphenol (NP) has been under scrutiny for decades due to its endocrine-disrupting properties and its ubiquity in the environment. Despite its widespread occurrence, robust and reliable exposure data are rare. In this study, we used human biomonitoring (HBM) measuring the novel urinary alkyl-chain-oxidized biomarkers OH-NP and oxo-NP to determine NP exposure in 7-year-old Japanese children. The new biomarkers are advantageous over measuring unchanged NP because they are not prone to external contamination. We analyzed 180 first morning void urine samples collected between 2012 and 2017. OH-NP and oxo-NP were detected in 100% and 66% of samples at median concentrations of 2.69 and 0.36 µg/L, respectively. 10-fold concentration differences between OH-NP and oxo-NP are in line with recent findings on human NP metabolism. Based on OH-NP we back-calculated median and maximum NP daily intakes (DI) of 0.14 and 0.95 µg/(kg bw*d). These DIs are rather close to but still below the current provisional tolerable daily intake of 5 µg/(kg bw*d) by the Danish Environmental Protection Agency. Between 2012 and 2017 the DIs decreased by an average of 4.7% per year. We observed no seasonal changes or gender differences and questionnaire data on food consumption, housing characteristics or pesticide use showed no clear associations with NP exposure. Urinary OH-NP was weakly associated with the oxidative stress (lipid peroxidation) biomarkers N-ε-hexanoyl-lysine (HEL) and trans-4-hydroxy-2-nonenal (HNE) (Spearman ρ = 0.30 and 0.22, respectively), but not with 8-hydroxy-2'-deoxyguanosine (8-OHdG). Further research is needed to identify and understand the major sources of NP exposure and to investigate a potential role in oxidative stress. This study is the first to investigate NP exposure in Japanese children based on robust and sensitive HBM data. It is a first step to fill the long-standing gap in quantitative human NP exposure monitoring and risk assessment.
Collapse
Affiliation(s)
- Benedikt Ringbeck
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany.
| | - Daniel Bury
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany.
| | - Atsuko Ikeda-Araki
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12 Nishi 7, Sapporo, Japan; Faculty of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Sapporo, Japan.
| | - Yu Ait Bamai
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12 Nishi 7, Sapporo, Japan.
| | - Rahel Mesfin Ketema
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12 Nishi 7, Sapporo, Japan; Faculty of Health Sciences, Hokkaido University, Kita 12 Nishi 5, Sapporo, Japan.
| | - Chihiro Miyashita
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12 Nishi 7, Sapporo, Japan.
| | - Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany.
| | - Reiko Kishi
- Center for Environmental and Health Sciences, Hokkaido University, Kita 12 Nishi 7, Sapporo, Japan.
| | - Holger M Koch
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany.
| |
Collapse
|
8
|
Cheng PK, Chen HC, Kuo PL, Chang JW, Chang WT, Huang PC. Associations between Oxidative/Nitrosative Stress and Thyroid Hormones in Pregnant Women—Tainan Birth Cohort Study (TBCS). Antioxidants (Basel) 2022; 11:antiox11020334. [PMID: 35204216 PMCID: PMC8868566 DOI: 10.3390/antiox11020334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/24/2022] [Accepted: 02/08/2022] [Indexed: 12/15/2022] Open
Abstract
Oxidative and nitrosative stress have been linked to thyroid function in both animal and human studies. In the present study, the associations between oxidative and nitrosative stress and thyroid hormones were investigated. Measurements were obtained from 97 Taiwanese pregnant women at the first, second, and third trimesters. Levels of five oxidative and nitrosative stress biomarkers (8-hydroxy-2′-deoxyguanosine [8-OHdG], 8-nitroguanine [8-NO2Gua], 4-hydroxy-2-nonenal-mercapturic acid [HNE-MA], 8-isoprostaglandin F2α [8-isoPGF2α], and malondialdehyde [MDA]) were measured using urine samples, and levels of five thyroid hormones (triiodothyronine [T3], thyroxine [T4], free T4, thyroid-stimulating hormone [TSH], and T4-binding globulin [TBG]) were measured in blood samples. Multiple linear regressions and linear mixed-model regressions were conducted to determine the associations between oxidative or nitrosative stress biomarkers and thyroid hormones in pregnant women. We found that TSH was negatively and significantly associated with 8-NO2Gua (−14%, 95% CI [−26.9% to −1.1%]) and HNE-MA (−23%, 95% CI [−35.9% to −10.0%]) levels. However, T4 (3%, 95% CI [0.2%–5.8%]) and free T4 (4.3%, 95% CI [0.8%–7.8%]) levels were positively and significantly associated with 8-NO2Gua. The T4 to TBG and free T4 to TBG ratios were positively and significantly associated with 8-NO2Gua level (T4/TBG: 3.6%, 95% CI [0.5%–6.7%]; free T4/TBG: 5.6%, 95% CI [0.2%–11.1%]). However, the TSH to T4 ratio was negatively and significantly associated with 8-NO2Gua level (−17.3%, 95% CI [−30.4% to −4.3%]). The T3 to TSH ratio was positively and significantly associated with HNE-MA level (25.2%, 95% CI [11.2%–39.2%]). However, the TSH to T4 and TSH to free T4 ratios were negatively and significantly associated with HNE-MA level (TSH/T4: −21.2%, 95% CI [−34.5% to −7.8%] and TSH/free T4: −24.0%, 95% CI [−38.3% to −9.6%]). Our findings suggest that an imbalance of oxidative and nitrosative stress may alter thyroid hormone homeostasis during pregnancy. Disruption of the maternal thyroid homeostasis during pregnancy would affect embryonic and fetal development.
Collapse
Affiliation(s)
- Po-Keng Cheng
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli 35053, Taiwan; (P.-K.C.); (W.-T.C.)
| | - Hsin-Chang Chen
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan;
| | - Pao-Lin Kuo
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, Tainan 70101, Taiwan;
| | - Jung-Wei Chang
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan;
| | - Wan-Ting Chang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli 35053, Taiwan; (P.-K.C.); (W.-T.C.)
| | - Po-Chin Huang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli 35053, Taiwan; (P.-K.C.); (W.-T.C.)
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- Correspondence: ; Tel.: +886-37-206-166 (ext. 38507)
| |
Collapse
|
9
|
Dwivedi S, D'Souza LC, Shetty NG, Raghu SV, Sharma A. Hsp27, a potential EcR target, protects nonylphenol-induced cellular and organismal toxicity in Drosophila melanogaster. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118484. [PMID: 34774861 DOI: 10.1016/j.envpol.2021.118484] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/01/2021] [Accepted: 11/07/2021] [Indexed: 06/13/2023]
Abstract
Deciphering the potential mechanism of chemical-induced toxicity enables us to alleviate the cellular and organismal dysfunction. The environmental presence of nonylphenol (endocrine disruptor) has a major health concern due to its widespread usage in our day-to-day life. The current study establishes a novel functional link among nonylphenol-induced oxidative stress, Heat shock protein 27 (Hsp27, member of stress protein family), and Ecdysone receptor (EcR, a nuclear receptor), which eventually coordinates the nonylphenol-induced sub-cellular and organismal level toxicity in a genetically tractable model Drosophila melanogaster. Drosophila larvae exposed to nonylphenol (0.05, 0.5 and 5.0 μg/mL) showed a significant decrease in Hsp27 and EcR mRNA levels in the midgut. In concurrence, reactive oxygen species (ROS) levels were increased with a corresponding decline in glutathione (GSH) level and Thioredoxin reductase (TrxR) activity. Increased lipid peroxidation (LPO), protein carbonyl (PC) contents, and cell death were also observed in a correlation with the nonylphenol concentrations. Sub-cellular toxicity poses a negative organismal response, which was evident by delayed larval development and reduced Drosophila emergence. Subsequently, a positive genetic correlation (p < 0.001) between EcR and Hsp27 revealed that nonylphenol-dependent EcR reduction is a possible link for the downregulation of Hsp27. Further, Hsp27 overexpression in midgut cells showed a reduction in nonylphenol-induced intracellular ROS, LPO, PC content, and cell death through the TrxR mediated regenerative pathway and reduced GSH level improving the organismal response to the nonylphenol exposure. Altogether, the study elucidates the potential EcR-Hsp27 molecular interactions in mitigating the nonylphenol-induced cellular and organismal toxicity.
Collapse
Affiliation(s)
- Shiwangi Dwivedi
- Nitte (Deemed to Be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Kotekar-Beeri Road, Deralakatte, Mangaluru, 575018, India
| | - Leonard Clinton D'Souza
- Nitte (Deemed to Be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Kotekar-Beeri Road, Deralakatte, Mangaluru, 575018, India
| | - Nidhi Ganesh Shetty
- Nitte (Deemed to Be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Kotekar-Beeri Road, Deralakatte, Mangaluru, 575018, India; Nitte (Deemed to Be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Molecular Genetics and Cancer, Kotekar-Beeri Road, Deralakatte, Mangaluru, 575018, India
| | - Shamprasad Varija Raghu
- Neurogenetics Lab, Department of Applied Zoology, Mangalore University, Mangalagangothri, Karnataka, 574199, India
| | - Anurag Sharma
- Nitte (Deemed to Be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Kotekar-Beeri Road, Deralakatte, Mangaluru, 575018, India.
| |
Collapse
|
10
|
Boyacioglu M, Gules O, Sahiner HS. Protective Effect of Sodium Selenite on 4-Nonylphenol-Induced Hepatotoxicity and Nephrotoxicity in Rats. Biol Trace Elem Res 2021; 199:3001-3012. [PMID: 33026593 DOI: 10.1007/s12011-020-02418-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/30/2020] [Indexed: 10/23/2022]
Abstract
This study was aimed at evaluating the protective effect of sodium selenite (SS) on DNA integrity, antioxidant/oxidant status, and histological changes on 4-nonylphenol (4-NP)-induced toxicity in liver and kidney tissues of rats. Twenty-four adult male Sprague Dawley rats were divided into 4 groups as control, SS, 4-NP, and SS+4-NP group. Control group was untreated. The SS group was supplemented with SS (0.5 mg/kg/day) and the 4-NP group was given 4-NP (125 mg/kg/day). The rats in the SS+4-NP group received SS followed by 4-NP 1 h later at the abovementioned doses. The treatments were administered by oral gavage for 48 days. DNA damage was analyzed by comet assay in lymphocytes. Oxidative stress parameters were measured, and histological evaluation was performed in liver and kidney tissues. Results showed that SS administration significantly decreased % Tail DNA and Mean Tail Moment in SS+4-NP group as compared with 4-NP group. Catalase activity in liver was significantly lower in 4-NP group only. SS treatment significantly increased the glutathione level and decreased high malondialdehyde level in tissues of the SS+4-NP group as compared with 4-NP group. Dilation of central vein, ballooning degeneration, vacuolar degeneration, and deterioration in the structure of remark cords in 4-NP-administered were alleviated in rats that received SS supplementation before administration of 4-NP. Moreover, glycogen intensity in hepatocytes and the wall of central vein increased in the SS+4-NP group. In addition, the SS supplementation in the SS+4-NP group decreased glomerular degeneration as well as the width of cavum glomeruli and congestion intensity in the kidney. These results indicate that SS may have a protective effect against 4-NP-induced hepato-nephrotoxicity in rats.
Collapse
Affiliation(s)
- Murat Boyacioglu
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Aydın Adnan Menderes University, 09016, Isıklı, Aydın, Turkey.
| | - Ozay Gules
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyon, Turkey
| | - Hande Sultan Sahiner
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Aydın Adnan Menderes University, 09016, Isıklı, Aydın, Turkey
| |
Collapse
|
11
|
Nasry WHS, Martin CK. Intersecting Mechanisms of Hypoxia and Prostaglandin E2-Mediated Inflammation in the Comparative Biology of Oral Squamous Cell Carcinoma. Front Oncol 2021; 11:539361. [PMID: 34094895 PMCID: PMC8175905 DOI: 10.3389/fonc.2021.539361] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 04/22/2021] [Indexed: 12/12/2022] Open
Abstract
The importance of inflammation in the pathogenesis of cancer was first proposed by Rudolph Virchow over 150 years ago, and our understanding of its significance has grown over decades of biomedical research. The arachidonic acid pathway of inflammation, including cyclooxygenase (COX) enzymes, PGE2 synthase enzymes, prostaglandin E2 (PGE2) and PGE2 receptors has been extensively studied and has been associated with different diseases and different types of cancers, including oral squamous cell carcinoma (OSCC). In addition to inflammation in the tumour microenvironment, low oxygen levels (hypoxia) within tumours have also been shown to contribute to tumour progression. Understandably, most of our OSCC knowledge comes from study of this aggressive cancer in human patients and in experimental rodent models. However, domestic animals develop OSCC spontaneously and this is an important, and difficult to treat, form of cancer in veterinary medicine. The primary goal of this review article is to explore the available evidence regarding interaction between hypoxia and the arachidonic acid pathway of inflammation during malignant behaviour of OSCC. Overlapping mechanisms in hypoxia and inflammation can contribute to tumour growth, angiogenesis, and, importantly, resistance to therapy. The benefits and controversies of anti-inflammatory and anti-angiogenic therapies for human and animal OSCC patients will be discussed, including conventional pharmaceutical agents as well as natural products.
Collapse
Affiliation(s)
- Walaa Hamed Shaker Nasry
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PEI, Canada
| | - Chelsea K Martin
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PEI, Canada
| |
Collapse
|
12
|
Hou Y, Li S, Xia L, Yang Q, Zhang L, Zhang X, Liu H, Huo R, Cao G, Huang C, Tian X, Sun L, Cao D, Zhang M, Zhang Q, Tang N. Associations of urinary phenolic environmental estrogens exposure with blood glucose levels and gestational diabetes mellitus in Chinese pregnant women. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142085. [PMID: 32898782 DOI: 10.1016/j.scitotenv.2020.142085] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/24/2020] [Accepted: 08/28/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Endocrine-disrupting chemicals (EDCs) are considered to be related to diabetes, but studies of the association between phenolic EDCs and gestational diabetes mellitus (GDM) are limited. OBJECTIVES To assess associations of maternal urinary bisphenol A (BPA), nonylphenol (NP), and 2-tert-octylphenol (2-t-OP) with GDM occurrence. METHODS A cross-sectional study was performed among 390 Chinese women at 24-28 weeks of gestation. GDM was diagnosed with a 2-h 75-g oral glucose tolerance test (OGTT). BPA, NP, and 2-t-OP concentrations were determined in urine samples. Linear and logistic regression tests evaluated associations of BPA, NP, and 2-t-OP with blood glucose levels and GDM prevalence. RESULTS The 2-t-OP concentrations in GDM patients were significantly higher than in non-GDM women with median values of 2.23 μg/g Cr and 1.79 μg/g Cr, respectively. No significant difference was observed in BPA and NP. Urinary 2-t-OP was positively associated with blood glucose levels after adjustment for several confounding factors and urinary BPA and NP. Higher 2-t-OP levels were associated with higher odds of GDM (OR: 5.78; 95% CI: 2.04, 16.37), whereas higher NP levels were associated with lower odds (OR: 0.22; 95% CI: 0.05, 0.85) in the adjusted models. In addition, compared to the first quartile of 2-t-OP, the adjusted odds ratios (ORs) and 95% confidence intervals (95% CIs) for GDM in the second, third, and fourth quartiles were 2.81 (1.23, 6.42), 3.01 (1.30, 6.93), and 5.49 (2.24, 13.46), respectively. CONCLUSION Our study indicates that, for the first time to our knowledge, exposure to 2-t-OP is associated with a higher risk of GDM. However, higher NP exposure is associated with lower GDM risk. Further studies are necessary to affirm the associations of 2-t-OP and NP with GDM, and to elucidate the causality of these findings.
Collapse
Affiliation(s)
- Yaxing Hou
- Department of Occupational and Environmental Health, Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Shuying Li
- Department of Endocrinology, Tianjin Xiqing Hospital, Tianjin, China
| | - Liting Xia
- Department of Occupational and Environmental Health, Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Qiaoyun Yang
- Department of Occupational and Environmental Health, Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Liwen Zhang
- Department of Occupational and Environmental Health, Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xumei Zhang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Huihuan Liu
- Beichen District Women's and Children's Health Center, Tianjin, China
| | - Ran Huo
- Beichen District Women's and Children's Health Center, Tianjin, China
| | - Guanghan Cao
- Beichen District Women's and Children's Health Center, Tianjin, China
| | - Chunyun Huang
- Beichen District Women's and Children's Health Center, Tianjin, China
| | - Xiubiao Tian
- Department of Endocrinology, Tianjin Xiqing Hospital, Tianjin, China
| | - Lirong Sun
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Deqing Cao
- Central Laboratory of Preventive Medicine, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Ming Zhang
- Tianjin Centers for Disease Control and Prevention, Tianjin, China
| | - Qiang Zhang
- Department of Occupational and Environmental Health, Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, China.
| | - Naijun Tang
- Department of Occupational and Environmental Health, Tianjin Key Laboratory of Environment, Nutrition and Public Health, School of Public Health, Tianjin Medical University, Tianjin, China
| |
Collapse
|
13
|
Andries A, Rozenski J, Vermeersch P, Mekahli D, Van Schepdael A. Recent progress in the LC-MS/MS analysis of oxidative stress biomarkers. Electrophoresis 2020; 42:402-428. [PMID: 33280143 DOI: 10.1002/elps.202000208] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/17/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022]
Abstract
The presence of a dynamic and balanced equilibrium between the production of reactive oxygen (ROS) and nitrogen (RNS) species and the in-house antioxidant defense mechanisms is characteristic for a healthy body. During oxidative stress (OS), this balance is switched to increased production of ROS and RNS, exceeding the capacity of physiological antioxidant systems. This can cause damage to biological molecules, leading to loss of function and even cell death. Nowadays, there is increasing scientific and clinical interest in OS and the associated parameters to measure the degree of OS in biofluids. An increasing number of reports using LC-MS/MS methods for the analysis of OS biomarkers can be found. Since bioanalysis is usually complicated by matrix effects, various types of cleanup procedures are used to effectively separate the biomarkers from the matrix. This is an essential part of the analysis to prepare a reproducible and homogenous solution suitable for injection onto the column. The present review gives a summary of the chromatographic methods used for the determination of OS biomarkers in both urine and plasma, serum, and whole blood samples. The first part mainly describes the biological background of the different OS biomarkers, while the second part reports examples of chromatographic methods for the analysis of different metabolites connected with OS in biofluids, covering a period from 2015 till early 2020. The selected examples mainly include LC-MS/MS methods for isoprostanes, oxidized proteins, oxidized lipoproteins, and DNA/RNA biomarkers. The last part explains the clinical relevance of this review.
Collapse
Affiliation(s)
- Asmin Andries
- Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, KU Leuven - University of Leuven, Leuven, Belgium
| | - Jef Rozenski
- KU Leuven - Rega Institute for Medical Research, Medicinal Chemistry, Leuven, Belgium
| | - Pieter Vermeersch
- Clinical Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium.,Center for Metabolic Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Djalila Mekahli
- Department of Development and Regeneration, Laboratory of Pediatrics, PKD group, KU Leuven - University of Leuven, Leuven, Belgium.,Department of Pediatric Nephrology, University Hospitals Leuven, Leuven, Belgium
| | - Ann Van Schepdael
- Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, KU Leuven - University of Leuven, Leuven, Belgium
| |
Collapse
|
14
|
Jiang L, Wang B, Liang J, Pan B, Yang Y, Lin Y. Reduced phytotoxicity of nonylphenol on tomato (Solanum lycopersicum L.) plants by earthworm casts. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:115020. [PMID: 32574893 DOI: 10.1016/j.envpol.2020.115020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/21/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
Concentrations as high as thousands of milligrams per kilogram (dry weight) of nonylphenol (NP), an endocrine-disrupting chemical of great concern, have been reported in soil. Soil is considered one of the primary pathways for exposure of crop plants to NP. However, there have been few studies on the toxicity of soil NP to crop plants, especially with comprehensive consideration of the application of organic fertiliser which is a common agricultural practice. In this study, tomato plants were grown in soils treated with NP in the presence and/or absence of earthworm casts (EWCs). After four weeks, we tested the physiological and biochemical responses (accumulative levels of hydrogen peroxide (H2O2) and superoxide anion radicals (O2-·), total chlorophyll content, degree of membrane lipid peroxidation, activities of defence-related enzymes, and level of DNA damage) and the changes in plant growth (elongation and biomass). The growth inhibition, reactive oxygen species (H2O2 and O2-·) accumulation, decrease in chlorophyll content, increase in activity of defence-related enzymes (including superoxide dismutase, peroxidase, catalase, ascorbate peroxidase, glutathione S-transferase and glutathione reductase), enhancement of membrane lipid peroxidation, and DNA damage in NP-treated seedlings were clearly reversed by the intervention of EWCs. In particular, the suppressed elongation, biomass, and chlorophyll content in tomato plants exposed to NP alone were significantly restored by EWCs to even greater levels than those of the undisturbed control. In other words, EWCs could efficiently invigorate the photosynthesis of crops via up-regulating the chlorophyll content, thereby overwhelming the NP stress on plant growth. Accordingly, except for reducing the bioavailability of soil NP as reported in our previous study, EWCs could also help crop plants to cope with NP stress by strengthening their stress resistance ability. Our findings are of practical significance for the formulation of strategies to relieve the negative effects of soil NP on crop growth.
Collapse
Affiliation(s)
- Lei Jiang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture, Haikou, 571101, China
| | - Bingjie Wang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Jingqi Liang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Bo Pan
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Yi Yang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture, Haikou, 571101, China
| | - Yong Lin
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| |
Collapse
|
15
|
Wang JM, Xu R, Di QN, Fu HW, Xu Q. Determination of urinary carnitine levels as a potential indicator of uterine fibroids caused by nonylphenol exposure. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1152:122248. [PMID: 32590215 DOI: 10.1016/j.jchromb.2020.122248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 05/15/2020] [Accepted: 06/11/2020] [Indexed: 11/26/2022]
Abstract
Our previous studies have shown that uterine fibroids are associated with nonylphenol (NP) exposure, and the changes of carnitines in critical reproductive tissues and body fluids could be used to indicate the female reproductive toxicity caused by NP exposure. In this work, on the basis of further clarifying the correlation between NP exposure level and uterine fibroids, the possibility of the urinary carnitine levels as a potential indicator of uterine fibroids caused by NP exposure was discussed. The urine samples were collected from 84 female volunteers: the control group of 34 healthy women without gynecological disease and 50 uterine fibroids patients, respectively. Methods were respectively established for the determination of NP and eight carnitines in human urine samples by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The results showed that the NP level of uterine fibroids group was significantly higher than that of control group (P = 0.002), indicating that NP exposure was an important environmental factor in the occurrence of uterine fibroids. It was further found that in urine samples of the uterine fibroids group, the levels of L-Carnitine (C0), L-Acetyl-carnitine (C2), L-Octanoyl-carnitine (C8), Tetradecanoyl-carnitine (C14), Oleoyl-carnitine (C18:1) and Linoleoyl-carnitine (C18:2) had obviously increased compared with those in the control group (P < 0.001; < 0.001; < 0.001; = 0.003; < 0.001; = 0.010). The concentrations of L-Hexanoyl-carnitine (C6) and L-Palmitoyl-carnitine (C16) in the uterine fibroids group were also higher than those in the control group, although the difference was not statistically significant (P > 0.05). The results suggested that the changes in urinary carnitine levels might be a potential indicator to help to warn of the risk of uterine fibroids caused by NP exposure at the early stage.
Collapse
Affiliation(s)
- Jin-Ming Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Run Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Qian-Nan Di
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Hao-Wei Fu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Qian Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|
16
|
Jamal A, Rastkari N, Dehghaniathar R, Nodehi RN, Nasseri S, Kashani H, Shamsipour M, Yunesian M. Prenatal urinary concentrations of environmental phenols and birth outcomes in the mother-infant pairs of Tehran Environment and Neurodevelopmental Disorders (TEND) cohort study. ENVIRONMENTAL RESEARCH 2020; 184:109331. [PMID: 32169736 DOI: 10.1016/j.envres.2020.109331] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 05/22/2023]
Abstract
Daily exposure to environmental phenols can lead to potential undesirable effects on the health of pregnant women and fetuses. The present study is aimed to evaluate the relationship between maternal urinary concentrations of phenols in pregnancy and anthropometric birth outcomes. The studied population comprised of 189 pregnant women participating in the Tehran Environment and Neurodevelopmental Disorders (TEND) prospective cohort study, which had been ongoing since March 2016 in some hospitals and health care delivery centers in Tehran, Iran. Concentrations of bisphenol-A, triclosan, 4-nonylphenol, and parabens were determined in spot urine samples of pregnant mothers in the first trimester. Weight, length, and head circumference at birth were also extracted from the mothers' delivery files. Multivariable linear regression was used to examine the relationship between log-concentrations of phenols and birth outcomes. When we analyzed all samples regardless of neonates' gender, none of the urinary concentrations of phenols were associated with weight and length at birth. Indeed, in sex-stratified adjusted models, one log-unit increase of butylparaben was related to a 283.6 g (95% CI: 23, 544) increase in boys' birth weight. Prenatal urinary concentration of triclosan and propylparaben was respectively related to a decrease of 4.8 cm (95% C: -8.5, -1.1) in boys' length and 0.9 cm (95%CI: -1.8, -0.04) in girls' length. In the adjusted models for estimating the changes in head circumference, one log-unit increase of triclosan, methylparaben, and butylparaben led to a reduction of 1.6 cm (95% CI: -3.17, 0.03), increase of 0.8 cm (95% CI: -0.01, 1.6) and 0.7 cm (95% CI: 0.08, 1.4) in head circumference at birth respectively. Our results suggested that prenatal triclosan and parabens exposure might be associated with head circumference at birth. Furthermore, we observed a sexually dimorphic pattern between maternal triclosan and parabens exposure during pregnancy and fetal growth. However, these findings must be interpreted while taking into account the limitations of this study.
Collapse
Affiliation(s)
- Akram Jamal
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Noushin Rastkari
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran; Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran.
| | - Reza Dehghaniathar
- Department of Urology and Nephrology, Firoozgar Clinical Research and Development Center (FCRDC), Iran University of Medical Sciences, Tehran, Iran
| | - Ramin Nabizadeh Nodehi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Simin Nasseri
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Homa Kashani
- Department of Research Methodology and Data Analysis, Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Mansour Shamsipour
- Department of Research Methodology and Data Analysis, Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Masud Yunesian
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Department of Research Methodology and Data Analysis, Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Lin HC, Li HY, Wu YT, Tsai YL, Chuang CY, Lin CH, Chen WY. Bayesian inference of nonylphenol exposure for assessing human dietary risk. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 713:136710. [PMID: 32019045 DOI: 10.1016/j.scitotenv.2020.136710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/13/2020] [Accepted: 01/13/2020] [Indexed: 05/28/2023]
Abstract
Nonylphenols (NPs) are endocrine-disrupting compounds commonly found in the environment and a number of food products. In this study, we constructed a probabilistic risk framework incorporating a Bayesian inference of exposure level in foodstuffs in conjunction with effect analysis of reproduction and renal disease. Our objective was to contrast the risk of dietary exposure to NPs among individuals in various age groups, with a particular focus on fertile females. In this study, seafood presented relatively high NP concentrations; however, seafood accounts for only a small proportion of the total food intake of most individuals. Rice was shown to make the largest contribution to NP daily intake among males and females in most age groups. Chicken made the largest contribution in the 12-16 and 16-18 year age groups. The mean average daily dose of NPs tended to decrease with age, regardless of gender. The estimated distribution of hazard quotients of <1 in all groups means that the risk of reproductive or renal abnormalities due to dietary exposure to NPs is negligible within most of the Taiwanese population. Nonetheless, preschoolers (3-6-year-olds) appear to be more vulnerable to NPs than do individuals in other age groups. There has been growing concern among researchers concerning the neurotoxic effects of NPs on offspring via maternal exposure. We recommend conducting a comprehensive assessment of exposure to NPs via multiple exposure routes, particularly among fertile women and preschoolers.
Collapse
Affiliation(s)
- Hsing-Chieh Lin
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Han-Yun Li
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yen-Ting Wu
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Lin Tsai
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Cheng-Ying Chuang
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Han Lin
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wei-Yu Chen
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan; Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
18
|
Scarpato R, Testi S, Colosimo V, Garcia Crespo C, Micheli C, Azzarà A, Tozzi MG, Ghirri P. Role of oxidative stress, genome damage and DNA methylation as determinants of pathological conditions in the newborn: an overview from conception to early neonatal stage. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 783:108295. [DOI: 10.1016/j.mrrev.2019.108295] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 11/25/2019] [Accepted: 12/24/2019] [Indexed: 12/15/2022]
|
19
|
Chang CH, Huang YF, Wang PW, Lai CH, Huang LW, Chen HC, Lin MH, Yang W, Mao IF, Chen ML. Associations between prenatal exposure to bisphenol a and neonatal outcomes in a Taiwanese cohort study: Mediated through oxidative stress? CHEMOSPHERE 2019; 226:290-297. [PMID: 30933738 DOI: 10.1016/j.chemosphere.2019.03.093] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 06/09/2023]
Abstract
This study determined whether maternal bisphenol A (BPA) exposure influences birth outcomes through oxidative stress and estimated the daily intake of BPA through breast milk for infants. One hundred and eighty-six pregnant women without pregnancy complications were enrolled and maternal urine was collected in the third trimester. Postnatal breast milk was collected in the first and third months after delivery. Concentrations of BPA were determined through ultra performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Generalized additive model-penalized regression splines and a multivariable regression model were employed to determine the effects of BPA exposure and oxidative stress levels on birth outcomes. A causal mediation analysis was conducted to clarify the mediation effects of oxidative stress due to maternal BPA exposure on birth outcomes. The daily intake of BPA in breast milk was calculated using probabilistic risk assessment methods. The geometric means (geometric standard deviation) of BPA levels for maternal urine and first- and third-month breast milk were 2.19 (2.88) μg/g creatinine., 1.35 (3.53) ng/g, and 3.17 (2.97) ng/g, respectively. No significant mediation existed among maternal BPA exposure, oxidative stress level, and neonatal head circumference. Three percent of 1-monthold babies and 1% of 3-month-old babies exceeded the BPA tolerable daily intake of 4 μg/kg-bw/day proposed by the European Food Safety Authority. This study revealed the BPA exposure profile for pregnant women and infants in northern Taiwan. The marginally significant correlation between maternal BPA exposure and neonatal head circumference should be considered.
Collapse
Affiliation(s)
- Chia-Huang Chang
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming University, Taipei, Taiwan
| | - Yu-Fang Huang
- Department of Safety, Health and Environmental Engineering, National United University, Miaoli, Taiwan
| | - Pei-Wei Wang
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming University, Taipei, Taiwan; Department of Pediatrics, Taipei City Hospital, Heping Fuyou Branch, Taipei, Taiwan
| | - Chun-Hao Lai
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming University, Taipei, Taiwan
| | - Li-Wei Huang
- Department of Obstetrics & Gynecology, Taipei City Hospital, Heping Fuyou Branch, Taipei, Taiwan
| | - Hsin-Chang Chen
- Institute of Occupational Medicine and Industrial Hygiene, National Taiwan University, Taiwan
| | - Meng-Han Lin
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming University, Taipei, Taiwan
| | - Winnie Yang
- Division of Pediatrics, Taipei City Hospital, Yangming Branch, Taipei, Taiwan
| | - I-Fang Mao
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung, Taiwan
| | - Mei-Lien Chen
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming University, Taipei, Taiwan.
| |
Collapse
|
20
|
Chang CH, Wang PW, Liang HW, Huang YF, Huang LW, Chen HC, Pan WC, Lin MH, Yang W, Mao IF, Chen ML. The sex-specific association between maternal paraben exposure and size at birth. Int J Hyg Environ Health 2019; 222:955-964. [PMID: 31248753 DOI: 10.1016/j.ijheh.2019.06.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 06/11/2019] [Accepted: 06/17/2019] [Indexed: 12/19/2022]
Abstract
Parabens are a group of esters of parahydroxybenzoic acid and are utilized as antimicrobial preservatives in the majority of personal care products (PCPs). Epidemiological studies regarding the adverse effects of parabens on fetuses are still limited. The aim of this study was to determine the association between maternal paraben exposure and birth outcomes. One hundred and ninety-nine pregnant women were enrolled, and maternal urine was collected in the third trimester. The urine concentrations of four parabens (methyl (MP), ethyl (EP), propyl (PP), and butyl (BP)) were determined by ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Generalized additive model-penalized regression splines and a multivariable regression model were employed to determine the association between paraben exposure levels and birth outcomes. A causal mediation analysis was conducted to determine the mediation effect of oxidative stress on birth outcomes. The geometric means of urinary MP, EP, PP, and BP were 51.79, 1.26, 4.21, and 1.25 μg/g cre., respectively. In the penalized regression splines, sex-specific associations between maternal MP levels and birth outcomes were observed; a downward curvature was observed between the MP level and birth weight, length, head circumference, and thoracic circumference among female newborns. Pregnant women in the group with MP levels above the third quartile had neonates with significantly lower body weight (β = -215.98 g, p value = 0.02) compared to those in the group with MP levels lower than the third quartile. No significant mediation of oxidative stress was observed between maternal MP exposure and female birth weight. The estimated proportion mediated ranged from -6% to 15%. The negative association between maternal paraben exposure and female birth outcomes in relation to child development should be carefully considered.
Collapse
Affiliation(s)
- Chia-Huang Chang
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming University, Taipei, Taiwan
| | - Pei-Wei Wang
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming University, Taipei, Taiwan; Department of Pediatrics, Taipei City Hospital, Heping Fuyou Branch, Taipei, Taiwan
| | - Hai-Wei Liang
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming University, Taipei, Taiwan
| | - Yu-Fang Huang
- Department of Safety, Health and Environmental Engineering, National United University, Miaoli, Taiwan
| | - Li-Wei Huang
- Department of Obstetrics & Gynecology, Taipei City Hospital, Heping Fuyou Branch, Taipei, Taiwan
| | - Hsin-Chang Chen
- Institute of Occupational Medicine and Industrial Hygiene, National Taiwan University, Taiwan
| | - Wen-Chi Pan
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming University, Taipei, Taiwan
| | - Meng-Han Lin
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming University, Taipei, Taiwan
| | - Winnie Yang
- Division of Pediatrics, Taipei City Hospital, Yangming Branch, Taipei, Taiwan
| | - I-Fang Mao
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung, Taiwan
| | - Mei-Lien Chen
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming University, Taipei, Taiwan.
| |
Collapse
|
21
|
Huang YF, Wang PW, Huang LW, Lin MH, Yang W, Chen HC, Yu KP, Chen ML. Interactive effects of nonylphenol and bisphenol A exposure with oxidative stress on fetal reproductive indices. ENVIRONMENTAL RESEARCH 2018; 167:567-574. [PMID: 30165327 DOI: 10.1016/j.envres.2018.08.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/26/2018] [Accepted: 08/02/2018] [Indexed: 05/23/2023]
Abstract
Nonylphenol (NP) and/or bisphenol A (BPA) may have reproductive effects. Although the mechanisms of action remain unclear, steroid hormones biosynthesis, hypothalamus pituitary adrenal axis activity, oxidative stress, and crosstalk interaction of NP and BPA mixture and its pathways may play a contributory role. This cross-sectional study examined whether the interactive effects of NP/BPA and oxidative stress biomarkers played a role in reproductive indices (penis length and anogenital distance (AGD)) in 244 mother-fetus pairs. Four biomarkers of oxidative stress, (8-hydroxy-2'-deoxyguanosine (8-OHdG), 8-nitroguanine (8-NO2Gua), 8-iso-prostaglandin F2α (8-isoPF2α), and 4-hydroxy-2-nonenal-mercapturic acid (HNE-MA)) were simultaneously analyzed using the high-performance liquid chromatography-electrospray ionization tandem mass spectrometry method. No significant associations were found between reproductive indices and NP/BPA or oxidative stress biomarkers. Maternal exposure to a mixture of NP and BPA may enhance 8-OHdG. Interactive effects were found in the high 8-isoPF2α group, and prenatal NP exposure was inversely associated with penis length (β = -3.68 mm; p = 0.01). Similar results were noted among boys who were born to mothers in the high 8-isoPF2α group, in which BPA was inversely associated with penis length (β = -4.43 mm; p = 0.005). Our findings suggest important implications for prenatal exposure to oxidative stress, as evidenced by the 8-isoPF2α level. Thus, NP and BPA may interact to shape fetal reproductive tract development, particularly in boys. The interactive effects of NP/BPA, oxidative stress, and reproductive indices should be considered.
Collapse
Affiliation(s)
- Yu-Fang Huang
- Department of Safety, Health and Environmental Engineering, National United University, Miaoli, Taiwan
| | - Pei-Wei Wang
- Institute of Environmental and Occupational Health Sciences, National Yang Ming University, Taipei, Taiwan; Department of Pediatrics, Taipei City Hospital, Heping Fuyou Branch, Taipei, Taiwan
| | - Li-Wei Huang
- Department of Obstetrics & Gynecology, Taipei City Hospital, Heping Fuyou Branch, Taipei, Taiwan
| | - Meng-Han Lin
- Institute of Environmental and Occupational Health Sciences, National Yang Ming University, Taipei, Taiwan
| | - Winnie Yang
- Division of Pediatrics, Taipei City Hospital, Yangming Branch, Taipei, Taiwan
| | - Hsin-Chang Chen
- Institute of Food Safety and Health, National Taiwan University, Taipei, Taiwan
| | - Kuo-Pin Yu
- Institute of Environmental and Occupational Health Sciences, National Yang Ming University, Taipei, Taiwan
| | - Mei-Lien Chen
- Institute of Environmental and Occupational Health Sciences, National Yang Ming University, Taipei, Taiwan.
| |
Collapse
|
22
|
Noorimotlagh Z, Mirzaee SA, Ahmadi M, Jaafarzadeh N, Rahim F. The possible DNA damage induced by environmental organic compounds: The case of Nonylphenol. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 158:171-181. [PMID: 29684747 DOI: 10.1016/j.ecoenv.2018.04.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 04/08/2018] [Accepted: 04/10/2018] [Indexed: 06/08/2023]
Abstract
Human impact on the environment leads to the release of many pollutants that produce artificial compounds, which can have harmful effects on the body's endocrine system; these are known as endocrine disruptors (EDs). Nonylphenol (NP) is a chemical compound with a nonyl group that is attached to a phenol ring. NP-induced H2AX is a sensitive genotoxic biomarker for detecting possible DNA damage; it also causes male infertility and carcinogenesis. We attempt to comprehensively review all the available evidence about the different ways with descriptive mechanisms for explaining the possible DNA damage that is induced by NP. We systematically searched several databases, including PubMed, Scopus, Web of Science, and gray literature, such as Google Scholar by using medical subheading (MeSH) terms and various combinations of selected keywords from January 1970 to August 2017. The initial search identified 62,737 potentially eligible studies; of these studies, 33 were included according to the established inclusion criteria. Thirty-three selected studies, include the topics of animal model (n = 21), cell line (n = 6), human model (n = 4), microorganisms (n = 1), solid DNA (n = 1), infertility (n = 4), apoptosis (n = 6), and carcinogenesis (n = 3). This review highlighted the possible deleterious effects of NP on DNA damage through the ability to produce ROS/RNS. Finally, it is significant to observe caution at this stage with the continued use of environmental pollutants such as NP, which may induce DNA damage and apoptosis.
Collapse
Affiliation(s)
- Zahra Noorimotlagh
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Seyyed Abbas Mirzaee
- Department of Environmental Health Engineering, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Mehdi Ahmadi
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Environmental Health Engineering, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Neemat Jaafarzadeh
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Environmental Health Engineering, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Fakher Rahim
- Health Research Institute, Thalassemia and Hemoglobinopathies Research Centre, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
23
|
Li X, Huo J, Liu Z, Yue Q, Zhang L, Gong Y, Chen J, Bao H. An updated weight of evidence approach for deriving a health-based guidance value for 4-nonylphenol. J Appl Toxicol 2018; 39:87-100. [PMID: 30027633 DOI: 10.1002/jat.3661] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 05/07/2018] [Accepted: 06/04/2018] [Indexed: 01/29/2023]
Affiliation(s)
- Xiaomeng Li
- West China School of Public Health and Healthy Food Evaluation Research Center; Sichuan University; Chengdu 610041 China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province; Chengdu 610041 China
| | - Jiao Huo
- West China School of Public Health and Healthy Food Evaluation Research Center; Sichuan University; Chengdu 610041 China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province; Chengdu 610041 China
| | - Zhaoping Liu
- China National Center for Food Safety Risk Assessment; Beijing 100022 China
| | - Qianlan Yue
- West China School of Public Health and Healthy Food Evaluation Research Center; Sichuan University; Chengdu 610041 China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province; Chengdu 610041 China
| | - Lishi Zhang
- West China School of Public Health and Healthy Food Evaluation Research Center; Sichuan University; Chengdu 610041 China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province; Chengdu 610041 China
| | - Yunyun Gong
- China National Center for Food Safety Risk Assessment; Beijing 100022 China
- School of Food Science and Nutrition; University of Leeds; Leeds LS2 9JT UK
| | - Jinyao Chen
- West China School of Public Health and Healthy Food Evaluation Research Center; Sichuan University; Chengdu 610041 China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province; Chengdu 610041 China
| | - Huihui Bao
- China National Center for Food Safety Risk Assessment; Beijing 100022 China
| |
Collapse
|
24
|
Lin TJ, Guo YL, Hsu JC, Wang IJ. 2-Naphthol Levels and Allergic Disorders in Children. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15071449. [PMID: 29987264 PMCID: PMC6069002 DOI: 10.3390/ijerph15071449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/03/2018] [Accepted: 07/04/2018] [Indexed: 11/25/2022]
Abstract
Background: The measurement of polycyclic aromatic hydrocarbons (PAH) in ambient air is quite difficult to perform. Using urine biomarkers of PAH such as 2-naphthol is one approach to this problem. This study explored the association between urine 2-naphthol levels and allergic diseases. The associations between 2-naphthol levels and oxidative stress biomarkers for the possible disease pathogenesis were also investigated. Method: A total of 453 kindergarten children from the (Childhood Environment and Allergic Diseases Study) CEAS cohort with urine samples were recruited. Urine 2-naphthol levels were measured by high-performance liquid chromatography mass spectrometry (HPLC-MS/MS) and markers of oxidative stress (8OHdG) were measured by enzyme-linked immunosorbent assays (ELISA). Information on environmental risk factors and allergic diseases were also collected. The association between 2-naphthol levels, 8OHdG levels, IgE, and allergic diseases were evaluated by multivariate linear regression and logistic regression. Results: Levels of 2-naphthol were positively correlated with 8OHdG levels. A one ln-unit increase in the 2-naphthol level was positively associated to 8OHdG levels (per ln-unit: β = 100.61, p < 0.001). When dividing 2-naphthol levels into quartiles, asthma was significantly associated with 2-naphthol levels at a concentration of >1.60 ng/mL (adjusted OR: 3.14, 95% CI 1.34–7.35). Conclusion: Urine 2-naphthol levels are associated with markers of oxidative stress and the risk of allergic diseases in young children.
Collapse
Affiliation(s)
- Tien-Jen Lin
- Department of Neurosurgery, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan.
- Graduate Institute of Sports Science, College of Exercise and Health Sciences, National Taiwan Sport University, Taoyuan 333, Taiwan.
- Graduate Institute of Injury Prevention and Control, Taipei Medical University, Taipei 110, Taiwan.
| | - Yueliang Leon Guo
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli 350, Taiwan.
- Institute of Occupational Medicine and Industrial Hygiene, National Taiwan University College of Public Health, Taipei 100, Taiwan.
| | - Jiin-Chyr Hsu
- Department of Internal Medicine, Taipei Hospital, Ministry of Health and Welfare, No. 127, Su-Yuan Road, Hsin-Chuang Dist., Taipei 242, Taiwan.
- Yuanpei University of Medical Technology, Hsinchu 300, Taiwan.
| | - I-Jen Wang
- Department of Pediatrics, Taipei Hospital, Ministry of Health and Welfare, No. 127, Su-Yuan Road, Hsin-Chuang Dist., Taipei 242, Taiwan.
- College of Public Health, China Medical University, Taichung 404, Taiwan.
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
| |
Collapse
|
25
|
Chang CH, Yu CJ, Du JC, Chiou HC, Chen HC, Yang W, Chung MY, Chen YS, Hwang B, Mao IF, Chen ML. The interactions among organophosphate pesticide exposure, oxidative stress, and genetic polymorphisms of dopamine receptor D4 increase the risk of attention deficit/hyperactivity disorder in children. ENVIRONMENTAL RESEARCH 2018; 160:339-346. [PMID: 29054088 DOI: 10.1016/j.envres.2017.10.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 08/17/2017] [Accepted: 10/07/2017] [Indexed: 06/07/2023]
Abstract
OBJECTIVE The aim of this study was to clarify the association between organophosphate pesticides (OPs) and attention-deficit/hyperactivity disorder (ADHD) related to oxidative stress and genetic polymorphisms. METHODS This case-control study enrolled 93 children with ADHD and 112 control children in north Taiwan. Six dialkyl phosphate (DAP) metabolites of OPs and oxidative stress biomarkers were analyzed. Polymorphisms of the dopamine receptor D4 gene (DRD4) were identified. RESULTS Children with ADHD had significantly higher dimethylphosphate (DMP, 236.69nmol/g cre. vs. 186.84nmol/g cre., p value = 0.01) and 4-hydroxy-2-nonenal-mercapturic acid (HNE-MA, 28.95µg/g cre. vs. 16.55µg/g cre., p value<0.01) concentrations than control children. Children who carried DRD4 GA/AA genotypes (rs752306) were less likely than those who carried the DRD4 GG genotype to have ADHD (odds ratio [OR]: 0.45, 95% CI: 0.24-0.84). The estimated value of the AP (attributable proportion due to interaction) was 0.59 (95% CI: 0.13-1.05), indicating that 59% of ADHD cases in DMP-exposed children with the DRD4 GG genotype were due to the gene-environment interaction. After adjustment for other covariates, children who carried the DRD4 GG genotype, had been exposed to high DMP levels (more than the median), and had high HNE-MA levels had a significantly increased risk for developing ADHD (OR = 11.74, 95% CI: 2.12-65.04). CONCLUSION This study indicated a gene-environment interaction in the risk of ADHD in children. The association between DMP and ADHD in children might relate to the mechanism of lipid peroxidation. Dose-response relationships and the combined effects of OPs, oxidative stress, and genetic polymorphism on ADHD should not be neglected.
Collapse
Affiliation(s)
- Chia-Huang Chang
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming University, 155, Sec. 2, Linong Street, Taipei 11, Taiwan
| | - Ching-Jung Yu
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming University, 155, Sec. 2, Linong Street, Taipei 11, Taiwan
| | - Jung-Chieh Du
- Department of Pediatrics, Taipei City Hospital, Zhongxiao Branch, Taipei, Taiwan
| | - Hsien-Chih Chiou
- Department of Child and Adolescent Psychiatry, Taipei City Hospital, Songde Branch, Taipei, Taiwan
| | - Hsin-Chang Chen
- Institute of Occupational Medicine and Industrial Hygiene, National Taiwan University, Taiwan
| | - Winnie Yang
- Department of Pediatrics, Taipei City Hospital, Yangming Branch, Taipei, Taiwan
| | - Ming-Yi Chung
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming University, Taipei, Taiwan
| | - Ying-Sheue Chen
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Betau Hwang
- Department of Child and Adolescent Psychiatry, Taipei City Hospital, Songde Branch, Taipei, Taiwan
| | - I-Fang Mao
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung, Taiwan
| | - Mei-Lien Chen
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming University, 155, Sec. 2, Linong Street, Taipei 11, Taiwan.
| |
Collapse
|
26
|
Huang YF, Pan WC, Tsai YA, Chang CH, Chen PJ, Shao YS, Tsai MS, Hou JW, Lu CA, Chen ML. Concurrent exposures to nonylphenol, bisphenol A, phthalates, and organophosphate pesticides on birth outcomes: A cohort study in Taipei, Taiwan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 607-608:1126-1135. [PMID: 28724251 DOI: 10.1016/j.scitotenv.2017.07.092] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/06/2017] [Accepted: 07/11/2017] [Indexed: 05/11/2023]
Abstract
Prenatal exposure to phenols, phthalates (PAEs), and organophosphate (OP) pesticides may increase the risk of abnormal birth outcomes. However, many previous studies have examined exposure to a limited number of chemical classes or exposure profiles limited to a specific stage of pregnancy. This study aims to characterize the concurrent exposure scenario throughout pregnancy by simultaneously monitoring internal doses of several endocrine-disrupting compounds (EDCs), including 2 phenols (nonylphenol (NP) and bisphenol A (BPA)), 9 PAEs, and 6 OP pesticide metabolites and to assess the relationships between concurrent exposure to EDCs and infant birth weight, length, and head and chest circumference. One hundred and sixty two women provided three spot urine samples at approximately 11 and 26weeks gestation and at delivery. We applied multivariable linear regression and ridge regression models to estimate the effects of separate and correlated exposures. Multivariable linear regression models revealed that women with short birth-length infants had significantly higher urinary second-trimester NP levels (50th percentile, 5.03μg/g creatinine) (β=-0.47cm; 95% CI=-0.93 to -0.01). Similarly significant relationships were observed between second-trimester mono-methyl phthalate (MMP) exposure and short birth length, second-trimester ΣPAEs and short birth length, second-trimester ΣPAEs exposure and reduced head and chest circumference, second-trimester diethylphosphate (DEP) exposure and reduced birth weight and length, and second-trimester ΣDEPs exposure and short birth length. Women with urinary BPA above the 75th percentile or ΣPAEs levels above the 50th percentile in the third trimester had infants with significantly reduced head circumference. These observations suggest that the second trimester may be the critical stage of susceptibility for fetal development. In ridge regression models, for which women with fewer measures for exposure to NP, BPA, MMP, ΣPAEs, DEP and ΣDEPs simultaneously were available, no relationships were found with infant size at birth. Additional studies with larger sample sizes are warranted.
Collapse
Affiliation(s)
- Yu-Fang Huang
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Wen-Chi Pan
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yen-An Tsai
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chia-Huang Chang
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Pei-Jung Chen
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Shuan Shao
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ming-Song Tsai
- Department of Obstetrics and Gynecology, Cathay General Hospital, Taipei, Taiwan; School of Medicine, Fu Jen Catholic University, Taipei, Taiwan
| | - Jia-Woei Hou
- School of Medicine, Fu Jen Catholic University, Taipei, Taiwan; Department of Pediatrics, Cathay General Hospital, Taipei, Taiwan
| | - Chensheng Alex Lu
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Mei-Lien Chen
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
27
|
Urinary Levels of 4-Nonylphenol and 4-t-Octylphenol in a Representative Sample of the Korean Adult Population. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14080932. [PMID: 28820486 PMCID: PMC5580634 DOI: 10.3390/ijerph14080932] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/11/2017] [Accepted: 08/16/2017] [Indexed: 12/17/2022]
Abstract
4-Nonylphenol (4-NP) and 4-t-octylphenol (4-t-OP) are xenoestrogen compounds to which humans are exposed via contaminated food, water, and air. This study assessed the body burden of 4-NP and 4-t-OP in Koreans aged 18-69 years using data from the Korean National Human Biomonitoring Survey conducted in 2009. Based on data from 1865 representative Koreans, 83.2% and 91.8% had urinary 4-NP and 4-t-OP concentrations >0.05 ng/mL (limit of detection). Of the Korean adult population, the geometric mean urinary concentrations of 4-NP and 4-t-OP were 3.70 ng/mL (95% confidence interval (CI) = 3.20-4.27) and 0.60 ng/mL (95% CI = 0.55-0.66), respectively. Urine 4-NP concentrations were significantly associated with place of residence and smoking status, whereas urine 4-t-OP concentrations were not correlated with any of the demographic factors. These findings suggest that most Koreans have detectable levels of 4-NP and 4-t-OP in their urine and that the body burden of 4-NP, but not 4-t-OP, varies according to some demographic factors.
Collapse
|
28
|
Huang YF, Wang PW, Huang LW, Lai CH, Yang W, Wu KY, Lu CA, Chen HC, Chen ML. Prenatal Nonylphenol and Bisphenol A Exposures and Inflammation Are Determinants of Oxidative/Nitrative Stress: A Taiwanese Cohort Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:6422-6429. [PMID: 28490175 DOI: 10.1021/acs.est.7b00801] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Prenatal exposure to nonylphenol (NP) and/or bisphenol A (BPA) has been reported to be associated with adverse birth outcomes; however, the underlying mechanisms remain unclear. The primary mechanism is endocrine disruption of the binding affinity for the estrogen receptor, but oxidative stress and inflammation might also play a contributory role. We aimed to investigate urinary NP and BPA levels in relation to biomarkers of oxidative/nitrative stress and inflammation and to explore whether changes in oxidative/nitrative stress are a function of prenatal exposure to NP/BPA and inflammation in 241 mother-fetus pairs. Third-trimester urinary biomarkers of oxidative/nitrative stress were simultaneously measured, including products of oxidatively and nitratively damaged DNA (8-hydroxy-2'-deoxyguanosine (8-OHdG) and 8-nitroguanine (8-NO2Gua)) as well as products of lipid peroxidation (8-iso-prostaglandin F2α (8-isoPF2α) and 4-hydroxy-2-nonenal-mercapturic acid (HNE-MA)). The antioxidant glutathione peroxidase (GPx) and inflammation biomarkers, including C-reactive protein (CRP) and a panel of cytokines (interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α)), were analyzed in maternal and umbilical cord plasma samples. In adjusted models, we observed significant positive associations between NP exposure and 8-OHdG and 8-NO2Gua levels, between BPA and 8-isoPF2α levels, and between maternal CRP levels and HNE-MA levels. Additionally, BPA and TNF-α levels in cord blood were inversely associated with maternal and GPx levels in cord blood as well as maternal TNF-α levels were inversely associated with maternal GPx levels. These results support a role for exposure to NP and BPA and possibly inflammation in increasing oxidative/nitrative stress and decreasing antioxidant activity during pregnancy.
Collapse
Affiliation(s)
- Yu-Fang Huang
- Institute of Environmental and Occupational Health Sciences, National Yang Ming University , Taipei, Taiwan
- Department of Environmental Health, Harvard T.H. Chan School of Public Health , Boston, Massachusetts United States
| | - Pei-Wei Wang
- Institute of Environmental and Occupational Health Sciences, National Yang Ming University , Taipei, Taiwan
- Department of Pediatrics, Taipei City Hospital , Heping Fuyou Branch, Taipei, Taiwan
| | - Li-Wei Huang
- Department of Obstetrics & Gynecology, Taipei City Hospital , Heping Fuyou Branch, Taipei, Taiwan
| | - Chun-Hao Lai
- Institute of Environmental and Occupational Health Sciences, National Yang Ming University , Taipei, Taiwan
| | - Winnie Yang
- Division of Pediatrics, Taipei City Hospital , Yangming Branch, Taipei, Taiwan
| | - Kuen-Yuh Wu
- Institute of Occupational Medicine and Industrial Hygiene, National Taiwan University , Taipei, Taiwan
| | - Chensheng Alex Lu
- Department of Environmental Health, Harvard T.H. Chan School of Public Health , Boston, Massachusetts United States
| | - Hsin-Chang Chen
- Institute of Occupational Medicine and Industrial Hygiene, National Taiwan University , Taipei, Taiwan
| | - Mei-Lien Chen
- Institute of Environmental and Occupational Health Sciences, National Yang Ming University , Taipei, Taiwan
| |
Collapse
|
29
|
Al-Saleh I, Elkhatib R, Al-Rouqi R, Abduljabbar M, Eltabache C, Al-Rajudi T, Nester M. Alterations in biochemical markers due to mercury (Hg) exposure and its influence on infant's neurodevelopment. Int J Hyg Environ Health 2016; 219:898-914. [PMID: 27453562 DOI: 10.1016/j.ijheh.2016.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/26/2016] [Accepted: 07/01/2016] [Indexed: 01/04/2023]
Abstract
This study examined the role of oxidative stress due to mercury (Hg) exposure on infant's neurodevelopmental performance. A total of 944 healthy Saudi mothers and their respective infants (aged 3-12 months) were recruited from 57 Primary Health Care Centers in Riyadh City. Total mercury (Hg) was measured in mothers and infants urine and hair samples, as well as mother's blood and breast milk. Methylmercury (MeHg) was determined in the mothers and infants' hair and mother's blood. Urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG), malondialdehyde (MDA), and porphyrins were used to assess oxidative stress. The infant's neurodevelopment was evaluated using Denver Developmental Screening Test II (DDST-II) and Parents' Evaluation of Developmental Status. The median total Hg levels in mother's urine, infant's urine, mother's hair, infant's hair, and mother's blood and breast milk were 0.995μg/l, 0.716μg/l, 0.118μg/g dw, 0.101μg/g dw, 0.635μg/l, and 0.884μg/l respectively. The median MeHg levels in mother's hair, infant's hair, and mother's blood were 0.132μg/g dw, 0.091μg/g dw, and 2.341μg/l respectively. A significant interrelationship between mothers and infants Hg measures in various matrices was noted. This suggests that mother's exposure to different forms of Hg (total and/or MeHg) from various sources contributed significantly to the metal body burden of their respective infants. Even though Hg exposure was low, it induced high oxidative stress in mothers and infants. The influence of multiplicative interaction terms between Hg measures and oxidative stress biomarkers was tested using multiple regression analysis. Significant interactions between the urinary Hg levels in mothers and infants and oxidative stress biomarkers (8-OHdG and MDA) were noted. The MeHg levels in mother-infant hair revealed similar interaction patterns. The p-values for both were below 0.001. These observations suggest that the exposure of our infants to Hg via mothers either during pregnancy and/or neonatal life, promoted oxidative stress that might have played a role in infant neurodevelopmental delays that we reported previously. The results confirmed that the interaction between infant's MeHg in hair and 8-OHdG and MDA levels was significantly associated with a delay in DDST-II performance (ß=-0.188, p=0.028). This finding provides an insight into the potential consequences of Hg-induced oxidative stress to infant's cognitive neurodevelopment for the first time. This observation still needs future studies to be validated. Given the low MeHg levels in our population, these findings are of particular importance.
Collapse
Affiliation(s)
- Iman Al-Saleh
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, PO Box: 3354, Riyadh 11211, Saudi Arabia.
| | - Rola Elkhatib
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, PO Box: 3354, Riyadh 11211, Saudi Arabia
| | - Reem Al-Rouqi
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, PO Box: 3354, Riyadh 11211, Saudi Arabia
| | - Mai Abduljabbar
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, PO Box: 3354, Riyadh 11211, Saudi Arabia
| | - Chafica Eltabache
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, PO Box: 3354, Riyadh 11211, Saudi Arabia
| | - Tahreer Al-Rajudi
- Environmental Health Program, King Faisal Specialist Hospital and Research Centre, PO Box: 3354, Riyadh 11211, Saudi Arabia
| | - Michael Nester
- Department of Neurosciences, King Faisal Specialist Hospital and Research Centre, PO Box: 3354, Riyadh 11211, Saudi Arabia
| |
Collapse
|
30
|
Zhang YX, Yang X, Zou P, Du PF, Wang J, Jin F, Jin MJ, She YX. Nonylphenol Toxicity Evaluation and Discovery of Biomarkers in Rat Urine by a Metabolomics Strategy through HPLC-QTOF-MS. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13050501. [PMID: 27187439 PMCID: PMC4881126 DOI: 10.3390/ijerph13050501] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/08/2016] [Accepted: 05/10/2016] [Indexed: 02/02/2023]
Abstract
Nonylphenol (NP) was quantified using liquid chromatography tandem mass spectrometry (LC-MS/MS) in the urine and plasma of rats treated with 0, 50, and 250 mg/kg/day of NP for four consecutive days. A urinary metabolomic strategy was originally implemented by high performance liquid chromatography time of flight mass spectrometry (HPLC-QTOF-MS) to explore the toxicological effects of NP and determine the overall alterations in the metabolite profiles so as to find potential biomarkers. It is essential to point out that from the observation, the metabolic data were clearly clustered and separated for the three groups. To further identify differentiated metabolites, multivariate analysis, including principal component analysis (PCA), orthogonal partial least-squares discriminant analysis (OPLS-DA), high-resolution MS/MS analysis, as well as searches of Metlin and Massbank databases, were conducted on a series of metabolites between the control and dose groups. Finally, five metabolites, including glycine, glycerophosphocholine, 5-hydroxytryptamine, malonaldehyde (showing an upward trend), and tryptophan (showing a downward trend), were identified as the potential urinary biomarkers of NP-induced toxicity. In order to validate the reliability of these potential biomarkers, an independent validation was performed by using the multiple reaction monitoring (MRM)-based targeted approach. The oxidative stress reflected by urinary 8-oxo-deoxyguanosine (8-oxodG) levels was elevated in individuals highly exposed to NP, supporting the hypothesis that mitochondrial dysfunction was a result of xenoestrogen accumulation. This study reveals a promising approach to find biomarkers to assist researchers in monitoring NP.
Collapse
Affiliation(s)
- Yan-Xin Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, China.
| | - Xin Yang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, China.
| | - Pan Zou
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, China.
| | - Peng-Fei Du
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standard & Testing Technology for Agro-Product, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
- Key Laboratory of Agro-Product Safety and Quality, Ministry of Agriculture, Beijing 100081, China.
| | - Jing Wang
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standard & Testing Technology for Agro-Product, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
- Key Laboratory of Agro-Product Safety and Quality, Ministry of Agriculture, Beijing 100081, China.
| | - Fen Jin
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standard & Testing Technology for Agro-Product, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
- Key Laboratory of Agro-Product Safety and Quality, Ministry of Agriculture, Beijing 100081, China.
| | - Mao-Jun Jin
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standard & Testing Technology for Agro-Product, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
- Key Laboratory of Agro-Product Safety and Quality, Ministry of Agriculture, Beijing 100081, China.
| | - Yong-Xin She
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standard & Testing Technology for Agro-Product, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
- Key Laboratory of Agro-Product Safety and Quality, Ministry of Agriculture, Beijing 100081, China.
| |
Collapse
|