1
|
Feng T, Li J, Mao X, Jin X, Cheng L, Xie H, Ma Y. A comparative analysis of the rhizosphere microbial communities among three species of the Salix genus. PeerJ 2025; 13:e19182. [PMID: 40166043 PMCID: PMC11956769 DOI: 10.7717/peerj.19182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/25/2025] [Indexed: 04/02/2025] Open
Abstract
Rhizosphere microorganisms exert a significant influence in counteracting diverse external stresses and facilitating plant nutrient uptake. While certain rhizosphere microorganisms associated with Salix species have been investigated, numerous rhizosphere microorganisms from various Salix species remain underexplored. In this study, we employed high-throughput sequencing to examine the rhizosphere bacterial and fungal communities composition and diversity of three Salix species: Salix zangica (SZ), Salix myrtilllacea (SM), and Salix cheilophila (SC). Furthermore, the BugBase and FUNGuild were utilized to predict the functional roles of bacterial and fungal microorganisms. The findings revealed notable variations in the alpha and beta diversities of bacterial and fungal communities among the three Salix species exhibited significant differences (p < 0.05). The relative abundance of Flavobacterium was highest in the SZ samples, while Microvirga exhibited significant enrichment in the SM samples. Microvirga and Vishniacozyma demonstrate the highest number of nodes within their respective bacterial and fungal community network structures. The functions of bacterial microorganisms, including Gram-positive, potentially pathogenic, Gram-negative, and stress-tolerant types, exhibited significant variation among the three Salix species (p < 0.05). Furthermore, for the function of fungal microbe, the ectomycorrhizal guild had the highest abundance of symbiotic modes. This results demonstrated the critical role of ectomycorrhizal fungi in enhancing nutrient absorption and metabolism during the growth of Salix plants. Additionally, this findings also suggested that S. zangica plant was better well-suited for cultivation in stressful environments. These findings guide future questions about plant-microbe interactions, greatly enhancing our understanding of microbial communities for the healthy development of Salix plants.
Collapse
Affiliation(s)
- Tianqing Feng
- Key Laboratory of Medicinal Plant and Animal Resources of the Qinghai-Tibetan Plateau in Qinghai Province, Xining, China
- School of Life Science, Qinghai Normal University, Xining, China
| | - Juan Li
- Qinghai Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, China
| | - Xiaoning Mao
- Key Laboratory of Medicinal Plant and Animal Resources of the Qinghai-Tibetan Plateau in Qinghai Province, Xining, China
- School of Life Science, Qinghai Normal University, Xining, China
| | - Xionglian Jin
- Key Laboratory of Medicinal Plant and Animal Resources of the Qinghai-Tibetan Plateau in Qinghai Province, Xining, China
- School of Life Science, Qinghai Normal University, Xining, China
| | - Liang Cheng
- Qinghai Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, China
| | - Huichun Xie
- Key Laboratory of Medicinal Plant and Animal Resources of the Qinghai-Tibetan Plateau in Qinghai Province, Xining, China
- School of Life Science, Qinghai Normal University, Xining, China
| | - Yonggui Ma
- Key Laboratory of Medicinal Plant and Animal Resources of the Qinghai-Tibetan Plateau in Qinghai Province, Xining, China
- School of Life Science, Qinghai Normal University, Xining, China
| |
Collapse
|
2
|
Yu X, Zhang T, Guo J, Ma T, Shang J, Huang Y, Liu Y. Plants colonization accelerates galena oxidation, mineralogical transformation, and microbial community reshaping under the soil phytoremediation processes. ENVIRONMENTAL RESEARCH 2025; 267:120687. [PMID: 39733978 DOI: 10.1016/j.envres.2024.120687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 12/31/2024]
Abstract
The ongoing weathering of metal sulfides has substantially posed threats to the eco-systems. For remediating metal sulfides-contaminated soils, phytostabilization is a promising nature-based technique that immobilizing heavy metals (HMs) that dissolved from metal sulfides in the rhizosphere, preventing their leaching and migrating into soil and groundwater. However, the underlying mechanism regarding the mineral-root interaction involving primary metal sulfides such as galena (PbS) during the remediation processes has yet been well studied. This study aims to investigate the geochemical alterations, mineralogical transformations, and microbial community reshaping of galena-added soils during plants colonization using two representative plants, ryegrass (Lolium perenne L.) and alfalfa (Medicago sativa.). After 11 weeks of plants colonization, the morphology of galena surface was altered, as massive erosion pits (ca. 200 nm) were visualized by SEM (Scanning Electron Microscope). The microspectroscopic analyses indicated that the PbS may have transformed to PbCO3 and PbSO4 during the plants colonization. Additionally, the chemical sequential extraction revealed that the plants colonization could promote the soluble Pb to be associated with carbonates and amorphous Fe/Al (oxyhydr)oxides, thus limiting their bioavailability and mobility. Moreover, the key driving factors of microbial community alteration have shifted from pH and bioavailability Pb to cation exchange capacity (CEC) during the plants colonization process. These findings have uncovered the (bio)geochemical behaviors of PbS in soils during the phytostabilization processes, which may develop an integrated mechanism of mineralogical and geochemical stabilization of HMs for non-pollution outcomes.
Collapse
Affiliation(s)
- Xin Yu
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Tingrui Zhang
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Junsheng Guo
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Taotao Ma
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Jianying Shang
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, PR China; Key Laboratory of Arable Land Conservation in North China, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China
| | - Yuanfang Huang
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, PR China; Key Laboratory of Arable Land Conservation in North China, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China
| | - Yunjia Liu
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, PR China; Key Laboratory of Arable Land Conservation in North China, Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China.
| |
Collapse
|
3
|
Nkongolo K, Mukalay JB, Lubobo AK, Michael P. Soil Microbial Responses to Varying Environmental Conditions in a Copper Belt Region of Africa: Phytoremediation Perspectives. Microorganisms 2024; 13:31. [PMID: 39858800 PMCID: PMC11767397 DOI: 10.3390/microorganisms13010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/22/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025] Open
Abstract
The mining industry in the copper belt region of Africa was initiated in the early 1900s, with copper being the main ore extracted to date. The main objectives of the present study are (1) to characterize the microbial structure, abundance, and diversity in different ecological conditions in the cupriferous city of Lubumbashi and (2) to assess the metal phytoextraction potential of Leucaena leucocephala, a main plant species used in tailing. Four ecologically different sites were selected. They include a residential area (site 1), an agricultural dry field (site 2), and an agricultural wetland (site 3), all located within the vicinity of a copper/cobalt mining plant. A remediated tailing was also added as a highly stressed area (site 4). As expected, the highest levels of copper and cobalt among the sites studied were found at the remediated tailing, with 9447 mg/kg and 2228 mg/kg for copper and cobalt, respectively. The levels of these metals at the other sites were low, varying from 41 mg/kg to 579 mg/kg for copper and from 4 mg/kg to 110 mg/kg for cobalt. Interestingly, this study revealed that the Leucaena leucocephala grown on the remediated sites is a copper/cobalt excluder species as it accumulates soil bioavailable metals from the rhizosphere in its roots. Amplicon sequence analysis showed significant differences among the sites in bacterial and fungal composition and abundance. Site-specific genera were identified. Acidibacter was the most abundant bacterial genus in the residential and remediated tailing sites, with 11.1% and 4.4%, respectively. Bacillus was predominant in both dry (19.3%) and wet agricultural lands (4.8%). For fungi, Fusarium exhibited the highest proportion of the fungal genera at all the sites, with a relative abundance ranging from 15.6% to 20.3%. Shannon diversity entropy indices were high and similar, ranging from 8.3 to 9 for bacteria and 7.0 and 7.4 for fungi. Β diversity analysis confirmed the closeness of the four sites regardless of the environmental conditions. This lack of differences in the microbial community diversity and structures among the sites suggests microbial resilience and physiological adaptations.
Collapse
Affiliation(s)
- Kabwe Nkongolo
- School of Natural Sciences, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada;
| | - John B. Mukalay
- Faculty of Agronomy, University of Lubumbashi, Lubumbashi BP 1825, Democratic Republic of the Congo; (J.B.M.); (A.K.L.)
- Water, Soil and Plant Exchanges, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| | - Antoine K. Lubobo
- Faculty of Agronomy, University of Lubumbashi, Lubumbashi BP 1825, Democratic Republic of the Congo; (J.B.M.); (A.K.L.)
| | - Paul Michael
- School of Natural Sciences, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada;
| |
Collapse
|
4
|
Kou B, Huo L, Cao M, Hui K, Tan W, Yuan Y, Jiang Y. New insights into the stages of cadmium remediation in ryegrass enhanced by kitchen compost-derived dissolved organic matter: Activation, absorption, and storage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177138. [PMID: 39490827 DOI: 10.1016/j.scitotenv.2024.177138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/05/2024] [Accepted: 10/19/2024] [Indexed: 11/05/2024]
Abstract
Dissolved organic matter (DOM) regulates plant behavior in both agricultural and environmental fields. However, the regulatory mechanisms by which DOM influences soil-plant system interactions during the phytoremediation of Cd-contaminated soils remain unclear. Therefore, this study investigated the enhanced effect of kitchen compost-derived DOM on the Cd remediation capability of ryegrass across three phases of phytoremediation. The main pathways and mechanisms of DOM-assisted phytoremediation were identified through the analysis of changes in soil microbial communities and metabolism functions. The results revealed that DOM increased the bioavailability of soil Cd and significantly enhanced the Cd enrichment capacity of ryegrass, regardless of the application rate. The application of 20 % DOM to soil with a 20 mg/kg Cd content increased the bioconcentration factors of ryegrass roots and shoots by up to 38.19 and 11.08 times, respectively, compared with the control group. The direct or indirect optimizing effects of DOM on Cd fraction transformation, microbial communities, and their metabolism functions significantly enhanced the Cd enrichment capacity of ryegrass. Notably, DOM exhibited dual effects on ryegrass growth, mainly influenced by changes in soil physicochemical properties, optimization of microbial communities, and alterations in nitrogen metabolic functions. Additionally, the Cd reserves in ryegrass, which serve as a vital indicator of phytoremediation, exhibited a positive response to DOM. This study provides insights into the various reinforcing roles of kitchen compost-derived DOM in Cd-contaminated soil phytoremediation. These findings support the development of effective agronomic strategies for precise Cd regulation.
Collapse
Affiliation(s)
- Bing Kou
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Urban and Environmental Science, Northwest University, Xi'an 710127, China
| | - Lin Huo
- Swiss Federal Institute of Technology (ETH) Zurich, Universitaetstrasse 16, 8092 Zurich, Switzerland
| | - Minyi Cao
- College of Urban and Environmental Science, Northwest University, Xi'an 710127, China
| | - Kunlong Hui
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Ying Yuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Yu Jiang
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
5
|
Liu D, Fei YH, Peng Y, Zhu S, Lu J, Luo Y, Chen Z, Jiang Y, Wang S, Tang YT, Qiu R, Chao Y. Genotype of pioneer plant Miscanthus is not a key factor in the structure of rhizosphere bacterial community in heavy metal polluted sites. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135242. [PMID: 39032184 DOI: 10.1016/j.jhazmat.2024.135242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/02/2024] [Accepted: 07/16/2024] [Indexed: 07/22/2024]
Abstract
Miscanthus is a common pioneer plant with abundant genetic variation in abandoned mines in southern China. However, the extent to which genetic differentiation among species modulates rhizosphere bacterial communities remains unclear. Miscanthus samples were collected from 26 typical abandoned heavy-metal mines with different soil types in southern China, tested using 14 pairs of simple sequence repeats (SSR) primers, and classified into two genotypes based on Nei's genetic distance. The structure and diversity of rhizosphere bacterial communities were examined using 16 S rRNA sequencing. The results showed that among the factors affecting the rhizosphere bacterial community structure of Miscanthus samples, the role of genotype was not significant, and geographical conditions were the most important factors, followed by pH and total organic carbon (TOC). The process of rhizospheric community assembly varied among different genotypes; however, the recruited species and their abundances were similar. Collectively, we provided an approach based on genetic differentiation to quantify the relative contribution of genotypes to the rhizosphere bacterial community, demonstrating that genotypes contribute less than soil conditions. Our findings provide new insights into the role of host genetics in the ecological processes of plant rhizosphere bacterial communities in abandoned mines and provide theoretical support for microbe-assisted phytoremediation.
Collapse
Affiliation(s)
- Danni Liu
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Ying-Heng Fei
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yuxin Peng
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Shichen Zhu
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Jianan Lu
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Yang Luo
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Ziwu Chen
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuanyuan Jiang
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Shizhong Wang
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Ye-Tao Tang
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Rongliang Qiu
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yuanqing Chao
- School of Environmental Science and Engineering, Guangdong Provincial Key Lab for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
6
|
Yan S, Xu S, Lei S, Gao Y, Chen K, Shi X, Guo Y, Bilyera N, Yuan M, Yao H. Hyperaccumulator extracts promoting the phytoremediation of rare earth elements (REEs) by Phytolacca americana: Role of active microbial community in rhizosphere hotspots. ENVIRONMENTAL RESEARCH 2024; 252:118939. [PMID: 38621629 DOI: 10.1016/j.envres.2024.118939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/29/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024]
Abstract
The increased usage of rare earth elements (REEs) leads to the extensive exploitation of rare earth mines, and the REEs pollution in soil caused by the legacy mine tailings has brought great harm to environment and human health. Although Phytolacca americana can remove REEs from contaminated soil to some extent, there is still an urgent problem to improve its efficiency. Hyperaccumulator extract is a new organic material with potential in metal phytoextraction, but its role in REEs phytoremediation and the related underlying processes remain unclear. In this study, hyperaccumulator extracts from P. americana root (PR), stem (PS), leaf (PL) and EDTA were used to improve the phytoremediation efficiency of REEs with P. americana. Soil zymography was applied to assess the enzyme hotspots' spatial distribution in the rhizosphere, and the hotspots' microbial communities were also identified. The results indicated that the application of hyperaccumulator extracts improved the biomass and REEs uptake of P. americana, and the highest REEs content in plant was observed in the treatment of PS, which increased 299% compared to that of the control. Hotspots area of β-glucosidase, leucine aminopeptidase and acid phosphatase were concentrated in the pant rhizosphere along the roots and increased 2.2, 5.3 and 2.2 times after PS application compared to unamended soils. The PS application increased the relative abundance of Proteobacteria, Cyanobacteria, Bacteroidota and Firmicutes phyla in rhizosphere. Soil fungi have a higher contribution on promoting REEs activation than that of bacteria. Available P and extractable REEs were leading predictors for the plant biomass and REEs concentrations. The co-occurrence network showed that the application of PS creates a more efficient and stable microbial network compared to other treatments. In conclusion, stem-derived hyperaccumulator extract is excellent in stimulating REEs phytoremediation with P. americana by improving hotspots microbial activities and form a healthy rhizosphere microenvironment.
Collapse
Affiliation(s)
- Shengpeng Yan
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Shengwen Xu
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Shihan Lei
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Yuan Gao
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Keyi Chen
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Xiaoyu Shi
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Yingying Guo
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Nataliya Bilyera
- Geo-Biosphere Interactions, Department of Geosciences, University of Tuebingen, 72076, Tuebingen, Germany
| | - Ming Yuan
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China.
| | - Huaiying Yao
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo, China
| |
Collapse
|
7
|
Li J, Zheng Q, Liu J, Pei S, Yang Z, Chen R, Ma L, Niu J, Tian T. Bacterial-fungal interactions and response to heavy metal contamination of soil in agricultural areas. Front Microbiol 2024; 15:1395154. [PMID: 38800759 PMCID: PMC11116572 DOI: 10.3389/fmicb.2024.1395154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction Long-term heavy metal contamination of soil affects the structure and function of microbial communities. The aim of our study was to investigate the effect of soil heavy metal contamination on microorganisms and the impact of different heavy metal pollution levels on the microbial interactions. Methods We collected soil samples and determined soil properties. Microbial diversity was analyzed in two groups of samples using high-throughput sequencing technology. Additionally, we constructed microbial networks to analyze microbial interactions. Results The pollution load index (PLI) < 1 indicates that the area is not polluted. 1 < PLI < 2 represents moderate pollution. PLI was 1.05 and 0.14 for the heavy metal contaminated area and the uncontaminated area, respectively. Cd, Hg, Pb, Zn, and Cu were identified as the major contaminants in the contaminated area, with the contamination factors were 30.35, 11.26, 5.46, 5.19, and 2.46, respectively. The diversities and compositions of the bacterial community varied significantly between the two groups. Compared to the uncontaminated area, the co-occurrence network between bacterial and fungal species in the contaminated area was more complex. The keystone taxa of the co-occurrence network in the contaminated area were more than those in the uncontaminated area and were completely different from it. Discussion Heavy metal concentrations played a crucial role in shaping the difference in microbial community compositions. Microorganisms adapt to long-term and moderate levels of heavy metal contamination through enhanced interactions. Bacteria resistant to heavy metal concentrations may play an important role in soils contaminated with moderate levels of heavy metals over long periods of time.
Collapse
Affiliation(s)
- Jia Li
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Qiwen Zheng
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Jiangyun Liu
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Shuwei Pei
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Zhen Yang
- Lanzhou Maternal and Child Health Care Hospital, Lanzhou, Gansu, China
| | - Rentong Chen
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Li Ma
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Jingping Niu
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| | - Tian Tian
- School of Public Health, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
8
|
Kou B, Yu T, Tang J, Zhu X, Yuan Y, Tan W. Kitchen compost-derived humic acid application promotes ryegrass growth and enhances the accumulation of Cd: An analysis of the soil microenvironment and rhizosphere functional microbes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170879. [PMID: 38354798 DOI: 10.1016/j.scitotenv.2024.170879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
Phytoremediation is an environmentally friendly and safe approach for remediating environments contaminated with heavy metals. Humic acid (HA) has high biological activity and can effectively complex with heavy metals. However, whether HA affects available Cd storage and the Cd accumulation ability of plants by altering the soil microenvironment and the distribution of special functional microorganisms remains unclear. Here, we investigated the effects of applying kitchen compost-derived HA on the growth and Cd enrichment capacity of ryegrass (Lolium perenne L.). Additionally, the key role of HA in regulating the structure of rhizosphere soil bacterial communities was identified. HA promoted the growth of perennial ryegrass and biomass accumulation and enhanced the Cd enrichment capacity of ryegrass. The positive effect of HA on the soil microenvironment and rhizosphere bacterial community was the main factor promoting the growth of ryegrass, and this was confirmed by the significant positive correlation between the ryegrass growth index and the content of SOM, AP, AK, and AN, as well as the abundance of rhizosphere growth-promoting bacteria such as Pseudomonas, Steroidobacter, Phenylobacterium, and Caulobacter. HA passivated Cd and inhibited the translocation capacity of ryegrass. The auxiliary effect of resistant bacteria on plants drove the absorption of Cd by ryegrass. In addition, HA enhanced the remediation of Cd-contaminated soil by ryegrass under different Cd levels, which indicated that kitchen compost-derived HA could be widely used for the phytoremediation of Cd-contaminated soil. Generally, our findings will aid the development of improved approaches for the use of kitchen compost-derived HA for the remediation of Cd-contaminated soil.
Collapse
Affiliation(s)
- Bing Kou
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Urban and Environmental Science, Northwest University, Xi'an 710127, China
| | - Tingqiao Yu
- International Education College, Beijing Vocational College of Agriculture, Beijing 102442, China
| | - Jun Tang
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaoli Zhu
- College of Urban and Environmental Science, Northwest University, Xi'an 710127, China
| | - Ying Yuan
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Wenbing Tan
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
9
|
Song B, Xue Y, Yu Z, He Y, Liu Z, Fang J, Wang Y, Adams JM, Hu Y, Razavi BS. Toxic metal contamination effects mediated by hotspot intensity of soil enzymes and microbial community structure. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133556. [PMID: 38262314 DOI: 10.1016/j.jhazmat.2024.133556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 01/25/2024]
Abstract
Metal contamination from mine waste is a widespread threat to soil health. Understanding of the effects of toxic metals from mine waste on the spatial patterning of rhizosphere enzymes and the rhizosphere microbiome remains elusive. Using zymography and high-throughput sequencing, we conducted a mesocosm experiment with mine-contaminated soil, to compare the effects of different concentrations of toxic metals on exoenzyme kinetics, microbial communities, and maize growth. The negative effects of toxic metals exerted their effects largely on enzymatic hotspots in the rhizosphere zone, affecting both resistance and the area of hotspots. This study thus revealed the key importance of such hotspots in overall changes in soil enzymatic activity under metal toxicity. Statistical and functional guild analysis suggested that these enzymatic changes and associated microbial community changes were involved in the inhibition of maize growth. Keystone species of bacteria displayed negative correlations with toxic metals and positive correlations with the activity of enzymatic hotspots, suggesting a potential role. This study contributes to an emerging paradigm, that changes both in the activity of soil enzymes and soil biota - whether due to substrate addition or in this case toxicity - are largely confined to enzymatic hotspot areas.
Collapse
Affiliation(s)
- Bin Song
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China; University of Helsinki, Department of Forest Sciences, Helsinki, Finland
| | - Yue Xue
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China
| | - Zhenhua Yu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 138 Haping Road, Harbin 150081, China
| | - Yucheng He
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China
| | - Zihao Liu
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China
| | - Jie Fang
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China
| | - Yuchao Wang
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi'an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi'an 710061, China
| | - Jonathan M Adams
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China.
| | - Youning Hu
- School of Biological and Environmental Engineering, Xi'an University, Xi'an 710065, China.
| | - Bahar S Razavi
- Department of Soil and Plant Microbiome, Institute of Phytopathology, Christian-Albrechts-University of Kiel, Kiel 24118, Germany
| |
Collapse
|
10
|
Cui J, Zhou F, Li J, Shen Z, Zhou J, Yang J, Jia Z, Zhang Z, Du F, Yao D. Amendment-driven soil health restoration through soil pH and microbial robustness in a Cd/Cu-combined acidic soil: A ten-year in-situ field experiment. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133109. [PMID: 38071771 DOI: 10.1016/j.jhazmat.2023.133109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/06/2023] [Accepted: 11/26/2023] [Indexed: 02/08/2024]
Abstract
Soil health arguably depends on biodiversity and has received wide attention in heavy-metal (HM) contaminated farmland remediation in recent years. However, long-term effects and mechanisms of soil amendment remain poorly understood with respect to soil microbal community. In this in-situ field study, four soil amendments (attapulgite-At, apatite-Ap, montmorillonite-M, lime-L) at three rates were applied once only for ten years in a cadmium (Cd)-copper (Cu) contaminated paddy soil deprecated for over five years. Results showed that after ten years and in compared with CK (no amendment), total Cd concentration and its risk in plot soils were not altered by amendments (p > 0.05), but total Cu concentration and its risk were significantly increased by both Ap and L, especially the former, rather than At and M (p < 0.05), through increased soil pH and enhanced bacterial alpha diversity as well as plant community. Soil microbial communities were more affected by amendment type (30%) than dosage (11%), microbial network characteristics were dominated by rare taxa, and soil multifunctionality was improved in Ap- and L-amended soils. A structural equation model (SEM) indicated that 57.3% of soil multifunctionality variances were accounted for by soil pH (+0.696) and microbial network robustness (-0.301). Moreover, microbial robustness could be potentially used as an indicator of soil multifunctionality, and Ap could be optimized to improve soil health in combined with biomass removal. These findings would advance the understanding of soil microbial roles, especially its network robustness, on soil multifunctionality for the remediation of metal contaminated soils and metal control management strategies in acidic soils. ENVIRONMENTAL IMPLICATION: Farmland soil contamination by heavy metals (HMs) has been becoming a serious global environmental challenge. However, most studies have been conducted over the short term, leading to a gap in the long-term remediation efficiency and ecological benefits of soil amendments. For the successful deployment of immobilization technologies, it is critical to understand the long-term stability of the immobilized HMs and soil health. Our study, to the best of our knowlege, is the first to state the long-term effects and mechanisms of soil amendments on soil health and optimize an effective and eco-friendly amendment for long-term Cd/Cu immobilization.
Collapse
Affiliation(s)
- Jian Cui
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Fengwu Zhou
- Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, School of Geography, Nanjing Normal University, Nanjing 210023, China
| | - Jinfeng Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Ziyao Shen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Jing Zhou
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - John Yang
- Department of Agriculture and Environmental Science, Lincoln University of Missouri, Jefferson City, MO 65201, USA
| | - Zhongjun Jia
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhen Zhang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Fengfeng Du
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Dongrui Yao
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| |
Collapse
|
11
|
Zhao X, Li J, Zhang D, Jiang L, Wang Y, Hu B, Wang S, Dai Y, Luo C, Zhang G. Unveiling the novel role of ryegrass rhizospheric metabolites in benzo[a]pyrene biodegradation. ENVIRONMENT INTERNATIONAL 2023; 180:108215. [PMID: 37741005 DOI: 10.1016/j.envint.2023.108215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/11/2023] [Accepted: 09/15/2023] [Indexed: 09/25/2023]
Abstract
Rhizoremediation is a promising remediation technology for the removal of soil persistent organic pollutants (POPs), especially benzo[a]pyrene (BaP). However, our understanding of the associations among rhizospheric soil metabolites, functional microorganisms, and POPs degradation in different plant growth stages is limited. We combined stable-isotope probing (SIP), high-throughput sequencing, and metabolomics to analyze changes in rhizospheric soil metabolites, functional microbes, and BaP biodegradation in the early growth stages (tillering, jointing) and later stage (booting) of ryegrass. Microbial community structures differed significantly among growth stages. Metabolisms such as benzenoids and carboxylic acids tended to be enriched in the early growth stage, while lipids and organic heterocyclic compounds dominated in the later stage. From SIP, eight BaP-degrading microbes were identified, and most of which such as Ilumatobacter and Singulisphaera were first linked with BaP biodegradation. Notably, the relationship between the differential metabolites and BaP degradation efficiency further suggested that BaP-degrading microbes might metabolize BaP directly to produce benzenoid metabolites (3-hydroxybenzo[a]pyrene), or utilize benzenoids (phyllodulcin) to stimulate the co-metabolism of BaP in early growth stage; some lipids and organic acids, e.g. 1-aminocyclopropane-1-carboxylic acid, might provide nutrients for the degraders to promote BaP metabolism in later stage. Accordingly, we determined that certain rhizospheric metabolites might regulate the rhizospheric microbial communities at different growth stages, and shift the composition and diversity of BaP-degrading bacteria, thereby enhancing in situ BaP degradation. Our study sheds light on POPs rhizoremediation mechanisms in petroleum-contaminated soils.
Collapse
Affiliation(s)
- Xuan Zhao
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; College of Architecture and Civil Engineering, Kunming University, Kunming 650214, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Jibing Li
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| | - Dayi Zhang
- College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Longfei Jiang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Yujie Wang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Beibei Hu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Shuang Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yeliang Dai
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Chunling Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China.
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| |
Collapse
|
12
|
Kong F, Lu S. Inorganic amendments improve acidic paddy soils: Effects on soil properties, Al fractions, and microbial communities. CHEMOSPHERE 2023; 331:138758. [PMID: 37105309 DOI: 10.1016/j.chemosphere.2023.138758] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/19/2023]
Abstract
Alkaline soil inorganic amendments (SIAs) have been extensively used to improve acidic soils. In this study, we arranged 9 treatments of low, medium, and high application dosages of silicon calcium magnesium potassium fertilizer, calcium magnesium phosphate fertilizer, and lime in the field to study the mechanism of SIAs in improving acidic soils. The Al sequential extraction experiment showed that the application of SIAs tended to transform from active to stable fractions of Al. By amplicon sequencing, it was observed that the application of SIAs significantly affected microbial community compositions in rhizosphere soils. With the decrease in soil acidity, the microbial function was also enhanced, especially the activity of dehydrogenase. In this study, the acidity-related indicators in soils (pH, exchangeable acid, and exchangeable base cations) were first integrated into an index-AIV (acidity improvement value), which was used to assess the relationship with other soil properties. The redundancy analysis and correlation network between soil chemical and biological indexes indicated that SIAs did not greatly affect the fungi community structure, while greatly increased or decreased the abundance of bacteria, especially Acidobacteria, Nitrospirae, and Crenarchaeota. Our data revealed the SIAs optimized soil environment for rice growth jointly by decreasing Al mobility, improving soil microbial function, and increasing soil fertility.
Collapse
Affiliation(s)
- Fanyi Kong
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Key Laboratory of Environmental Remediation and Ecosystem Health, Ministry Of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shenggao Lu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Key Laboratory of Environmental Remediation and Ecosystem Health, Ministry Of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
13
|
Zuo Y, Li Y, Chen H, Ran G, Liu X. Effects of multi-heavy metal composite pollution on microorganisms around a lead-zinc mine in typical karst areas, southwest China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115190. [PMID: 37390724 DOI: 10.1016/j.ecoenv.2023.115190] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 09/29/2022] [Accepted: 06/24/2023] [Indexed: 07/02/2023]
Abstract
Heavy metal pollution poses a serious hazard to the soil bacterial community. The purpose of this study is to understand the characteristics of soil heavy metal pollution in lead-zinc mines in karst areas and the response of Pb, Zn, Cd, and As-induced composite pollution to soil microorganisms. This paper selected soil samples from the lead-zinc mining area of Xiangrong Mining Co., Ltd., Puding County, Guizhou Province, China. The soil in the mining area is contaminated by multiple heavy metals such as Pb, Zn, Cd and As. The average levels of Pb, Zn, Cd and As in the Pb-Zn mining soil were 14.5, 7.8, 5.5 and 4.4 times higher than the soil background in this area, respectively. Bacterial community structures and functions were analyzed using 16 S rRNA high-throughput sequencing technology and the PICRUSt method. A total of 19 bacterial phyla, 34 classes and 76 orders were detected in the tested soil. At the phylum level, the Proteobacteria are the dominant flora of the soil in the tailings reservoir area of the lead-zinc mine, respectively GWK1 (49.64%), GWK2 (81.89%), GWK3 (95.16%); and for the surrounding farmland soil, the Proteobacteria, Actinobacteriota, Acidobacteriota, Chloroflexi and Firmicutes are the most abundant in five bacterial groups. RDA analyses revealed that the heavy metal pollution of the lead-zinc mining area has a significant impact on the diversity of soil microorganisms. As the distance from the mining area increased, the heavy metal comprehensive pollution and potential risk value decreased, and the bacterial diversity increased. Additionally, various types of heavy metals have different effects on bacterial communities, and soil heavy metal content will also change the bacterial community structure. Proteobacteria positively related to Pb, Cd, and Zn, therefore, Proteobacteria were highly resistant to heavy metals. PICRUSt analysis suggested that heavy metals significantly affect the metabolic function of microorganisms. Microorganisms might generate resistance and enable themselves to survive by increasing the transport of metal ions and excreting metal ions. These results can be used as a basis for the microbial remediation of heavy metal-contaminated farmland in mining areas.
Collapse
Affiliation(s)
- Yingying Zuo
- College of Chemistry, Liaoning University, Shenyang 110036, People's Republic of China; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; Puding Karst Ecosystem Research Station, Chinese Academy of Sciences, Puding 562100, China
| | - Ying Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; Puding Karst Ecosystem Research Station, Chinese Academy of Sciences, Puding 562100, China
| | - Hu Chen
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; Puding Karst Ecosystem Research Station, Chinese Academy of Sciences, Puding 562100, China
| | - Gang Ran
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; Puding Karst Ecosystem Research Station, Chinese Academy of Sciences, Puding 562100, China
| | - Xiuming Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; Puding Karst Ecosystem Research Station, Chinese Academy of Sciences, Puding 562100, China.
| |
Collapse
|
14
|
Shen T, Jin R, Yan J, Cheng X, Zeng L, Chen Q, Gu Y, Zou L, Zhao K, Xiang Q, Penttinen P, Ma M, Li S, Zou T, Yu X. Study on diversity, nitrogen-fixing capacity, and heavy metal tolerance of culturable Pongamia pinnata rhizobia in the vanadium-titanium magnetite tailings. Front Microbiol 2023; 14:1078333. [PMID: 37405163 PMCID: PMC10315665 DOI: 10.3389/fmicb.2023.1078333] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 05/23/2023] [Indexed: 07/06/2023] Open
Abstract
Introduction The diversity, nitrogen-fixing capacity and heavy metal tolerance of culturable rhizobia in symbiotic relationship with Pongamia pinnata surviving in vanadium (V) - titanium (Ti) magnetite (VTM) tailings is still unknown, and the rhizobia isolates from the extreme barren VTM tailings contaminated with a variety of metals would provide available rhizobia resources for bioremediation. Methods P. pinnata plants were cultivated in pots containing the VTM tailings until root nodules formed, and then culturable rhizobia were isolated from root nodules. The diversity, nitrogen-fixing capacity and heavy metal tolerance of rhizobia were performed. Results Among 57 rhizobia isolated from these nodules, only twenty strains showed different levels of tolerance to copper (Cu), nickel (Ni), manganese (Mn) and zinc (Zn), especially strains PP1 and PP76 showing high tolerance against these four heavy metals. Based on the phylogenetic analysis of 16S rRNA and four house-keeping genes (atpD, recA, rpoB, glnII), twelve isolates were identified as Bradyrhizobium pachyrhizi, four as Ochrobactrum anthropic, three as Rhizobium selenitireducens and one as Rhizobium pisi. Some rhizobia isolates showed a high nitrogen-fixing capacity and promoted P. pinnata growth by increasing nitrogen content by 10%-145% in aboveground plant part and 13%-79% in the root. R. pachyrhizi PP1 showed the strongest capacity of nitrogen fixation, plant growth promotion and resistance to heavy metals, which provided effective rhizobia strains for bioremediation of VTM tailings or other contaminated soils. This study demonstrated that there are at least three genera of culturable rhizobia in symbiosis with P. pinnata in VTM tailings. Discussion Abundant culturable rhizobia with the capacity of nitrogen fixation, plant growth promotion and resistance to heavy metals survived in VTM tailings, indicating more valuable functional microbes could be isolated from extreme soil environments such as VTM tailings.
Collapse
Affiliation(s)
- Tian Shen
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Ruimin Jin
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Jing Yan
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Xiran Cheng
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Lan Zeng
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Qiang Chen
- College of Resources, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu, China
| | - Yunfu Gu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Likou Zou
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Ke Zhao
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Quanju Xiang
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Petri Penttinen
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Menggen Ma
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Shuangcheng Li
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Ting Zou
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Xiumei Yu
- College of Resources, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Investigation and Monitoring, Protection and Utilization for Cultivated Land Resources, Ministry of Natural Resources, Chengdu, China
| |
Collapse
|
15
|
Wang N, Ren J, Wang L, Wang Y, Wang Z, Guo D. A preliminary study to explain how Streptomyces pactum (Act12) works on phytoextraction: soil heavy metal extraction, seed germination, and plant growth. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:757. [PMID: 37247015 DOI: 10.1007/s10661-023-11340-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/03/2023] [Indexed: 05/30/2023]
Abstract
Streptomyces pactum (Act12) can both promote plant growth and strengthen heavy metal mobilization. Nevertheless, the mechanisms of how Act12 works during the phytoextraction process are still unknown. The present work investigated whether the metabolites produced by Act12 could influence the seed germination and the growth of potherb mustard and explored its mobilizing effect on soil cadmium (Cd) and zinc (Zn). The results showed that the germination potential and rate of potherb mustard seed treated with Act12 fermentation broth were 1.0- and 0.32-folds higher than those of control, probably due to the interruption of seed dormant stage. We also found that Act12 inoculation not only promoted the dry biomass (6.82%) of potherb mustard, but also increased the leaf chlorophyll (11.8%) and soluble protein (0.35%) production. The boosted seed germination rate under Act12 treatment (up to 63.3%) indicated that Act12 enhanced the resistance of potherb mustard seeds to Cd and Zn and alleviated their physiological toxicity. The generated metabolites during the Act12 fermentation posed positive impact on the availability of soil Cd and Zn. These findings bring new insight into the Act12-assisted phytoextraction of Cd and Zn from contaminated soils.
Collapse
Affiliation(s)
- Nina Wang
- School of Petroleum and Environment Engineering, Yan'an University, Yan'an, 716000, Shaanxi, China
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710129, Shaanxi, China
| | - Jie Ren
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710129, Shaanxi, China
| | - Linlin Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710129, Shaanxi, China
| | - Yuheng Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710129, Shaanxi, China
| | - Ze Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, Shaanxi, China
| | - Di Guo
- School of Petroleum and Environment Engineering, Yan'an University, Yan'an, 716000, Shaanxi, China.
| |
Collapse
|
16
|
Kou B, He Y, Wang Y, Qu C, Tang J, Wu Y, Tan W, Yuan Y, Yu T. The relationships between heavy metals and bacterial communities in a coal gangue site. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121136. [PMID: 36736561 DOI: 10.1016/j.envpol.2023.121136] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
Coal is the main source of energy for China's economic development, but coal gangue dumps are a major source of heavy metal pollution. Bacterial communities have a major effect on the bioremediation of heavy metals in coal gangue dumps. The effects of different concentrations of heavy metals on the composition of bacterial communities in coal gangue sites remain unclear. Soil bacterial communities from four gangue sites that vary in natural heavy metal concentrations were investigated using high-throughput sequencing in this study. Correlations among bacterial communities, heavy metal concentrations, physicochemical properties of the soil, and the composition of dissolved organic matter of soil in coal gangue dumps were also analyzed. Our results indicated that Actinobacteriota, Proteobacteria, Chloroflexi, Acidobacteriota, and Gemmatimonadota were the bacterial taxa most resistant to heavy metal stress at gangue sites. Heavy metal contamination may be the main cause of changes in bacterial communities. Heavy metal pollution can foster mutually beneficial symbioses between microbial species. Microbial-derived organic matter was the main source of soil organic matter in unvegetated mining areas, and this could affect the toxicity and transport of heavy metals in soil. Polar functional groups such as hydroxyl and ester groups (A226-400) play an important role in the reaction of cadmium (Cd) and lead (Pb), and organic matter with low molecular weight (SR) tends to bind more to mercury (Hg). In addition to heavy metals, the content of nitrogen (N), phosphorus (P), and total organic carbon (TOC) also affected the composition of the bacterial communities; TOC had the strongest effect, followed by N, SOM, and P. Our findings have implications for the microbial remediation of heavy metal-contaminated soils in coal gangue sites and sustainable development.
Collapse
Affiliation(s)
- Bing Kou
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, China
| | - Yue He
- Beijing Guozhong Biotechnology Co., LTD, Beijing, 102211, China
| | - Yang Wang
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Chengtun Qu
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, China
| | - Jun Tang
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yuman Wu
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, China
| | - Wenbing Tan
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Ying Yuan
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Tingqiao Yu
- International Education College, Beijing Vocational College of Agriculture, Beijing, 102442, China
| |
Collapse
|
17
|
Shen Y, Li H, Liu Y, Gao T, Li G, Zuo M, Ji J, Li C, Li X, Chen Y, Yin Z, Li J, Zhang W. Variations of fungal communities in lead–zinc tailings located in Northwestern China. HUMAN AND ECOLOGICAL RISK ASSESSMENT: AN INTERNATIONAL JOURNAL 2023; 29:390-409. [DOI: 10.1080/10807039.2022.2098466] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/30/2022] [Accepted: 07/03/2022] [Indexed: 03/06/2025]
Affiliation(s)
- Yuanyuan Shen
- College of Biological and Environmental Engineering, Xi’an University, Xi’an, China
| | - Haijuan Li
- College of Biological and Environmental Engineering, Xi’an University, Xi’an, China
| | - Yuan Liu
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, China
| | - Tianpeng Gao
- College of Biological and Environmental Engineering, Xi’an University, Xi’an, China
- Engineering Center for Pollution Control and Ecological Restoration in Mining of Gansu Province, Lanzhou City University, Lanzhou, China
| | - Guangwen Li
- College of Biological and Environmental Engineering, Xi’an University, Xi’an, China
| | - Mingbo Zuo
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou, China
| | - Jing Ji
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Changming Li
- Engineering Center for Pollution Control and Ecological Restoration in Mining of Gansu Province, Lanzhou City University, Lanzhou, China
| | - Xiangkai Li
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yueli Chen
- College of Biological and Environmental Engineering, Xi’an University, Xi’an, China
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, China
| | - Zhuoxin Yin
- Engineering Center for Pollution Control and Ecological Restoration in Mining of Gansu Province, Lanzhou City University, Lanzhou, China
| | - Jing Li
- College of Biological and Environmental Engineering, Xi’an University, Xi’an, China
| | - Wenli Zhang
- College of Biological and Environmental Engineering, Xi’an University, Xi’an, China
| |
Collapse
|
18
|
Du L, Zhong S, Luo K, Yang S, Xia J, Chen Q. Effect of metal pollution on the distribution and co-occurrence pattern of bacterial, archaeal and fungal communities throughout the soil profiles. CHEMOSPHERE 2023; 315:137692. [PMID: 36596328 DOI: 10.1016/j.chemosphere.2022.137692] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Metal pollution has raised negative impact on microbes, but little is known about the distribution and co-occurrence pattern of bacterial, fungal and archaeal communities along the soil profiles at multiple metal contamination sites. Here, we characterized the variations of metal concentrations and microbial communities with soil depth along five deep bores at the Tanghe Sewage Reservoir, a typical metal contamination area on the North China Plain. Co, Cd, Mg, Se, and Li were identified as the major contaminants in this area, and the pollution load index was 1.88, 1.54 and 1.62 in the shallow layer (0-0.6 m), deep layer (>2.0 m) and middle layer (0.6-2.0 m), respectively. The diversities and compositions of bacterial, archaeal and fungal communities varied significantly along the soil profiles. Deterministic process played a crucial role in shaping the difference of microbial community compositions among different soil layers, in which metal levels contributed more than soil physiochemical parameters. Furthermore, the interspecific co-occurrence network was most complex in the middle layer, indicating that metal pollution could decrease microbial network complexity. Bacterial keystone species in the co-occurrence networks showed both positive and negative correlations with polluted metals, whereas most archaeal and fungal keystone species were negatively related to multiple metals. These findings increased our understanding of distribution patterns, co-occurrence networks and environmental drivers of microbial communities in metal pollution soils.
Collapse
Affiliation(s)
- Lei Du
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, PR China; College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing, 100871, PR China
| | - Sining Zhong
- Fujian Agriculture and Forestry University, College of Resources and Environment, Fujian Provincial Key Laboratory of Soil Environment Health and Regulation, Fuzhou, 350002, PR China
| | - Kongyan Luo
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing, 100871, PR China
| | - Shanqing Yang
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing, 100871, PR China
| | - Jianxin Xia
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, PR China.
| | - Qian Chen
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing, 100871, PR China.
| |
Collapse
|
19
|
Yin Y, Wang X, Hu Y, Li F, Cheng H. Soil bacterial community structure in the habitats with different levels of heavy metal pollution at an abandoned polymetallic mine. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130063. [PMID: 36182879 DOI: 10.1016/j.jhazmat.2022.130063] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Heavy metal pollution caused by mining activities can be harmful to soil microbiota, which are highly sensitive to heavy metal stress. This study aimed to investigate the response of soil bacterial communities to varying levels of heavy metal pollution in four types of habitats (i.e., tailing, remediation, natural recovery, and undisturbed areas) at an abandoned polymetallic mine by high-throughput 16 S rRNA gene sequencing, and to determine the dominant ecological processes and major factors driving the variations in bacterial community composition. The diversity and composition of bacterial communities varied significantly between soil habitats (p < 0.05). Heterogeneous selection played a crucial role in shaping the difference of bacterial community composition between distinct soil habitats. Redundancy analysis and Pearson correlation analysis revealed that the total contents of Cu and Zn were key factors causing the difference in bacterial community composition in the tailing and remediation areas, whereas bioavailable Mn and Cd, total nitrogen, available nitrogen, soil organic carbon, vegetation coverage, and plant diversity were key factors shaping the soil bacterial structure in the undisturbed and natural recovery areas. These findings provide insights into the distribution patterns of bacterial communities in soil habitats with different levels of heavy metal pollution, and the dominant ecological processes and the corresponding environmental drivers, and expand knowledge in bacterial assembly mechanisms in mining regions.
Collapse
Affiliation(s)
- Yue Yin
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Xiaojie Wang
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yuanan Hu
- MOE Laboratory of Groundwater Circulation and Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Fadong Li
- State Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Hefa Cheng
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
20
|
Liang S, Wang L, Wu X, Hu X, Wang T, Jin F. The different trends in the burden of neurological and mental disorders following dietary transition in China, the USA, and the world: An extension analysis for the Global Burden of Disease Study 2019. Front Nutr 2023; 9:957688. [PMID: 36698474 PMCID: PMC9869872 DOI: 10.3389/fnut.2022.957688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 12/06/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction The highly processed western diet is substituting the low-processed traditional diet in the last decades globally. Increasing research found that a diet with poor quality such as western diet disrupts gut microbiota and increases the susceptibility to various neurological and mental disorders, while a balanced diet regulates gut microbiota and prevents and alleviates the neurological and mental disorders. Yet, there is limited research on the association between the disease burden expanding of neurological and mental disorders with a dietary transition. Methods We compared the disability-adjusted life-years (DALYs) trend by age for neurological and mental disorders in China, in the United States of America (USA), and across the world from 1990 to 2019, evaluated the dietary transition in the past 60 years, and analyzed the association between the burden trend of the two disorders with the changes in diet composition and food production. Results We identified an age-related upward pattern in disease burden in China. Compared with the USA and the world, the Chinese neurological and mental disorders DALY percent was least in the generation over 75 but rapidly increased in younger generations and surpassed the USA and/or the world in the last decades. The age-related upward pattern in Chinese disease burdens had not only shown in the presence of cardiovascular diseases, neoplasms, and diabetes mellitus but also appeared in the presence of depressive disorders, Parkinson's disease, Alzheimer's disease and other dementias, schizophrenia, headache disorders, anxiety disorders, conduct disorders, autism spectrum disorders, and eating disorders, successively. Additionally, the upward trend was associated with the dramatic dietary transition including a reduction in dietary quality and food production sustainability, during which the younger generation is more affected than the older. Following the increase in total calorie intake, alcohol intake, ratios of animal to vegetal foods, and poultry meat to pulses, the burdens of the above diseases continuously rose. Then, following the rise of the ratios of meat to pulses, eggs to pulses, and pork to pulses, the usage of fertilizers, the farming density of pigs, and the burdens of the above disease except diabetes mellitus were also ever-increasing. Even the usage of pesticides was positively correlated with the burdens of Parkinson's disease, schizophrenia, cardiovascular diseases, and neoplasms. Contrary to China, the corresponding burdens of the USA trended to reduce with the improvements in diet quality and food production sustainability. Discussion Our results suggest that improving diet quality and food production sustainability might be a promising way to stop the expanding burdens of neurological and mental disorders.
Collapse
Affiliation(s)
- Shan Liang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Gut-brain Psychology Laboratory, Beijing, China
| | - Li Wang
- Department for the History of Science and Scientific Archaeology, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiaoli Wu
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Gut-brain Psychology Laboratory, Beijing, China
| | - Xu Hu
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Gut-brain Psychology Laboratory, Beijing, China
| | - Tao Wang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Gut-brain Psychology Laboratory, Beijing, China
| | - Feng Jin
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Gut-brain Psychology Laboratory, Beijing, China
| |
Collapse
|
21
|
Zhang Z, Deng Q, Ye H, Ge G. Bacterial and fungal diversities examined through high-throughput sequencing in response to lead contamination of tea garden soil. Front Microbiol 2023; 14:1121199. [PMID: 37032858 PMCID: PMC10073568 DOI: 10.3389/fmicb.2023.1121199] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/07/2023] [Indexed: 04/11/2023] Open
Abstract
Several studies have indicated that the heavy-metal content in tea is increasing gradually. Researchers examining the soil of more than 100 tea gardens in China have observed that lead content was higher in some soils. The effect of lead contamination on soil microorganisms in tea gardens was studied to determine the effect of lead on the essential functions of microorganisms in a tea garden soil ecosystem. Previous studies on pot experiments adopted the method of adding a single instance of pollution, which failed to comprehensively simulate the characteristics of the slow accumulation of heavy metals in soil. This study designed with two pollution modes (multistage and single instance) determined the content of soil lead in different forms according to the European Community Bureau of Reference extraction procedure. The community structure, species diversity and functional abundance of soil bacteria and fungi were examined by high-throughput sequencing. We observed that the content of four forms of lead was higher in the multistage contamination mode than in the single instance contamination mode. The effects of lead contamination on bacteria differed significantly (p < 0.05), and the abundance and diversity of bacteria were higher in the multistage contamination mode than in the single instance contamination mode. The community structure of fungi was more affected by lead than was that of bacteria. The content of each lead form was the environmental factor most strongly affecting soil bacteria and fungi. The predicted main function of the bacterial community was amino acid transport and metabolism, and the trophic mode of the fungal community was mainly pathotroph-saprotroph. This study revealed changes in soil microorganisms caused by different forms of lead and contamination methods in tea garden soil and provide a theoretical basis for examining the effects of lead contamination on soil microorganisms.
Collapse
Affiliation(s)
- Ziyan Zhang
- School of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Qingmei Deng
- School of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Hui Ye
- Biotechnology Centre, Anhui Agricultural University, Hefei, China
| | - Gaofei Ge
- Biotechnology Centre, Anhui Agricultural University, Hefei, China
- *Correspondence: Gaofei Ge,
| |
Collapse
|
22
|
Verma KK, Song XP, Li DM, Singh M, Wu JM, Singh RK, Sharma A, Zhang BQ, Li YR. Silicon and soil microorganisms improve rhizospheric soil health with bacterial community, plant growth, performance and yield. PLANT SIGNALING & BEHAVIOR 2022; 17:2104004. [PMID: 35943127 PMCID: PMC9364706 DOI: 10.1080/15592324.2022.2104004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
The interaction of silicon and soil microorganisms stimulates crop enhancement to ensure sustainable agriculture. Silicon may potentially increase nutrient availability in rhizosphere with improved plants' growth, development as it does not produce phytotoxicity. The rhizospheric microbiome accommodates a variety of microbial species that live in a small area of soil directly associated with the hidden half plants' system. Plant growth-promoting rhizobacteria (PGPR) play a major role in plant development in response to adverse climatic conditions. PGPRs may enhance the growth, quality, productivity in variety of crops, and mitigate abiotic stresses by reprogramming stress-induced physiological variations in plants via different mechanisms, such as synthesis of indole-3-acetic acid, 1-aminocyclopropane-1-carboxylate deaminase, exopolysaccharides, volatile organic compounds, atmospheric nitrogen fixation, and phosphate solubilization. Our article eye upon interactions of silicon and plant microbes which seems to be an opportunity for sustainable agriculture for series of crops and cropping systems in years to come, essential to safeguard the food security for masses.
Collapse
Affiliation(s)
- Krishan K. Verma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/ Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Xiu-Peng Song
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/ Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Dong-Mei Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/ Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Munna Singh
- Department of Botany, University of Lucknow, Lucknow, India
| | - Jian-Ming Wu
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/ Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Rajesh Kumar Singh
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/ Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Anjney Sharma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/ Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Bao-Qing Zhang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/ Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Yang-Rui Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/ Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
23
|
Xie Y, Sheng Y, Li D, He F, Du J, Jiang L, Luo C, Li G, Zhang D. Change of the structure and assembly of bacterial and photosynthetic communities by the ecological engineering practices in Dianchi Lake. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120386. [PMID: 36228847 DOI: 10.1016/j.envpol.2022.120386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/15/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Cyanobacterial bloom challenges the aquatic ecosystem and ecological restoration is an effective approach for cyanobacterial bloom control, but the change of aquatic community after ecological restoration is still unclear. Dianchi Lake is an eutrophic lake with frequent cyanobacterial blooms in China, and recent ecological restoration projects in Caohai (north part) have a satisfactory performance. In this study, we collected 249 water samples at 23 sites from Dianchi Lake to explore the relationships between water physicochemical variables and aquatic microbial communities. Water physicochemical variables in Waihai (south part) intensively changed along time, whereas those in Caohai did not. Photoautotrophic communities were significantly divergent between Caohai and Waihai. Waihai had a lower diversity of photoautotrophic community, containing higher abundance of Cyanophyceae (89.9%) than Caohai (42.7%). Nutrient level and Cyanophyceae only exhibited strong correlations in Wahai (p < 0.05). Redundancy analysis and microbial ecological network suggested that microbial communities in Caohai had a higher stability. Deterministic process dominated the microbial assembly (50-80% for bacteria and >90% for photoautotrophs), and particularly in Caohai. Our results unraveled that the structure and assembly of bacterial and photoautotrophic communities significantly changed after ecological restoration, offering valuable suggestions that photosynthetic diversity should be focused for other ecological restoration projects.
Collapse
Affiliation(s)
- Yucheng Xie
- College of New Energy and Environment, Jilin University, Changchun, 130021, PR China; Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun, 130021, PR China.
| | - Yizhi Sheng
- Department of Geology and Environmental Earth Science, Miami University, OH, 45056, USA
| | - Danni Li
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Feng He
- Water Environment Research Division, Kunming Dianchi & Plateau Lakes Institute, Kunming, 650000, China
| | - Jinsong Du
- Water Environment Research Division, Kunming Dianchi & Plateau Lakes Institute, Kunming, 650000, China
| | - Longfei Jiang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Chunling Luo
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Guanghe Li
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Dayi Zhang
- College of New Energy and Environment, Jilin University, Changchun, 130021, PR China; Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun, 130021, PR China.
| |
Collapse
|
24
|
Wang X, Zhou C, Xiao X, Guo Z, Peng C, Wang X. Phytoextraction potential of arsenic and cadmium and response of rhizosphere microbial community by intercropping with two types of hyperaccumulators. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:91356-91367. [PMID: 35896877 DOI: 10.1007/s11356-022-21994-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Intercropping with hyperaccumulators/accumulators is a promising alternative to enhance phytoextraction of heavy metal(loid)s in contaminated soil. In this research, a pot experiment was conducted to evaluate the influences of intercropping As hyperaccumulator Pteris vittata L. with Cd hyperaccumulator Sedum alfredii Hance or accumulator Hylotelephium spectabile (Boreau) H. Ohba on the plant growth, As and Cd phytoextraction, and rhizosphere bacterial microbiota. The results indicated that intercropping can promote the growth of plants. The total biomass of P. vittata, S. alfredii, and H. spectabile in intercropping systems was improved by 19.9-34.1%, 16.8%, and 11.5%, respectively, in comparison with corresponding plant monoculture. The As content in rhizoid and frond of P. vittata when intercropped with S. alfredii was significantly increased by 28.3% and 19.0% (P < 0.05), respectively, as compared with P. vittata monoculture, and this treatment acquired the maximum As and Cd accumulation with 2032 μg·pot-1 and 397 μg·pot-1, respectively. Intercropping enhanced the soil bacterial community diversity. The genera of Lysobacter in P. vittata rhizosphere and Massilia and Arthrobacter in S. alfredii rhizosphere had higher abundance in the intercropping system of P. vittata and S. alfredii. There were significantly positive correlation relationships between Massilia and Arthrobacter with plant Cd content and Lysobacter with plant As content, indicating that they may play important roles in As and Cd phytoextraction. The results suggested that intercropping P. vittata with S. alfredii could be a potential strategy for phytoextraction of As and Cd from co-contaminated soil.
Collapse
Affiliation(s)
- Xiaohui Wang
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, 932 Lushan South Road, Changsha, 410083, China
| | - Cong Zhou
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, 932 Lushan South Road, Changsha, 410083, China
| | - Xiyuan Xiao
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, 932 Lushan South Road, Changsha, 410083, China.
| | - Zhaohui Guo
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, 932 Lushan South Road, Changsha, 410083, China
| | - Chi Peng
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, 932 Lushan South Road, Changsha, 410083, China
| | - Xiaoyan Wang
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, 932 Lushan South Road, Changsha, 410083, China
| |
Collapse
|
25
|
Su J, Zhang Q, Peng H, Feng J, He J, Zhang Y, Lin B, Wu N, Xiang Y. Exploring the impact of intensity and duration of Cu (II) depression on aniline-degrading biosystem: Performance, sludge activity and microbial diversity. BIORESOURCE TECHNOLOGY 2022; 360:127548. [PMID: 35779746 DOI: 10.1016/j.biortech.2022.127548] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/23/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
To evaluate the ecological risk of aniline wastewater biodegradation, the aniline wastewater (200 mg/L) was treated in this work under the stress of Cu (II) at 3, 6 and 10 mg/L, respectively. The slight fluctuation of aniline-degrading performance and the significant inhibition of nitrogen removal was caused by the Cu (II) stress at below 6 mg/L. Meanwhile, the tolerance of nitrifying performance to Cu (II) was higher than denitrifying. The collapse of biosystem was caused by the Cu (II) stress at 10 mg/L and the decontamination function was disabled within 8 days. The activity and stability of sludge declined under the increase of Cu (II) content. Microbial diversity results demonstrated that the genera with heavy-metal tolerance represented by Zoogloea and Azospira significantly dominated under the continuously Cu (II) stress. Whereas, the biosystem with these dominant genera did not achieve the comparable aniline and nitrogen removal performance as the control group.
Collapse
Affiliation(s)
- Junhao Su
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Qian Zhang
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China; Hainan Research Institute of Wuhan University of Technology, Sanya 572025, PR China.
| | - Haojin Peng
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Jiapeng Feng
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Jing He
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Yunjie Zhang
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Bing Lin
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Nanping Wu
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Yutong Xiang
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| |
Collapse
|
26
|
Liu H, Yuan R, Sarkodie EK, Tang J, Jiang L, Miao B, Liu X, Zhang S. Insight into functional microorganisms in wet–dry conversion to alleviate the toxicity of chromium fractions in red soil. Front Microbiol 2022; 13:977171. [PMID: 36033890 PMCID: PMC9399814 DOI: 10.3389/fmicb.2022.977171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
Soil contamination with potentially toxic element such as chromium (Cr) poses a threat to the environment and human health. The environmental toxicity of Cr is related not only to the total Cr content but also to the distribution of Cr fractions. In this study, laboratory simulation experiments were conducted to explore the characteristics of Cr fractions and responses of the functional microbial community during dynamic leaching and static drying processes. The results showed that acid-soluble Cr and reducible Cr transformed into other relatively stable fractions under dry conditions, and ammonium nitrogen promoted the transformation. Nitrate-nitrogen was significantly positively correlated with Cr fractions in the wet stage (p < 0.05), while ammonium nitrogen showed the same relation in the dry process. Analysis of the microbial community showed that the bacterial and fungal genera Flavihumibacter, Altererythrobacter, Methylobacillus, Flavisolibacter, Lysobacter, and Cladosporium were related to the Cr fractions (acid-soluble Cr, reducible Cr, and oxidizable Cr) under wet conditions, while the microbial genera Ellin6067, MND1, and Ramlibacter were related to Cr fractions under dry conditions. Moreover, the proliferation of the functional microbial genera Methylobacillus, Ellin6067, and MND1 related to Cr fractions in the wet–dry conversion process alleviated the environmental toxicity of Cr. These findings provide useful information for the remediation of Cr-contaminated soils by monitoring the distribution fractions of Cr and the functional microbial community under wet–dry conditions.
Collapse
Affiliation(s)
- Hongwei Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Changsha, China
| | - Ruiling Yuan
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Changsha, China
| | - Emmanuel Konadu Sarkodie
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Changsha, China
| | - Jiahui Tang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Changsha, China
| | - Luhua Jiang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Changsha, China
| | - Bo Miao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Changsha, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Changsha, China
| | - Siyuan Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Changsha, China
- *Correspondence: Siyuan Zhang,
| |
Collapse
|
27
|
Lu L, Chen C, Ke T, Wang M, Sima M, Huang S. Long-term metal pollution shifts microbial functional profiles of nitrification and denitrification in agricultural soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154732. [PMID: 35346706 DOI: 10.1016/j.scitotenv.2022.154732] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/06/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
The increasing contamination of heavy metals in agricultural soils and its impact on the nitrogen (N) cycle and N use efficiency have attracted considerable attention in recent years. In this study, agricultural soils neighboring the Dabaoshan copper mining area (DBS) and Qingyuan electronic-waste recycling area (QY), in Guangdong, China, were sampled to study the interaction between heavy metals and nitrification/denitrification processes, especially the related microbial functional profiles. Results showed that the contamination of heavy metals affected nitrifiers and denitrifiers differently. The potential nitrification activity was about four times lower in metal-polluted soils compared with the unpolluted ones, with a significant decrease in the abundance of amoA and nxrB (p < 0.05) in the polluted samples. On the other hand, the potential denitrification activity was more metal-resistant, which attributed to its complex species composition as shown by a slightly higher α-diversity index, and was slightly higher (p > 0.05) in the polluted samples. Among the five denitrifying genes tested, nosZ gene had the highest increase and the nirK gene the most decrease in numbers and in the polluted soils. The metal-polluted soils had fewer correlations among N functional genes based on the co-occurrence network analysis. In addition, the core taxa of the whole bacterial community changed from copiotrophic to oligotrophic bacteria in the presence of heavy metals. Mantel test indicated that heavy metals were the dominant factors determining N-related genes while the bacterial community composition was due to a combination of heavy metal presence and soil properties such as TOC, NO2-, and pH. It is concluded that long-term heavy metals pollution potentially affected nitrifiers and denitrifiers differently as indicated by the shift in N functional genes and the change in nitrification/denitrification processes.
Collapse
Affiliation(s)
- Lu Lu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China.
| | - Chen Chen
- State Environmental Protection Key Laboratory of Urban Ecological Environment Simulation and Protection, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Guangzhou 510535, China
| | - Tan Ke
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Min Wang
- State Environmental Protection Key Laboratory of Urban Ecological Environment Simulation and Protection, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Guangzhou 510535, China
| | - Matthew Sima
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Shan Huang
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
28
|
Xu X, Luo Q, Wei Q, Jiang S, Dong C, Faruque MO, Huang Z, Xu Z, Yin C, Zhu Z, Hu X. The Deterioration of Agronomical Traits of the Continuous Cropping of Stevia Is Associated With the Dynamics of Soil Bacterial Community. Front Microbiol 2022; 13:917000. [PMID: 35847059 PMCID: PMC9277660 DOI: 10.3389/fmicb.2022.917000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/12/2022] [Indexed: 11/25/2022] Open
Abstract
Stevia rebaudiana Bertoni is grown worldwide as an important, natural sweetener resource plant. The yield of steviol glycosides (SVglys) is greatly influenced by continuous cropping. In this study, we collected the roots, rhizosphere soils, and bulk soils from 2 years of continuous cropping (Y2) and 8 years of continuous cropping (Y8). A high-throughput sequencing technology based on Illumina Hiseq 2500 platform was used to study the structure and diversity of bacterial communities in the roots and soils of stevia with different years of continuous cropping. The results demonstrated that although the content of a group of SVglys was significantly increased in stevia of long-term continuous cropping, it inhibited the growth of plants and lowered the leaf dry weight; as a result, the total amount of SVglys was significantly decreased. Meanwhile, continuous cropping changed the physicochemical properties and the bacterial composition communities of soil. The different sampling sources of the root, rhizosphere soil, and bulk soil had no impact on the richness of bacterial communities, while it exhibited obvious effects on the diversity of bacterial communities. Continuous cropping had a stronger effect on the bacterial community composition in rhizosphere soil than in root and bulk soil. Based on linear discriminant analysis effect size (LEfSe), in the rhizosphere soil of Y8, the relative abundance of some beneficial bacterial genera of Sphingomonas, Devosia, Streptomyces, and Flavobacterium decreased significantly, while the relative abundance of Polycyclovorans, Haliangium, and Nitrospira greatly increased. Moreover, the soil pH and nutrient content, especially the soil organic matter, were correlated with the relative abundance of predominant bacteria at the genus level. This study provides a theoretical basis for uncovering the mechanism of obstacles in continuous stevia cropping and provides guidance for the sustainable development of stevia.
Collapse
Affiliation(s)
- Xinjuan Xu
- Institute for Medicinal Plants, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- College of Life Science and Technology, Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
- National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation, Huazhong Agricultural University, Wuhan, China
- Medicinal Plant Engineering Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, China
- Innovation Academy of International Traditional Chinese Medicinal Materials, Huazhong Agricultural University, Wuhan, China
| | - Qingyun Luo
- Department of Traditional Chinese Medicinal Materials, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Qingyun Luo
| | - Qichao Wei
- Innovation Academy of International Traditional Chinese Medicinal Materials, Huazhong Agricultural University, Wuhan, China
| | - Shangtao Jiang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization/Educational Ministry Engineering Center of Resource-Saving Fertilizers/Jiangsu Collaborative Innovation Center of Solid Organic Waste, Nanjing Agricultural University, Nanjing, China
| | - Caixia Dong
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization/Educational Ministry Engineering Center of Resource-Saving Fertilizers/Jiangsu Collaborative Innovation Center of Solid Organic Waste, Nanjing Agricultural University, Nanjing, China
| | - Mohammad Omar Faruque
- Ethnobotany and Pharmacognosy Lab, Department of Botany, University of Chittagong, Chittagong, Bangladesh
| | - Zhongwen Huang
- Innovation Academy of International Traditional Chinese Medicinal Materials, Huazhong Agricultural University, Wuhan, China
| | - Zhenghua Xu
- Institute for Medicinal Plants, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- College of Life Science and Technology, Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
- National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation, Huazhong Agricultural University, Wuhan, China
- Medicinal Plant Engineering Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Changxi Yin
- Institute for Medicinal Plants, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- College of Life Science and Technology, Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
- National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation, Huazhong Agricultural University, Wuhan, China
- Medicinal Plant Engineering Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Zaibiao Zhu
- Department of Traditional Chinese Medicinal Materials, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xuebo Hu
- Institute for Medicinal Plants, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- College of Life Science and Technology, Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
- National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation, Huazhong Agricultural University, Wuhan, China
- Medicinal Plant Engineering Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Xuebo Hu
| |
Collapse
|
29
|
Impact of Environmental Factors on the Formation and Development of Biological Soil Crusts in Lime Concrete Materials of Building Facades. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12062974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Microbial colonization leads to the formation of biological soil crusts (BSCs) on the surface of architecture, which causes the deterioration of construction materials. However, little information is available on the formation of BSCs on lime concrete materials of early architecture. In this study, the variances of microbial communities, physicochemical properties, and surrounding environmental factors of the lime concrete facades from the early architecture of Wuhan University were investigated. It was found that the surface of lime concrete materials was internally porous and permeable, embedded with biofilms of cyanobacteria, mosses, bacteria, and fungi. Redundancy analysis (RDA) analysis showed that the abundances of photoautotrophic microorganisms depended on light intensity and moisture content of construction materials, while that of heterotrophic microorganisms depended on total nitrogen (TN) and NO3−-N content. The deposition of total carbon (TC), NH4+-N, and total organic carbon (TOC) was mainly generated by photoautotrophic microorganisms. The lime concrete surface of early architecture allowed internal growth of microorganisms and excretion of metabolites, which promoted the biodeterioration of lime concrete materials.
Collapse
|
30
|
Zhao X, Li J, Zhang D, Huang Z, Luo C, Jiang L, Huang D, Zhang G. Mechanism of salicylic acid in promoting the rhizosphere benzo[a]pyrene biodegradation as revealed by DNA-stable isotope probing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:152202. [PMID: 34890682 DOI: 10.1016/j.scitotenv.2021.152202] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 06/13/2023]
Abstract
Benzo[a]pyrene (BaP) is a typical high-molecular-weight PAH with carcinogenicity. Rhizoremediation is commonly applied to remove soil BaP, but its mechanism remains unclear. The role of inducers in root exudates in BaP rhizoremediation is rarely studied. Here, to address this problem, we firstly investigated the effect of the inducer salicylic acid on BaP rhizoremediation, rhizosphere BaP degraders, and PAH degradation-related genes by combining DNA-stable-isotope-probing, high-throughput sequencing, and gene function prediction. BaP removal in the rhizosphere was significantly increased by stimulation with salicylic acid, and the rhizosphere BaP-degrading microbial community structure was significantly changed. Fourteen microbes were responsible for the BaP metabolism, and most degraders, e.g. Aeromicrobium and Myceligenerans, were firstly linked with BaP biodegradation. The enrichment of the PAH-ring hydroxylating dioxygenase (PAH-RHD) gene in the heavy fractions of all 13C-treatments further indicated their involvement in the BaP biodegradation, which was also confirmed by the enrichment of dominant PAH degradation-related genes (e.g. PAH dioxygenase and protocatechuate 3,4-dioxygenase genes) based on gene function prediction. Overall, our study demonstrates that salicylic acid can enhance the rhizosphere BaP biodegradation by altering the community structure of rhizosphere BaP-degrading bacteria and the abundance of PAH degradation-related genes, which provides new insights into BaP rhizoremediation mechanisms in petroleum-contaminated sites.
Collapse
Affiliation(s)
- Xuan Zhao
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Jibing Li
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| | - Dayi Zhang
- College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Zilin Huang
- Joint Institute of Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China
| | - Chunling Luo
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; Joint Institute of Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China.
| | - Longfei Jiang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Deyin Huang
- Guangdong Institute of Eco-environmental and Soil sciences, Guangdong Academy of Sciences, Guangzhou 510650, Guangdong, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| |
Collapse
|
31
|
Wu B, Luo S, Luo H, Huang H, Xu F, Feng S, Xu H. Improved phytoremediation of heavy metal contaminated soils by Miscanthus floridulus under a varied rhizosphere ecological characteristic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:151995. [PMID: 34856269 DOI: 10.1016/j.scitotenv.2021.151995] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 11/02/2021] [Accepted: 11/22/2021] [Indexed: 05/21/2023]
Abstract
Miscanthus floridulus is a plant with high biomass and heavy metal tolerance, which is a good candidate for phytoremediation. It is essential to explore how to improve its remediation ability, especially the rhizosphere ecological characteristics which are significant for phytoremediation efficiency. Therefore, the heavy metals accumulation of M. floridulus, rhizosphere soil physicochemical properties, enzyme activities, and bacterial community of different distances from the tailing were measured, focusing on the relationship between phytoremediation ability and rhizosphere ecological characteristics. The results show that the stronger the phytoremediation ability is, the better is the soil environment, and the higher the coverage with plants. Soil rhizosphere environment and the phytoremediation ability are shaped by heavy metals. Rhizosphere microecology may regulate phytoremediation by improving soil nutrients and enzyme activities, alleviating heavy metal toxicity, changing rhizosphere microbial community structure, increasing beneficial microbial abundance, promoting heavy metals accumulation by plants. This study not only clarified the relationship between rhizosphere ecological factors, but also elucidated the phytoremediation regulatory mechanism. Some of microbial taxa might developed as biological bioinoculants, providing the possibility to promote the growth of plants with ecological restoration ability and improve the phytoremediation efficiency.
Collapse
Affiliation(s)
- Bohan Wu
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Shihua Luo
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Huanyan Luo
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Huayan Huang
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Fei Xu
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Su Feng
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China.
| | - Heng Xu
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China; Key Laboratory of Environment Protection, Soil Ecological Protection and Pollution Control, Sichuan University & Department of Ecology and Environment of Sichuan, Chengdu 610065, Sichuan, PR China.
| |
Collapse
|
32
|
Jiang B, Chen Y, Xing Y, Lian L, Shen Y, Zhang B, Zhang H, Sun G, Li J, Wang X, Zhang D. Negative correlations between cultivable and active-yet-uncultivable pyrene degraders explain the postponed bioaugmentation. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127189. [PMID: 34555764 DOI: 10.1016/j.jhazmat.2021.127189] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Bioaugmentation is an effective approach to remediate soils contaminated by polycyclic aromatic hydrocarbons (PAHs), but suffers from unsatisfactory performance in engineering practices, which is hypothetically explained by the complicated interactions between indigenous microbes and introduced degraders. This study isolated a cultivable pyrene degrader (Sphingomonas sp. YT1005) and an active pyrene degrading consortium (Gp16, Streptomyces, Pseudonocardia, Panacagrimonas, Methylotenera and Nitrospira) by magnetic-nanoparticle mediated isolation (MMI) from soils. Pyrene biodegradation was postponed in bioaugmentation with Sphingomonas sp. YT1005, whilst increased by 30.17% by the active pyrene degrading consortium. Pyrene dioxygenase encoding genes (nidA, nidA3 and PAH-RHDα-GP) were enriched in MMI isolates and positively correlated with pyrene degradation efficiency. Pyrene degradation by Sphingomonas sp. YT1005 only followed the phthalate pathway, whereas both phthalate and salicylate pathways were observed in the active pyrene degrading consortium. The results indicated that the uncultivable pyrene degraders were suitable for bioaugmentation, rather than cultivable Sphingomonas sp. YT1005. The negative correlations between Sphingomonas sp. YT1005 and the active-yet-uncultivable pyrene degraders were the underlying mechanisms of bioaugmentation postpone in engineering practices.
Collapse
Affiliation(s)
- Bo Jiang
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing 100083, PR China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing 100083, PR China; National Engineering Laboratory for Site Remediation Technologies, Beijing 100015, PR China
| | - Yating Chen
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing 100083, PR China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing 100083, PR China
| | - Yi Xing
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing 100083, PR China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing 100083, PR China
| | - Luning Lian
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing 100083, PR China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing 100083, PR China
| | - Yaoxin Shen
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing 100083, PR China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing 100083, PR China
| | - Baogang Zhang
- School of Water Resources and Environment, MOE Key Lab Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing 100083, PR China
| | - Han Zhang
- School of Water Resources and Environment, MOE Key Lab Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing 100083, PR China
| | - Guangdong Sun
- School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Junyi Li
- Department of Research and Development, Yiqing (Suzhou) Environmental Technology Co. Ltd, Suzhou 215163, PR China
| | - Xinzi Wang
- School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Dayi Zhang
- College of New Energy and Environment, Jilin University, Changchun 130021, PR China.
| |
Collapse
|
33
|
Cecchi G, Di Piazza S, Rosatto S, Mariotti MG, Roccotiello E, Zotti M. A Mini-Review on the Co-growth and Interactions Among Microorganisms (Fungi and Bacteria) From Rhizosphere of Metal-Hyperaccumulators. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:787381. [PMID: 37744132 PMCID: PMC10512210 DOI: 10.3389/ffunb.2021.787381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/27/2021] [Indexed: 09/26/2023]
Abstract
The co-growth and synergistic interactions among fungi and bacteria from the rhizosphere of plants able to hyper accumulate potentially toxic metals (PTMs) are largely unexplored. Fungi and bacteria contribute in an essential way to soil biogeochemical cycles mediating the nutrition, growth development, and health of associated plants at the rhizosphere level. Microbial consortia improve the formation of soil aggregates and soil fertility, producing organic acids and siderophores that increase solubility, mobilization, and consequently the accumulation of nutrients and metals from the rhizosphere. These microorganism consortia can both mitigate the soil conditions promoting plant colonization and increase the performance of hyperaccumulator plants. Indeed, microfungi and bacteria from metalliferous soils or contaminated matrices are commonly metal-tolerant and can play a key role for plants in the phytoextraction or phytostabilization of metals. However, few works deepen the effects of the inoculation of microfungal and bacterial consortia in the rhizosphere of metallophytes and their synergistic activity. This mini-review aimed to collect and report the data regarding the role of microbial consortia and their potentialities known to date. Moreover, our new data had shown an active fungal-bacteria consortium in the rhizosphere of the hyperaccumulator plant Alyssoides utriculata.
Collapse
Affiliation(s)
- Grazia Cecchi
- Laboratory of Mycology, Department of Earth, Environment and Life Sciences, University of Genoa, Genoa, Italy
| | - Simone Di Piazza
- Laboratory of Mycology, Department of Earth, Environment and Life Sciences, University of Genoa, Genoa, Italy
| | - Stefano Rosatto
- Laboratory of Plant Biology, Department of Earth, Environment and Life Sciences, University of Genoa, Genoa, Italy
| | - Mauro Giorgio Mariotti
- Laboratory of Plant Biology, Department of Earth, Environment and Life Sciences, University of Genoa, Genoa, Italy
| | - Enrica Roccotiello
- Laboratory of Plant Biology, Department of Earth, Environment and Life Sciences, University of Genoa, Genoa, Italy
| | - Mirca Zotti
- Laboratory of Mycology, Department of Earth, Environment and Life Sciences, University of Genoa, Genoa, Italy
| |
Collapse
|
34
|
Responses of the Soil Microbial Community to Salinity Stress in Maize Fields. BIOLOGY 2021; 10:biology10111114. [PMID: 34827107 PMCID: PMC8614889 DOI: 10.3390/biology10111114] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/23/2021] [Accepted: 10/26/2021] [Indexed: 01/13/2023]
Abstract
To investigate the diversity and structure of soil bacterial and fungal communities in saline soils, soil samples with three increasing salinity levels (S1, S2 and S3) were collected from a maize field in Yanqi, Xinjiang Province, China. The results showed that the K+, Na+, Ca2+ and Mg2+ values in the bulk soil were higher than those in the rhizosphere soil, with significant differences in S2 and S3 (p < 0.05). The enzyme activities of alkaline phosphatase (ALP), invertase, urease and catalase (CAT) were lower in the bulk soil than those in the rhizosphere. Principal coordinate analysis (PCoA) demonstrated that the soil microbial community structure exhibited significant differences between different salinized soils (p < 0.001). Data implied that the fungi were more susceptible to salinity stress than the bacteria based on the Shannon and Chao1 indexes. Mantel tests identified Ca2+, available phosphorus (AP), saturated electrical conductivity (ECe) and available kalium (AK) as the dominant environmental factors correlated with bacterial community structures (p < 0.001); and AP, urease, Ca2+ and ECe as the dominant factors correlated with fungal community structures (p < 0.001). The relative abundances of Firmicutes and Bacteroidetes showed positive correlations with the salinity gradient. Our findings regarding the bacteria having positive correlations with the level of salinization might be a useful biological indicator of microorganisms in saline soils.
Collapse
|
35
|
Huang Y, Ren W, Liu H, Wang H, Xu Y, Han Y, Teng Y. Contrasting impacts of drying-rewetting cycles on the dissipation of di-(2-ethylhexyl) phthalate in two typical agricultural soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148433. [PMID: 34146807 DOI: 10.1016/j.scitotenv.2021.148433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 06/12/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) pollution has become a growing problem in farmlands of China. Drying-rewetting (DW) cycle is one of frequent environmental changes that agricultural production is confronted with, and also a convenient and practical agronomic regulation measure. In this study, in order to explore the effects of DW cycles on the dissipation of DEHP and their driving mechanisms in different types of soils, we performed a 45-day microcosm culture experiment with two typical agricultural soils, Lou soil (LS) and Red soil (RS). High-throughput sequencing was applied to study the response of soil microbial communities in the process of DEHP dissipation under DW cycles. The results showed that the DW cycles considerably inhibited the dissipation of DEHP in LS while promoted that in RS. The DW cycles obviously decreased the diversity, the relative abundance of significantly differential bacteria, and the total abundance of potential degrading bacterial groups in LS, whereas have little effect on bacterial community in RS, except at the initial cultivation stage when the corresponding parameters were promoted. The inhibition of the DW cycles on DEHP dissipation in LS was mainly derived from microbial degradation, but the interplay between microbial functions and soil attributes contributed to the promotion of DEHP dissipation in RS under the DW cycles. This comprehensive understanding of the contrasting impacts and underlying driving mechanisms may provide crucial implications for the prevention and control of DEHP pollution in regional soils.
Collapse
Affiliation(s)
- Yiwen Huang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; School of Environment and Safety Engineering, Changzhou University, Changzhou 213164, China
| | - Wenjie Ren
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Haoran Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Huimin Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yongfeng Xu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yujuan Han
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ying Teng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
36
|
Li J, Luo C, Zhang D, Zhao X, Dai Y, Cai X, Zhang G. The catabolic pathways of in situ rhizosphere PAH degraders and the main factors driving PAH rhizoremediation in oil-contaminated soil. Environ Microbiol 2021; 23:7042-7055. [PMID: 34587314 DOI: 10.1111/1462-2920.15790] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/15/2021] [Accepted: 09/24/2021] [Indexed: 01/21/2023]
Abstract
Rhizoremediation is a potential technique for polycyclic aromatic hydrocarbon (PAH) remediation; however, the catabolic pathways of in situ rhizosphere PAH degraders and the main factors driving PAH rhizoremediation remain unclear. To address these issues, stable-isotope-probing coupled with metagenomics and molecular ecological network analyses were first used to investigate the phenanthrene rhizoremediation by three different prairie grasses in this study. All rhizospheres exhibited a significant increase in phenanthrene removal and markedly modified the diversity of phenanthrene degraders by increasing their populations and interactions with other microbes. Of all the active phenanthrene degraders, Marinobacter and Enterobacteriaceae dominated in the bare and switchgrass rhizosphere respectively; Achromobacter was markedly enriched in ryegrass and tall fescue rhizospheres. Metagenomes of 13 C-DNA illustrated several complete pathways of phenanthrene degradation for each rhizosphere, which clearly explained their unique rhizoremediation mechanisms. Additionally, propanoate and inositol phosphate of carbohydrates were identified as the dominant factors that drove PAH rhizoremediation by strengthening the ecological networks of soil microbial communities. This was verified by the results of rhizospheric and non-rhizospheric treatments supplemented with these two substances, further confirming their key roles in PAH removal and in situ PAH rhizoremediation. Our study offers novel insights into the mechanisms of in situ rhizoremediation at PAH-contaminated sites.
Collapse
Affiliation(s)
- Jibing Li
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.,CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| | - Chunling Luo
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.,CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China.,Joint Institute of Environmental Research & Education, South China Agricultural University, Guangzhou, 510642, China
| | - Dayi Zhang
- College of New Energy and Environment, Jilin University, Changchun, 130021, China
| | - Xuan Zhao
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Yeliang Dai
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Xixi Cai
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.,CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| |
Collapse
|
37
|
Towards sustainable agriculture: rhizosphere microbiome engineering. Appl Microbiol Biotechnol 2021; 105:7141-7160. [PMID: 34508284 DOI: 10.1007/s00253-021-11555-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 11/26/2022]
Abstract
Soil microbiomes are extremely complex, with dense networks of interconnected microbial species underpinning vital functions for the ecosystem. In advanced agricultural research, rhizosphere microbiome engineering is gaining much attention, as the microbial community has been acknowledged to be a crucial partner of associated plants for their health fitness and yield. However, single or combined effects of a wide range of soil biotic and abiotic factors impact the success of engineered microbiomes, as these microbial communities exhibit uneven structural and functional networks in diverse soil conditions. Therefore, once a deep understanding of major influential factors and corresponding microbial responses is developed, the microbiome can be more effectively manipulated and optimized for cropping benefits. In this mini-review, we propose the concept of a microbiome-mediated smart agriculture system (MiMSAS). We summarize some of the advanced strategies for engineering the rhizosphere microbiome to withstand the stresses imposed by dominant abiotic and biotic factors. This work will help the scientific community gain more clarity about engineered microbiome technologies for increasing crop productivity and environmental sustainability.Key points• Individual or combined effects of soil biotic and abiotic variables hamper the implementation of engineered microbiome technologies in the field.• As a traditional approach, reduced-tillage practices coinciding with biofertilization can promote a relatively stable functional microbiome.• Increasing the complexity and efficiency of the synthetic microbiome is one way to improve its field-application success rate.• Plant genome editing/engineering is a promising approach for recruiting desired microbiomes for agricultural benefit.
Collapse
|
38
|
Yukun G, Jianghui C, Genzeng R, Shilin W, Puyuan Y, Congpei Y, Hongkai L, Jinhua C. Changes in the root-associated bacteria of sorghum are driven by the combined effects of salt and sorghum development. ENVIRONMENTAL MICROBIOME 2021; 16:14. [PMID: 34380546 PMCID: PMC8356455 DOI: 10.1186/s40793-021-00383-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 06/10/2021] [Indexed: 05/05/2023]
Abstract
BACKGROUND Sorghum is an important food staple in the developing world, with the capacity to grow under severe conditions such as salinity, drought, and a limited nutrient supply. As a serious environmental stress, soil salinization can change the composition of rhizosphere soil bacterial communities and induce a series of harm to crops. And the change of rhizospheric microbes play an important role in the response of plants to salt stress. However, the effect of salt stress on the root bacteria of sorghum and interactions between bacteria and sorghum remains poorly understood. RESULTS The purpose of this study was to assess the effect of salt stress on sorghum growth performance and rhizosphere bacterial community structure. Statistical analysis confirmed that low high concentration stress depressed sorghum growth. Further taxonomic analysis revealed that the bacterial community predominantly consisted of phyla Proteobacteria, Actinobacteria, Acidobacteria, Chloroflexi, Bacteroidetes and Firmicutes in sorghum rhizosphere soil. Low salt stress suppressed the development of bacterial diversity less than high salt stress in both bulk soil and planted sorghum soil. Different sorghum development stages in soils with different salt concentrations enriched distinctly different members of the root bacteria. No obviously different effect on bacterial diversity were tested by PERMANOVA analysis between different varieties, but interactions between salt and growth and between salt and variety were detected. The roots of sorghum exuded phenolic compounds that differed among the different varieties and had a significant relationship with rhizospheric bacterial diversity. These results demonstrated that salt and sorghum planting play important roles in restructuring the bacteria in rhizospheric soil. Salinity and sorghum variety interacted to affect bacterial diversity. CONCLUSIONS In this paper, we found that salt variability and planting are key factors in shifting bacterial diversity and community. In comparison to bulk soils, soils under planting sorghum with different salt stress levels had a characteristic bacterial environment. Salinity and sorghum variety interacted to affect bacterial diversity. Different sorghum variety with different salt tolerance levels had different responses to salt stress by regulating root exudation. Soil bacterial community responses to salinity and exotic plants could potentially impact the microenvironment to help plants overcome external stressors and promote sorghum growth. While this study observed bacterial responses to combined effects of salt and sorghum development, future studies are needed to understand the interaction among bacteria communities, salinity, and sorghum growth.
Collapse
Affiliation(s)
- Gao Yukun
- College of Agronomy, Hebei Agricultural University, Northern China Key Laboratory for Crop Germplasm Resources of Education Ministry, No. 2596 LeKai South Street, Baoding, Hebei China
| | - Cui Jianghui
- College of Agronomy, Hebei Agricultural University, Northern China Key Laboratory for Crop Germplasm Resources of Education Ministry, No. 2596 LeKai South Street, Baoding, Hebei China
| | - Ren Genzeng
- College of Agronomy, Hebei Agricultural University, Northern China Key Laboratory for Crop Germplasm Resources of Education Ministry, No. 2596 LeKai South Street, Baoding, Hebei China
| | - Wei Shilin
- College of Agronomy, Hebei Agricultural University, Northern China Key Laboratory for Crop Germplasm Resources of Education Ministry, No. 2596 LeKai South Street, Baoding, Hebei China
| | - Yang Puyuan
- College of Agronomy, Hebei Agricultural University, Northern China Key Laboratory for Crop Germplasm Resources of Education Ministry, No. 2596 LeKai South Street, Baoding, Hebei China
| | - Yin Congpei
- College of Agronomy, Hebei Agricultural University, Northern China Key Laboratory for Crop Germplasm Resources of Education Ministry, No. 2596 LeKai South Street, Baoding, Hebei China
| | - Liang Hongkai
- College of Agronomy, Hebei Agricultural University, Northern China Key Laboratory for Crop Germplasm Resources of Education Ministry, No. 2596 LeKai South Street, Baoding, Hebei China
| | - Chang Jinhua
- College of Agronomy, Hebei Agricultural University, Northern China Key Laboratory for Crop Germplasm Resources of Education Ministry, No. 2596 LeKai South Street, Baoding, Hebei China
| |
Collapse
|
39
|
Li D, Li G, Zhang D. Field-scale studies on the change of soil microbial community structure and functions after stabilization at a chromium-contaminated site. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125727. [PMID: 34088197 DOI: 10.1016/j.jhazmat.2021.125727] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/14/2021] [Accepted: 03/19/2021] [Indexed: 05/20/2023]
Abstract
Various remediation strategies have been developed to eliminate soil chromium (Cr) contamination which challenges the ecosystem and human health, and chemical stabilization is the most popular one. Limited work focuses on the change of soil microbial community and functions after chemical stabilization. The present study examined the diversity and structure of bacterial, fungal and archaeal communities in 20 soils from a Cr-contaminated site in China after chemical stabilization and ageing. Cr contamination significantly reduced microbial diversity and shaped microbial community structure. After chemical stabilization, bacterial and fungal communities had higher richness and evenness, whereas archaea behaved oppositely. Microbial community structure after stabilization were more similar to uncontaminated soils. Among all environmental variables, pH and Al explained 25.2% and 9.4% of the total variance of bacterial diversity, whereas the major variable affecting fungal community was pH (29.3%). Cr, organic matters, extractable-Al and moisture explained 25.8%, 22.4%, 9.9% and 9.9% of the total variance in archaeal community, respectively. This work for the first time unraveled the change of the whole soil microbial community structures and functions at Cr-contaminated sites after chemical stabilization on field scale and proved chemical stabilization as an effective approach to detoxicate Cr(VI) and recover microbial communities in soils.
Collapse
Affiliation(s)
- Danni Li
- School of Environment, Tsinghua University, Beijing 100084, China; National Engineering Laboratory for Site Remediation Technologies, Beijing 100015, China
| | - Guanghe Li
- School of Environment, Tsinghua University, Beijing 100084, China; National Engineering Laboratory for Site Remediation Technologies, Beijing 100015, China
| | - Dayi Zhang
- School of Environment, Tsinghua University, Beijing 100084, China; National Engineering Laboratory for Site Remediation Technologies, Beijing 100015, China.
| |
Collapse
|
40
|
Du Y, Zhang D, Zhou D, Liu L, Wu J, Chen H, Jin D, Yan M. The growth of plants and indigenous bacterial community were significantly affected by cadmium contamination in soil-plant system. AMB Express 2021; 11:103. [PMID: 34245386 PMCID: PMC8272791 DOI: 10.1186/s13568-021-01264-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/03/2021] [Indexed: 11/10/2022] Open
Abstract
Concentrations of heavy metals continue to increase in soil environments as a result of both anthropogenic activities and natural processes. Cadmium (Cd) is one of the most toxic heavy metals and poses health risks to both humans and the ecosystem. Herein, we explore the impacts of Cd on a soil-plant system composed of oilseed rapes (Brassica napus and Brassica juncea) and bacteria. The results showed that Cd accumulation within tissues of two species of oilseed rapes enhanced with increasing concentrations of Cd in soils, and Cd treatment decreased their chlorophyll content and suppressed rapeseeds growth. Meanwhile, Cd stress induced the changes of antioxidative enzymes activities of both B. napus and B. juncea. Response to Cd of bacterial community was similar in soil-two species of oilseed rapes system. The impact of Cd on the bacterial communities of soils was greater than bacterial communities of plants (phyllosphere and endophyte). The α-diversity of bacterial community in soils declined significantly under higher Cd concentration (30 mg/kg). In addition, soil bacterial communities composition and structure were altered in the presence of higher Cd concentration. Meanwhile, the bacterial communities of bulk soils were significantly correlated with Cd, while the variation of rhizosphere soils bacterial communities were markedly correlated with Cd and other environmental factors of both soils and plants. These results suggested that Cd could affect both the growth of plants and the indigenous bacterial community in soil-plant system, which might further change ecosystem functions in soils.
Collapse
|
41
|
Yu H, Zheng X, Weng W, Yan X, Chen P, Liu X, Peng T, Zhong Q, Xu K, Wang C, Shu L, Yang T, Xiao F, He Z, Yan Q. Synergistic effects of antimony and arsenic contaminations on bacterial, archaeal and fungal communities in the rhizosphere of Miscanthus sinensis: Insights for nitrification and carbon mineralization. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125094. [PMID: 33486227 DOI: 10.1016/j.jhazmat.2021.125094] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
The impacts of metal(loids) on soil microbial communities are research focuses to understand nutrient cycling in heavy metal-contaminated environments. However, how antimony (Sb) and arsenic (As) contaminations synergistically affect microbially-driven ecological processes in the rhizosphere of plants is poorly understood. Here we examined the synergistic effects of Sb and As contaminations on bacterial, archaeal and fungal communities in the rhizosphere of a pioneer plant (Miscanthus sinensis) by focusing on soil carbon and nitrogen cycle. High contamination (HC) soils showed significantly lower levels of soil enzymatic activities, carbon mineralization and nitrification potential than low contamination (LC) environments. Multivariate analysis indicated that Sb and As fractions, pH and available phosphorus (AP) were the main factors affecting the structure and assembly of microbial communities, while Sb and As contaminations reduced the microbial alpha-diversity and interspecific interactions. Random forest analysis showed that microbial keystone taxa provided better predictions for soil carbon mineralization and nitrification under Sb and As contaminations. Partial least squares path modeling indicated that Sb and As contaminations could reduce the carbon mineralization and nitrification by influencing the microbial biomass, alpha-diversity and soil enzyme activities. This study enhances our understanding of microbial carbon and nitrogen cycling affected by Sb and As contaminations.
Collapse
Affiliation(s)
- Huang Yu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Xiafei Zheng
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Wanlin Weng
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Xizhe Yan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Pubo Chen
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Xingyu Liu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Tao Peng
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Qiuping Zhong
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Kui Xu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Cheng Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Longfei Shu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Tony Yang
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK S9H 3X2, Canada
| | - Fanshu Xiao
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China; College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Qingyun Yan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
42
|
Meng M, Yang L, Wei B, Cao Z, Yu J, Liao X. Plastic shed production systems: The migration of heavy metals from soil to vegetables and human health risk assessment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 215:112106. [PMID: 33756293 DOI: 10.1016/j.ecoenv.2021.112106] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
Plastic shed production system (PSPS) provide abundant vegetable products for human consumption. Comprehensive and accurate heavy metal (HM) risk assessment of soil and vegetable under plastic sheds is crucial for human health. Pollution assessment, bioavailability and mobility evaluation and health risk assessment of Cd, Cr, Cu, Zn Ni, Pb, and As were performed in a presentative Plastic shed production system. The concentrations of the Cd, Cu and Zn exceeded their background value. Positive Igeo values suggested that soil under plastic sheds was widely contaminated with Cd. The bioavailability of heavy metals in soils was evaluated using DTPA extraction and DGT methods. The results of both methods demonstrated that Cd, Cu, and Zn have high bioavailability, especially Cd. Analogically, the results of mobility assignment based on DIFS showed that Cd has a high migration risk due to the large available pool. Based on specific cultivation and management patterns of plastic shed production system, pH reduction and salt and nutrient accumulation may increase the heavy metals migration risk in soil under plastic sheds, while a high organic matter content may reduce the heavy metals migration risk. The average concentrations of Cd, Cr, Cu, Zn, Ni, Pb, and As in vegetables were 0.023, 0.226, 0.654, 2.984, 0.329, 0.041, and 0.010 mg/kg, respectively. All samples were well below the threshold. The order of target hazard quotient of different heavy metals caused by vegetable consumption was Cd > Cr > As > Cu, Ni, Pb, Zn, and the average total hazard index value was below 1, which demonstrated that risk of vegetable consumption in the study area. However, due to its high concentration and transfer coefficient in spinach, Cd might pose a health risk to humans, which requires special attention. In this study, Cd caused a significant issue than other HMs, whether pollution level, health risk and migration risk. DGT and DIFS can be used as an effective evaluation tool in the research of controlling heavy metals migration in soil-crop systems.
Collapse
Affiliation(s)
- Min Meng
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Beijing Key Laboratory of Environmental Damage Assessment and Remediation, Beijing 100101, China
| | - Linsheng Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Binggan Wei
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhiqiang Cao
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiangping Yu
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaoyong Liao
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; Beijing Key Laboratory of Environmental Damage Assessment and Remediation, Beijing 100101, China.
| |
Collapse
|
43
|
Wang G, Zhang Q, Du W, Ai F, Yin Y, Ji R, Guo H. Microbial communities in the rhizosphere of different willow genotypes affect phytoremediation potential in Cd contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:145224. [PMID: 33485209 DOI: 10.1016/j.scitotenv.2021.145224] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 05/22/2023]
Abstract
Plant-associated microorganisms play an important role in controlling heavy metal uptake and accumulation in aerial parts. The microbial community and its interaction with Cd accumulation by willow were assessed to explore the association of phytoextraction efficiency and rhizospheric microbial populations. Therefore, the rhizosphere microbial compositions of three willow genotypes grown in two Cd polluted sites were investigated, focusing on their interactions with phytoremediation potential. Principal coordinate analysis revealed a significant effect of genotype on the rhizosphere microbial communities. Distinct beneficial microorganisms, such as plant growth promoting bacteria (PGPB) and mycorrhizal fungi, were assembled in the rhizosphere of different willow genotypes. Linear mixed models showed that the relative abundance of PGPB was positively associated (p < 0.01) with Cd accumulation, since these microbes significantly increased willow growth. The higher abundance of arbuscular mycorrhizal fungi in the rhizosphere of Salix × aureo-pendula CL 'J1011' at the Kejing site, showed a negative correlation with the Cd content, but a positive correlation with biomass. Conversely, mycorrhizal fungi, were more abundant in the rhizosphere of S. × jiangsuensis CL. 'J2345' and positively correlated with the Cd content in willow tissues. This study provides new insights into the distinctive microbial communities in rhizosphere of different willow genotypes, which may be consistent with the phytoremediation potential.
Collapse
Affiliation(s)
- Guobing Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, China; Joint International Research Centre for Critical Zone Science-University of Leeds and Nanjing University, Nanjing University, Nanjing 210023, China.
| | - Qingquan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, China; Joint International Research Centre for Critical Zone Science-University of Leeds and Nanjing University, Nanjing University, Nanjing 210023, China.
| | - Wenchao Du
- School of Environment, Nanjing Normal University, Nanjing 210036, China.
| | - Fuxun Ai
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, China; Joint International Research Centre for Critical Zone Science-University of Leeds and Nanjing University, Nanjing University, Nanjing 210023, China.
| | - Ying Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, China; Joint International Research Centre for Critical Zone Science-University of Leeds and Nanjing University, Nanjing University, Nanjing 210023, China.
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, China; Joint International Research Centre for Critical Zone Science-University of Leeds and Nanjing University, Nanjing University, Nanjing 210023, China.
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, China; Joint International Research Centre for Critical Zone Science-University of Leeds and Nanjing University, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
44
|
Ma X, Li X, Liu J, Cheng Y, Zou J, Zhai F, Sun Z, Han L. Soil microbial community succession and interactions during combined plant/white-rot fungus remediation of polycyclic aromatic hydrocarbons. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 752:142224. [PMID: 33207520 DOI: 10.1016/j.scitotenv.2020.142224] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 06/11/2023]
Abstract
Despite combined plant/white-rot fungus remediation being effective for remediating polycyclic aromatic hydrocarbon (PAH)-contaminated soil, the complex organismal interactions and their effects on soil PAH degradation remain unclear. Here, we used quantitative PCR, analysis of soil enzyme activities, and sequencing of representative genes to characterize the ecological dynamics of natural attenuation, mycoremediation (MR, using Crucibulum laeve), phytoremediation (PR, using Salix viminalis), and plant-microbial remediation (PMR, using both species) for PAHs in soil for 60 days. On day 60, PMR achieved the highest removal efficiency of all three representative PAHs (65.5%, 47.5%, and 62.4% for phenanthrene, pyrene, and benzo(a)pyrene, respectively) when compared with the other treatments. MR significantly increased the relative abundance of Rhizobium and Bacillus but antagonized the other putative indigenous PAH-degrading bacteria, which were enriched by PR. PR significantly reduced soil nutrients, such as NO3- and NH4+, and available potassium (AK), thereby changing the microbial community composition as reflected by redundancy analysis, significantly reducing the soil bacterial biomass relative to that in other treatments. These disadvantages hampered phenanthrene and pyrene removal. MR provided additional nutrients, which counteracted the nutrient consumption associated with PR, thereby maintaining the microbial community diversity and bacterial biomass of PMR at a level achieved in the NA treatment. Combination remediation therefore overcame the disadvantages of using PR alone. These results indicated that inoculation with the combination of S. viminalis and C. laeve synergistically stimulated the growth of indigenous PAH-degrading microorganisms and maintained bacterial biomass, thus accelerating the dissipation of soil PAHs.
Collapse
Affiliation(s)
- Xiaodong Ma
- Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Chinese Academy of Forestry Research Institute of Forestry, Xiangshan Road, Haidian District, Beijing 100091, China
| | - Xia Li
- Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Chinese Academy of Forestry Research Institute of Forestry, Xiangshan Road, Haidian District, Beijing 100091, China; College of Agriculture and Bioengineering, Heze University, University Road, Mudan District, Heze 274000, Shandong, China
| | - Junxiang Liu
- Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Chinese Academy of Forestry Research Institute of Forestry, Xiangshan Road, Haidian District, Beijing 100091, China
| | - Yunhe Cheng
- Beijing Academy of Forestry and Pomology Sciences, Shuguanghuayuanzhong Road, Haidian District, Beijing 100097, China
| | - Junzhu Zou
- Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Chinese Academy of Forestry Research Institute of Forestry, Xiangshan Road, Haidian District, Beijing 100091, China
| | - Feifei Zhai
- School of Architectural and Artistic Design, Henan Polytechnic University, Jiefang Middle Road, Jiaozuo, Henan 454000, China
| | - Zhenyuan Sun
- Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Chinese Academy of Forestry Research Institute of Forestry, Xiangshan Road, Haidian District, Beijing 100091, China
| | - Lei Han
- Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Chinese Academy of Forestry Research Institute of Forestry, Xiangshan Road, Haidian District, Beijing 100091, China.
| |
Collapse
|
45
|
Zhang J, Cook J, Nearing JT, Zhang J, Raudonis R, Glick BR, Langille MGI, Cheng Z. Harnessing the plant microbiome to promote the growth of agricultural crops. Microbiol Res 2021; 245:126690. [PMID: 33460987 DOI: 10.1016/j.micres.2020.126690] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/11/2020] [Accepted: 12/30/2020] [Indexed: 12/11/2022]
Abstract
The rhizosphere microbiome is composed of diverse microbial organisms, including archaea, viruses, fungi, bacteria as well as eukaryotic microorganisms, which occupy a narrow region of soil directly associated with plant roots. The interactions between these microorganisms and the plant can be commensal, beneficial or pathogenic. These microorganisms can also interact with each other, either competitively or synergistically. Promoting plant growth by harnessing the soil microbiome holds tremendous potential for providing an environmentally friendly solution to the increasing food demands of the world's rapidly growing population, while also helping to alleviate the associated environmental and societal issues of large-scale food production. There recently have been many studies on the disease suppression and plant growth promoting abilities of the rhizosphere microbiome; however, these findings largely have not been translated into the field. Therefore, additional research into the dynamic interactions between crop plants, the rhizosphere microbiome and the environment are necessary to better guide the harnessing of the microbiome to increase crop yield and quality. This review explores the biotic and abiotic interactions that occur within the plant's rhizosphere as well as current agricultural practices, and how these biotic and abiotic factors, as well as human practices, impact the plant microbiome. Additionally, some limitations, safety considerations, and future directions to the study of the plant microbiome are discussed.
Collapse
Affiliation(s)
- Janie Zhang
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Jamie Cook
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Jacob T Nearing
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Junzeng Zhang
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Halifax, NS, Canada
| | - Renee Raudonis
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Morgan G I Langille
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada; Department of Pharmacology, Dalhousie University, Halifax, NS, Canada; CGEB-Integrated Microbiome Resource (IMR), Dalhousie University, Halifax, NS, Canada
| | - Zhenyu Cheng
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
46
|
Wang L, Zou R, Li YC, Tong Z, You M, Huo W, Chi K, Fan H. Effect of Wheat-Solanum nigrum L. intercropping on Cd accumulation by plants and soil bacterial community under Cd contaminated soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 206:111383. [PMID: 33002822 DOI: 10.1016/j.ecoenv.2020.111383] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
Using accumulators for intercropping in agricultural production can change the heavy metal concentration in the target plants. This study aims to investigate how intercropping wheat (Triticum aestivum L.) and Solanum nigrum L. affects soil bacterial community and cadmium (Cd) absorption in response to Cd-contaminated soil. We compared the concentrations and accumulations of Cd by plants, the activities of soil enzymes and the bacterial community structures of rhizosphere soil in monoculture and intercropping system. Principal component analysis (PCA) ordinations showed that soil bacterial communities were significantly separated by MW and IW, which illustrated intercropping with Solanum nigrum L. impacted the bacterial community structure of wheat. Firstly, the results showed that the biomass of shoots and roots in intercropped wheat (IW) were significantly decreased by 16.19% and 29.38% compared with monoculture wheat (MW) after 60 days after transplanting (DAT). Secondly, the Cd concentration and accumulation of shoots in IW was higher than MW. The Cd accumulation of IW shoots and roots were increased 12.87% and 0.98%, respectively after 60 days DAT. Besides, the enzymes activity [catalase (CAT), urease (UA) and alkaline phosphatase (ALP)] of IW were decreased 35%, 6% and 21%, respectively after 60 days DAT. Finally, the diversity indexes [Abundance-based Coverage Estimator (ACE), Chao and InvSimpson] of IW were lower than MW. These results indicated that intercropping with Solanum nigrum L. inhibited the wheat growth and decreased the bacterial community diversity in wheat rhizosphere, increased the Cd concentration and accumulation in plant tissues of wheat. Therefore, intercropping Solanum nigrum L. and wheat with Cd-contaminated soil might increase the risk of excessive Cd in wheat.
Collapse
Affiliation(s)
- Li Wang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, National Engineering Laboratory for Improving Quality of Arable Land, Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Rong Zou
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, National Engineering Laboratory for Improving Quality of Arable Land, Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Yuncong C Li
- Department of Soil and Water Sciences, Tropical Research and Education Center, IFAS, University of Florida, Homestead, FL 33031, USA
| | - Zhaohui Tong
- Department of Agricultural and Biological Engineering, IFAS, University of Florida, Gainesville, FL 32611, USA
| | - Meng You
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, National Engineering Laboratory for Improving Quality of Arable Land, Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Wenmin Huo
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, National Engineering Laboratory for Improving Quality of Arable Land, Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Beijing 100081, China; Chinese Academy of Natural Resource Economics, Beijing 101149, China
| | - Keyu Chi
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, National Engineering Laboratory for Improving Quality of Arable Land, Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Beijing 100081, China; Beijing Construction Engineering Group Environmental Remediation Co., Ltd. Beijing 100015, China
| | - Hongli Fan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, National Engineering Laboratory for Improving Quality of Arable Land, Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Beijing 100081, China; Department of Soil and Water Sciences, Tropical Research and Education Center, IFAS, University of Florida, Homestead, FL 33031, USA; Department of Agricultural and Biological Engineering, IFAS, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
47
|
Protistan and fungal diversity in soils and freshwater lakes are substantially different. Sci Rep 2020; 10:20025. [PMID: 33208814 PMCID: PMC7675990 DOI: 10.1038/s41598-020-77045-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/04/2020] [Indexed: 11/14/2022] Open
Abstract
Freshwater and soil habitats hold rich microbial communities. Here we address commonalities and differences between both habitat types. While freshwater and soil habitats differ considerably in habitat characteristics organismic exchange may be high and microbial communities may even be inoculated by organisms from the respective other habitat. We analyze diversity pattern and the overlap of taxa of eukaryotic microbial communities in freshwater and soil based on Illumina HiSeq high-throughput sequencing of the amplicon V9 diversity. We analyzed corresponding freshwater and soil samples from 30 locations, i.e. samples from different lakes across Germany and soil samples from the respective catchment areas. Aside from principle differences in the community composition of soils and freshwater, in particular with respect to the relative contribution of fungi and algae, soil habitats have a higher richness. Nevertheless, community similarity between different soil sites is considerably lower as compared to the similarity between different freshwater sites. We show that the overlap of organisms co-occurring in freshwater and soil habitats is surprisingly low. Even though closely related taxa occur in both habitats distinct OTUs were mostly habitat–specific and most OTUs occur exclusively in either soil or freshwater. The distribution pattern of the few co-occurring lineages indicates that even most of these are presumably rather habitat-specific. Their presence in both habitat types seems to be based on a stochastic drift of particularly abundant but habitat-specific taxa rather than on established populations in both types of habitats.
Collapse
|
48
|
Risueño Y, Petri C, Conesa HM. Edaphic factors determining the colonization of semiarid mine tailings by a ruderal shrub and two tree plant species: Implications for phytomanagement. CHEMOSPHERE 2020; 259:127425. [PMID: 32599384 DOI: 10.1016/j.chemosphere.2020.127425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 06/11/2023]
Abstract
Phytomanagement has been considered a feasible technique to decrease the environmental risks associated to mine tailings and its implementation relies on a suitable plant species selection. The goal of this study was to identify the edaphic factors, including microbiology, affecting the establishment of plant species with contrasting growth patterns during the phytomanagement of mine tailings. For this purpose, a comprehensive rhizosphere characterization was performed in an early ruderal colonizer, Zygophyllum fabago and two late successional tree species, Pinus halepensis and Tetraclinis articulata, growing at a mine tailings pile in southeast Spain. The neutral pH of the tailings determined low 0.01 M CaCl2 metal extractable concentrations (e.g. <10 μg kg-1 Pb and Cd). Thus, other soil properties different from metal concentrations resulted more determining to explain plant establishment. Results revealed that Z. fabago selectively colonized tailings patches characterized by high salinity (3.5 dS m-1) and high silt percentages (42%), showing a specific halotolerant rhizospheric microbial composition, such as the bacterial Sphingomonadales and Cytophagales orders and the fungal Pleosporales and Hyprocreales orders. The two tree species grew at moderate salinity areas of the tailings pile (1.7 dS m-1) with high sand percentages (85%), where Actinomycetales was the most abundant bacterial order (>10% abundance). The contrasting mycorrhizal behaviour of both tree species (ectomycorrhizal for P. halepensis and endomycorrhizal for T. articulata) could explain the differences found between their fungal rhizospheric composition. In terms of phytomanagement, the selective plant species colonization following specific soil patches at mine tailings would increase their biodiversity and resilience against environmental stressors.
Collapse
Affiliation(s)
- Yolanda Risueño
- Universidad Politécnica de Cartagena, Escuela Técnica Superior de Ingeniería Agronómica, Departamento de Ciencia y Tecnología Agraria, Paseo Alfonso XIII, 48, 30203, Cartagena, Spain.
| | - César Petri
- IHSM-CSIC La Mayora, Departamento de Fruticultura Subtropical y Mediterránea. Avenida Dr. Wienberg, s/n. 29750 Algarrobo-Costa, Málaga, Spain
| | - Héctor M Conesa
- Universidad Politécnica de Cartagena, Escuela Técnica Superior de Ingeniería Agronómica, Departamento de Ciencia y Tecnología Agraria, Paseo Alfonso XIII, 48, 30203, Cartagena, Spain
| |
Collapse
|
49
|
Intracellular Metabolomics Switching Alters Extracellular Acid Production and Insoluble Phosphate Solubilization Behavior in Penicillium oxalicum. Metabolites 2020; 10:metabo10110441. [PMID: 33142690 PMCID: PMC7692655 DOI: 10.3390/metabo10110441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022] Open
Abstract
This research aims to understand the precise intracellular metabolic processes of how microbes solubilize insoluble phosphorus (Insol-P) to increase bio-available P. Newly isolated Penicillium oxalicum PSF-4 exhibited outstanding tricalcium phosphate (TP) and iron phosphate (IP) solubilization performance—as manifested by microbial growth and the secretion of low-molecular-weight organic acids (LMWOAs). Untargeted metabolomics approach was employed to assess the metabolic alterations of 73 intracellular metabolites induced by TP and IP compared with soluble KH2PO4 in P. oxalicum. Based on the changes of intracellular metabolites, it was concluded that (i) the enhanced intracellular glyoxylate and carbohydrate metabolisms increased the extracellular LMWOAs production; (ii) the exposure of Insol-P poses potential effects to P. oxalicum in destructing essential cellular functions, affecting microbial growth, and disrupting amino acid, lipid, and nucleotide metabolisms; and (iii) the intracellular amino acid utilization played a significant role to stimulate microbial growth and the extracellular LMWOAs biosynthesis.
Collapse
|
50
|
Jin Z, Xie L, Zhang T, Liu L, Black T, Jones KC, Zhang H, Wang X, Jin N, Zhang D. Interrogating cadmium and lead biosorption mechanisms by Simplicillium chinense via infrared spectroscopy. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114419. [PMID: 32220774 DOI: 10.1016/j.envpol.2020.114419] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/29/2020] [Accepted: 03/18/2020] [Indexed: 06/10/2023]
Abstract
Fungi-associated phytoremediation is an environmentally friendly and cost-efficient approach to remove potential toxic elements (PTEs) from contaminated soils. Many fungal strains have been reported to possess PTE-biosorption behaviour which benefits phytoremediation performance. Nevertheless, most studies are limited in rich or defined medium, far away from the real-world scenarios where nutrients are deficient. Understanding fungal PTE-biosorption performance and influential factors in soil environment can expand their application potential and is urgently needed. This study applied attenuated total reflection Fourier-transform infrared (ATR-FTIR) coupled with phenotypic microarrays to study the biospectral alterations of a fungal strain Simplicillium chinense QD10 and explore the mechanisms of Cd and Pb biosorption. Both Cd and Pb were efficiently adsorbed by S. chinense QD10 cultivated with 48 different carbon sources and the biosorption efficiency achieved >90%. As the first study using spectroscopic tools to analyse PTE-biosorption by fungal cells in a high-throughput manner, our results indicated that spectral biomarkers associated with phosphor-lipids and proteins (1745 cm-1, 1456 cm-1 and 1396 cm-1) were significantly correlated with Cd biosorption, suggesting the cell wall components of S. chinense QD10 as the primary interactive targets. In contrast, there was no any spectral biomarker associated with Pb biosorption. Addtionally, adsorption isotherms evidenced a Langmuir model for Cd biosorption but a Freundlich model for Pb biosorption. Accordingly, Pb and Cd biosorption by S. chinense QD10 followed discriminating mechanisms, specific adsorption on cell membrane for Cd and unspecific extracellular precipitation for Pb. This work lends new insights into the mechanisms of PTE-biosorption via IR spectrochemical tools, which provide more comprehensive clues for biosorption behaviour with a nondestructive and high-throughput manner solving the traditional technical barrier regarding the real-world scenarios.
Collapse
Affiliation(s)
- Zhongmin Jin
- College of Agriculture, Forestry and Life Science, Qiqihar University, Qiqihar, 161006, PR China; Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Lin Xie
- College of Agriculture, Forestry and Life Science, Qiqihar University, Qiqihar, 161006, PR China
| | - Tuo Zhang
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637002, PR China
| | - Lijie Liu
- College of Agriculture, Forestry and Life Science, Qiqihar University, Qiqihar, 161006, PR China
| | - Tom Black
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Kevin C Jones
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Hao Zhang
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Xinzi Wang
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Naifu Jin
- School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Dayi Zhang
- School of Environment, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|