1
|
Paul S, Dey A, Singh BK, Giri A. Anthracene: multiparametric toxicity assessment in Pisum sativum, Vigna radiata and Epipremnum aureum, and remediation efficacy by Epipremnum aureum. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025:10.1007/s11356-025-36472-7. [PMID: 40314712 DOI: 10.1007/s11356-025-36472-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 04/24/2025] [Indexed: 05/03/2025]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are emerging contaminants that are toxic to plants. Toxicity of anthracene, a priority PAH, was examined in Pisum sativum and Vigna radiata by evaluating their germination index, growth parameters, and malondialdehyde (MDA) content at three concentrations of anthracene: 25, 50, and 100 mg/L water. Growth characteristics and MDA content of anthracene-treated Epipremnum aureum were also monitored to assess anthracene-induced toxicity at the previously specified concentrations of anthracene. Following 30 days of plantation with E. aureum, HPLC analysis was performed to investigate the elimination of anthracene. The 24-h germination index and germination percentage revealed anthracene significantly reduced the germination index in P. sativum at all concentrations and in V. radiata at 50 and 100 mg/L concentrations. Anthracene-treated legumes showed concentration-dependent reductions in root length, shoot length, biomass, and moisture content compared to the control group. A significant reduction in biomass and a significant rise in moisture content were found in E. aureum in the presence of anthracene compared to the control group. Anthracene significantly increased MDA levels in both leguminous plants at all concentrations, while E. aureum exhibiting a significant rise in MDA at 50 and 100 mg/L of anthracene treatment. Following a 30-day cultivation period utilizing E. aureum, anthracene was undetectable in the media that contained 25 mg/L of anthracene. In addition, a notable reduction in anthracene levels was observed in the media containing 50 and 100 mg/L of anthracene. This study indicates that anthracene is toxic to P. sativum and V. radiata during the initial growth period, which might influence crop yields for these two legumes. Due to its resistance to low concentrations of anthracene, the ornamental plant E. aureum can be utilized for the phytoremediation of anthracene and other polycyclic aromatic hydrocarbons, potentially preventing their entry into the food chain.
Collapse
Affiliation(s)
- Sagorika Paul
- Environment and Human Toxicology Laboratory, Department of Life Science & Bioinformatics, Assam University, Silchar, 788 011, India
| | - Ankita Dey
- Environment and Human Toxicology Laboratory, Department of Life Science & Bioinformatics, Assam University, Silchar, 788 011, India
| | - Bishal Kumar Singh
- Environment and Human Toxicology Laboratory, Department of Life Science & Bioinformatics, Assam University, Silchar, 788 011, India
| | - Anirudha Giri
- Environment and Human Toxicology Laboratory, Department of Life Science & Bioinformatics, Assam University, Silchar, 788 011, India.
| |
Collapse
|
2
|
Yu KE, Mitra S, Meng Q, DelRosario I, Devaskar SU, Janzen C, Sullivan PS, Chen L, Jerrett M, Ritz B. Diet, polycyclic aromatic hydrocarbons, and oxidative stress biomarkers in pregnancy: A Los Angeles pregnancy cohort. ENVIRONMENTAL RESEARCH 2025; 275:121399. [PMID: 40088999 DOI: 10.1016/j.envres.2025.121399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/24/2025] [Accepted: 03/12/2025] [Indexed: 03/17/2025]
Abstract
Polycyclic aromatic hydrocarbon (PAH) exposure during pregnancy has been associated with increased oxidative stress. Few studies have evaluated the relationship between diet, urinary PAHs, and oxidative stress biomarkers among pregnant women. We enrolled a prospective cohort of pregnant women who gave birth at UCLA between 2016 and 2019. Dietary intake over the past month was evaluated by a food frequency questionnaire during mid-pregnancy, and three diet index scores were calculated: Healthy Eating Index (HEI) 2015, Alternate Mediterranean Diet (aMED), and Alternate Healthy Eating Index for Pregnancy (AHEI-P). Urine samples were collected up to three times during pregnancy and analyzed for PAH biomarkers, including 2-hydroxyfluorene + 3-hydroxyfluorene (FLUO2FLUO3), 1-hydroxyphenanthrene (PHEN1), 2-hydroxyphenanthrene (PHEN2), 3-hydroxyphenanthrene (PHEN3), 4-hydroxyphenanthrene (PHEN4), 2-hydroxynaphthalene (NAP2), and 1-hydroxypyrene (PYR1), and two oxidative stress biomarkers, malondialdehyde (MDA) and 8-hydroxyguanosine (8-OHdG). We employed multiple linear regression models to estimate effects of diet on measures of urinary PAHs and oxidative stress biomarkers. A better diet quality, as indicated by three diet indices, was associated with lower urinary PAH metabolites and lower concentrations of oxidative stress biomarkers. This pattern appeared to be consistent across all three sampling periods (9-17 weeks, 18-29 weeks, and 30 weeks-delivery). Healthier diets may lower PAH exposure and oxidative stress in pregnancy.
Collapse
Affiliation(s)
- Kasey E Yu
- Department of Epidemiology, Fielding School of Public Health, University of California Los Angeles, Los Angeles, 90095, California, USA
| | - Sanjali Mitra
- Department of Epidemiology, Fielding School of Public Health, University of California Los Angeles, Los Angeles, 90095, California, USA
| | - Qi Meng
- Department of Epidemiology, Fielding School of Public Health, University of California Los Angeles, Los Angeles, 90095, California, USA
| | - Irish DelRosario
- Department of Epidemiology, Fielding School of Public Health, University of California Los Angeles, Los Angeles, 90095, California, USA
| | - Sherin U Devaskar
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, 90095, California, USA
| | - Carla Janzen
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, 90095, California, USA
| | - Peggy S Sullivan
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, 90095, California, USA
| | - Liwei Chen
- Department of Epidemiology, Fielding School of Public Health, University of California Los Angeles, Los Angeles, 90095, California, USA
| | - Michael Jerrett
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California Los Angeles, Los Angeles, 90095, California, USA
| | - Beate Ritz
- Department of Epidemiology, Fielding School of Public Health, University of California Los Angeles, Los Angeles, 90095, California, USA; Department of Environmental Health Sciences, Fielding School of Public Health, University of California Los Angeles, Los Angeles, 90095, California, USA.
| |
Collapse
|
3
|
Montano L, Baldini GM, Piscopo M, Liguori G, Lombardi R, Ricciardi M, Esposito G, Pinto G, Fontanarosa C, Spinelli M, Palmieri I, Sofia D, Brogna C, Carati C, Esposito M, Gallo P, Amoresano A, Motta O. Polycyclic Aromatic Hydrocarbons (PAHs) in the Environment: Occupational Exposure, Health Risks and Fertility Implications. TOXICS 2025; 13:151. [PMID: 40137477 PMCID: PMC11946043 DOI: 10.3390/toxics13030151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/29/2025]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a group of organic compounds with fused aromatic rings, primarily derived from combustion processes and environmental pollutants. This narrative review discusses the most relevant studies on PAHs, focusing on their sources, environmental and occupational exposure, and effects on human health, emphasizing their roles as carcinogenic, mutagenic, and teratogenic agents. The primary pathways for human exposure to PAHs are through the ingestion of contaminated food (mainly due to some food processing methods, such as smoking and high-temperature cooking techniques), the inhalation of ambient air, and the smoking of cigarettes. Coke oven workers are recognized as a high-risk occupational group for PAH exposure, highlighting the need for appropriate strategies to mitigate these risks and safeguard worker health. PAHs are metabolized into reactive intermediates in the body, which can lead to DNA damage and promote the development of various health conditions, particularly in environments with high exposure levels. Chronic PAH exposure has been linked to respiratory diseases, as well as cardiovascular problems and immune system suppression. Furthermore, this review underscores the significant impact of PAHs on reproductive health. The results of the reported studies suggest that both male and female fertility can be compromised due to oxidative stress, DNA damage, and endocrine disruption caused by PAH exposure. In males, PAHs impair sperm quality, while, in females, they disrupt ovarian function, potentially leading to infertility, miscarriage, and birth defects. Fetal exposure to PAHs is also associated with neurodevelopmental disorders. Given the extensive and detrimental health risks posed by PAHs, this review stresses the importance of stringent environmental regulations, occupational safety measures, and public health initiatives to mitigate exposure and safeguard reproductive and overall health.
Collapse
Affiliation(s)
- Luigi Montano
- Andrology Unit and Service of Lifestyle Medicine in Uro-Andrology, Local Health Authority (ASL) Salerno, 84124 Salerno, Italy
- Coordination Unit of the Network for Environmental and Reproductive Health (Eco Food Fertility Project), Oliveto Citra Hospital, 84124 Salerno, Italy
| | - Giorgio Maria Baldini
- Unit of Obstetrics and Gynecology, Department of Interdisciplinary Medicine (DIM), University of Bari Aldo Moro, 70121 Bari, Italy;
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy;
| | - Giovanna Liguori
- Territorial Pharmaceutical Service, Local Health Authority (ASL), 71121 Foggia, Italy; (G.L.); (R.L.)
| | - Renato Lombardi
- Territorial Pharmaceutical Service, Local Health Authority (ASL), 71121 Foggia, Italy; (G.L.); (R.L.)
| | - Maria Ricciardi
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy;
| | | | - Gabriella Pinto
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy; (G.P.); (C.F.); (M.S.); (A.A.)
- INBB-Istituto Nazionale Biostrutture e Biosistemi, Consorzio Interuniversitario, 00136 Rome, Italy
| | - Carolina Fontanarosa
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy; (G.P.); (C.F.); (M.S.); (A.A.)
| | - Michele Spinelli
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy; (G.P.); (C.F.); (M.S.); (A.A.)
- INBB-Istituto Nazionale Biostrutture e Biosistemi, Consorzio Interuniversitario, 00136 Rome, Italy
| | - Ilaria Palmieri
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy;
| | - Daniele Sofia
- Research Department, Sense Square Srl, 84084 Salerno, Italy;
- Department of Computer Engineering, Modeling, Electronics and Systems, University of Calabria, Via P. Bucci, Cubo 44/a Rende, 87036 Arcavacata, Italy
| | - Carlo Brogna
- Department of Research, Craniomed Group Facility Srl, 20091 Bresso, Italy;
| | - Cosimo Carati
- Student of Department of Medicine Surger, University Cattolica Sacro Cuore, Largo Francesco Vito, 1, 00168 Roma, Italy;
| | - Mauro Esposito
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Dipartimento Coordinamento di Chimica, Via della Salute, 2, 80005 Portici, Italy; (M.E.); (P.G.)
| | - Pasquale Gallo
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Dipartimento Coordinamento di Chimica, Via della Salute, 2, 80005 Portici, Italy; (M.E.); (P.G.)
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy; (G.P.); (C.F.); (M.S.); (A.A.)
- INBB-Istituto Nazionale Biostrutture e Biosistemi, Consorzio Interuniversitario, 00136 Rome, Italy
| | - Oriana Motta
- Department of Medicine Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, 84081 Baronissi, Italy;
| |
Collapse
|
4
|
Zhang S, Xing X, Yu H, Du M, Zhang Y, Li P, Li X, Zou Y, Shi M, Liu W, Qi S. Fate of polycyclic aromatic hydrocarbon (PAHs) in urban lakes under hydrological connectivity: A multi-media mass balance approach. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125556. [PMID: 39701362 DOI: 10.1016/j.envpol.2024.125556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/21/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a class of organic pollutants widely present in various environmental media. Some PAHs have carcinogenic, teratogenic, and mutagenic effects. Urban lakes are severely polluted by PAHs due to human activities. Longyang Lake (LL) and Moshui Lake (ML), which serve as entry lakes for Wuhan's "Six Lakes Connectivity" project, were chosen as the study areas to learn about the migration of PAHs. Water flows from LL to ML through the Mingzhu River. Multi-Media Mass Balance Model (MMBM) and fugacity fractions (ff) were used to characterize the migration of PAHs under the hydrological connectivity project. Compared to ff, the MMBM can describe the migration of PAHs in a more detailed and quantitative way. The concentration of PAHs in water of LL decreased from 36.5 ng L-1 to 26.59 ng L-1 over 43 days, while those in ML increased from 46.8 ng L-1 to 198.25 ng L-1 over 141 days. Sediment takes a longer time to decrease to stabilization. The concentration of PAHs in the sediment of LL decreased from 932 ng g-1 to 0.95 ng g-1 over 13.33 years, while those in ML decreased from 4812 ng g-1 to 1.04 ng g-1 over 16.96 years. The stabilized concentrations were consistently lower than the observed concentrations and fell below the modeled stabilized concentrations obtained in the unconnected case (2170 ng L-1 in water and 40.81 ng g-1 in sediment). The MMBM showed that PAHs in the lake are mainly exported through runoff. However, modeling results indicated that upstream LL did not increase total PAHs concentrations in the ML because the output from ML was significantly higher. Sediment parameters sensitively influenced the results of the model. Although the simulation results showed reductions of PAHs pollution in two lakes under the hydrological connectivity project, long-term monitoring results are needed to optimize the model.
Collapse
Affiliation(s)
- Shizhao Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Xinli Xing
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China.
| | - Haikuo Yu
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Minkai Du
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Yuan Zhang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China
| | - Peng Li
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China; Hubei Key Laboratory of Resources and Eco-Environment Geology (Hubei Geological Bureau), Wuhan 430034, China
| | - Xin Li
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Yanmin Zou
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Mingming Shi
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China
| | - Weijie Liu
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China
| | - Shihua Qi
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China
| |
Collapse
|
5
|
Xu X, Wang Y, Xu Y, Tan F. Characteristics, prediction, and risk assessment of phthalates, organophosphate esters, and polycyclic aromatic hydrocarbons in vegetables from plastic greenhouses of Northeast China. CHEMOSPHERE 2024; 368:143743. [PMID: 39547290 DOI: 10.1016/j.chemosphere.2024.143743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/17/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
We investigated the contaminations of phthalates (PAEs), organophosphate esters (OPEs), and polycyclic aromatic hydrocarbons (PAHs) in the vegetables and their corresponding soils from 26 plastic greenhouses of Northeast China. PAEs, OPEs, and PAHs in the edible portion of vegetables were in the range of 2620-21800, 115-852, and 32.4-602 ng/g, while the levels of these chemicals in the greenhouse soils were 5770-18800, 196-935, and 109-1600 ng/g, respectively. PAEs are the main organic pollutants in greenhouses, which were 1-2 orders of magnitude higher than that of OPEs and PAHs. Leafy vegetables showed the highest contamination level, which is ∼1-3 times that of root and fruit vegetables. Bioaccumulation factors (BAFs) of chemicals are significantly negatively correlated with their physicochemical properties, e.g., octanol-water partition coefficient and organic carbon partition coefficient. The partition-limited model can accurately predict the contamination level of greenhouse vegetables to a certain extent based on the chemical's concentration in the corresponding soil. We assessed the hazard quotients of target compounds through daily intake of greenhouse vegetables, and found a low risk for di(2-ethylhexyl) phthalate. This research emphasized the potential dietary exposure risks caused by greenhouse leafy vegetables, and proposed a method for evaluating the risk of greenhouse vegetables through soil monitoring.
Collapse
Affiliation(s)
- Xinhao Xu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Yan Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Yue Xu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Feng Tan
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
6
|
Barathan M, Ng SL, Lokanathan Y, Ng MH, Law JX. Plant Defense Mechanisms against Polycyclic Aromatic Hydrocarbon Contamination: Insights into the Role of Extracellular Vesicles. TOXICS 2024; 12:653. [PMID: 39330582 PMCID: PMC11436043 DOI: 10.3390/toxics12090653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/22/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are persistent organic pollutants that pose significant environmental and health risks. These compounds originate from both natural phenomena, such as volcanic activity and wildfires, and anthropogenic sources, including vehicular emissions, industrial processes, and fossil fuel combustion. Their classification as carcinogenic, mutagenic, and teratogenic substances link them to various cancers and health disorders. PAHs are categorized into low-molecular-weight (LMW) and high-molecular-weight (HMW) groups, with HMW PAHs exhibiting greater resistance to degradation and a tendency to accumulate in sediments and biological tissues. Soil serves as a primary reservoir for PAHs, particularly in areas of high emissions, creating substantial risks through ingestion, dermal contact, and inhalation. Coastal and aquatic ecosystems are especially vulnerable due to concentrated human activities, with PAH persistence disrupting microbial communities, inhibiting plant growth, and altering ecosystem functions, potentially leading to biodiversity loss. In plants, PAH contamination manifests as a form of abiotic stress, inducing oxidative stress, cellular damage, and growth inhibition. Plants respond by activating antioxidant defenses and stress-related pathways. A notable aspect of plant defense mechanisms involves plant-derived extracellular vesicles (PDEVs), which are membrane-bound nanoparticles released by plant cells. These PDEVs play a crucial role in enhancing plant resistance to PAHs by facilitating intercellular communication and coordinating defense responses. The interaction between PAHs and PDEVs, while not fully elucidated, suggests a complex interplay of cellular defense mechanisms. PDEVs may contribute to PAH detoxification through pollutant sequestration or by delivering enzymes capable of PAH degradation. Studying PDEVs provides valuable insights into plant stress resilience mechanisms and offers potential new strategies for mitigating PAH-induced stress in plants and ecosystems.
Collapse
Affiliation(s)
- Muttiah Barathan
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Sook Luan Ng
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Yogeswaran Lokanathan
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Min Hwei Ng
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Jia Xian Law
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
7
|
Wang S, Chen J, Zhu L. Understanding the phytotoxic effects of organic contaminants on rice through predictive modeling with molecular descriptors: A data-driven analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134953. [PMID: 38908176 DOI: 10.1016/j.jhazmat.2024.134953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/24/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024]
Abstract
The widespread introduction of organic compounds into environments poses significant risks to ecosystems. Assessing the adverse effects of organic contaminants on crops is crucial for ensuring food safety. However, laboratory research is often time-consuming and costly, and machine learning (ML) methods can offer a viable solution to address these challenges. This study aimed at developing a ML model that incorporates chemical descriptors to predict the phytotoxicity of organic contaminants on rice. A dataset was compiled by gathering published experimental data on the phytotoxicity of 60 organic compounds, with a focus on morphological inhibition, photosynthesis perturbation, and oxidative stress. Four ML models (RF, SVM, GBM, ANN) were developed using chemical molecular descriptors (CMD) and the Molecular ACCess System (MACCS) keys. RF-MACCS model demonstrated the highest fitness, achieving an R2 value of 0.79 and an RMSE of 0.14. Feature importance analysis highlighted nAtom, HBA, logKow, and TPSA as the most influential CMDs in our model. Additionally, substructures containing oxygen atoms, carbonyl group and carbon chains with nitrogen and oxygen atoms were identified as significant factors associated with phytotoxicity. This data-driven study could aid in predicting the phytotoxicity of organic contaminants on crops and evaluating the potential risks of emerging contaminants in agroecosystems.
Collapse
Affiliation(s)
- Shuyuan Wang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Jie Chen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Lizhong Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
8
|
Teixeira J, Delerue-Matos C, Morais S, Oliveira M. Environmental contamination with polycyclic aromatic hydrocarbons and contribution from biomonitoring studies to the surveillance of global health. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:54339-54362. [PMID: 39207613 DOI: 10.1007/s11356-024-34727-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
This work presents an integrated overview of polycyclic aromatic hydrocarbons' (PAHs) ubiquity comprising environmental contamination in the air, aquatic ecosystems, and soils; characterizes the contamination in biota; and identifies main biomonitors and human exposure to PAHs and associated health risks. Urban centers and industrial areas present increased concentrations in the air (1344.4-12,300 versus 0.03-0.60 ng/m3 in industrial/urban and rural zones) and soils (0.14-1.77 × 106 versus 2.00-9.04 × 103 versus 1.59-5.87 × 103 ng/g in urban, forest, and rural soils), respectively. Increased concentrations were found in coastal zones and superficial waters as well as in sediments (7.00 × 104-1.00 × 109 ng/g). Benzo(a)pyrene, a carcinogenic PAH, was found in all environmental media. Mosses, lichens, tree leaves, bivalves, cephalopods, terrestrials' snails, and honeybees are good biomonitors of biota contamination. More studies are needed to improve characterization of PAHs' levels, distribution, and bioaccumulation in the environmental media and assess the associated risks for biota and human health. Actions and strategies to mitigate and prevent the bioaccumulation of PAHs in the environment and trophic chains toward the WHO's One-Health Perspective to promote the health of all ecosystems and human life are urgently needed.
Collapse
Affiliation(s)
- Joana Teixeira
- REQUIMTE/LAQV, ISEP, Polytechnique of Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015, Porto, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, ISEP, Polytechnique of Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015, Porto, Portugal
| | - Simone Morais
- REQUIMTE/LAQV, ISEP, Polytechnique of Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015, Porto, Portugal
| | - Marta Oliveira
- REQUIMTE/LAQV, ISEP, Polytechnique of Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015, Porto, Portugal.
| |
Collapse
|
9
|
Wang Y, Wang Q, Wang W, Liu F, Wu S. Migration of fluoranthene, phenanthrene, and pyrene in soil environment during the growth of Brassica rapa subsp. chinensis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 110:104535. [PMID: 39142473 DOI: 10.1016/j.etap.2024.104535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/09/2024] [Accepted: 08/12/2024] [Indexed: 08/16/2024]
Abstract
The escalating concern surrounding fluoranthene (FLN), phenanthrene (Phe), and pyrene (Pyr), underscores the urgency to investigate their dynamics in the context of agricultural ecosystems. Brassica rapa subsp. chinensis (Bok choy), a globally consumed vegetable, holds particular significance in this scenario. This study explores the migration and transformation of FLN, Phe, and Pyr from soil to Brassica rapa subsp. chinensis during its growth. The germination rates of seeds in these treatments varied, with soil+Bok choy and soil+FLN+Bok choy treatments showing higher rates (77.8 %), while soil+mix+Bok choy exhibited the lowest rate (11.1 %) after 3 days. Analyzing the distribution of FLN, Phe, and Pyr in Brassica rapa subsp. chinensis parts after 30 days revealed a sequence of accumulation in stem> root> leaf. This study provides information on practical implications for regulating the soil-plant migration and transformation of FLN, Phe, and Pyr, offering valuable insights for migration of PAHs pollution in agricultural settings.
Collapse
Affiliation(s)
- Yanyan Wang
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City 338-8570, Japan.
| | - Qingyue Wang
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City 338-8570, Japan.
| | - Weiqian Wang
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City 338-8570, Japan
| | - Fenwu Liu
- College of Resource and Environment, Shanxi Agricultural University, Jinzhong 030801, China
| | - Shangrong Wu
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City 338-8570, Japan
| |
Collapse
|
10
|
Xiong K, Li MM, Chen YQ, Hu YM, Jin W. Formation and Reduction of Toxic Compounds Derived from the Maillard Reaction During the Thermal Processing of Different Food Matrices. J Food Prot 2024; 87:100338. [PMID: 39103091 DOI: 10.1016/j.jfp.2024.100338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/24/2024] [Accepted: 07/28/2024] [Indexed: 08/07/2024]
Abstract
Advanced glycation end products (AGEs), heterocyclic aromatic amines (HAAs), acrylamide (AA), 5-hydroxymethylfurfural (5-HMF), and polycyclic aromatic hydrocarbons (PAHs) are toxic substances that are produced in certain foods during thermal processing by using common high-temperature unit operations such as frying, baking, roasting, grill cooking, extrusion, among others. Understanding the formation pathways of these potential risk factors, which can cause cancer or contribute to the development of many chronic diseases in humans, is crucial for reducing their occurrence in thermally processed foods. During thermal processing, food rich in carbohydrates, proteins, and lipids undergoes a crucial Maillard reaction, leading to the production of highly active carbonyl compounds. These compounds then react with other substances to form harmful substances, which ultimately affect negatively the health of the human body. Although these toxic compounds differ in various forms of formation, they all partake in the common Maillard pathway. This review primarily summarizes the occurrence, formation pathways, and reduction measures of common toxic compounds during the thermal processing of food, based on independent studies for each specific contaminant in its corresponding food matrix. Finally, it provides several approaches for the simultaneous reduction of multiple toxic compounds.
Collapse
Affiliation(s)
- Ke Xiong
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Meng-Meng Li
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Yi-Qiang Chen
- Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Yu-Meng Hu
- Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Innovation Centre of Food Nutrition and Human, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Wen Jin
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing 100048, China
| |
Collapse
|
11
|
Femi-Oloye OP, Sutton RT, Gordon HD, Ain Das A, Morenikeji GO, Odorisio MK, Francestscu OD, Myers RL, Oloye FF. An Assessment of Polycyclic Aromatic Hydrocarbons Using Estimation Programs. TOXICS 2024; 12:592. [PMID: 39195694 PMCID: PMC11360689 DOI: 10.3390/toxics12080592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024]
Abstract
In the environment, the class of chemicals known as polycyclic aromatic hydrocarbons (PAHs) behave somewhat differently. This review covers situations where PAHs can be 'labile' and where they can be persistent. The in-silico prediction of toxicity and the properties of selected 29 PAHs were estimated using programs developed by the U.S. Environmental Protection Agency (EPA), such as the Estimation Programs Interface (E.P.I.) and the Toxicity Estimation Software Tool (version 5.1.2) (TEST), with online software such as SwissADME and SwissDock. TEST was used to estimate the LC50 of the fathead minnow (with a range of 14.53 mg/L for 1-indanone and 2.14 × 10-2 mg/L for cyclopenta[c,d]pyrene), the LC50 of Daphnia magna (with a range of 14.95 mg/L for 1-indanone and 7.53 × 10-2 mg/L for coronene), the IGC50 of Tetrahymena pyriformis (with a range of 66.14 mg/L for 1-indanone and 0.36 mg/L for coronene), the bioconcentration factor (8.36 for 1,2-acenaphthylenedione and 910.1 for coronene), the developmental toxicity (0.30 (-) for 1,2-acenaphthylenedione and 0.82 (+) for 4-hydroxy-9-fluorenone), and the mutagenicity (0.25 (-) for 2-methyl-9-fluorenone and 1.09 (+) for coronene). The carbon chain and molecular weight have a significant effect on the properties of PAHs. Overall, it was found that PAHs with a lower molecular weight (LMW) have a higher water solubility and LC50 value and a smaller LogKow value, whereas the opposite is true for heavier PAHs, with TEST predicting that PAHs with an MW of over 168.2 g/mol, with a few exceptions, are mutagenic. Hence, LMW PAHs have a higher potential to be in the environment but are less toxic.
Collapse
Affiliation(s)
- Oluwabunmi P. Femi-Oloye
- Toxicology Center, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada;
- Division of Biological and Health Sciences, University of Pittsburgh at Bradford, Bradford, PA 16701, USA
| | - Ryen T. Sutton
- Department of Chemistry, Division of Physical and Computational Sciences, University of Pittsburgh at Bradford, Bradford, PA 16701, USA (H.D.G.); (R.L.M.)
| | - Heidi D. Gordon
- Department of Chemistry, Division of Physical and Computational Sciences, University of Pittsburgh at Bradford, Bradford, PA 16701, USA (H.D.G.); (R.L.M.)
| | - Ayush Ain Das
- Division of Biological and Health Sciences, University of Pittsburgh at Bradford, Bradford, PA 16701, USA
| | - Grace O. Morenikeji
- Division of Biological and Health Sciences, University of Pittsburgh at Bradford, Bradford, PA 16701, USA
| | - Melissa K. Odorisio
- Department of Chemistry, Division of Physical and Computational Sciences, University of Pittsburgh at Bradford, Bradford, PA 16701, USA (H.D.G.); (R.L.M.)
- Department of Environmental Science, Division of Physical and Computational Sciences, University of Pittsburgh at Bradford, Bradford, PA 16701, USA
| | - Ovidiu D. Francestscu
- Department of Environmental Science, Division of Physical and Computational Sciences, University of Pittsburgh at Bradford, Bradford, PA 16701, USA
| | - Ryan L. Myers
- Department of Chemistry, Division of Physical and Computational Sciences, University of Pittsburgh at Bradford, Bradford, PA 16701, USA (H.D.G.); (R.L.M.)
| | - Femi F. Oloye
- Department of Chemistry, Division of Physical and Computational Sciences, University of Pittsburgh at Bradford, Bradford, PA 16701, USA (H.D.G.); (R.L.M.)
| |
Collapse
|
12
|
Nsonwu-Anyanwu AC, Helal M, Khaked A, Eworo R, Usoro CAO, EL-Sikaily A. Polycyclic aromatic hydrocarbons content of food, water and vegetables and associated cancer risk assessment in Southern Nigeria. PLoS One 2024; 19:e0306418. [PMID: 39042616 PMCID: PMC11265677 DOI: 10.1371/journal.pone.0306418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/13/2024] [Indexed: 07/25/2024] Open
Abstract
The polycyclic aromatic hydrocarbon content of water (four surface water, six underground water (borehole water), seven sachet water), barbecued food and their fresh equivalents (barbecued beef, fish, plantain, pork, yam, chicken, chevon, potato, corn), oil (three palm oil, nine vegetable oil), and fresh vegetable samples (water leaf, bitter leaf, cabbage, carrot, cucumber, pumpkin, garlic, ginger, green leaf, Gnetum Africana, onion, pepper) were determined by GC-MS analysis. The current study also determined the estimated lifetime cancer risk from ingesting polycyclic aromatic hydrocarbon-contaminated food. The polycyclic aromatic hydrocarbon content of water, oil, vegetable, and food samples were within the United States Environmental Protection Agency/World Health Organization safe limits. The naphthalene, benzo(b)fluoranthene, and benzo(k)fluoranthene levels in surface water were significantly higher than in borehole samples (P = 0.000, 0.047, 0.047). Vegetable oils had higher anthracene and chrysene compared to palm oil (P = 0.023 and 0.032). Significant variations were observed in levels of naphthalene, acenaphthylene, phenanthrene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, and dibenzo(a,h)anthracene among the barbecued and fresh food samples (P <0.05). Barbecued pork, potato, and corn had significantly higher naphthalene compared to their fresh equivalents (P = 0.002, 0.017, and <0.001). Consumption of barbecued food and surface water may be associated with higher exposure risk to polycyclic aromatic hydrocarbons which may predispose to increased cancer health risk. The current work explores in depth the concentration of polycyclic aromatic hydrocarbons in different dietary categories that pose direct risk to humans via direct consumption. These findings add knowledge to support future considerations for human health.
Collapse
Affiliation(s)
| | - Mohamed Helal
- National Institute of Oceanography and Fisheries, Cairo, Egypt
- Department of Biology, University of Southern Denmark, Odense, Denmark
| | - Azza Khaked
- National Institute of Oceanography and Fisheries, Cairo, Egypt
- Biochemistry Department, College of Medicine, University of Hail, Hail, Saudi Arabia
| | - Raymond Eworo
- Department of Clinical Chemistry and Immunology, University of Calabar, Calabar, Nigeria
| | | | | |
Collapse
|
13
|
Díaz-González BV, Ramos-Luzardo Á, Henríquez-Hernández LA, Serra-Majem L, Bautista-Castaño I, Acosta-Dacal A, Luzardo OP, Hernández-García E, Cornejo-Torre J, Hernández-Hernández JR, Fernández-Valerón P. Effect of bariatric surgery in the body burden of persistent and non-persistent pollutants: longitudinal study in a cohort of morbidly obese patients. Front Endocrinol (Lausanne) 2024; 15:1412261. [PMID: 39104810 PMCID: PMC11298429 DOI: 10.3389/fendo.2024.1412261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/09/2024] [Indexed: 08/07/2024] Open
Abstract
Introduction Obesity is a pathological state that involves the dysregulation of different metabolic pathways and adipose tissue cells, constituting a risk factor for the development of other diseases. Bariatric surgery is the most effective treatment. The study of the behavior of pollutants in situations of extreme weight loss can provide biomonitoring information and tools to manage diseases of environmental etiology. Aim To determine the prevalence of serum persistent and non-persistent pollutants in obese patients subjected to bariatric surgery and analyze the impact of sociodemographic variables on these changes. Methods GC-MS/MS and UHPLC-MS/MS were utilized to determine the detection rates and concentrations of 353 compounds, including persistent organic pollutants (POPs), pesticides, pharmaceuticals, and rodenticide, in serum samples of 59 obese patients before and after undergoing bariatric surgery. Results Detection rates of p,p'-DDE, HCB, β-HCH, naphthalene, phenanthrene and PCB congeners 138, 153 and 180 significantly increased due to surgery-induced weight loss. Serum levels of p,p'-DDE, PCB-138, PCB-153 and PCB-180 also increased after surgery. Correlations between naphthalene levels, weight loss, variation of total lipids and time after surgery were found. Additionally, correlations were observed between concentrations of PCB-138 and weight loss, and between phenanthrene levels and reduction of total lipids. No statistically significant differences were observed for other groups of contaminants, pharmaceuticals and other chemicals included in the quantification methods. Conclusions Increment of POPs was observed after bariatric surgery. Serum concentrations of POPs after surgery were influenced by adiposity-related variables. Although biomonitoring studies show a decreasing tendency of exposure, rapid weight loss leads to an increase of circulating POPs. Further research on the interplay between adipose tissue, POPs and peripheral organs is required.
Collapse
Affiliation(s)
- B. Vanessa Díaz-González
- Triana Primary Health Care Center, Servicio Canario de la Salud, Las Palmas de Gran Canaria, Spain
- Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Álvaro Ramos-Luzardo
- Department of Biochemistry and Molecular Biology, Physiology, Genetics, and Immunology, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Luis Alberto Henríquez-Hernández
- Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Toxicology Unit, Clinical Sciences Department, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Lluis Serra-Majem
- Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- Centro Hospitalario Universitario Insular Materno Infantil (CHUIMI), Servicio Canario de la Salud, Las Palmas de Gran Canaria, Spain
| | - Inmaculada Bautista-Castaño
- Triana Primary Health Care Center, Servicio Canario de la Salud, Las Palmas de Gran Canaria, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Andrea Acosta-Dacal
- Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Toxicology Unit, Clinical Sciences Department, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Octavio P. Luzardo
- Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Toxicology Unit, Clinical Sciences Department, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Elisabeth Hernández-García
- Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Judith Cornejo-Torre
- Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Juan Ramón Hernández-Hernández
- Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Centro Hospitalario Universitario Insular Materno Infantil (CHUIMI), Servicio Canario de la Salud, Las Palmas de Gran Canaria, Spain
| | - Pilar Fernández-Valerón
- Department of Biochemistry and Molecular Biology, Physiology, Genetics, and Immunology, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
14
|
Yaashikaa PR, Karishma S, Kamalesh R, A S, Vickram AS, Anbarasu K. A systematic review on enhancement strategies in biochar-based remediation of polycyclic aromatic hydrocarbons. CHEMOSPHERE 2024; 355:141796. [PMID: 38537711 DOI: 10.1016/j.chemosphere.2024.141796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 12/25/2023] [Accepted: 03/23/2024] [Indexed: 04/07/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are pervasive ecological pollutants produced essentially during the inadequate burning of organic materials. PAHs are a group of different organic compounds that are made out of various aromatic rings. PAHs pose a serious risk to humans and aquatic ecosystems because of their mutagenic and carcinogenic properties. In this way, there is a critical prerequisite to utilizing successful remediation strategies and methods to limit the dangerous effect of these pollutants on the ecosystem. Biochar has believed of intriguing properties such as simple manufacturing operations and more affordable and more productive materials. Biochar is a sustainable carbonaceous material that has an enormous surface area with bountiful functional groups and pore structure, which has huge potential for the remediation of toxic pollutants. This review emphasizes the occurrence, development, and fate of toxic PAHs in the environment. In the present review, the properties and role of biochar in the removal of PAHs were illustrated, and the influencing factors and an efficient key mechanism of biochar for the remediation of PAHs were discussed in detail. Various surface modification methods can be utilized to improve the biochar properties with the magnetization process; the advancements of modified biochar are pointed out in this review. Finally, the constraints and prospects for the large-scale application of biochar in the remediation of toxic pollutants are highlighted.
Collapse
Affiliation(s)
- P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - S Karishma
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - R Kamalesh
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - Saravanan A
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| | - A S Vickram
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - K Anbarasu
- Department of Bioinformatics, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| |
Collapse
|
15
|
Bishnoi K, Rani P, Bishnoi NR. Polycyclic aromatic hydrocarbons in sewage-irrigated vegetables from industrial cities in Haryana, India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:337. [PMID: 38430315 DOI: 10.1007/s10661-024-12468-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/17/2024] [Indexed: 03/03/2024]
Abstract
The majority of Indians consume a lot of vegetables because of their health advantages. High concentrations of polycyclic aromatic hydrocarbons (PAHs) in vegetables may be seriously harmful to consumers' health. The method for identifying and measuring 16 USEPA polycyclic aromatic hydrocarbons (PAHs) in samples of sewage-irrigated vegetables from three industrial cities in Haryana, India, is described in this research. Ultrasonication, liquid-liquid extraction using n-hexane as a solvent, clean-up using a Florisil column, and reversed-phase high-performance liquid chromatography with a UV detector were all included in the process. The PAHs were successfully linearized (R2 > 0.99) at various doses. Results for PAH recovery ranged from 90 to about 100%. The limit of quantification was 0.002-0.580, and the limit of detection was 0.0006-0.174 µgkg-1. Data indicated that the highest mean concentrations of ∑16 PAHs were detected in Spinach (123.36 µgkg-1), in carrot (105.09 µgkg-1), and in cucumber (63.40 µgkg-1) among leafy, underground, and fruity vegetables, respectively.
Collapse
Affiliation(s)
- Kiran Bishnoi
- Department of Environmental Science & Engineering, Guru Jambheshwar University of Science & Technology, Hisar, 125001, Haryana, India.
- Department of Environmental Studies, Government College for Women, Hisar, 125001, Haryana, India.
| | - Pushpa Rani
- Department of Environmental Science & Engineering, Guru Jambheshwar University of Science & Technology, Hisar, 125001, Haryana, India
| | - Narsi R Bishnoi
- Guru Jambheshwar University of Science & Technology, Hisar, 125001, Haryana, India
| |
Collapse
|
16
|
Harrison DM, Chang WC, Lin HT. Using QuEChERS and HPLC Method to Monitor the Background Concentration of Polycyclic Aromatic Hydrocarbons in Commercial Black Tea Leaves and Infusions in Taiwan. TOXICS 2024; 12:148. [PMID: 38393243 PMCID: PMC10893135 DOI: 10.3390/toxics12020148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024]
Abstract
Tea is an integral part of Taiwanese culture and is a popular drink as it contains many beneficial compounds. However, during the processing of tea, polycyclic aromatic hydrocarbons (PAHs) may form. This study investigated the concentrations of PAH4 in different black tea leaves and tea infusions based on the origin of the tea. The samples were extracted using QuEChERS, while the content of PAH4 was analyzed by high performance liquid chromatography coupled to a fluorescence detector (HPLC-FLD). The content of PAH4 in the tea leaves ranged from 2.88 µg/kg to 218.2 µg/kg (dry weight), with the highest concentration being found in teas from Vietnam. The concentration of BaP ranged from ND to 47.92 µg/kg. The release of PAH4 from tea leaves to tea infusions was significantly low, with the highest transfer being 25.8%. In this study, all PAH4 compounds in commercial black tea leaves can be detected by QuEChERS extraction with a simple HPLC method.
Collapse
Affiliation(s)
- Drewyan Minelly Harrison
- International Master Program of Agriculture, National Chung Hsing University, Taichung 402-202, Taiwan;
| | - Wei-Chung Chang
- Graduate Institute of Food Safety, National Chung Hsing University, Taichung 402-202, Taiwan;
| | - Hsin-Tang Lin
- Graduate Institute of Food Safety, National Chung Hsing University, Taichung 402-202, Taiwan;
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402-202, Taiwan
- Department of Law, National Chung Hsing University, Taichung 402-202, Taiwan
| |
Collapse
|
17
|
Zhou S, Guo C, Dai Y, Pan X, Luo X, Qin P, Tan L. Association between polycyclic aromatic hydrocarbon exposure and liver function: The mediating roles of inflammation and oxidative stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123068. [PMID: 38042471 DOI: 10.1016/j.envpol.2023.123068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/04/2023]
Abstract
Polycyclic aromatic hydrocarbon (PAH) exposure has been associated with adverse health effects, and accumulating evidence suggests that PAH exposure may impair liver function. However, the underlying mechanisms linking PAH exposure and liver function impairment remain unclear. This study aimed to explore the association between PAH exposure and liver function biomarkers, and the mediating effects of inflammation and oxidative stress. The cross-sectional study included 155 adults and their urinary PAH metabolites (OH-PAHs) were determined, and eight liver function biomarkers were measured in paired serum samples. A comprehensive statistical analysis investigated the linear, non-linear, individual, and joint effects of the association between urinary OH-PAHs and liver function biomarkers. The results indicated significant positive associations between urinary OH-PAH concentrations and liver function biomarker levels, suggesting that PAH exposure may adversely affect liver function. 2-hydroxyfluorene was identified as the individual metabolite contributing significantly to elevated gamma-glutamyl transferase levels. Further stratification by gender revealed that this association is more pronounced in males. Moreover, we observed significant mediation effects of the oxidative stress biomarker 8-hydroxy-2'-deoxyguanosine and the inflammatory biomarkers C-reactive protein and white blood cell count on this association. The physiological responses triggered by PAH exposure are mediated by inflammation, which serves as a link between oxidative stress, cellular injury, and elevated liver enzyme levels. The results demonstrated that increased inflammation and oxidative stress mediated the association between increased urinary OH-PAHs and elevated liver function biomarkers. The results contribute to a better understanding of the potential mechanisms underlying PAH exposure's hepatotoxic effects.
Collapse
Affiliation(s)
- Si Zhou
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China
| | - Chongshan Guo
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China
| | - Yingyi Dai
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China; School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Xinhong Pan
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China
| | - Xiaoyan Luo
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China
| | - Pengzhe Qin
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China
| | - Lei Tan
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China; School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
18
|
Ghafari H, Hassanpour H, Motafakkerazad R. Post-harvest ultraviolet irradiation induces changes in physical-chemical properties and levels of polycyclic aromatic hydrocarbons and gene expression in mulberry fruit. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1008-1019. [PMID: 37718501 DOI: 10.1002/jsfa.12987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 09/19/2023]
Abstract
BACKGROUND Earlier studies reported that post-harvest ultraviolet (UV) irradiation could increase the health-promoting compounds in fruit but the effects of UV irradiation on the reduction of the polycyclic aromatic hydrocarbon (PAH) content in mulberries remain less known. Black mulberry fruit were exposed to two UV illumination dosages (3.5 and 7 kJ m-2 ) and were stored for 4, 8, and 12 days. RESULTS Mulberries treated in this way displayed higher antioxidant enzyme activity and phenolic compound content in comparison with a control condition. The transcription factors (TFs) MdoMYB121, MdoMYB155, MdbZIP2, and MdbZIP48 were strongly expressed in two UV illumination dosages (about 45-95% higher than the control). The fluorine (Flu) and naphthalene (Nap) content in treated fruit decreased by 21-85% in comparison with the control condition. CONCLUSION The findings of this study indicate that UV irradiation can be considered as a promising technique to remove some PAHs in black mulberries, to increase their health-promoting potential, and indirectly to improve their aesthetic quality due to the resulting desirable color parameters. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hajar Ghafari
- Department of Horticultural Sciences, Faculty of Agricultural Sciences, Urmia University, Urmia, Iran
| | - Hamid Hassanpour
- Department of Horticultural Sciences, Faculty of Agricultural Sciences, Urmia University, Urmia, Iran
| | | |
Collapse
|
19
|
Singh L, Agarwal T. Polycyclic aromatic hydrocarbons in cooked (tandoori) chicken and associated health risk. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2023; 43:2380-2397. [PMID: 36802078 DOI: 10.1111/risa.14110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
Tandoori cooking is a popular food preparation method in India involving a unique combination of grilling, baking, barbecuing, and roasting processes. This study determined the levels of 16 polycyclic aromatic hydrocarbons (PAHs) in tandoori chicken and assessed the associated health risk. The sum of 16 PAHs concentration ranged from 25.4 to 3733 μg/kg with an average of 440 ± 853 μg/kg. Analyzed samples demonstrated major contribution of 2, 3, and 4 ring PAHs. Diagnostic ratios identified combustion and high-temperature processes as the main source favoring PAHs generation in these samples. Benzo(a)pyrene equivalents and incremental lifetime cancer risk (ILCR) estimates for different population groups (boys, girls, adult males, adult females, elderly males, elderly females) associated with dietary intake of these products ranged from 6.88E-05 to 4.13E-03 and 1.63E-08 to 1.72E-06, respectively. Since the ILCR values fell within the safe limits (1E-06, i.e., nonsignificant), the consumption of tandoori chicken may be considered as safe. The study emphasizes the need for extensive studies on PAHs formation in tandoori food products.
Collapse
Affiliation(s)
- Lochan Singh
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Sonipat, Haryana, India
| | - Tripti Agarwal
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Sonipat, Haryana, India
| |
Collapse
|
20
|
Wang LT, Liu KY, Wang SN, Lin MH, Liao YM, Lin PC, Huang SK, Hsu SH, Chiou SS. Aryl hydrocarbon receptor-kynurenine axis promotes oncogenic activity in BCP-ALL. Cell Biol Toxicol 2023; 39:1471-1487. [PMID: 35687267 PMCID: PMC10425300 DOI: 10.1007/s10565-022-09734-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/30/2022] [Indexed: 11/28/2022]
Abstract
B-cell precursor acute lymphoblastic leukemia (BCP-ALL), the most common childhood cancer, originates from lymphoid precursor cells in bone marrow committed to the B-cell lineage. Environmental factors and genetic abnormalities disturb the normal maturation of these precursor cells, promoting the formation of leukemia cells and suppressing normal hematopoiesis. The underlying mechanisms of progression are unclear, but BCP-ALL incidence seems to be increasing in parallel with the adoption of modern lifestyles. This study hypothesized that air pollution and haze are risk factors for BCP-ALL progression. The current study revealed that indeno(1,2,3-cd)pyrene (IP), a major component of polycyclic aromatic hydrocarbons (PAHs) in air, promotes oncogenic activities (proliferation, transformation, and disease relapse) in vitro and in vivo. Mechanistically, IP treatment activated the aryl hydrocarbon receptor (AHR)-indoleamine-2,3-dioxygenase (IDOs) axis, thereby enhancing tryptophan metabolism and kynurenine (KYN) level and consequent promoting the KYN-AHR feedback loop. IP treatment decreased the time to disease relapse and increased the BCP-ALL cell count in an orthotopic xenograft mouse model. Additionally, in 50 clinical BCP-ALL samples, AHR and IDO were co-expressed in a disease-specific manner at mRNA and protein levels, while their mRNA levels showed a significant correlation with disease-free survival duration. These results indicated that PAH/IP exposure promotes BCP-ALL disease progression.
Collapse
Affiliation(s)
- Li-Ting Wang
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Kwei-Yan Liu
- Department of Respirology & Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Shen-Nien Wang
- Division of General and Digestive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Surgery, College of Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ming-Hong Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Mei Liao
- Division of Hematology-Oncology, Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Pei-Chin Lin
- Division of Hematology-Oncology, Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Pediatrics, School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shau-Ku Huang
- Department of Respirology & Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli County, Taiwan
- Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shih-Hsien Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Center of Applied Genomics, Kaohsiung Medical University, Kaohsiung City, Taiwan.
| | - Shyh-Shin Chiou
- Division of Hematology-Oncology, Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Center of Applied Genomics, Kaohsiung Medical University, Kaohsiung City, Taiwan.
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
21
|
Zhang X, Li Z. Investigating industrial PAH air pollution in relation to population exposure in major countries: A scoring approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 338:117801. [PMID: 36996564 DOI: 10.1016/j.jenvman.2023.117801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are common air pollutants worldwide, associated with industrial processes. In the general population, both modeling and field studies revealed a positive correlation between air PAH concentrations and urinary PAH metabolite levels. Many countries lack population urinary data that correspond to local PAH air concentrations. Thus, we proposed a scoring-based approximate approach to investigating that correlation in selected countries, hypothesizing that PAH air concentrations in selected regions could represent the national air quality influenced by industrial emission and further correlate to PAH internal exposure in the general population. This research compiled 85 peer-reviewed journal articles and 9 official monitoring datasets/reports covering 34 countries, 16 of which with both atmospheric PAH data and human biomonitoring data. For the air pollution score (AirS), Egypt had the highest AirS at 0.94 and Pakistan was at the bottom of the score ranking at -1.95, as well as the median in the UK (AirS: 0.50). For the population exposure score (ExpS), China gained the top ExpS at 0.44 and Spain was with the lowest ExpS of -1.52, with the median value in Italy (ExpS: 0.43). Through the correlation analysis, atmospheric PAHs and their corresponding urinary metabolites provided a positive relationship to a diverse extent, indicating that the related urinary metabolites could reflect the population's exposure to specific atmospheric PAHs. The findings also revealed that in the 16 selected countries, AirS indexes were positively correlated with ExpS indexes, implying that higher PAH levels in the air may lead to elevated metabolite urinary levels in general populations. Furthermore, lowering PAH air concentrations could reduce population internal PAH exposure, implying that strict PAH air regulation or emission would reduce health risks for general populations. Notably, this study was an ideal theoretical research based on proposed assumptions to some extent. Further research should focus on understanding exposure pathways, protecting vulnerable populations, and improving the PAH database to optimize PAH pollution control.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Zijian Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
| |
Collapse
|
22
|
Park J, Kim K, Ryu D, Whang JH, Mah JH. GC-MS/MS Method for Determination of Polycyclic Aromatic Hydrocarbons in Herbal Medicines. Molecules 2023; 28:3853. [PMID: 37175264 PMCID: PMC10179879 DOI: 10.3390/molecules28093853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are hydrophobic organic contaminants that have a highly carcinogenic and mutagenic nature. This study aimed to develop and validate a sensitive analytical method to determine 8 PAHs in 51 herbal medicines (HMs) using gas chromatography (GC)-tandem mass spectrometry (MS/MS). Liquid--liquid extraction and florisil SPE cartridge purification were basically adopted for pretreatment. For the samples containing essential oil, starch grain, etc., N,N-dimethyl formamide/water mixture (9:1, v/v) was added in the extraction step. The multiple reaction monitoring (MRM) conditions were newly obtained by the infusion of reference solutions of the targeted compounds at a concentration of 100 ng/mL into the GC-MS/MS system used in this study. The 51 items were classified according to whether or not they contained essential oil. Eight PAHs were not detected in 39 (8.3%) of the 459 samples monitored. The total content of 8 PAHs ranged from 0.45 μg/kg in Anemarrhenae Rhizoma to 270.94 μg/kg in Zingiberis Rhizoma. The average content of those ranged from 0.9 μg/kg in Araliae Continentalis Radix to 110.8 μg/kg in Coptidis Rhizoma Preparata cum Vinum. The results of this study prove that the proposed method is useful for determining 8 PAHs in HMs.
Collapse
Affiliation(s)
- Jwahaeng Park
- Herbal Medicine Research Division, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea; (J.P.); (K.K.)
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Kyuyeob Kim
- Herbal Medicine Research Division, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea; (J.P.); (K.K.)
| | - Dayoun Ryu
- Herbal Medicine Research Division, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea; (J.P.); (K.K.)
| | - Jin-Hee Whang
- Herbal Medicine Research Division, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea; (J.P.); (K.K.)
| | - Jae-Hyung Mah
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea
| |
Collapse
|
23
|
Ruggieri F, Biancolillo A, D’Archivio AA, Di Donato F, Foschi M, Maggi MA, Quattrociocchi C. Quantitative Structure–Retention Relationship Analysis of Polycyclic Aromatic Compounds in Ultra-High Performance Chromatography. Molecules 2023; 28:molecules28073218. [PMID: 37049982 PMCID: PMC10096086 DOI: 10.3390/molecules28073218] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/09/2023] Open
Abstract
A comparative quantitative structure–retention relationship (QSRR) study was carried out to predict the retention time of polycyclic aromatic hydrocarbons (PAHs) using molecular descriptors. The molecular descriptors were generated by the software Dragon and employed to build QSRR models. The effect of chromatographic parameters, such as flow rate, temperature, and gradient time, was also considered. An artificial neural network (ANN) and Partial Least Squares Regression (PLS-R) were used to investigate the correlation between the retention time, taken as the response, and the predictors. Six descriptors were selected by the genetic algorithm for the development of the ANN model: the molecular weight (MW); ring descriptor types nCIR and nR10; radial distribution functions RDF090u and RDF030m; and the 3D-MoRSE descriptor Mor07u. The most significant descriptors in the PLS-R model were MW, RDF110u, Mor20u, Mor26u, and Mor30u; edge adjacency indice SM09_AEA (dm); 3D matrix-based descriptor SpPosA_RG; and the GETAWAY descriptor H7u. The built models were used to predict the retention of three analytes not included in the calibration set. Taking into account the statistical parameter RMSE for the prediction set (0.433 and 0.077 for the PLS-R and ANN models, respectively), the study confirmed that QSRR models, associated with chromatographic parameters, are better described by nonlinear methods.
Collapse
Affiliation(s)
- Fabrizio Ruggieri
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell’Aquila, Via Vetoio, 67100 Coppito, Italy
| | - Alessandra Biancolillo
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell’Aquila, Via Vetoio, 67100 Coppito, Italy
| | - Angelo Antonio D’Archivio
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell’Aquila, Via Vetoio, 67100 Coppito, Italy
| | - Francesca Di Donato
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell’Aquila, Via Vetoio, 67100 Coppito, Italy
| | - Martina Foschi
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell’Aquila, Via Vetoio, 67100 Coppito, Italy
| | | | - Claudia Quattrociocchi
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell’Aquila, Via Vetoio, 67100 Coppito, Italy
| |
Collapse
|
24
|
Experimental Design and Multiple Response Optimization for the Extraction and Quantitation of Thirty-Four Priority Organic Micropollutants in Tomatoes through the QuEChERS Approach. SEPARATIONS 2023. [DOI: 10.3390/separations10030174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
The chemical contamination in fruit and vegetables represents a challenging analytical issue, with tomatoes deserving to be investigated as they are fundamental components of the Mediterranean diet. Polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs contamination is of serious concern, due to particulate deposition and to uptake from contaminated soils and water. However, time-consuming, non-simultaneous and/or non-eco-friendly extraction procedures are typically used to investigate organic contamination in tomatoes, with nitro-PAHs that have not yet been studied. Based on these premises, this work reports the development of a QuEChERS-based approach, coupled with gas chromatography/mass spectrometry, for the simultaneous determination of 16 PAHs, 14 PCBs and 4 nitro-PAHs in three tomato cultivars. The effect of dichloromethane, cyclohexane and acetone, as well as of four clean-up phases were studied through the advanced combination of full factorial experimental design and multiple response optimization approaches. The final protocol, based on cyclohexane extraction followed by a double purification step with primary secondary amine and octadecyl silica and a sulfuric acid oxidation, led to 60–120% recoveries (RSD% < 15%). Good repeatability (inter-day precision <15%) and negligible matrix effect (<16%) were confirmed and the protocol was applied to the analysis of real tomato samples purchased in a local market.
Collapse
|
25
|
Hui T, Fang Z, Li Y, Hamid N. Formation of polycyclic aromatic hydrocarbon in an intramuscular fat model system containing epicatechin. Food Res Int 2022; 162:111911. [DOI: 10.1016/j.foodres.2022.111911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/25/2022] [Accepted: 09/07/2022] [Indexed: 11/26/2022]
|
26
|
Abugu HO, Ezugwu AL, Ihedioha JN. Assessment of Polycyclic Aromatic Hydrocarbon Contamination of Fruits, Leaves, and Soil within Automobile Repair Workshops in Nsukka Metropolis. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2149567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Hillary Onyeka Abugu
- Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Nigeria
| | | | | |
Collapse
|
27
|
Agus BAP, Rajentran K, Selamat J, Lestari SD, Umar NB, Hussain N. Determination of 16 EPA PAHs in food using gas and liquid chromatography. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.105038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Al-Nasir F, Hijazin TJ, Al-Alawi MM, Jiries A, Al-Madanat OY, Mayyas A, A. Al-Dalain S, Al-Dmour R, Alahmad A, Batarseh MI. Accumulation, Source Identification, and Cancer Risk Assessment of Polycyclic Aromatic Hydrocarbons (PAHs) in Different Jordanian Vegetables. TOXICS 2022; 10:643. [PMID: 36355935 PMCID: PMC9692249 DOI: 10.3390/toxics10110643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
The accumulation of polyaromatic hydrocarbons in plants is considered one of the most serious threats faced by mankind because of their persistence in the environment and their carcinogenic and teratogenic effect on human health. The concentrations of sixteen priority polycyclic aromatic hydrocarbons (16 PAHs) were determined in four types of edible vegetables (tomatoes, zucchini, eggplants, and cucumbers), irrigation water, and agriculture soil, where samples were collected from the Jordan Valley, Jordan. The mean total concentration of 16 PAHs (∑16PAHs) ranged from 10.649 to 21.774 µg kg−1 in vegetables, 28.72 µg kg−1 in soil, and 0.218 µg L−1 in the water samples. The tomato samples posed the highest ∑16PAH concentration level in the vegetables, whereas the zucchini samples had the lowest. Generally, the PAHs with a high molecular weight and four or more benzene rings prevailed among the studied samples. The diagnostic ratios and the principal component analysis (PCA) revealed that the PAH contamination sources in soil and vegetables mainly originated from a pyrogenic origin, traffic emission sources, and biomass combustion. The bioconcentration factors (BCF) for ∑16PAHs have been observed in the order of tomatoes > cucumbers and eggplants > zucchini. A potential cancer risk related to lifetime consumption was revealed based on calculating the incremental lifetime cancer risk of PAHs (ILCR). Therefore, sustainable agricultural practices and avoiding biomass combusting would greatly help in minimizing the potential health risk from dietary exposure to PAHs.
Collapse
Affiliation(s)
- Farh Al-Nasir
- Faculty of Agriculture, Mutah University, Karak 61710, Jordan
| | - Tahani J. Hijazin
- Biology Department, Faculty of Science, Mutah University, Karak 61710, Jordan
| | | | - Anwar Jiries
- Chemistry Department, Faculty of Science, Mutah University, Karak 61710, Jordan
| | - Osama Y. Al-Madanat
- Chemistry Department, Faculty of Science, Mutah University, Karak 61710, Jordan
- Prince Faisal Center for the Dead Sea, Environmental and Energy Research, Mutah 61710, Jordan
| | - Amal Mayyas
- Department of Pharmacy, Faculty of Health Science, American University of Madaba, Amman 11821, Jordan
| | - Saddam A. Al-Dalain
- Al-Shoubak University College, Al-Balqa Applied University, Al-Salt 19117, Jordan
| | - Rasha Al-Dmour
- Chemistry Department, Faculty of Science, Mutah University, Karak 61710, Jordan
| | - Abdalrahim Alahmad
- Institut für Technische Chemie, Leibniz Universität Hannover, 30167 Hannover, Germany
| | - Mufeed I. Batarseh
- Chemistry Department, Faculty of Science, Mutah University, Karak 61710, Jordan
- Academic Support Department, Abu Dhabi Polytechnic, Abu Dhabi P.O. Box 111499, United Arab Emirates
| |
Collapse
|
29
|
Arikan B, Ozfidan-Konakci C, Yildiztugay E, Turan M, Cavusoglu H. Polystyrene nanoplastic contamination mixed with polycyclic aromatic hydrocarbons: Alleviation on gas exchange, water management, chlorophyll fluorescence and antioxidant capacity in wheat. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119851. [PMID: 35987286 DOI: 10.1016/j.envpol.2022.119851] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/13/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) constitute a significant environmental pollution group that reaches toxic levels with anthropogenic activities. The adverse effects of nanoplastics accumulating in ecosystems with the degradation of plastic wastes are also a growing concern. Previous studies have generally focused on the impact of single PAH or plastic fragments exposure on plants. However, it is well recognized that these contaminants co-exist at varying rates in agricultural soil and water resources. Therefore, it is critical to elucidate the phytotoxicity and interaction mechanisms of mixed pollutants. The current study was designed to comparatively investigate the single and combined effects of anthracene (ANT, 100 mg L-1), fluorene (FLU, 100 mg L-1) and polystyrene nanoplastics (PS, 100 mg L-1) contaminations in wheat. Plants exposed to single ANT, FLU and PS treatments demonstrated decline in growth, water content, high stomatal limitations and oxidative damage. The effect of ANT + FLU on these parameters was more detrimental. In addition, ANT and/or FLU treatments significantly suppressed photosynthetic capacity as determined by carbon assimilation rate (A) and chlorophyll a fluorescence transient. The antioxidant system was not fully activated (decreased superoxide dismutase, peroxidase and glutathione reductase) under ANT + FLU, then hydrogen peroxide (H2O2) content (by 2.7-fold) and thiobarbituric acid reactive substances (TBARS) (by 2.8-fold) increased. Interestingly, ANT + PS and FLU + PS improved the growth, water relations and gas exchange parameters. The presence of nanoplastics recovered the adverse effects of ANT and FLU on growth by protecting the photosynthetic photochemistry and reducing oxidative stress. PAH plus PS reduced the ANT and FLU accumulation in wheat leaves. In parallel, the increased antioxidant system, regeneration of ascorbate, glutathione and glutathione redox status observed under ANT + PS and FLU + PS. These findings will provide an information about the phytotoxicity mechanisms of mixed pollutants in the environment.
Collapse
Affiliation(s)
- Busra Arikan
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, Konya, 42130, Turkey.
| | - Ceyda Ozfidan-Konakci
- Department of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, Meram, Konya, 42090, Turkey.
| | - Evren Yildiztugay
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, Konya, 42130, Turkey.
| | - Metin Turan
- Department of Agricultural Trade and Management, Faculty of Economy and Administrative Sciences, Yeditepe University, İstanbul, 34755, Turkey.
| | - Halit Cavusoglu
- Department of Physics, Faculty of Science, Selcuk University, Selcuklu, Konya, 42130, Turkey.
| |
Collapse
|
30
|
Comparing the chromatographic performance of benzene and aniline end capped stationary phase synthesized by click chemistry. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Kacmaz S, Altiok E, Altiok D. Polycyclic Aromatic Hydrocarbon in Fruits and Vegetables Grown in Turkey: Quantitative Analysis, Dietary Exposure, and Health Risk Assessment. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2126507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Sibel Kacmaz
- Department of Food Engineering, Engineering Faculty, Giresun University, Giresun, Turkey
| | - Evren Altiok
- Department of Genetics and Bioengineering, Engineering Faculty, Giresun University, Giresun, Turkey
| | - Duygu Altiok
- Department of Food Engineering, Engineering Faculty, Giresun University, Giresun, Turkey
| |
Collapse
|
32
|
Sauret N, Dugué L, Poulidor J, Massi L, Ledauphin J. Air Mapping of Polycyclic Aromatic Hydrocarbons and Their Uptake by Crops in the Urban Area of Nice, France. Chempluschem 2022; 87:e202200182. [PMID: 36100557 DOI: 10.1002/cplu.202200182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/30/2022] [Indexed: 11/07/2022]
Abstract
Urban gardening is becoming increasingly popular. Air pollution, which is a major concern in cities might, however, threaten food safety and thus must be assessed. Health risks arise particularly from toxic persistent organic pollutants such as Polycyclic Aromatic Hydrocarbons (PAHs) which are formed by incomplete combustion. A first assessment of crop contamination in two different atmospheric environments in the urban area of Nice reveals a predominance of light PAHs. These pollutants present in the gaseous phase, seem to bioaccumulate while heavy PAHs are absent in vegetation. By understanding the PAH sources and their behavior in the atmosphere but also by analyzing the spatial and temporal data since the European directive in 2004, a link between concentrations found in vegetables grown in experimental gardens and PAH cadastral emission data is presented. The first results could be used as a possible guidance for urban agriculture.
Collapse
Affiliation(s)
- Nathalie Sauret
- Institut de Chimie de Nice, UMR 7272, Université Côte d'Azur, Parc Valrose, 06102, Nice, France
| | - Lolita Dugué
- Atmosud, French accredited Air Quality Monitoring Association for the region SUD, 37 bis Av. Henri Matisse, 06200, Nice, France
| | - Julien Poulidor
- Atmosud, French accredited Air Quality Monitoring Association for the region SUD, 37 bis Av. Henri Matisse, 06200, Nice, France
| | - Lionel Massi
- Institut de Chimie de Nice, UMR 7272, Université Côte d'Azur, Parc Valrose, 06102, Nice, France
| | - Jérôme Ledauphin
- UR ABTE (Aliments Bioprocédés Toxicologie Environnements), Université Caen Normandie, Esplanade de la paix, 14032, Caen cedex 05, France
| |
Collapse
|
33
|
Hasanoglu S, Göktaş RK. Fugacity-based analysis of polycyclic aromatic hydrocarbon pollution in Izmit Bay, Turkey: An analytical framework for assessment with limited data. MARINE POLLUTION BULLETIN 2022; 182:113990. [PMID: 35939930 DOI: 10.1016/j.marpolbul.2022.113990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 07/01/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
An analytical framework was proposed for analyzing long-term chemical pollution in a coastal region with limited environmental data. The framework consists of compiling and synthesizing the available knowledge including the chemical's properties and the environmentally relevant data, as well as the data obtained by past monitoring studies. The gathered data is analyzed to assess multimedia fate of the pollutant by using fugacity-based intermedia transport calculations. Uncertainty analysis by applying Monte Carlo simulations is an integrated part of the framework. Dispersion factor (k) values were adopted, enabling a unified and intuitive way to define lognormal uncertainty distributions. The proposed framework was applied to polycyclic aromatic hydrocarbon (PAH) pollution in Izmit Bay, a coastal region in Turkey, impacted by industrialization and population growth. The analysis showed the importance of atmospheric pollution as a PAH source and indicated that Izmit Bay sediments may be at steady state for most PAHs.
Collapse
Affiliation(s)
- Sumeyye Hasanoglu
- Environmental Engineering Department, Engineering Faculty, Istanbul University Cerrahpasa, 34320 Istanbul, Turkey; Department of Environmental Engineering, Kocaeli University, 41001 Kocaeli, Turkey.
| | - Recep Kaya Göktaş
- Department of Environmental Engineering, Kocaeli University, 41001 Kocaeli, Turkey
| |
Collapse
|
34
|
A comprehensive review on occurrence, source, effect, and measurement techniques of polycyclic aromatic hydrocarbons in India. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
Polycyclic aromatic hydrocarbons in citrus fruit irrigated with fresh water under arid conditions: Concentrations, sources, and risk assessment. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
36
|
van Asselt ED, Arrizabalaga-Larrañaga A, Focker M, Berendsen BJA, van de Schans MGM, van der Fels-Klerx HJ. Chemical food safety hazards in circular food systems: a review. Crit Rev Food Sci Nutr 2022; 63:10319-10331. [PMID: 35611891 DOI: 10.1080/10408398.2022.2078784] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Food production has increasingly become effective but not necessarily sustainable. Transitioning toward circular production systems aiming to minimize waste and reuse materials is one of the means to obtain a more sustainable food production system. However, such a circular food production system can also lead to the accumulation and recirculation of chemical hazards. A literature review was performed to identify potential chemical hazards related to the use of edible and non-edible resources in agriculture and horticulture, and edible plant and animal by-products in feed production. The review revealed that limited information was available on the chemical hazards that could occur when reusing crop residues in circular agriculture. Frequently mentioned hazards present in edible and non-edible resources are heavy metals, process and environmental contaminants, pesticides and pharmaceuticals. For feed, natural toxins and pharmaceutical residues are of potential concern. Studies, furthermore, indicated that plants are capable of taking up chemical hazards when grown on contaminated soil. The presence of chemical hazards in manure, sewage sludge, crop residues, and animal by-products may lead to accumulation in a circular food production system. Therefore, it is relevant to identify these hazards prior to application in food production and, if needed, take precautionary measures to prevent food safety risks.
Collapse
Affiliation(s)
- E D van Asselt
- Wageningen Food Safety Research, Wageningen, The Netherlands
| | | | - M Focker
- Wageningen Food Safety Research, Wageningen, The Netherlands
| | - B J A Berendsen
- Wageningen Food Safety Research, Wageningen, The Netherlands
| | | | | |
Collapse
|
37
|
Bulanda S, Janoszka B. Consumption of Thermally Processed Meat Containing Carcinogenic Compounds (Polycyclic Aromatic Hydrocarbons and Heterocyclic Aromatic Amines) versus a Risk of Some Cancers in Humans and the Possibility of Reducing Their Formation by Natural Food Additives-A Literature Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19084781. [PMID: 35457645 PMCID: PMC9024867 DOI: 10.3390/ijerph19084781] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/23/2022] [Accepted: 04/12/2022] [Indexed: 12/18/2022]
Abstract
(1) Background: Thermal treatment of high-protein food may lead to the formation of mutagenic and carcinogenic compounds, e.g., polycyclic aromatic hydrocarbons and heterocyclic aromatic amines. Frequent consumption of processed meat was classified by the International Agency for Research on Cancer as directly carcinogenic for humans. (2) Methods: A literature review was carried out based on a search of online databases for articles on consuming thermally processed meat containing carcinogenic compounds versus a risk of cancers in humans published between 2001 and 2021. (3) Results: A review of the current literature on the participation of PAHs and HAA in the formation of certain neoplasms indicates a positive relationship between diet and the incidences of many cancers, especially colon cancer. A simple way to obtain dishes with reduced contents of harmful compounds is the use of spices and vegetables as meat additives. These seasonings are usually rich in antioxidants that influence the mechanism of HAA and PAH synthesis in food. (4) Conclusions: As there is a growing risk of a cancer tendency because of exposing humans to PAHs and HAAs, it is extremely vital to find a simple way to limit carcinogenic compound synthesis in a processed proteinaceous food. Disseminating the knowledge about the conditions for preparing dishes with a reduced content of carcinogenic compounds could become a vital element of cancer prevention programs.
Collapse
|
38
|
Santos DD, Santos OSL, Domingos M, Rinaldi MCS. Pah levels in the soil-litter-vegetation-atmosphere system of Atlantic Forest remnants in Southeast Brazil. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:293. [PMID: 35332388 DOI: 10.1007/s10661-022-09946-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
Although the Brazilian Atlantic Forest is a hotspot for biodiversity conservation, it is one of the most fragmented biomes in Brazil and also affected by air pollutants such as polycyclic aromatic hydrocarbons (PAHs). The study aimed at measuring the PAH levels in leaf trees, litter, soil, and atmosphere of two Atlantic Forest remnants impacted by air pollutants during summer and winter periods; identifying emission sources; and investigating the relationship among the PAH concentrations in the soil, litter, leaves, and atmosphere. Site 1 is situated in the largest South American city, with rainy summers and dry winters, and characterized by intense urbanization. Site 2 is situated in a large forest continuum and is characterized by wet climate with no defined dry seasons. It is more distant from the anthropogenic urban sources than site 1, but closer to an industrial complex. No differences were detected for PAH amounts (summer + winter) in the particles and wet deposition fluxes between sites. In site 1, the highest concentrations of PAHs in the particles were measured during the winter while in the leaf trees were measured during the summer. PMF model showed that sites 1 and 2 receive PAHs mainly from vehicle emissions and industrial activities, respectively. The accumulation of heavier compounds in soil and leaves via wet deposition was more evident in site 2. PAHs were mainly stored in the soil of site 1, contrasting with site 2, where they were retained in litter, which were attributed to disturbances of decomposer community and reduced decomposition rates.
Collapse
Affiliation(s)
| | | | - Marisa Domingos
- Instituto de Botânica, Caixa Postal, São Paulo, 68041, 04045-972, Brazil
| | - Mirian C S Rinaldi
- Instituto de Botânica, Caixa Postal, São Paulo, 68041, 04045-972, Brazil.
| |
Collapse
|
39
|
Cihangir P, Durmus H, Tas B, Cindoruk SS. Investigation of Polycyclic Aromatic Hydrocarbons (PAHs) Uptake by Cucurbita pepo under Exhaust Gas Loading. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2044867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Perihan Cihangir
- Faculty of Engineering, Department of Environmental Engineering, Bursa Uludag University, Bursa, Turkey
| | - Hafize Durmus
- Faculty of Engineering, Department of Environmental Engineering, Bursa Uludag University, Bursa, Turkey
| | - Birol Tas
- Faculty of Agriculture, Department of Field Crops, Bursa Uludag University, Nilüfer-Bursa, Turkey
| | - S. Sıddık Cindoruk
- Faculty of Engineering, Department of Environmental Engineering, Bursa Uludag University, Bursa, Turkey
| |
Collapse
|
40
|
Cao X, Huo S, Zhang H, Ma C, Zheng J, Wu F, Song S. Seasonal variability in multimedia transport and fate of benzo[a]pyrene (BaP) affected by climatic factors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118404. [PMID: 34699921 DOI: 10.1016/j.envpol.2021.118404] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/09/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
The impact of meteorological factors on the transport behavior and distribution of volatile and semi-volatile organic pollutants has become an area of increasing concern. Here, we analyzed seasonal variation in climatic variables including wind, temperature, and precipitation to quantitatively assess the impact of these factors on the multimedia transport and fate of BaP in the continental region of China using a Berkeley-Trent (BETR) model. The advective rates of air exhibited an increasing trend of autumn (1.830 mol/h) < summer (1.975 mol/h) < winter (2.053 mol/h) < spring (2.405 mol/h) in association with increasing wind speed, indicating that lower atmospheric BaP concentrations are present in regions with high wind speeds and advective rates. The air-soil transport rates (0.08-45.55 mol/h) in winter were higher than in summer (0.07-32.41 mol/h), while low winter temperatures accelerate BaP accumulation in terrestrial ecosystems due to cold deposition. Cold deposition effects were more evident in northern regions than in southern regions. Further, increasing precipitation enhanced air-soil and soil-freshwater transport rates with the correlation coefficients of r = 0.445 and r = 0.598 respectively, while decreasing the air-vegetation transport rates (r = 0.475), thereby contributing to the accumulation of BaP in soils and freshwaters. In the light of the potential dispersion of BaP pollution at regional and global scales affected by these key climatic factors, this indirectly indicated the impact of future climate change on the BaP transport. Thus, flexible policy interventions should be enacted to slow future climate change.
Collapse
Affiliation(s)
- Xianghui Cao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China
| | - Shouliang Huo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China.
| | - Hanxiao Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China; Beijing Normal University, Beijing, 100874, China
| | - Chunzi Ma
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China
| | - Jiaqi Zheng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, PR China
| | - Shuai Song
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
41
|
Polycyclic Aromatic Hydrocarbons (PAHs) Sample Preparation and Analysis in Beverages: A Review. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-021-02178-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AbstractThe monitoring of food contaminants is of interests to both food regulatory bodies and the consumers. This literature review covers polycyclic aromatic hydrocarbons (PAHs) with regard to their background, sources of exposures, and occurrence in food and environment as well as health hazards. Furthermore, analytical methods focusing on the analysis of PAHs in tea, coffee, milk, and alcoholic samples for the last 16 years are presented. Numerous experimental methods have been developed aiming to obtain better limits of detections (LODs) and percent recoveries as well as to reduce solvent consumption and laborious work. These include information such as the selected PAHs analyzed, food matrix of PAHs, methods of extraction, cleanup procedure, LOD, limits of quantitation (LOQ), and percent recovery. For the analysis of tea, coffee, milk, and alcoholic samples, a majority of the research papers focused on the 16 US Environmental Protection Agency PAHs, while PAH4, PAH8, and methylated PAHs were also of interests. Extraction methods range from the classic Soxhlet extraction and liquid–liquid extraction to newer methods such as QuEChERS, dispersive solid-phase microextraction, and magnetic solid-phase extraction. The cleanup methods involved mainly the use of column chromatography and SPE filled with either silica or Florisil adsorbents. Gas chromatography and liquid chromatography coupled with mass spectrometry or fluorescence detectors are the main analytical instruments used. A majority of the selected combined methods used are able to achieve LODs and percent recoveries in the ranges of 0.01–5 ug/kg and 70–110%, respectively, for the analysis of tea, coffee, milk, and alcoholic samples.
Collapse
|
42
|
Zhou S, Zhu Q, Liu H, Jiang S, Zhang X, Peng C, Yang G, Li J, Cheng L, Zhong R, Zeng Q, Miao X, Lu Q. Associations of polycyclic aromatic hydrocarbons exposure and its interaction with XRCC1 genetic polymorphism with lung cancer: A case-control study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118077. [PMID: 34523522 DOI: 10.1016/j.envpol.2021.118077] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
Humans are extensively exposed to polycyclic aromatic hydrocarbons (PAHs) daily via multiple pathways. Epidemiological studies have demonstrated that occupational exposure to PAHs increases the risk of lung cancer, but related studies in the general population are limited. Hence, we conducted a case-control study among the Chinese general population to investigate the associations between PAHs exposure and lung cancer risk and analyze the modifications of genetic polymorphisms in DNA repair genes. In this study, we enrolled 122 lung cancer cases and 244 healthy controls in Wuhan, China. Urinary PAHs metabolites were determined by gas chromatography-mass spectrometry, and rs25487 in X-ray repair cross-complementation 1 (XRCC1) gene was genotyped by the Agena Bioscience MassARRAY System. Then, multivariable logistic regression models were performed to estimate the potential associations. We found that urinary hydroxynaphthalene (OH-Nap), hydroxyphenanthrene (OH-Phe) and the sum of hydroxy PAHs (∑OH-PAHs) levels were significantly higher in lung cancer cases than those in controls. After adjusting for gender, age, BMI, smoking status, smoking pack-years, drinking status and family history, urinary ∑OH-Nap and ∑OH-Phe levels were positively associated with lung cancer risk, with dose-response relationships. Compared with those in the lowest tertiles, individuals in the highest tertiles of ∑OH-Nap and ∑OH-Phe had a 2.13-fold (95% CI: 1.10, 4.09) and 2.45-fold (95% CI: 1.23, 4.87) increased risk of lung cancer, respectively. Effects of gender, age, smoking status and smoking pack-years on the associations of PAHs exposure with lung cancer risk were shown in the subgroup analysis. Furthermore, associations of urinary ∑OH-Nap and ∑OH-PAHs levels with lung cancer risk were modified by XRCC1 rs25487 (Pinteraction ≤ 0.025), and were more pronounced in wild-types of rs25487. These findings suggest that environmental exposure to naphthalene and phenanthrene is associated with increased lung cancer risk, and polymorphism of XRCC1 rs25487 might modify the naphthalene exposure-related lung cancer effect.
Collapse
Affiliation(s)
- Shuang Zhou
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Qiuqi Zhu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Huimin Liu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Shunli Jiang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China; Key Laboratory of Occupational Health and Environmental Medicine, Department of Public Health, Jining Medical University, 133 Hehua Road, Jining, Shandong, 272067, China
| | - Xu Zhang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Cheng Peng
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Guanlin Yang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Jiaoyuan Li
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Wuhan, Hubei, 430030, China
| | - Liming Cheng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Road, Wuhan, Hubei, 430030, China
| | - Rong Zhong
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Qiang Zeng
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Xiaoping Miao
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Qing Lu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, China.
| |
Collapse
|
43
|
Kosarac I, Kubwabo C, Fan X, Siddique S, Petraccone D, He W, Man J, Gagne M, Thickett KR, Mischki TK. Open Characterization of Vaping Liquids in Canada: Chemical Profiles and Trends. Front Chem 2021; 9:756716. [PMID: 34722460 PMCID: PMC8551961 DOI: 10.3389/fchem.2021.756716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
Currently, there is a lack of comprehensive data on the diversity of chemicals present in vaping liquids. To address this gap, a non-targeted analysis of 825 vaping liquids collected between 2017 and 2019 from Canadian retailers was conducted. Prior to mass spectrometry analysis, samples were diluted 1:500 v/v with methanol or acetonitrile. Chemical compound separation and analysis was carried out using gas chromatography and triple quadrupole mass spectrometry (GC-MS/MS) systems operated in the full scan mode and mass range of 35-450 m/z. Mass spectrum for each sample was obtained in electron ionization at 70 eV and processed. Non-targeted identification workflow included use of automated mass spectral deconvolution and identification system (AMDIS), where required, as well as a number of commercially available spectral libraries. In order to validate identities, an in-house database of expected compounds previously detected in vaping liquids was used along with genuine analytical standards for compounds of interest. This resulted in a dataset of over 1,500 unique detected chemicals. Approximately half of these chemical compounds were detected only once in a single product and not in multiple products analyzed. For any sample analyzed, on average, 40% of the chemical constituents appeared to have flavouring properties. The remainder were nicotine and related alkaloids, processing, degradation or indirect additives, natural extractives and compounds with unknown roles. Data published here from the project on the Open Characterization of vaping liquids is unique as it offers a detailed understanding of products' flavour chemical profiles, the presence and frequency of chemicals of potential health concern, as well as trends and changes in products' chemical complexity over a three-year period. Non-targeted chemical surveillance such as this present valuable tools to public health officials and researchers in responding to emergent issues such as vaping associated lung injury or informing chemical based strategies which may be aimed at addressing product safety or appeal.
Collapse
Affiliation(s)
- Ivana Kosarac
- Office of Research and Surveillance, Tobacco Control Directorate, Controlled Substances and Cannabis Branch, Health Canada, Ottawa, ON, Canada
| | - Cariton Kubwabo
- Exposure and Biomonitoring Division, Environmental and Radiation Sciences Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, Canada
| | - Xinghua Fan
- Exposure and Biomonitoring Division, Environmental and Radiation Sciences Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, Canada
| | - Shabana Siddique
- Exposure and Biomonitoring Division, Environmental and Radiation Sciences Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, Canada
| | - Dora Petraccone
- Office of Research and Surveillance, Tobacco Control Directorate, Controlled Substances and Cannabis Branch, Health Canada, Ottawa, ON, Canada
| | - Wei He
- Exposure and Biomonitoring Division, Environmental and Radiation Sciences Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, Canada
| | - Jun Man
- Food Research Division, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON, Canada
| | - Matthew Gagne
- Hazard Methodology Division, Safe Environments Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, Canada
| | - Kelly R Thickett
- Office of Research and Surveillance, Tobacco Control Directorate, Controlled Substances and Cannabis Branch, Health Canada, Ottawa, ON, Canada
| | - Trevor K Mischki
- Office of Research and Surveillance, Tobacco Control Directorate, Controlled Substances and Cannabis Branch, Health Canada, Ottawa, ON, Canada
| |
Collapse
|
44
|
Martina G, Irene R, Paolo A, Gianniantonio P, Beatrice P, Grifoni M. A Preliminary Study on Lupinus albus and Raphanus sativus Grown in Soil Affected by Oil Spillage. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 107:917-923. [PMID: 34131783 DOI: 10.1007/s00128-021-03290-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 06/09/2021] [Indexed: 06/12/2023]
Abstract
Oil spills from pipelines are a hazardous contamination source for agricultural soils. We investigated the effects of petroleum hydrocarbon (PHC) soil contamination, resulting from a real diesel oil pipeline spill, on the growth of Lupinus albus and Raphanus sativus plants. These species are widely cultivated for food purposes and have not been previously tested in soils affected by oil spills. Mesocosm-scale experiments were conducted in a greenhouse, and the potential transfer of hydrocarbons from soil to plant was evaluated. The results indicated that hydrocarbons in soil altered the soil nutrient balance and adversely affected plant growth. The C > 12 content in the aerial part was lower in plants grown in the contaminated soil than in plants grown in the control soil. The reduction in plant growth was not related to the accumulation of hydrocarbons in plant tissue, but rather to the deterioration in soil quality due to the oil spill.
Collapse
Affiliation(s)
- Grifoni Martina
- Research Institute on Terrestrial Ecosystems, National Research Council, via Moruzzi 1, 56124, Pisa, Italy
| | - Rosellini Irene
- Research Institute on Terrestrial Ecosystems, National Research Council, via Moruzzi 1, 56124, Pisa, Italy
| | | | - Petruzzelli Gianniantonio
- Research Institute on Terrestrial Ecosystems, National Research Council, via Moruzzi 1, 56124, Pisa, Italy
| | - Pezzarossa Beatrice
- Research Institute on Terrestrial Ecosystems, National Research Council, via Moruzzi 1, 56124, Pisa, Italy
| | - Martina Grifoni
- Research Institute on Terrestrial Ecosystems, National Research Council, via Moruzzi 1, 56124, Pisa, Italy.
| |
Collapse
|
45
|
Pasandideh Y, Razmi H. Preparation of a new coating of graphene oxide/nickel complex on a nickelized metal surface for direct immersion solid phase microextraction of some polycyclic aromatic hydrocarbons. BMC Chem 2021; 15:56. [PMID: 34656161 PMCID: PMC8520613 DOI: 10.1186/s13065-021-00783-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 10/12/2021] [Indexed: 11/26/2022] Open
Abstract
Background Solid-phase microextraction (SPME) is a versatile sampling and sample preparation technology that possess a significant application in the extraction and pre-concentration of a broad range of micro-pollutants from different kind of matrices. Selection and preparation of an appropriate fiber substrate and coating materials have always been the main challenges of the SPME procedure. This paper introduces a high-efficiency metal-based SPME fiber with a new chemical coating of nickel/graphene oxide/nickel tetraazamacrocyclic complex (Ni/GO/NiTAM). Result The Ni/GO/NiTAM sorbent was electroless deposited onto the surface of an aluchrom (Alu) wire, and then the prepared fiber was employed for the extraction and pre-concentration of some PAHs before their HPLC–UV analysis. The prepared fiber characterization data were assessed using FE-SEM, EDX, XRD, FT-IR, and BET techniques. The method validation parameters, including the linearity range (LRs: 0.10 to 200.0 µg L−1), the limit of detection (LODs: 0.03‒0.30 µg L−1), and the limit of quantification (LOQs: 0.10–1.00 µg L−1), under optimal conditions. The relative standard deviations (RSDs) of intra-day, inter-day, and single fiber repeatability (for the samples spiked at 25 µg L‒1) were in the range of 0.32–2.94, 1.20–4.09, and 1.42‒4.39%, respectively. In addition, the technique recoveries (RR %) and enrichment factors (EF) were in the range of 83.10‒107.80% and 83–164, respectively. Conclusion The fiber fabrication was simple, and the applied materials were also economical and easily accessible. Alu metal has high physicochemical and mechanical stability and thus can be a good alternative for the substrate of the fragile commercial SPME fibers. High rigidity and durability, long service life, and high extraction capability are some of the other advantages of the offered fiber. Supplementary Information The online version contains supplementary material available at 10.1186/s13065-021-00783-w.
Collapse
Affiliation(s)
- Yalda Pasandideh
- Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, P.O. Box: 53714-161, Tabriz, Iran.
| | - Habib Razmi
- Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, P.O. Box: 53714-161, Tabriz, Iran
| |
Collapse
|
46
|
Development of hollow fiber-membrane microporous liquid–liquid extraction (HF-MMLLE) procedure based on palladium nanoparticles for determination of PAH in leached extracts. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
47
|
Grigoriou C, Costopoulou D, Vassiliadou I, Chrysafidis D, Tzamtzis V, Bakeas E, Leondiadis L. Monitoring of Polycyclic Aromatic Hydrocarbon Levels in Mussels ( Mytilus galloprovincialis) from Aquaculture Farms in Central Macedonia Region, Greece, Using Gas Chromatography-Tandem Mass Spectrometry Method. Molecules 2021; 26:5953. [PMID: 34641497 PMCID: PMC8512793 DOI: 10.3390/molecules26195953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 11/18/2022] Open
Abstract
A new sensitive and selective gas chromatography tandem mass spectrometry (GC-MS/MS) method was developed for the analysis of 26 polycyclic aromatic hydrocarbons (PAHs), including 16 Environmental Protection Agency (EPA) and 15 + 1 European Union (EU) PAHs, in mussel samples from aquaculture farms in Thermaikos and Strymonian Gulf, Central Macedonia Region, in three sampling periods. Concentrations were found at moderate to low values at all sampling sites, without exceeding maximum levels set by EU. Low molecular weight PAHs were predominant in all samples. Seasonal variation of the concentrations was observed; values were slightly higher in the winter period. Use of diagnostic ratios for potential sources of PAHs showed both petrogenic and pyrolitic origin. In comparison to other related studies of mussels from the Mediterranean Sea, Greek mussels cultivated in the studied gulfs are low in contaminants due to minimal environmental pollution effects. Low concentrations of PAHs are in compliance with the low values of other POPs which were found in the mussels.
Collapse
Affiliation(s)
- Constantina Grigoriou
- Mass Spectrometry and Dioxin Analysis Laboratory, INRASTES, NCSR ‘‘Demokritos”, 15341 Athens, Greece; (C.G.); (D.C.); (I.V.)
| | - Danae Costopoulou
- Mass Spectrometry and Dioxin Analysis Laboratory, INRASTES, NCSR ‘‘Demokritos”, 15341 Athens, Greece; (C.G.); (D.C.); (I.V.)
| | - Irene Vassiliadou
- Mass Spectrometry and Dioxin Analysis Laboratory, INRASTES, NCSR ‘‘Demokritos”, 15341 Athens, Greece; (C.G.); (D.C.); (I.V.)
| | - Dimitrios Chrysafidis
- General Chemical State Laboratory–Food Division, 16 An. Tsocha, 11521 Athens, Greece; (D.C.); (V.T.)
| | - Vassilios Tzamtzis
- General Chemical State Laboratory–Food Division, 16 An. Tsocha, 11521 Athens, Greece; (D.C.); (V.T.)
| | - Evangelos Bakeas
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Zografos, Panepistimiopolis, 15784 Athens, Greece;
| | - Leondios Leondiadis
- Mass Spectrometry and Dioxin Analysis Laboratory, INRASTES, NCSR ‘‘Demokritos”, 15341 Athens, Greece; (C.G.); (D.C.); (I.V.)
| |
Collapse
|
48
|
Wróblewska K, Jeong BR. Effectiveness of plants and green infrastructure utilization in ambient particulate matter removal. ENVIRONMENTAL SCIENCES EUROPE 2021; 33:110. [PMID: 34603905 PMCID: PMC8475335 DOI: 10.1186/s12302-021-00547-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/22/2021] [Indexed: 05/10/2023]
Abstract
Air pollution is regarded as an increasingly threatening, major environmental risk for human health. Seven million deaths are attributed to air pollution each year, 91% of which is due to particulate matter. Vegetation is a xenobiotic means of removing particulate matter. This review presents the mechanisms of PM capture by plants and factors that influence PM reduction in the atmosphere. Vegetation is ubiquitously approved as a PM removal solution in cities, taking various forms of green infrastructure. This review also refers to the effectiveness of plant exploitation in GI: trees, grasslands, green roofs, living walls, water reservoirs, and urban farming. Finally, methods of increasing the PM removal by plants, such as species selection, biodiversity increase, PAH-degrading phyllospheric endophytes, transgenic plants and microorganisms, are presented.
Collapse
Affiliation(s)
- Katarzyna Wróblewska
- Department of Horticulture, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
- Department of Horticulture, College of Agriculture and Life Science, Gyeongsang National University, Jinju, 52828 South Korea
| | - Byoung Ryong Jeong
- Department of Horticulture, College of Agriculture and Life Science, Gyeongsang National University, Jinju, 52828 South Korea
- Division of Applied Life Science (BK21 Four), Graduate School, Gyeongsang National University, Jinju, 52828 South Korea
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
49
|
Yan XT, Zhang Y, Zhou Y, Li GH, Feng XS. Source, Sample Preparation, Analytical and Inhibition Methods of Polycyclic Aromatic Hydrocarbons in Food (Update since 2015). SEPARATION & PURIFICATION REVIEWS 2021. [DOI: 10.1080/15422119.2021.1977321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Xiao-ting Yan
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guo-hui Li
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xue-song Feng
- School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
50
|
Akbari-Adergani B, Mahmood-Babooi K, Salehi A, Khaniki GJ, Shariatifar N, Sadighara P, Zeinali T. GC-MS determination of the content of polycyclic aromatic hydrocarbons in bread and potato Tahdig prepared with the common edible oil. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:540. [PMID: 34331145 DOI: 10.1007/s10661-021-09347-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
The polycyclic aromatic hydrocarbon (PAH) content of the Tahdig of the breads and potatoes prepared with edible oil was determined by GC-MS. The Tahdigs of bread and potato were baked under the same condition (volume of any oil 40 cc, temperature 180 °C, time 30 min). Polycyclic aromatic hydrocarbon determination was performed by an Agilent 6890 N Gas chromatography with mass selective detector, equipped with a capillary column. The highest contents of PAHs in Tahdig of bread and Tahdig of potato were observed in canola with 550 ± 3.9 ng/kg and sesame with 408.3 ± 41 ng/kg. The mean of PAH content was significantly higher in the Tahdig of bread compared to the Tahdig of potato (p < 0.05). Among the 16 PAHs examined by GC/MS, 10 PAHs were detected. The amount of high molecular weight (HMW) PAHs were significantly more than low molecular weight (LMW) PAHs (p < 0.05). Benzo [b]fluoranthene and benz[a]anthracene concentrations were significantly more than the other detected compounds (p < 0.05). Due to high PAH contamination of both Tahdig groups, the consumption of Tahdig (any type) was not recommended.
Collapse
Affiliation(s)
- Behrouz Akbari-Adergani
- Food and Drug Laboratory Research Center, Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| | - Kosar Mahmood-Babooi
- Department of Environmental Health, Food Safety Division, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Salehi
- Department of Environmental Health, Food Safety Division, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Jahed Khaniki
- Department of Environmental Health, Food Safety Division, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Nabi Shariatifar
- Department of Environmental Health, Food Safety Division, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Sadighara
- Department of Environmental Health, Food Safety Division, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Tayebeh Zeinali
- Social Determinants of Health Research Center, Department of Public Health, Faculty of Health, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|