1
|
He M, Wang H, Fu J, Ruan J, Li F, Liang X, Wei L. Oxidative stress and mitochondrial dysfunctions induced by cyanobacterial microcystin-LR in primary grass carp hepatocytes. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 282:107327. [PMID: 40121739 DOI: 10.1016/j.aquatox.2025.107327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 03/03/2025] [Accepted: 03/16/2025] [Indexed: 03/25/2025]
Abstract
Microcystin-LR (MC-LR), a cyclic heptapeptide produced by freshwater cyanobacteria, induces a range of liver injuries. However, the mechanisms underlying MC-LR toxicity in primary hepatocytes of aquatic organisms remains poorly understood. In this study, we investigated the effects of MC-LR on oxidative stress and mitochondrial function using primarily cultured grass carp hepatocytes. The results revealed that IC50 of MC-LR on grass carp primary liver cells for 24 hours was 2.40 μmol/L. Based on 24h-IC50, concentrations of 0, 0.30, 0.60, and 1.20 μmol/L were used in subsequent experiments. MC-LR exposure led to a significant reduction in cell viability, induced abnormal cell morphology, and caused plasma membrane rupture, as indicated by elevated LDH activity in a concentration-dependent manner. Additionally, MC-LR exposure induced oxidative stress, resulting in increased ROS levels and downregulation of genes associated with oxidative stress, including keap1, nrf2, cat, sod1, gpx, gst, and gr (P<0.05). Furthermore, the electron microscopy results showed that MC-LR caused damage to the ultrastructure of primary hepatocytes, including mitochondrial membrane rupture, vacuolation, and induction of mitochondrial autophagy. Moreover, MC-LR exposure elevated intracellular Ca2+ concentration, reduced MMP and ATP levels, and inhibited mitochondrial respiratory chain complex I activity (P<0.05). qRT-PCR analysis demonstrated that MC-LR treatment significantly decreased the transcriptional levels of genes related to mitochondrial quality control including pgc-1α, tfam, nrf1, drp1, opa1, mfn1, and mfn2 (P<0.05). Collectively, our findings highlight that MC-LR causes oxidative stress and impairs mitochondrial function, leading to further hepatocyte damage, which provides insights into the mechanisms of MC-LR-induced hepatotoxicity and offers valuable references for further investigations.
Collapse
Affiliation(s)
- Miao He
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province 330045, PR China.
| | - Hui Wang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province 330045, PR China
| | - Jianping Fu
- College of life sciences, Jiangxi Normal University, Nanchang, Jiangxi Province 330022, PR China
| | - Jiming Ruan
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province 330045, PR China
| | - Fugui Li
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province 330045, PR China
| | - Ximei Liang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province 330045, PR China
| | - Lili Wei
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province 330045, PR China.
| |
Collapse
|
2
|
Tong Y, Chu M, Zhou J, Wang Q, Li G, Abd El-Aty AM, Dang J. Isolation of highly polar galloyl glucoside tautomers from Saxifraga tangutica through preparative chromatography and assessment of their in vitro antioxidant activity. BMC Chem 2024; 18:222. [PMID: 39516925 PMCID: PMC11549745 DOI: 10.1186/s13065-024-01330-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
In this work, the rapid and efficient preparation of isolated galloyl glucoside tautomer free radical inhibitors was investigated using Saxifraga tangutica as a raw material. Four highly polar galloyl glucoside tautomers, 3-O-galloyl-α-D-glucose ⇌ 3-O-galloyl-β-D-glucose (Fr2-1-1), 2-O-galloyl-α-D-glucose ⇌ 2-O-galloyl-β-D-glucose (Fr2-1-2/2-1-3), 1-O-galloyl-β-D-glucose (Fr2-2-1), and 6-O-galloyl-α-D-glucose ⇌ 6-O-galloyl-β-D-glucose (Fr2-3-1/Fr2-3-2), were obtained via two-step medium-pressure liquid chromatography (with solid loading instead of conventional liquid injection) and one-step high-performance chromatography coupled with on-line RPLC-DPPH techniques for targeted isolation. This separation integration technique not only increases sample intake and reduces time cost but also visualizes each step of targeted separation. All four compounds were isolated from the plant for the first time. In vitro antioxidant activity assays by DPPH (1,1‑diphenyl-2-picrylhydrazyl) revealed that Fr2-1-2/Fr2-1-3 (IC50: 5.52 ± 0.32 μM), Fr2-2-1 (IC50: 7.22 ± 0.57 μM), and Fr2-3-1/Fr2-3-2 (IC50: 7.36 ± 0.25 μM) had superior free radical scavenging abilities and that both were superior to that of quercetin (IC50: 18.61 ± 3.55 μM). Oxidative stress assays revealed that Fr2-1-2/Fr2-1-3 significantly inhibited oxidative stress damage in H2O2-induced HepG2 cells, decreased the level of ROS (P < 0.01) and protected hepatocytes. Combined with the current results, gallic acid showed greater antioxidant activity when H atoms were replaced at D-glucose -OH (C-2) than at the other three sites [-OH (C-1), -OH (C-6) and -OH (C-3)].
Collapse
Affiliation(s)
- Yingying Tong
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, Qinghai, People's Republic of China
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Ming Chu
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Jia Zhou
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, Qinghai, People's Republic of China
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Qilan Wang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, Qinghai, People's Republic of China
| | - Gang Li
- Center for Mitochondria and Healthy Aging, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, Erzurum, 25240, Turkey
| | - Jun Dang
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, Qinghai, People's Republic of China.
| |
Collapse
|
3
|
Abdallah MF, Recote JM, Van Camp C, Van Hassel WHR, Pedroni L, Dellafiora L, Masquelier J, Rajkovic A. Potential (co-)contamination of dairy milk with AFM1 and MC-LR and their synergistic interaction in inducing mitochondrial dysfunction in HepG2 cells. Food Chem Toxicol 2024; 192:114907. [PMID: 39111684 DOI: 10.1016/j.fct.2024.114907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/23/2024] [Accepted: 08/03/2024] [Indexed: 08/11/2024]
Abstract
Several toxic metabolites, such as aflatoxin M1 (AFM1), are known to contaminate dairy milk. However, as mentioned in an external EFSA report, there is a knowledge gap regarding the carry-over of certain emerging toxins such as microcystin-LR (MC-LR). Therefore, this work aimed to develop an LC-MS/MS method for MC-LR quantification in dairy milk. Also, the method included AFM1 as a common fungal metabolite and applied to analyze 113 dairy milk samples collected directly after the end of the summer peak. Both toxins were below their LODs, keeping the question on MC-LR carry-over still unanswered. Moreover, an in silico analysis, using a 3D molecular modeling was performed, pointing to a possible interaction between MC-LR and milk proteins, especially β-lactoglobulin. Since AFM1 and MC-LR are hepatotoxic, their interaction in inducing mitochondrial dysfunction in HepG2 cells was investigated at low (subcytotoxic) concentrations. Live cell imaging-based assays showed an inhibition in cell viability, without involvement of caspase-3/7, and a hyperpolarization in the mitochondrial membrane potential after the exposure to a mixture of 100 ng mL-1 AFM1 and 1000 ng mL-1 MC-LR for 48h. Extracellular flux analysis revealed inhibitions of several key parameters of mitochondrial function (basal respiration, ATP-linked respiration, and spare respiratory capacity).
Collapse
Affiliation(s)
- Mohamed F Abdallah
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Belgium; Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Assiut University, Egypt.
| | - Jessa May Recote
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Belgium
| | - Camille Van Camp
- Unit Toxins, Organic Contaminants and Additives, Sciensano, Belgium
| | | | | | | | | | - Andreja Rajkovic
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Belgium
| |
Collapse
|
4
|
Liu BL, Yu PF, Guo JJ, Xie LS, Liu X, Li YW, Xiang L, Zhao HM, Feng NX, Cai QY, Mo CH, Li QX. Congener-specific fate and impact of microcystins in the soil-earthworm system. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134439. [PMID: 38677123 DOI: 10.1016/j.jhazmat.2024.134439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Microcystins (MCs) have a significant influence on aquatic ecosystems, but little is known about their terrestrial fate and impact. Here, we investigated the fate of two MCs (MC-LR and MC-RR) in the soil-earthworm system, with consideration of their congener-specific impact on earthworm health, soil bacteria, and soil metabolome. Although MCs had little acute lethal effect on earthworms, they caused obvious growth inhibition and setae rupture. Relative to MC-RR, MC-LR exhibited higher bioaccumulation and the resulting dermal lesions and deformation of longitudinal muscles. While the incorporation of both MCs into soils stimulated pathogenic bacteria and depressed oxidative stress tolerant bacteria, the response among soil nitrification and glutathione metabolism differed between the two congeners. The dissipation kinetics of MCs obeyed the first-order model. Earthworms stimulated soil N-cycling enzyme activities, increased the abundance of MC-degrading bacteria, and promoted bacterial metabolic functions related to glutathione metabolism, xenobiotics biodegradation, and metabolism of amino acids that comprise MCs, which accelerated the dissipation of MC-LR and MC-RR by 227% and 82%, respectively. These results provide evidence of significant congener differences in the terrestrial fate and impact of MCs, which will enable a better understanding of their role in mediating soil functions and ecosystem services.
Collapse
Affiliation(s)
- Bai-Lin Liu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Peng-Fei Yu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jing-Jie Guo
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Li-Si Xie
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xiang Liu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Nai-Xian Feng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, United States
| |
Collapse
|
5
|
Liu H, Du X, Zhang Z, Ge K, Chen X, Losiewicz MD, Guo H, Zhang H. Co-exposure of microcystin and nitrite enhanced spermatogenic disorders: The role of mtROS-mediated pyroptosis and apoptosis. ENVIRONMENT INTERNATIONAL 2024; 188:108771. [PMID: 38805914 DOI: 10.1016/j.envint.2024.108771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/26/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024]
Abstract
Microcystins (MCs) and nitrites are coexisted in the environment and have reproductive toxicity. The combined toxic effect and mechanism of MCs and nitrite on spermatogenesis remain largely unclear. In the present study, co-exposure to microcystin-leucine arginine (MC-LR) and sodium nitrite (NaNO2) aggravated testicular damage of Balb/c mice and mitochondrial impairment of spermatogonia, Sertoli cells, and sperm. Furthermore, MC-LR and NaNO2 reduced sperm density with a synergistic effect. In addition, MC-LR and NaNO2 synergistically induced oxidative stress in the reproductive system by decreasing superoxide dismutase (SOD) activity and glutathione (GSH) levels and increasing levels of mitochondrial reactive oxygen species (mtROS) and reactive oxygen species (ROS). More importantly, mitoquidone mesylate (MitoQ), an inhibitor of mtROS, blocked MC-LR and NaNO2-induced spermatogonia and Sertoli cell apoptosis by inhibiting high expression of Bax, Fadd, Caspase-8, and cleaved-Caspase-3. On the other hand, MitoQ suppressed pyroptosis of Sertoli cells by inhibiting the expression of NLRP3, N-GSDMD, and cleaved-Caspase-1. Additionally, MitoQ alleviated co-exposure-induced sperm density reduction and organ index disorders in F1 generation mice. Together, co-exposure of MC-LR and NaNO2 can enhance spermatogenic disorders by mitochondrial oxidative impairment-mediated germ cell death. This study emphasizes the potential risks of MC-LR and NaNO2 on reproduction in realistic environments and highlights new insights into the cause and treatment of spermatogenic disorders.
Collapse
Affiliation(s)
- Haohao Liu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China; Department of Public Health, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Zongxin Zhang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Kangfeng Ge
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xinghai Chen
- Department of Chemistry and Biochemistry, St Mary's University, San Antonio, TX, USA
| | - Michael D Losiewicz
- Department of Chemistry and Biochemistry, St Mary's University, San Antonio, TX, USA
| | - Hongxiang Guo
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002 Henan, China.
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China.
| |
Collapse
|
6
|
Mugani R, El Khalloufi F, Redouane EM, Haida M, Aba RP, Essadki Y, El Amrani Zerrifi S, Hejjaj A, Ouazzani N, Campos A, Grossart HP, Mandi L, Vasconcelos V, Oudra B. Unlocking the potential of bacterioplankton-mediated microcystin degradation and removal: A bibliometric analysis of sustainable water treatment strategies. WATER RESEARCH 2024; 255:121497. [PMID: 38555787 DOI: 10.1016/j.watres.2024.121497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/31/2024] [Accepted: 03/19/2024] [Indexed: 04/02/2024]
Abstract
Microcystins (MCs) constitute a significant threat to human and environmental health, urging the development of effective removal methods for these toxins. In this review, we explore the potential of MC-degrading bacteria as a solution for the removal of MCs from water. The review insights into the mechanisms of action employed by these bacteria, elucidating their ability to degrade and thus remove MCs. After, the review points out the influence of the structural conformation of MCs on their removal, particularly their stability at different water depths within different water bodies. Then, we review the crucial role played by the production of MCs in ensuring the survival and safeguarding of the enzymatic activities of Microcystis cells. This justifies the need for developing effective and sustainable methods for removing MCs from aquatic ecosystems, given their critical ecological function and potential toxicity to humans and animals. Thereafter, challenges and limitations associated with using MC-degrading bacteria in water treatment are discussed, emphasizing the need for further research to optimize the selection of bacterial strains used for MCs biodegradation. The interaction of MCs-degrading bacteria with sediment particles is also crucial for their toxin removal potential and its efficiency. By presenting critical information, this review is a valuable resource for researchers, policymakers, and stakeholders involved in developing sustainable and practical approaches to remove MCs. Our review highlights the potential of various applications of MC-degrading bacteria, including multi-soil-layering (MSL) technologies. It emphasizes the need for ongoing research to optimize the utilization of MC-degrading bacteria in water treatment, ultimately ensuring the safety and quality of water sources. Moreover, this review highlights the value of bibliometric analyses in revealing research gaps and trends, providing detailed insights for further investigations. Specifically, we discuss the importance of employing advanced genomics, especially combining various OMICS approaches to identify and optimize the potential of MCs-degrading bacteria.
Collapse
Affiliation(s)
- Richard Mugani
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech 40000, Morocco; National Center for Studies and Research on Water and Energy, Cadi Ayyad University, P.O. Box: 511, 40000 Marrakech, Morocco; Department of Plankton and Microbial Ecology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Zur alten Fischerhuette 2, 14775 Stechlin, Germany
| | - Fatima El Khalloufi
- Natural Resources Engineering and Environmental Impacts Team, Multidisciplinary Research and Innovation Laboratory, Polydisciplinary Faculty of Khouribga, Sultan Moulay Slimane University of Beni Mellal, B.P.: 145, 25000, Khouribga, Morocco
| | - El Mahdi Redouane
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech 40000, Morocco
| | - Mohammed Haida
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech 40000, Morocco
| | - Roseline Prisca Aba
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech 40000, Morocco; National Center for Studies and Research on Water and Energy, Cadi Ayyad University, P.O. Box: 511, 40000 Marrakech, Morocco
| | - Yasser Essadki
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech 40000, Morocco
| | - Soukaina El Amrani Zerrifi
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech 40000, Morocco; Higher Institute of Nurses Professions and Health Techniques of Guelmim, Guelmim, Morocco
| | - Abdessamad Hejjaj
- National Center for Studies and Research on Water and Energy, Cadi Ayyad University, P.O. Box: 511, 40000 Marrakech, Morocco.
| | - Naaila Ouazzani
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech 40000, Morocco; National Center for Studies and Research on Water and Energy, Cadi Ayyad University, P.O. Box: 511, 40000 Marrakech, Morocco
| | - Alexandre Campos
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal
| | - Hans-Peter Grossart
- Department of Plankton and Microbial Ecology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Zur alten Fischerhuette 2, 14775 Stechlin, Germany; Institute of Biochemistry and Biology, University of Potsdam, Maulbeeralle 2, 14469 Potsdam, Germany
| | - Laila Mandi
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech 40000, Morocco; National Center for Studies and Research on Water and Energy, Cadi Ayyad University, P.O. Box: 511, 40000 Marrakech, Morocco
| | - Vitor Vasconcelos
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal.
| | - Brahim Oudra
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech 40000, Morocco
| |
Collapse
|
7
|
Jia W, Zhong L, Ren Q, Teng D, Gong L, Dong H, Li J, Wang C, He YX, Yang J. Microcystin-RR promote lipid accumulation through CD36 mediated signal pathway and fatty acid uptake in HepG2 cells. ENVIRONMENTAL RESEARCH 2024; 249:118402. [PMID: 38309560 DOI: 10.1016/j.envres.2024.118402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/19/2024] [Accepted: 02/01/2024] [Indexed: 02/05/2024]
Abstract
Microcystins (MC)-RR is a significant analogue of MC-LR, which has been identified as a hepatotoxin capable of influencing lipid metabolism and promoting the progression of liver-related metabolic diseases. However, the toxicity and biological function of MC-RR are still not well understood. In this study, the toxic effects and its role in lipid metabolism of MC-RR were investigated in hepatoblastoma cells (HepG2cells). The results demonstrated that MC-RR dose-dependently reduced cell viability and induced apoptosis. Additionally, even at low concentrations, MC-RR promoted lipid accumulation through up-regulating levels of triglyceride, total cholesterol, phosphatidylcholines and phosphatidylethaolamine in HepG2 cells, with no impact on cell viability. Proteomics and transcriptomics analysis further revealed significant alterations in the protein and gene expression profiles in HepG2 cells treated with MC-RR. Bioinformatic analysis, along with subsequent validation, indicated the upregulation of CD36 and activation of the AMPK and PI3K/AKT/mTOR in response to MC-RR exposure. Finally, knockdown of CD36 markedly ameliorated MC-RR-induced lipid accumulation in HepG2 cells. These findings collectively suggest that MC-RR promotes lipid accumulation in HepG2 cells through CD36-mediated signal pathway and fatty acid uptake. Our findings provide new insights into the hepatotoxic mechanism of MC-RR.
Collapse
Affiliation(s)
- Wenjuan Jia
- School of Basic Medical Sciences, Qingdao University, Qingdao, 266071, China; Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, 264000, China.
| | - Lin Zhong
- School of Basic Medical Sciences, Qingdao University, Qingdao, 266071, China; Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, 264000, China
| | - Qingmiao Ren
- The Precision Medicine Laboratory, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Da Teng
- School of Basic Medical Sciences, Qingdao University, Qingdao, 266071, China; Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, 264000, China
| | - Lei Gong
- Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, 264000, China
| | - Haibin Dong
- Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, 264000, China
| | - Jun Li
- School of Basic Medical Sciences, Qingdao University, Qingdao, 266071, China; Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, 264000, China
| | - Chunxiao Wang
- Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, 264000, China
| | - Yong-Xing He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Jun Yang
- Department of Cardiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, 264000, China.
| |
Collapse
|
8
|
Ge K, Du X, Liu H, Meng R, Wu C, Zhang Z, Liang X, Yang J, Zhang H. The cytotoxicity of microcystin-LR: ultrastructural and functional damage of cells. Arch Toxicol 2024; 98:663-687. [PMID: 38252150 DOI: 10.1007/s00204-023-03676-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024]
Abstract
Microcystin-LR (MC-LR) is a toxin produced by cyanobacteria, which is widely distributed in eutrophic water bodies and has multi-organ toxicity. Previous cytotoxicity studies have mostly elucidated the effects of MC-LR on intracellular-related factors, proteins, and DNA at the molecular level. However, there have been few studies on the adverse effects of MC-LR on cell ultrastructure and function. Therefore, research on the cytotoxicity of MC-LR in recent years was collected and summarized. It was found that MC-LR can induce a series of cytotoxic effects, including decreased cell viability, induced autophagy, apoptosis and necrosis, altered cell cycle, altered cell morphology, abnormal cell migration and invasion as well as leading to genetic damage. The above cytotoxic effects were related to the damage of various ultrastructure and functions such as cell membranes and mitochondria. Furthermore, MC-LR can disrupt cell ultrastructure and function by inducing oxidative stress and inhibiting protein phosphatase activity. In addition, the combined toxic effects of MC-LR and other environmental pollutants were investigated. This review explored the toxic targets of MC-LR at the subcellular level, which will provide new ideas for the prevention and treatment of multi-organ toxicity caused by MC-LR.
Collapse
Affiliation(s)
- Kangfeng Ge
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Haohao Liu
- Department of Public Health, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Ruiyang Meng
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Chunrui Wu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Zongxin Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiao Liang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Jun Yang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
9
|
Chowdhury RR, Rose S, Ezan F, Sovadinová I, Babica P, Langouët S. Hepatotoxicity of cyanotoxin microcystin-LR in human: Insights into mechanisms of action in the 3D culture model Hepoid-HepaRG. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123047. [PMID: 38036087 DOI: 10.1016/j.envpol.2023.123047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/03/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
Microcystin-LR (MC-LR) is a potent hepatotoxin produced by harmful cyanobacterial blooms (CyanoHABs). MC-LR targets highly differentiated hepatocytes expressing organic anion transporting polypeptides OATP1B1 and OATP1B3 that are responsible for hepatocellular uptake of the toxin. The present study utilized an advanced 3D in vitro human liver model Hepoid-HepaRG based on the cultivation of collagen-matrix embedded multicellular spheroids composed of highly differentiated and polarized hepatocyte-like cells. 14-d-old Hepoid-HepaRG cultures showed increased expression of OATP1B1/1B3 and sensitivity to MC-LR cytotoxicity at concentrations >10 nM (48 h exposure, EC20 = 26 nM). MC-LR induced neither caspase 3/7 activity nor expression of the endoplasmic reticulum stress marker gene BiP/GRP78, but increased release of pro-inflammatory cytokine IL-8, indicating a necrotic type of cell death. Subcytotoxic (10 nM) and cytotoxic (≥100 nM) MC-LR concentrations disrupted hepatocyte functions, such as xenobiotic metabolism phase-I enzyme activities (cytochrome P450 1A/1B) and albumin secretion, along with reduced expression of CYP1A2 and ALB genes. MC-LR also decreased expression of HNF4A gene, a critical regulator of hepatocyte differentiation and function. Genes encoding hepatobiliary membrane transporters (OATP1B1, BSEP, NTCP), hepatocyte gap junctional gene connexin 32 and the epithelial cell marker E-cadherin were also downregulated. Simultaneous upregulation of connexin 43 gene, primarily expressed by liver progenitor and non-parenchymal cells, indicated a disruption of tissue homeostasis. This was associated with a shift in the expression ratio of E-cadherin to N-cadherin towards the mesenchymal cell marker, a process linked to epithelial-mesenchymal transition (EMT) and hepatocarcinogenesis. The effects observed in the human liver cell in vitro model revealed mechanisms that can potentially contribute to the MC-LR-induced promotion and progression of hepatocellular carcinoma (HCC). Hepoid-HepaRG cultures provide a robust, accessible and versatile in vitro model, capable of sensitively detecting hepatotoxic effects at toxicologically relevant concentrations, allowing for assessing hepatotoxicity mechanisms, human health hazards and impacts of environmental hepatotoxins, such as MC-LR.
Collapse
Affiliation(s)
- Riju R Chowdhury
- Masaryk University, Faculty of Science, RECETOX, Kotlářská 2, 61137, Brno, Czech Republic
| | - Sophie Rose
- University of Rennes, Inserm, EHESP, Irset (Institut de Recherche en santé, environnement et travail), UMR_S 1085, 35000, Rennes, France
| | - Frédéric Ezan
- University of Rennes, Inserm, EHESP, Irset (Institut de Recherche en santé, environnement et travail), UMR_S 1085, 35000, Rennes, France
| | - Iva Sovadinová
- Masaryk University, Faculty of Science, RECETOX, Kotlářská 2, 61137, Brno, Czech Republic
| | - Pavel Babica
- Masaryk University, Faculty of Science, RECETOX, Kotlářská 2, 61137, Brno, Czech Republic
| | - Sophie Langouët
- University of Rennes, Inserm, EHESP, Irset (Institut de Recherche en santé, environnement et travail), UMR_S 1085, 35000, Rennes, France.
| |
Collapse
|
10
|
Bai J, Chen C, Sun Y, Li S, He R, Zhang Q, Sun Q, Huang Y, Tan A, Yuan L, Huang Y, Lan Y, Han Z. α-LA attenuates microcystin-LR-induced hepatocellular oxidative stress in mice through Nrf2-mediated antioxidant and detoxifying enzymes. Toxicon 2023; 235:107313. [PMID: 37832850 DOI: 10.1016/j.toxicon.2023.107313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023]
Abstract
Microcystins constitute a class of toxins synthesized by cyanobacteria and are known to inflict significant damage on the antioxidant defense system of living organisms, primarily targeting the liver. α-Lipoic acid (α-LA) is universally recognized as a potent antioxidant in biological systems. It exerts its beneficial effects through multiple mechanisms-directly neutralizing reactive oxygen species (ROS) and free radicals, and indirectly enhancing antioxidant defenses by facilitating the regeneration of glutathione (GSH). However, the precise modus operandi of α-LA's protective effect against Microcystin-LR-induced hepatotoxicity remains incompletely elucidated. The present study, therefore, employed α-LA to explore its protective role against Microcystin-LR exposure in mice. A model of Microcystin-LR-induced hepatic injury was established by administering Microcystin-LR into the peritoneal cavity of BALB/c mice daily over a two-week period. Thereafter, BALB/c mice were pre-treated with varying concentrations of α-LA via oral gavage for a duration of 7 days, followed by a 7-day exposure to Microcystin-LR. Our findings reveal that α-LA pre-treatment significantly mitigated hepatic pathologies in Microcystin-LR-exposed mice. Furthermore, α-LA administration led to a notable elevation in the activities and expression levels of nuclear factor erythroid 2-related factor 2, superoxide dismutase, glutathione peroxidase, glutathione S-transferase, and glutathione-indicative of its antioxidative capacity. Concurrently, a significant decrease was observed in the activities and expression levels of malondialdehyde and cytochrome P450 2E1. Consequently, α-LA emerges as a promising therapeutic candidate for the amelioration of liver oxidative damage subsequent to Microcystin-LR exposure.
Collapse
Affiliation(s)
- Jun Bai
- School of Public Health, Southwest Medical University, Luzhou, 646000, China; Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou, 646000, China.
| | - Chaoyun Chen
- School of Public Health, Southwest Medical University, Luzhou, 646000, China.
| | - Yaochuan Sun
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 404100, China
| | - Shangchun Li
- School of Public Health, Southwest Medical University, Luzhou, 646000, China; Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou, 646000, China
| | - Renjiang He
- School of Public Health, Southwest Medical University, Luzhou, 646000, China; Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou, 646000, China
| | - Qingbi Zhang
- School of Public Health, Southwest Medical University, Luzhou, 646000, China; Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou, 646000, China.
| | - Qian Sun
- Luzhou Ecological Environment Monitoring Center of Sichuan Province, Luzhou, 646000, China
| | - Yu Huang
- School of Public Health, Southwest Medical University, Luzhou, 646000, China
| | - Ailin Tan
- School of Public Health, Southwest Medical University, Luzhou, 646000, China
| | - Li Yuan
- School of Public Health, Southwest Medical University, Luzhou, 646000, China
| | - Yinxing Huang
- School of Public Health, Southwest Medical University, Luzhou, 646000, China
| | - Yuanyuan Lan
- School of Public Health, Southwest Medical University, Luzhou, 646000, China
| | - Zhixia Han
- School of Public Health, Southwest Medical University, Luzhou, 646000, China; Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
11
|
Wang X, Zhu Y, Lu W, Guo X, Chen L, Zhang N, Chen S, Ge C, Xu S. Microcystin-LR-induced nuclear translocation of cGAS promotes mutagenesis in human hepatocytes by impeding homologous recombination repair. Toxicol Lett 2022; 373:94-104. [PMID: 36435412 DOI: 10.1016/j.toxlet.2022.11.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/11/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022]
Abstract
Microcystin-LR (MC-LR) has been recognized as a typical hepatotoxic cyclic peptides produced by cyanobacteria. Nowadays, due to the frequent occurrence of cyanobacterial blooms, the underlying hepatotoxic mechanism of MC-LR has become the focus of attention. In our present work, the mutagenic effect of MC-LR on human normal hepatic (HL-7702) cells regulated by cGAS was mainly studied. Here, we showed that exposure to MC-LR for 1-4 days could activate the cGAS-STING signaling pathway and then trigger immune response in HL-7702 cells. Notably, relative to the treatment with 1 μM MC-LR for 1-3 days, it was observed that when HL-7702 cells were exposed to 1 μM MC-LR for 4 days, the mutation frequency at the Hprt locus was remarkably increased. In addition, cGAS in HL-7702 cells was also found to complete the nuclear translocation after 4-day exposure. Moreover, co-immunoprecipitation and homologous recombination (HR)-directed DSB repair assay were applied to show that homologous recombination repair was inhibited after 4-day exposure. However, the intervention of the nuclear translocation of cGAS by transfecting BLK overexpression plasmid restored homologous recombination repair and reduced the mutation frequency at the Hprt locus in HL-7702 cells exposed to MC-LR. Our study unveiled the distinct roles of cGAS in the cytoplasm and nucleus of human hepatocytes as well as potential mutagenic mechanism under the early and late stage of exposure to MC-LR, and provided a novel insight into the prevention and control measures about the hazards of cGAS-targeted MC-LR.
Collapse
Affiliation(s)
- Xiaofei Wang
- School of Biology, Food and Environment, Hefei University, Hefei 230601, PR China
| | - Yuchen Zhu
- School of Biology, Food and Environment, Hefei University, Hefei 230601, PR China
| | - Wenzun Lu
- School of Biology, Food and Environment, Hefei University, Hefei 230601, PR China
| | - Xiaoying Guo
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Science, Hefei 230031, PR China
| | - Liuzeng Chen
- School of Biology, Food and Environment, Hefei University, Hefei 230601, PR China
| | - Ning Zhang
- School of Biology, Food and Environment, Hefei University, Hefei 230601, PR China
| | - Shaopeng Chen
- School of Public Health, Wannan Medical College, Wuhu 241002, PR China
| | - Chunmei Ge
- School of Biology, Food and Environment, Hefei University, Hefei 230601, PR China.
| | - Shengmin Xu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei 230601, PR China.
| |
Collapse
|
12
|
Dong L, Jiang Z, Yang L, Hu F, Zheng W, Xue P, Jiang S, Andersen ME, He G, Crabbe MJC, Qu W. The genotoxic potential of mixed nitrosamines in drinking water involves oxidative stress and Nrf2 activation. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128010. [PMID: 34929594 DOI: 10.1016/j.jhazmat.2021.128010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/26/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
Nitrosamine by-products in drinking water are designated as probable human carcinogens by the IARC, but the health effects of simultaneous exposure to multiple nitrosamines in drinking water remain unknown. Genotoxicity assays were used to assess the effects of both individual and mixed nitrosamines in finished drinking water produced by a large water treatment plant in Shanghai, China. Cytotoxicity and genotoxicity were measured at 1, 10-, 100- and 1000-fold actual concentrations by the Ames test, Comet assay, γ-H2AX assay, and the cytokinesis-block micronuclei assay; oxidative stress and the Nrf2 pathway were also assessed. Nitrosamines detected in drinking water included NDMA (36.45 ng/L), NDPA (44.68 ng/L), and NEMA (37.27 ng/L). Treatment with a mixture of the three nitrosamines at 1000-fold actual drinking-water concentration induced a doubling of revertants in Salmonella typhimurium strain TA100, DNA and chromosome damage in HepG2 cells, while 1-1000-fold concentrations of compounds applied singly lacked these effects. Treatment with 100- and 1000-fold concentrations increased ROS, GSH, and MDA and decreased SOD activity. Thus, nitrosamine mixtures showed greater genotoxic potential than that of the individual compounds. N-Acetylcysteine protected against the nitrosamine-induced chromosome damage, and Nrf2 pathway activation suggested that oxidative stress played pivotal roles in the genotoxic property of the nitrosamine mixtures.
Collapse
Affiliation(s)
- Lei Dong
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China; Center for Water and Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Zhiqiang Jiang
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China; Center for Water and Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Lili Yang
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China; Center for Water and Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Fen Hu
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China; Center for Water and Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Weiwei Zheng
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China; Center for Water and Health, School of Public Health, Fudan University, Shanghai 200032, China; Key Laboratory of Health Technology Assessment, Ministry of Health, Fudan University, Shanghai 200032, China
| | - Peng Xue
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China; Center for Water and Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Songhui Jiang
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China; Center for Water and Health, School of Public Health, Fudan University, Shanghai 200032, China
| | | | - Gengsheng He
- Center for Water and Health, School of Public Health, Fudan University, Shanghai 200032, China; Key Laboratory of the Public Health Safety, Ministry of Education, Department of Nutrition and Food Hygiene, Fudan University, Shanghai 200032, China
| | - M James C Crabbe
- Wolfson College, Oxford University, Oxford OX2 6UD, United Kingdom; Institute of Biomedical and Environmental Science & Technology, University of Bedfordshire, Luton LU1 3JU, UK
| | - Weidong Qu
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China; Center for Water and Health, School of Public Health, Fudan University, Shanghai 200032, China; Key Laboratory of Health Technology Assessment, Ministry of Health, Fudan University, Shanghai 200032, China.
| |
Collapse
|
13
|
Wang L, Jin H, Zeng Y, Tan Y, Wang J, Fu W, Chen W, Cui K, Qiu Z, Zhou Z. HOXB4 Mis-Regulation Induced by Microcystin-LR and Correlated With Immune Infiltration Is Unfavorable to Colorectal Cancer Prognosis. Front Oncol 2022; 12:803493. [PMID: 35211403 PMCID: PMC8861523 DOI: 10.3389/fonc.2022.803493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/14/2022] [Indexed: 11/29/2022] Open
Abstract
Microcystin-LR (MC-LR) exists widely in polluted food and water in humid and warm areas, and facilitates the progression of colorectal cancer (CRC). However, the molecular mechanism associated with the MC-LR-induced CRC progression remains elusive. The purpose of this study is to explore the role of the hub genes associated with MC-LR-induced CRC development at the molecular, cellular and clinical levels through bioinformatics and traditional experiments. By utilizing R, we screened and investigated the differentially expressed genes (DEGs) between the MC-LR and the control groups with the GEO, in which, HOXB4 highly expressed in MC-LR-treated group was identified and further explored as a hub gene. With the aid of TCGA, GEPIA, HPA, UALCAN, Cistrome, and TIMER, the increased mRNA and protein levels of HOXB4 in CRC tissue were found to be positively associated with high tumor stage and poor prognosis, and were linked to immune infiltration, especially tumor-associated macrophages and cancer-associated fibroblasts. Cox regression analysis and nomogram prediction model indicated that high HOXB4 expression was correlated to poor survival probability. To elucidate the mechanism of high HOXB4 expression induced by MC-LR, we overlapped the genes involved in the MC-LR-mediated CRC pathways and the HOXB4-correlated transcription genes. Importantly, C-myc instead of PPARG and RUNX1 promoted the high expression of HOXB4 through experiment validation, and was identified as a key target gene. Interestingly, C-myc was up-regulated by HOXB4 and maintained cell cycle progression. In addition, MC-LR was proved to up-regulate HOXB4 expression, thus promoting proliferation and migration of Caco2 cells and driving the cell cycle progression. In conclusion, MC-LR might accelerate CRC progression. In the process, MC-LR induced C-myc augmentation elevates the high expression of HOXB4 through increasing the S phase cell proportion to enhance Caco2 cell proliferation. Therefore, HOXB4 might be considered as a potential prognostic biomarker for CRC.
Collapse
Affiliation(s)
- Lingqiao Wang
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Huidong Jin
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yi Zeng
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yao Tan
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jia Wang
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Wenjuan Fu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Weiyan Chen
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ke Cui
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhiqun Qiu
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ziyuan Zhou
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
14
|
Differential Effect of Hydroxen Peroxide οn Toxic Cyanobacteria of Hypertrophic Mediterranean Waterbodies. SUSTAINABILITY 2021. [DOI: 10.3390/su14010123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cyanobacterial blooms have been known since ancient times; however, they are currently increasing globally. Human and ecological health risks posed by harmful cyanobacterial blooms have been recorded around the world. These risks are mainly associated with their ability to affect the ecosystem chain by different mechanisms like the production of cyanotoxins, especially microcystins. Their expansion and their harmful effects have led many researchers to seek techniques and strategies to control them. Among them, hydrogen peroxide could be a promising tool against cyanobacteria and cyanotoxins and it is well-established as an environmentally friendly oxidizing agent because of its rapid decomposition into oxygen and water. The aim of the present study was to evaluate the effect of hydrogen peroxide on phytoplankton from two hypertrophic waterbodies in Greece. The effect of hydrogen peroxide on concentration of microcystins found in the waterbodies was also studied. Treatment with 4 mg/L hydrogen peroxide was applied to water samples originated from the waterbodies and Cyanobacterial composition and biomass, phycocyanin, chlorophyll-a, and intra-cellular and total microcystin concentrations were studied. Cyanobacterial biomass and phycocyanin was reduced significantly after the application of 4 mg/L hydrogen peroxide in water treatment experiments while chlorophytes and extra-cellular microcystin concentrations were increased. Raphidiopsis (Cylindrospermopsis) raciborskii was the most affected cyanobacterial species after treatment of the water of the Karla Reservoir in comparison to Aphanizomenon favaloroi, Planktolyngbya limnetica, and Chroococcus sp. Furthermore, Microcystis aeruginosa was more resistant to the treatment of Pamvotis lake water in comparison with Microcystis wesenbergii and Microcystis panniformis. Our study showed that hydrogen peroxide differentially impacts the members of the phytoplankton community, affecting, thus, its overall efficacy. Different effects of hydrogen peroxide treatment were observed among cyanobacerial genera as well as among cyanobacterial species of the same genus. Different effects could be the result of the different resistance mechanisms of each genus or species to hydrogen peroxide. Hydrogen peroxide could be used as a treatment for the mitigation of cyanobacterial blooms in a waterbody; however, the biotic and abiotic characteristics of the waterbody should be considered.
Collapse
|
15
|
Zandona A, Maraković N, Mišetić P, Madunić J, Miš K, Padovan J, Pirkmajer S, Katalinić M. Activation of (un)regulated cell death as a new perspective for bispyridinium and imidazolium oximes. Arch Toxicol 2021; 95:2737-2754. [PMID: 34173857 DOI: 10.1007/s00204-021-03098-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/15/2021] [Indexed: 12/20/2022]
Abstract
Oximes, investigated as antidotes against organophosphates (OP) poisoning, are known to display toxic effects on a cellular level, which could be explained beyond action on acetylcholinesterase as their main target. To investigate this further, we performed an in vitro cell-based evaluation of effects of two structurally diverse oxime groups at concentrations of up to 800 μM, on several cell models: skeletal muscle, kidney, liver, and neural cells. As indicated by our results, compounds with an imidazolium core induced necrosis, unregulated cell death characterized by a cell burst, increased formation of reactive oxygen species, and activation of antioxidant scavenging. On the other hand, oximes with a pyridinium core activated apoptosis through specific caspases 3, 8, and/or 9. Interestingly, some of the compounds exhibited a synergistic effect. Moreover, we generated a pharmacophore model for each oxime series and identified ligands from public databases that map to generated pharmacophores. Several interesting hits were obtained including chemotherapeutics and specific inhibitors. We were able to define the possible structural features of tested oximes triggering toxic effects: chlorine atoms in combination with but-2(E)-en-1,4-diyl linker and adding a second benzene ring with substituents such as chlorine and/or methyl on the imidazolium core. Such oximes could not be used in further OP antidote development research, but could be introduced in other research studies on new specific targets. This could undoubtedly result in an overall improved wider use of unexplored oxime database created so far in OP antidotes field of research in a completely new perspective.
Collapse
Affiliation(s)
- Antonio Zandona
- Institute for Medical Research and Occupational Health, POB 291, 10001, Zagreb, Croatia
| | - Nikola Maraković
- Institute for Medical Research and Occupational Health, POB 291, 10001, Zagreb, Croatia
| | | | - Josip Madunić
- Institute for Medical Research and Occupational Health, POB 291, 10001, Zagreb, Croatia
| | - Katarina Miš
- Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
| | | | - Sergej Pirkmajer
- Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
| | - Maja Katalinić
- Institute for Medical Research and Occupational Health, POB 291, 10001, Zagreb, Croatia.
| |
Collapse
|
16
|
Lei H, Song Y, Dong M, Chen G, Cao Z, Wu F, Chen C, Zhang C, Liu C, Shi Z, Zhang L. Metabolomics safety assessments of microcystin exposure via drinking water in rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 212:111989. [PMID: 33524913 DOI: 10.1016/j.ecoenv.2021.111989] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/06/2021] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
Drinking water exposure to microcystin-leucine-arginine (MC-LR), the most widely occurring cyanotoxins, poses a highly potential risk for human health. However, the health risk of MC-LR exposure at current guideline value in drinking water has not yet entirely evaluated. In the current study, we used 1H NMR-based metabolomics combined with targeted metabolic profiling by GC/LC-MS to explore the toxic effects of MC-LR exposure at environmentally relevant concentrations via drinking water in rats. The results revealed that multiple biological consequences of MC-LR exposure on host metabolism in rats. Both relatively low and high doses of MC-LR used here induced hepatic lipogenesis and inflammation. While only relatively high dose MC-LR (10 μg/L) in drinking water caused more metabolic disorders including inhibition of gluconeogenesis and promotion of β-oxidation of fatty acid. Although the dose of 1.0 μg/L MC-LR is extremely low for rats, alterations of metabolic profiles were unexpectedly found in rat liver and serum, alarming potential health risk of MC-LR at the WHO guideline level.
Collapse
Affiliation(s)
- Hehua Lei
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, China
| | - Yuchen Song
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Manyuan Dong
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gui Chen
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng Cao
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Wu
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuan Chen
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ce Zhang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Caixiang Liu
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, China
| | - Zunji Shi
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, China.
| | - Limin Zhang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences (CAS), Wuhan 430071, China; Wuhan National Laboratory for Optoelectronics, Wuhan 430074, China.
| |
Collapse
|
17
|
Xiao C, Mei F, Ren G, Long L, Chen M, Fang X, Li J, Li K, Tang Y, Huang T, Deng W. Synergistic Effect of MC-LR and C-Terminal Truncated HBx on HepG2 Cells and Their Effects on PP2A Mediated Downstream Target of MAPK Signaling Pathway. Front Genet 2020; 11:537785. [PMID: 33193609 PMCID: PMC7593820 DOI: 10.3389/fgene.2020.537785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 09/28/2020] [Indexed: 12/24/2022] Open
Abstract
C-terminally truncated hepatitis B virus (HBV) X (ctHBx) infection and exposure to microcystins-LR (MC-LR) can lead to human hepatitis and liver cancer, but the mechanism associated with their synergistically effects not been fully elucidated. The ctHBx (HBxΔ4 and HBxΔ32) lentivirus were constructed and transfected into the HepG2 cells. Then we investigated the function of MC-LR and ctHBx using the molecular biology approaches, including enzyme-linked immunosorbent assay, clone formation assay, scratch wound testing, transwell assays, carried out flow cytometry respectively to examine cell cycle and apoptosis in each group, and detected the related proteins of HBx, MEK/ERK/JNK/p38 in mitogen-activated protein kinase (MAPK) pathway and the downstream proteins such as cdc2, cdc25C, and p53 by western blotting. We found that the protein phosphorylase 2A (PP2A) enzyme activity in MC-LR and HBxΔ32/HBxΔ4 groups decreased more than in MC-LR and HBx group at the same time point and MC-LR concentration (P < 0.05). Meanwhile the proliferation, migration, invasion and colony formation capability of HepG2 cells were significantly enhanced in MC-LR and ctHBx groups (P < 0.05). In addition the proportion of S stage cells in the MC-LR-treated HBxΔ32/HBxΔ4 groups was significantly greater than that in the untreated groups (P < 0.05). Furthermore, the protein expression of MAPK signaling pathway including phospho-MEK1/2, ERKl/2, p38, and JNK were up-regulated by MC-LR and HBxΔ32, and the expression of cyclin-related proteins, including p53, cdc25C, and cdc2 were also activated (P < 0.05). Taken together, our findings revealed the essential significance of the MC-LR and ctHBx on the PP2A/MAPK/p53, cdc25C and cdc2 axis in the formation and development of HCC and identified MC-LR and ctHBx as potential causal cofactors of hepatocarcinogenesis.
Collapse
Affiliation(s)
- Chanchan Xiao
- Guangxi Medical University Cancer Hospital, Nanning, China
| | - Fanbiao Mei
- Guangxi Medical University Cancer Hospital, Nanning, China
| | - Guanhua Ren
- Guangxi Medical University Cancer Hospital, Nanning, China
| | - Long Long
- Guangxi Medical University Cancer Hospital, Nanning, China
| | - Maojian Chen
- Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xiang Fang
- Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jilin Li
- Guangxi Medical University Cancer Hospital, Nanning, China
| | - Kezhi Li
- Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yanping Tang
- Guangxi Medical University Cancer Hospital, Nanning, China
| | - Tianren Huang
- Guangxi Medical University Cancer Hospital, Nanning, China
| | - Wei Deng
- Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
18
|
Su RC, Lad A, Breidenbach JD, Kleinhenz AL, Modyanov N, Malhotra D, Haller ST, Kennedy DJ. Assessment of diagnostic biomarkers of liver injury in the setting of microcystin-LR (MC-LR) hepatotoxicity. CHEMOSPHERE 2020; 257:127111. [PMID: 32485513 DOI: 10.1016/j.chemosphere.2020.127111] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/11/2020] [Accepted: 05/16/2020] [Indexed: 06/11/2023]
Abstract
Microcystin-leucine arginine (MC-LR) is a potent liver toxin produced by freshwater cyanobacteria, also known as blue-green algae. While harmful algal blooms are increasing in frequency and severity worldwide, there is still no established method for the diagnosis and assessment of MC-LR induced liver damage. The guidelines for MC-LR safe exposure limits have been previously established based on healthy animal studies, however we have previously demonstrated that pre-existing non-alcoholic fatty liver disease (NAFLD) increases susceptiblity to the hepatotoxic effects of MC-LR. In this study, we sought to investigate the suitability of clinically used biomarkers of liver injury, specifically alanine aminotransferase (ALT) and alkaline phosphatase (ALP), as potential diagnostic tools for liver damage induced by chronic low dose administration of MC-LR in the setting of pre-existing NAFLD. In our Leprdb/J mouse model of NAFLD, we found that while MC-LR induced significant histopathologic damage in the setting of NAFLD, gene expression of ALT and ALP failed to increase with MC-LR exposure. Serum ALT and ALP also failed to increase with MC-LR exposure, except for a moderate increase in ALP with the highest dose of MC-LR used (100 μg/kg). In HepG2 human liver epithelial cells, we observed that increasing MC-LR exposure levels do not lead to an increase in ALT or ALP gene expression, intracellular enzyme activity, or extracellular activity, despite a significant increase in MC-LR induced cytotoxicity. These findings demonstrate that ALT and ALP may be unsuitable as diagnostic biomarkers for MC-LR induced liver damage.
Collapse
Affiliation(s)
- Robin C Su
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA.
| | - Apurva Lad
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA.
| | - Joshua D Breidenbach
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA.
| | - Andrew L Kleinhenz
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA.
| | - Nikolai Modyanov
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA; Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA.
| | - Deepak Malhotra
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA.
| | - Steven T Haller
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA; Department of Medical Microbiology and Immunology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA.
| | - David J Kennedy
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA; Department of Medical Microbiology and Immunology, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA.
| |
Collapse
|
19
|
Wang X, Li Y, Xiao H, Zhang M, Bao T, Luo X, Chen S. Genotoxicity of microcystin-LR in mammalian cells: Implication from peroxynitrite produced by mitochondria. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 195:110408. [PMID: 32179236 DOI: 10.1016/j.ecoenv.2020.110408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/27/2020] [Accepted: 02/29/2020] [Indexed: 06/10/2023]
Abstract
Microcystin-LR (MC-LR) is a widely known hepatotoxin which could induce the occurrence and metastasis of hepatocellular carcinoma. In recent years, with the frequent outbreak of cyanobacteria, the harm of MC-LR has gradually attracted more attention. Hence, this study focused on the effect of MC-LR on DNA damage in HepG2 cells, identifying the types and sources of free radicals that make an important function on this issue. Our data suggested that MC-LR induced concentration- and time-dependent increasement of DNA double-strand breaks (DSBs). After exposure to 1 μM MC-LR for 3 days, the protein expression and immunofluorescence staining of γ-H2AX was significantly increased. Using a scavenger of mitochondrial O2.- (4-hydroxy-tempo), a inhibitor of mitochondrial NOS (7-nitroindazole), and a scavenger of ONOO- (uric acid), it was revealed that ONOO- originated from mitochondria made a significant contribution to the genotoxicity of MC-LR. Moreover, a significant decreasement of mitochondrial membrane potential (MMP) was observed. These findings suggested that peroxynitrite targeting mitochondria plays a vital role in the MC-LR-induced genotoxic response in mammalian cells.
Collapse
Affiliation(s)
- Xiaofei Wang
- School of Biology, Food and Environment, Hefei University, Hefei, 230601, China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
| | - Yintao Li
- School of Biology, Food and Environment, Hefei University, Hefei, 230601, China
| | - Hourong Xiao
- School of Biology, Food and Environment, Hefei University, Hefei, 230601, China
| | - Min Zhang
- School of Biology, Food and Environment, Hefei University, Hefei, 230601, China
| | - Teng Bao
- School of Biology, Food and Environment, Hefei University, Hefei, 230601, China
| | - Xun Luo
- School of Biological Engineering, Huainan Normal University, Huainan, 232001, China
| | - Shaopeng Chen
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
| |
Collapse
|
20
|
Xu J, Qi G, Sui C, Wang W, Sun X. 3D h9e peptide hydrogel: An advanced three-dimensional cell culture system for anticancer prescreening of chemopreventive phenolic agents. Toxicol In Vitro 2019; 61:104599. [PMID: 31306737 DOI: 10.1016/j.tiv.2019.104599] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/28/2019] [Accepted: 07/10/2019] [Indexed: 01/06/2023]
Abstract
Traditional 2D monolayer cell culture model may overestimate chemopreventive agent's response due to lacking physiological relevance in three-dimensional microenvironment. This study was aimed to apply a novel 3D h9e peptide hydrogel cell culture system to evaluate the anticancer efficacy of chemopreventive phenolic acid on hepatocarcinoma HepG2 and colon adenocarcinoma SW480 cells. Both cell lines grew better in this 3D system with better cell growth and longer exponential phase than that in 2D model. Chlorogenic acid (CGA), known as a chemopreventive phenolic acid, at 0-40 μM for 72 h inhibited cell growth but not viability in both HepG2 and SW480 cells. The inhibition was much less potent in 3D system with an IC50 value of 58.0 ± 15.8 or 285.6 ± 75.4 μM when compared with 2D model with IC50 of 5.3 ± 0.3 or 12.0 ± 2.5 μM for HepG2 or SW480, respectively. Furthermore, the recovery of cells grown in 3D system after post-CGA appeared faster than 2D model. Taken together, an advanced 3D model has been established with favoring cell growth and less susceptible to inhibitory treatments in contrast to 2D model, thus predict closely to in vivo situation and may bridge the gap of in vitro to in vivo for prescreening chemopreventive agents for cancer prevention.
Collapse
Affiliation(s)
- Jingwen Xu
- Department of Food Nutrition Dietetics and Health, Kansas State University, Manhattan, KS 66506, USA
| | - Guangyan Qi
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Chunxia Sui
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Weiqun Wang
- Department of Food Nutrition Dietetics and Health, Kansas State University, Manhattan, KS 66506, USA.
| | - Xiuzhi Sun
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA; Department of Biological and Agriculture Engineering, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
21
|
Li Y, Ding W, Li X. Acute exposure of glyphosate-based herbicide induced damages on common carp organs via heat shock proteins-related immune response and oxidative stress. TOXIN REV 2019. [DOI: 10.1080/15569543.2019.1621903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Yuanyuan Li
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Weikai Ding
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Xiaoyu Li
- College of Life Science, Henan Normal University, Xinxiang, China
| |
Collapse
|
22
|
Gutiérrez-Praena D, Guzmán-Guillén R, Pichardo S, Moreno FJ, Vasconcelos V, Jos Á, Cameán AM. Cytotoxic and morphological effects of microcystin-LR, cylindrospermopsin, and their combinations on the human hepatic cell line HepG2. ENVIRONMENTAL TOXICOLOGY 2019; 34:240-251. [PMID: 30461177 DOI: 10.1002/tox.22679] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/31/2018] [Accepted: 11/04/2018] [Indexed: 06/09/2023]
Abstract
Cylindrospermopsin (CYN) and Microcystin-LR (MC-LR) are toxins produced by different cyanobacterial species, which are found mainly in freshwater reservoirs. Both of them can induce, separately, toxic effects in humans and wildlife. However, little is known about the toxic effects of the combined exposure, which could likely happen, taking into account the concomitant occurrence of the producers. As both cyanotoxins are well known to induce hepatic damage, the human hepatocellular HepG2 cell line was selected for the present study. Thus, the cytotoxicity of both pure cyanotoxins alone (0-5 μg/mL CYN and 0-120 μg/mL MC-LR) and in combination for 24 and 48 h was assayed, as long as the cytotoxicity of extracts from CYN-producing and nonproducing cyanobacterial species. The potential interaction of the combination was evaluated by the isobologram or Chou-Talalay's method, which provides a combination index as a quantitative measure of the two cyanotoxins interaction's degree. Moreover, a morphological study of the individual pure toxins and their combinations was also performed. Results showed that CYN was the most toxic pure cyanotoxin, being the mean effective concentrations obtained ≈4 and 90 μg/mL for CYN and MC-LR, respectively after 24 h. However, the simultaneous exposure showed an antagonistic effect. Morphologically, autophagy, at low concentrations, and apoptosis, at high concentrations were observed, with affectation of the rough endoplasmic reticulum and mitochondria. These effects were more pronounced with the combination. Therefore, it is important to assess the toxicological profile of cyanotoxins combinations in order to perform more realistic risk evaluations.
Collapse
Affiliation(s)
| | | | - Silvia Pichardo
- Área de Toxicología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | | | - Vitor Vasconcelos
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Ángeles Jos
- Área de Toxicología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Ana María Cameán
- Área de Toxicología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
23
|
Ma J, Li X. Insight into the negative impact of ionic liquid: A cytotoxicity mechanism of 1-methyl-3-octylimidazolium bromide. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:1337-1345. [PMID: 30125844 DOI: 10.1016/j.envpol.2018.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/17/2018] [Accepted: 08/02/2018] [Indexed: 06/08/2023]
Abstract
Ionic liquids (ILs) as a green replacement for volatile organic solvents are increasingly used in large-scale commercial applications. A good understanding of the toxic mechanisms and environmental impact of ILs is neede to reduce the risk for human health and the environment. For this purpose, we aimed to evaluate the possible impacts of 1-methyl-3-octylimidazolium bromide ([C8mim]Br) exposure on human hepatocellular carcinoma (HepG2) cells as to elucidate the cytotoxic mechanism of [C8mim]Br. Biochemical assays revealed that [C8mim]Br exposure altered the protein levels of heat shock protein 70 (HSP70) and HSP90, generally inhibiting total antioxidative capacity (T-AOC), depleting heme oxygenase-1 (HO-1) and increasing transcription and activity of inducible nitric oxide synthase (iNOS) in HepG2 cells. These results indicated that [C8mim]Br may induce biochemical disturbances and cause oxidative stress in HepG2 cells. Moreover, increased phosphorylation of p53, mitochondrial membrane disruption, cyclooxygenase-2 activation, Bcl-2 family protein modulation, cytochrome c and Smac/DIABLO release, and inhibition of apoptosis inhibitory protein-2 (c-IAP2) and survivin were also observed in [C8mim]Br-treated cells, suggesting that [C8mim]Br-induced apoptosis might be mediated by the mitochondrial pathway. Further research showed that [C8mim]Br exposure increased tumour necrosis factor α (TNF-α) transcription and content and promoted the expression of Fas and FasL, indicating that TNF-α and Fas/FasL are involved in the apoptosis induced by [C8mim]Br. Additionally, [C8mim]Br cytotoxicity was partly inhibited by N-acetyl-cysteine (NAC), and NAC reversed [C8mim]Br-mediated mitochondrial dysfunction and blocked apoptotic events by inhibiting the generation of reactive oxygen species (ROS). This work first demonstrated that the ROS-mediated mitochondrial and death receptor-initiated apoptotic pathway is involved in [C8mim]Br-induced HepG2 cell apoptosis.
Collapse
Affiliation(s)
- Junguo Ma
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Xiaoyu Li
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China.
| |
Collapse
|
24
|
Herrera N, Herrera C, Ortíz I, Orozco L, Robledo S, Agudelo D, Echeverri F. Genotoxicity and cytotoxicity of three microcystin-LR containing cyanobacterial samples from Antioquia, Colombia. Toxicon 2018; 154:50-59. [PMID: 30273704 DOI: 10.1016/j.toxicon.2018.09.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 09/19/2018] [Accepted: 09/25/2018] [Indexed: 01/09/2023]
Abstract
The presence of cyanobacterial blooms and cyanotoxins in water presents a global problem due to the deterioration of ecosystems and the possibility of poisoning in human and animals. Microcystin LR is the most widely distributed cyanotoxin and liver cells are its main target. In the present study, HepG2 cells were used to determine DNA damage of three crude extracts of cyanobacterial blooms containing MC-LR, through comet assay. The results show that all extracts at a concentration of 500 μg mL-1 caused low damage in hepatocytes exposed for 24 h, but produced total mortality even at low concentrations at 48 h. Moreover, balloons corresponding to cell apoptosis were found. Through HPLC/MS, MC-LR was detected in all samples of cyanobacterial blooms at concentrations of (5,65 μg ml-1) in sample 1, (1,24 μg ml-1) in sample 2 and (57,29 μg ml-1) in sample 3. In addition, in all samples high molecular weights peaks were detected, that may correspond to other microcystins. Besides, the cytotoxic effect of a cyanobacterial bloom and some of its chromatographic fractions from the crude extracts were evaluated in U-937, J774, Hela and Vero cell lines, using the enzymatic micromethod (MTT). The highest toxicity was detected in U-937 cells (LC50 = 29.7 μg mL-1) and Vero cells (LC50 = 39.7 μg mL-1). Based on these results, it is important to remark that genotoxic and cytotoxicity assays are valuable methods to predict potential biological risks in waters contaminated with blooms of cyanobacteria, since chemical analysis can only describe the presence of cyanotoxins, but not their biological effects.
Collapse
Affiliation(s)
- Natalia Herrera
- Grupo de Química Organica de Productos Naturales, Instituto de Química, Universidad de Antioquia, Calle 67 No. 53-10, Medellín, 050010, Colombia.
| | - Carolina Herrera
- Grupo de Química Organica de Productos Naturales, Instituto de Química, Universidad de Antioquia, Calle 67 No. 53-10, Medellín, 050010, Colombia
| | - Isabel Ortíz
- Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Luz Orozco
- Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Sara Robledo
- Programa de Estudio y Control de Enfermedades Tropicales, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Diana Agudelo
- Grupo de investigación en Gestión y Modelación Ambiental (GAIA), Universidad de Antioquia, Medellín, Colombia
| | - Fernando Echeverri
- Grupo de Química Organica de Productos Naturales, Instituto de Química, Universidad de Antioquia, Calle 67 No. 53-10, Medellín, 050010, Colombia.
| |
Collapse
|
25
|
Meneely JP, Hajšlová J, Krska R, Elliott CT. Assessing the combined toxicity of the natural toxins, aflatoxin B 1, fumonisin B 1 and microcystin-LR by high content analysis. Food Chem Toxicol 2018; 121:527-540. [PMID: 30253246 DOI: 10.1016/j.fct.2018.09.052] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 09/20/2018] [Accepted: 09/22/2018] [Indexed: 12/19/2022]
Abstract
As human co-exposure to natural toxins through food and water is inevitable, risk assessments to safeguard health are necessary. Aflatoxin B1 and fumonisin B1, frequent co-contaminants of maize and microcystin-LR, produced in freshwater by cyanobacteria are all naturally occurring potent toxins that threaten human health. Populations in the poorest regions of the world may suffer repeated simultaneous exposure to these contaminants. Using High Content Analysis, multiple cytotoxicity endpoints were measured for the individual toxins and mixtures in various cell lines. Results highlighted that significant cytotoxic effects were observed for aflatoxin B1 in all cell lines while no cytotoxic effects were observed for fumonisin B1 or microcystin-LR. Aflatoxin B1/microcystin-LR was cytotoxic in the order HepG2 > Caco-2 > MDBK. Fumonisin B1/microcystin-LR affected MDBK cells. The ternary mixture was cytotoxic to all cell lines. Most combinations were additive, however antagonism was observed for binary and ternary mixtures in HepG2 and MDBK cell lines at low and high concentrations. Synergy was observed in all cell lines, including at low concentrations. The combination of these natural toxins may pose a significant risk to populations in less developed countries. Furthermore, the study highlights the complexity around trying to regulate for human exposure to multiple contaminants.
Collapse
Affiliation(s)
- Julie P Meneely
- Institute for Global Food Security, School of Biological Sciences, Queen's University, Belfast, BT7 1NN, United Kingdom.
| | - Jana Hajšlová
- Faculty of Food & Biochemical Technology, Department of Food Analysis & Nutrition, University of Chemistry & Technology, Technická 3, 166 28, Prague 6, Czech Republic
| | - Rudolf Krska
- Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Str. 20, 3430, Tulln, Austria
| | - Christopher T Elliott
- Institute for Global Food Security, School of Biological Sciences, Queen's University, Belfast, BT7 1NN, United Kingdom
| |
Collapse
|
26
|
Tumor-promoting cyanotoxin microcystin-LR does not induce procarcinogenic events in adult human liver stem cells. Toxicol Appl Pharmacol 2018. [PMID: 29534881 DOI: 10.1016/j.taap.2018.03.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
HL1-hT1 cell line represents adult human liver stem cells (LSCs) immortalized with human telomerase reverse transcriptase. In this study, HL1-hT1 cells were found to express mesenchymal markers (vimentin, CD73, CD90/THY-1 and CD105) and an early hepatic endoderm marker FOXA2, while not expressing hepatic progenitor (HNF4A, LGR5, α-fetoprotein) or differentiated hepatocyte markers (albumin, transthyretin, connexin 32). In response to microcystin-LR (MC-LR), a time- and concentration-dependent formation of MC-positive protein bands in HL1-hT1 cells was observed. Cellular accumulation of MC-LR occurred most likely via mechanisms independent on organic anion transporting polypeptides (OATPs) or multidrug resistance (MDR) proteins, as indicated (a) by a gene expression analysis of 11 human OATP genes and 4 major MDR genes (MDR1/P-glycoprotein, MRP1, MRP2 and BCRP); (b) by non-significant effects of OATP or MDR1 inhibitors on MC-LR uptake. Accumulation of MC-positive protein bands in HL1-hT1 cells was associated neither with alterations of cell viability and growth, dysregulations of ERK1/2 and p38 kinases, reactive oxygen species formation, induction of double-stranded DNA breaks nor modulations of stress-inducible genes (ATF3, HSP5). It suggests that LSCs might have a selective, MDR1-independent, survival advantage and higher tolerance towards MC-induced cytotoxic, genotoxic or cancer-related events than differentiated adult hepatocytes, fetal hepatocyte or malignant liver cell lines. HL1-hT1 cells provide a valuable in vitro tool for studying effects of toxicants and pharmaceuticals on LSCs, whose important role in the development of chronic toxicities and liver diseases is being increasingly recognized.
Collapse
|
27
|
Ma J, Li Y, Wu M, Li X. Oxidative stress-mediated p53/p21 WAF1/CIP1 pathway may be involved in microcystin-LR-induced cytotoxicity in HepG2 cells. CHEMOSPHERE 2018; 194:773-783. [PMID: 29248874 DOI: 10.1016/j.chemosphere.2017.12.051] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 11/02/2017] [Accepted: 12/08/2017] [Indexed: 06/07/2023]
Abstract
A previous study showed that microcystin-LR (MC-LR) exerted cytotoxicity and induced apoptosis in HepG2 cells. In the present study, we investigated whether oxidative stress-mediated p53/p21WAF1/CIP1 is involved in this process to further elucidate the mechanism of cytotoxicity induced by MC-LR. Morphological evaluation showed that MC-LR induced time- and dose-dependent cytotoxicity in HepG2 cells. Biochemical assays revealed that MC-LR exposure altered the protein levels of HSP70 and HSP90, generally inhibited superoxide dismutase and catalase, reduced glutathione content, and increased the cellular malondialdehyde level of HepG2 cells, suggesting that MC-LR may induce biochemical disturbance and oxidative stress in HepG2 cells. The protein levels of p-p53 and p21 were markedly increased by MC-LR exposure in a concentration-dependent manner, suggesting that p53 and p21 may be involved in the process. Moreover, we also found that the proto-oncogene c-myc was significantly activated in HepG2 cells following MC-LR exposure, indicating that c-myc in HepG2 cells was potentially involved in response to MC-LR-induced apoptosis. These findings may contribute to further understanding the in vitro molecular mechanism of MC-LR hepatotoxicity.
Collapse
Affiliation(s)
- Junguo Ma
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yuanyuan Li
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Mengli Wu
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xiaoyu Li
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China.
| |
Collapse
|
28
|
Ma J, Li Y, Li W, Li X. Hepatotoxicity of paraquat on common carp (Cyprinus carpio L.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 616-617:889-898. [PMID: 29107372 DOI: 10.1016/j.scitotenv.2017.10.231] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/22/2017] [Accepted: 10/22/2017] [Indexed: 06/07/2023]
Abstract
Paraquat (PQ) is a nonselective herbicide that is used worldwide and has been demonstrated to be a high risk to aquatic organisms. However, relatively little is known about the mechanisms on detoxification and hepatotoxicity of PQ in fish. In the present study, a sub-acute toxicity test of PQ exposure on common carp at 1.596 and 3.192mgL-1 for 7d was conducted under laboratory conditions. The results showed that the transcriptional levels of cytochrome P450s (CYPs), such as CYP1A, CYP2K, and CYP3A138, GSTα and GSTpi, and export pump gene MDR1, as well as the erythromycin-N-demethylase (ERND) activity were generally up-regulated by PQ exposure for 7d, indicating that these genes or enzymes are potentially involved in the detoxification of PQ in the fish liver. Further research showed that PQ exposure significantly increased the levels of HSP70, HSP90, NOS, and MDA; promoted expression of pro-inflammatory cytokines, including IL-6 and IL-8; altered the levels of anti-inflammatory cytokines IL-10 and TGF-β, and generally reduced the levels of T-AOC, SOD, CAT, and GSH. In addition, we also found that caspase-3, caspase-8, and caspase-9 were significantly activated in the fish liver following PQ exposure. In brief, the present study showed that PQ exposure induced fish liver injury by destabilizing the metabolism of fish, inhibiting antioxidant enzyme activity, elevating lipid peroxidation, and promoting an immune inflammatory response and apoptosis. The present study further enriches and perfects the mechanism theory of PQ hepatotoxicity to fish, which may be valuable for the risk assessment of PQ and human health protection.
Collapse
Affiliation(s)
- Junguo Ma
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yuanyuan Li
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Weiguo Li
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xiaoyu Li
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China.
| |
Collapse
|
29
|
Ma J, Li Y, Duan H, Sivakumar R, Li X. Chronic exposure of nanomolar MC-LR caused oxidative stress and inflammatory responses in HepG2 cells. CHEMOSPHERE 2018; 192:305-317. [PMID: 29117589 DOI: 10.1016/j.chemosphere.2017.10.158] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/26/2017] [Accepted: 10/27/2017] [Indexed: 06/07/2023]
Abstract
Low dose but long-term exposure of microcystin-LR (MC-LR) could induce human hepatitis and promote liver cancer according to epidemiological investigation results, but the exact mechanism has not been completely elucidated. In the present study, a chronic toxicity test of MC-LR exposure on HepG2 cells at 0.1-30 nM for 83 d was conducted under laboratory conditions. The western blot assay result revealed that MC-LR entered HepG2 cells, even at the concentration of 0.1 nM, after 83 d of exposure, but no cytotoxicity was observed in the HepG2 cells, as determined by the CCK-8 and LDH tests. However, the results of the DCF fluorescence assay showed that the intracellular ROS level in the 30 nM MC-LR-treated cells was significantly higher than that of the control cells, and 5 and 10 nM of MC-LR exposure totally increased the activity of SOD in HepG2 cells. These results indicate that MC-LR exposure at low concentration also induced excessive ROS in HepG2 cells. Additionally, long-term exposure of MC-LR at low concentration remarkably promoted the expression of NF-κB p65, COX-2, iNOS, TNF-α, IL-1β, and IL-6 in the cells, suggesting that long-term MC-LR exposure at low concentration can induce inflammatory reaction to HepG2 cells, which might account for MC-induced human hepatitis. Thus, we hypothesized that the pathogenesis of human hepatitis and hepatocarcinoma caused by MCs might be closely associated with oxidative stress and inflammation.
Collapse
Affiliation(s)
- Junguo Ma
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yuanyuan Li
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Hongying Duan
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | | | - Xiaoyu Li
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China.
| |
Collapse
|
30
|
Li X, Liu H, Lv L, Yan H, Yuan Y. Antioxidant activity of blueberry anthocyanin extracts and their protective effects against acrylamide‐induced toxicity in HepG2 cells. Int J Food Sci Technol 2017. [DOI: 10.1111/ijfs.13568] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xuenan Li
- College of Food Science and Engineering Jilin University Changchun 130062 China
| | - Huangyou Liu
- College of Food Science and Engineering Jilin University Changchun 130062 China
| | - Lingzhu Lv
- College of Food Science and Engineering Jilin University Changchun 130062 China
| | - Haiyang Yan
- College of Food Science and Engineering Jilin University Changchun 130062 China
| | - Yuan Yuan
- College of Food Science and Engineering Jilin University Changchun 130062 China
| |
Collapse
|