1
|
Zhu W, Al-Kindi SG, Rajagopalan S, Rao X. Air Pollution in Cardio-Oncology and Unraveling the Environmental Nexus: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol 2024; 6:347-362. [PMID: 38983383 PMCID: PMC11229557 DOI: 10.1016/j.jaccao.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 07/11/2024] Open
Abstract
Although recent advancements in cancer therapies have extended the lifespan of patients with cancer, they have also introduced new challenges, including chronic health issues such as cardiovascular disease arising from pre-existing risk factors or cancer therapies. Consequently, cardiovascular disease has become a leading cause of non-cancer-related death among cancer patients, driving the rapid evolution of the cardio-oncology field. Environmental factors, particularly air pollution, significantly contribute to deaths associated with cardiovascular disease and specific cancers, such as lung cancer. Despite these statistics, the health impact of air pollution in the context of cardio-oncology has been largely overlooked in patient care and research. Notably, the impact of air pollution varies widely across geographic areas and among individuals, leading to diverse exposure consequences. This review aims to consolidate epidemiologic and preclinical evidence linking air pollution to cardio-oncology while also exploring associated health disparities and environmental justice issues.
Collapse
Affiliation(s)
- Wenqiang Zhu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Sadeer G. Al-Kindi
- Division of Cardiovascular Prevention and Wellness, Houston Methodist DeBakey Heart and Vascular Center, Houston, Texas, USA
| | - Sanjay Rajagopalan
- Harrington Heart and Vascular Institute, University Hospitals, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Xiaoquan Rao
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
2
|
Pardo M, Li C, Jabali A, Petrick LM, Ben-Ari Z, Rudich Y. Toxicity mechanisms of biomass burning aerosols in in vitro hepatic steatosis models. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166988. [PMID: 37704129 DOI: 10.1016/j.scitotenv.2023.166988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/06/2023] [Accepted: 09/09/2023] [Indexed: 09/15/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common chronic liver disease that contributes to the global rise in liver-related morbidity and mortality. Wood tar (WT) aerosols are a significant fraction of carbonaceous aerosol originating from biomass smoldering, contributing to air pollution particles smaller than 2.5 mm (PM2.5). Mechanistic biological associations exist between exposure to PM2.5 and increased NAFLD phenotypes in both cell and animal models. Therefore, this study examines whether an existing NAFLD-like condition can enhance the biological susceptibility of liver cells exposed to air pollution in the form of WT material. Liver cells were incubated with lauric or oleic acid (LA, OA, respectively) for 24 h to accumulate lipids and served as an in vitro hepatic steatosis model. When exposed to 0.02 or 0.2 g/L water-soluble WT aerosols, both steatosis model cells showed increased cell death compared to the control cells (blank-treated cells with or without pre-incubation with LA or OA) or compared to WT-treated cells without pre-incubation with LA or OA. Furthermore, alterations in oxidative status included variations in reactive oxygen species (ROS) levels, elevated levels of lipid peroxidation adducts, and decreased expression of antioxidant genes associated with the NRF2 transcription factor. In addition, steatosis model cells exposed to WT had a higher degree of DNA damage than the control cells (blank-treated cells with or without pre-incubation with LA or OA). These results support a possible systemic effect through the direct inflammatory and oxidative stress response following exposure to water-soluble WT on liver cells, especially those predisposed to fatty liver. Furthermore, the liver steatosis model can be influenced by the type of fatty acid used; increased adverse effects of WT on metabolic dysregulation were observed in the LA model to a higher extent compared to the OA model.
Collapse
Affiliation(s)
- Michal Pardo
- Department of Earth and Planetary Sciences, Faculty of Chemistry, Weizmann Institute of Science, Rehovot, Israel.
| | - Chunlin Li
- Department of Earth and Planetary Sciences, Faculty of Chemistry, Weizmann Institute of Science, Rehovot, Israel.
| | - Amani Jabali
- Department of Earth and Planetary Sciences, Faculty of Chemistry, Weizmann Institute of Science, Rehovot, Israel.
| | - Lauren M Petrick
- The Bert Strassburger Metabolic Center, Sheba Medical Center, Tel Hashomer, Israel; Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Ziv Ben-Ari
- Liver Disease Center, Sheba Medical Center, Tel Hashomer, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Yinon Rudich
- Department of Earth and Planetary Sciences, Faculty of Chemistry, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
3
|
Pan SY, Chi KH, Wang YC, Wei WC, Ueng YF. Sub-toxic events induced by truck speed-facilitated PM 2.5 and its counteraction by epigallocatechin-3-gallate in A549 human lung cells. Sci Rep 2022; 12:15004. [PMID: 36056034 PMCID: PMC9440210 DOI: 10.1038/s41598-022-18918-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/22/2022] [Indexed: 11/09/2022] Open
Abstract
To distinguish the influences of fuel type and truck speed on chemical composition and sub-toxic effects of particulates (PM2.5) from engine emissions, biomarkers-interleukin-6 (IL-6), cytochrome P450 (CYP) 1A1, heme oxygenase (HO)-1, and NADPH-quinone oxidoreductase (NQO)-1-were studied in A549 human lung cells. Fuel type and truck speed preferentially affected the quantity and ion/polycyclic aromatic hydrocarbon (PAH) composition of PM2.5, respectively. Under idling operation, phenanthrene was the most abundant PAH. At high speed, more than 50% of the PAHs had high molecular weight (HMW), of which benzo[a]pyrene (B[a]P), benzo[ghi]perylene (B[ghi]P), and indeno[1,2,3-cd]pyrene (I[cd]P) were the main PAHs. B[a]P, B[ghi]P, and I[cd]P caused potent induction of IL-6, CYP1A1, and NQO-1, whereas phenanthrene mildly induced CYP1A1. Based on the PAH-mediated induction, the predicted increases in biomarkers were positively correlated with the measured increases. HMW-PAHs contribute to the biomarker induction by PM2.5, at high speed, which was reduced by co-exposure to epigallocatechin-3-gallate.
Collapse
Affiliation(s)
- Shih Yu Pan
- Institute of Environmental and Occupational Health Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan, ROC
| | - Kai Hsien Chi
- Institute of Environmental and Occupational Health Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan, ROC
| | - Yen-Cih Wang
- Division of Basic Chinese Medicine, National Research Institute of Chinese Medicine, 155-1, Li-Nong Street, Sec. 2, Taipei, 112, Taiwan, ROC
| | - Wen-Chi Wei
- Division of Basic Chinese Medicine, National Research Institute of Chinese Medicine, 155-1, Li-Nong Street, Sec. 2, Taipei, 112, Taiwan, ROC
| | - Yune-Fang Ueng
- Division of Basic Chinese Medicine, National Research Institute of Chinese Medicine, 155-1, Li-Nong Street, Sec. 2, Taipei, 112, Taiwan, ROC.
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan, ROC.
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan, ROC.
- Institute of Biopharmaceutical Science, School of Pharmacy, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan, ROC.
| |
Collapse
|
4
|
Lin L, Li T, Sun M, Liang Q, Ma Y, Wang F, Duan J, Sun Z. Global association between atmospheric particulate matter and obesity: A systematic review and meta-analysis. ENVIRONMENTAL RESEARCH 2022; 209:112785. [PMID: 35077718 DOI: 10.1016/j.envres.2022.112785] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Among various air pollutants, particulate matter (PM) is the most harmful and representative pollutant. Although several studies have shown a link between particulate pollution and obesity, the conclusions are still inconsistent. METHODS We conducted a systematic review and meta-analysis to pool the effect of PM exposure on obesity. Five databases (including PubMed, Web of Science, Scopus, Embase, and Cochrane) were searched for relevant studies up to Jan 2022. Adjusted risk ratio (RR) with corresponding 95% confidence interval (CI) were retrieved from individual studies and pooled with random effect models by STATA software. Besides, we tested the stability of results by Egger's test, Begg's test, funnel plot, and using the trim-and-fill method to modify the possible asymmetric funnel graph. The NTP-OHAT guidelines were followed to assess the risk of bias. Then the GRADE was used to evaluate the certainty of evidence. RESULTS 26 studies were included in this meta-analysis. 19 studies have shown that PM2.5 can increase the risk of obesity per 10 μg/m3 increment (RR: 1.159, 95% CI: 1.111-1.209), while 15 studies have indicated that PM10 increase the risk of obesity per 10 μg/m3 increment (RR: 1.092, 95% CI: 1.070-1.116). Besides, 5 other articles with maternal exposure showed that PM2.5 increases the risk of obesity in children (RR: 1.06, 95% CI: 1.02-1.11). And we explored the source of heterogeneity by subgroup analysis, which suggested associations between PM and obesity tended to vary by region, age group, participants number, etc. The analysis results showed publication bias and other biases are well controlled, but most certainties of the evidence were low, and more research is required to reduce these uncertainties. CONCLUSION Exposure to PM2.5 and PM10 with per 10 μg/m3 increment could increase the risk of obesity in the global population.
Collapse
Affiliation(s)
- Lisen Lin
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Tianyu Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Mengqi Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Qingqing Liang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Yuexiao Ma
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Fenghong Wang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China.
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China.
| |
Collapse
|
5
|
Liu M, Tang W, Zhang Y, Wang Y, Li Y, Liu X, Xu S, Ao L, Wang Q, Wei J, Chen G, Li S, Guo Y, Yang S, Han D, Zhao X. Urban-rural differences in the association between long-term exposure to ambient air pollution and obesity in China. ENVIRONMENTAL RESEARCH 2021; 201:111597. [PMID: 34214564 DOI: 10.1016/j.envres.2021.111597] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/23/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
INTRODUCTION Ambient air pollution might increase the risk of obesity; however, the evidence regarding the relationship between air pollution and obesity in comparable urban and rural areas is limited. Therefore, our aim was to contrast the effect estimates of varying air pollution particulate matter on obesity between urban and rural areas. METHODS Four obesity indicators were evaluated in this study, namely, body mass index (BMI), waist circumference (WC), waist-to-hip ratio (WHR), and waist-to-height ratio (WHtR). Exposure to ambient air pollution (e.g., particulate matter with aerodynamic diameters 1.0 μm [PM1], PM2.5, and PM10) was estimated using satellite-based random forest models. Linear regression and logistic regression models were used to assess the associations between air pollution particulate matter and obesity. Furthermore, the effect estimates of different air pollution particulates were contrasted between urban and rural areas. RESULTS A total of 36,998 participants in urban areas and 31, 256 in rural areas were included. We found positive associations between long-term exposure to PM1, PM2.5, and PM10 and obesity. Of these air pollutants, PM2.5 had the strongest association. The results showed that the odds ratios (ORs) for general obesity were 1.8 (95% CI, 1.64 to 1.98) per interquartile range (IQR) μg/m3 increase in PM1, 1.89 (95% CI, 1.71 to 2.1) per IQR μg/m3 increase in PM2.5, and 1.74 (95% CI, 1.58 to 1.9) per IQR μg/m3 increase in PM10. The concentrations of air pollutants were lower in rural areas, but the effects of air pollution on obesity of rural residents were higher than those of urban residents. CONCLUSION Long-term (3 years average) exposure to ambient air pollution was associated with an increased risk of obesity. We observed regional disparities in the effects of particulate matter exposure from air pollution on the risk of obesity, with higher effect estimates found in rural areas. Air quality interventions should be prioritized not only in urban areas but also in rural areas to reduce the risk of obesity.
Collapse
Affiliation(s)
- Meijing Liu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Wenge Tang
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing, China
| | - Yan Zhang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Yanjiao Wang
- School of Public Health, Kunming Medical University, Kunming, China
| | - Yajie Li
- Tibet Center for Disease Control and Prevention CN, Lhasa, China
| | - Xiang Liu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Shuaiming Xu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Linjun Ao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Qinjian Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jing Wei
- Department of Chemical and Biochemical Engineering, Iowa Technology Institute, Center for Global and Regional Environmental Research, University of Iowa, Iowa City, IA, USA
| | - Gongbo Chen
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Shanshan Li
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Yumin Guo
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Shujuan Yang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.
| | - Delin Han
- Chengdu Center for Disease Control &Prevention, Chengdu, China.
| | - Xing Zhao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
6
|
Ning J, Zhang Y, Hu H, Hu W, Li L, Pang Y, Ma S, Niu Y, Zhang R. Association between ambient particulate matter exposure and metabolic syndrome risk: A systematic review and meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 782:146855. [PMID: 33839664 DOI: 10.1016/j.scitotenv.2021.146855] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 05/22/2023]
Abstract
Although the association between ambient particulate matter and metabolic syndrome (MetS) has been investigated, the effect of particulate matter (PM) on MetS is inconclusive. We conducted a systematic review and meta-analysis to study the association between long-term ambient PM exposure and MetS risk. The data from five databases were extracted to analyze the association between ambient PM exposure and MetS risk. A random-effects model was performed to estimate the overall risk effect. The present systematic review and meta-analysis illustrated that an increase of 5 μg/m3 in annual PM2.5 or PM10 concentration was associated with 14% or 9% increases of MetS risk, respectively (PM2.5, RR = 1.14, 95%CI [1.03, 1.25]; PM10, RR = 1.09, 95%CI [1.00, 1.19]). The population-attributable risk (PAR) was 12.28% for PM2.5 exposure or 8.26% for PM10 exposure, respectively. There was statistical association between PM2.5 exposure and risk of MetS in male proportion ≥50%, Asia, related disease or medication non-adjustment subgroup as well as cohort study subgroups, respectively. The significant association between PM10 exposure and risk of MetS was observed in male proportion ≥50% and calories intake adjustment subgroups, respectively. Sensitivity analyses showed the robustness of our results. No publication bias was detected. In conclusion, there was positive association between long-term PM exposure and MetS risk. 12.28% of MetS risk could be attributable to PM2.5 exposure.
Collapse
Affiliation(s)
- Jie Ning
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Yaling Zhang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Huaifang Hu
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Wentao Hu
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Lipeng Li
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Yaxian Pang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Shitao Ma
- Department of Occupation Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Yujie Niu
- Department of Occupation Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, PR China
| | - Rong Zhang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, PR China.
| |
Collapse
|
7
|
Zhang Y, Li K, Kong A, Zhou Y, Chen D, Gu J, Shi H. Dysregulation of autophagy acts as a pathogenic mechanism of non-alcoholic fatty liver disease (NAFLD) induced by common environmental pollutants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 217:112256. [PMID: 33901779 DOI: 10.1016/j.ecoenv.2021.112256] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has been the most common chronic liver disease in the world, including the developing countries. NAFLD is metabolic disease with significant lipid deposition in the hepatocytes of the liver, which is usually associated with oxidative stress, inflammation and fibrogenesis, and insulin resistance. Progressive NAFLD can develop into non-alcoholic steatohepatitis (NASH) or hepatocellular carcinoma. The current evidence proposes that environmental pollutants promote development and progression of NAFLD, and autophagy plays a vital role but is multifactorial affected in NAFLD. In this review, we analyzed on the regulations of common environmental pollutants on autophagy in NAFLD. To clarify the involved roles of autophagy, we discussed the dysregulation of autophagy by environmental pollutants in adipose tissue and gut, and their interactions with liver, as well as epigenetic regulation on autophagy by environmental pollutants. Furthermore, protective roles of potential therapeutic treatments on the multiple-hits of autophagy in NAFLD were descripted.
Collapse
Affiliation(s)
- Yao Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212000, China
| | - Kongdong Li
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212000, China
| | - Anqi Kong
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212000, China
| | - Yang Zhou
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212000, China
| | - Dongfeng Chen
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Jie Gu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212000, China
| | - Haifeng Shi
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212000, China.
| |
Collapse
|
8
|
Vega N, Pinteur C, Buffelan G, Loizon E, Vidal H, Naville D, Le Magueresse-Battistoni B. Exposure to pollutants altered glucocorticoid signaling and clock gene expression in female mice. Evidence of tissue- and sex-specificity. CHEMOSPHERE 2021; 262:127841. [PMID: 32784060 DOI: 10.1016/j.chemosphere.2020.127841] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/23/2020] [Accepted: 07/26/2020] [Indexed: 06/11/2023]
Abstract
Environmental pollutants suspected of disrupting the endocrine system are considered etiologic factors in the epidemic of metabolic disorders. As regulation of energy metabolism relies on the integrated action of a large number of hormones, we hypothesized that certain chemicals could trigger changes in glucocorticoid signaling. To this end, we exposed C57Bl6/J female and male mice between 5 and 20 weeks of age to a mixture of 2,3,7,8- tetrachlorodibenzo-p-dioxin (20 pg/kg body weight/day [bw/d]), polychlorobiphenyl 153 (200 ng/kg bw/d), di-[2-ethylhexyl]-phthalate (500 μg/kg bw/d) and bisphenol A (40 μg/kg bw/d). In female mice fed a standard diet (ST), we observed a decrease in plasma levels of leptin as well as a reduced expression of corticoid receptors Nr3c1 and Nr3c2, of leptin and of various canonical genes related to the circadian clock machinery in visceral (VAT) but not subcutaneous (SAT) adipose tissue. However, Nr3c1 and Nr3c2 mRNA levels did not change in high-fat-fed females exposed to pollutants. In ST-fed males, pollutants caused the same decrease of Nr3c1 mRNA levels in VAT observed in ST-fed females but levels of Nr3c2 and other clock-related genes found to be down-regulated in female VAT were enhanced in male SAT and not affected in male VAT. The expression of corticoid receptors was not affected in the livers of both sexes in response to pollutants. In summary, exposure to a mixture of pollutants at doses lower than the no-observed adverse effect levels (NoAELs) resulted in sex-dependent glucocorticoid signaling disturbances and clock-related gene expression modifications in the adipose tissue of ST-fed mice.
Collapse
Affiliation(s)
- Nathalie Vega
- Univ-Lyon, CarMeN Laboratory, INSERM U1060, INRAé U1397, Université Claude Bernard Lyon1, F-69310, Pierre-Bénite, France
| | - Claudie Pinteur
- Univ-Lyon, CarMeN Laboratory, INSERM U1060, INRAé U1397, Université Claude Bernard Lyon1, F-69310, Pierre-Bénite, France
| | - Gaël Buffelan
- Univ-Lyon, CarMeN Laboratory, INSERM U1060, INRAé U1397, Université Claude Bernard Lyon1, F-69310, Pierre-Bénite, France
| | - Emmanuelle Loizon
- Univ-Lyon, CarMeN Laboratory, INSERM U1060, INRAé U1397, Université Claude Bernard Lyon1, F-69310, Pierre-Bénite, France
| | - Hubert Vidal
- Univ-Lyon, CarMeN Laboratory, INSERM U1060, INRAé U1397, Université Claude Bernard Lyon1, F-69310, Pierre-Bénite, France
| | - Danielle Naville
- Univ-Lyon, CarMeN Laboratory, INSERM U1060, INRAé U1397, Université Claude Bernard Lyon1, F-69310, Pierre-Bénite, France
| | | |
Collapse
|
9
|
Ramos-Lopez O, Milagro FI, Riezu-Boj JI, Martinez JA. Epigenetic signatures underlying inflammation: an interplay of nutrition, physical activity, metabolic diseases, and environmental factors for personalized nutrition. Inflamm Res 2021; 70:29-49. [PMID: 33231704 PMCID: PMC7684853 DOI: 10.1007/s00011-020-01425-y] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/26/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022] Open
Abstract
AIM AND OBJECTIVE Emerging translational evidence suggests that epigenetic alterations (DNA methylation, miRNA expression, and histone modifications) occur after external stimuli and may contribute to exacerbated inflammation and the risk of suffering several diseases including diabetes, cardiovascular diseases, cancer, and neurological disorders. This review summarizes the current knowledge about the harmful effects of high-fat/high-sugar diets, micronutrient deficiencies (folate, manganese, and carotenoids), obesity and associated complications, bacterial/viral infections, smoking, excessive alcohol consumption, sleep deprivation, chronic stress, air pollution, and chemical exposure on inflammation through epigenetic mechanisms. Additionally, the epigenetic phenomena underlying the anti-inflammatory potential of caloric restriction, n-3 PUFA, Mediterranean diet, vitamin D, zinc, polyphenols (i.e., resveratrol, gallic acid, epicatechin, luteolin, curcumin), and the role of systematic exercise are discussed. METHODS Original and review articles encompassing epigenetics and inflammation were screened from major databases (including PubMed, Medline, Science Direct, Scopus, etc.) and analyzed for the writing of the review paper. CONCLUSION Although caution should be exercised, research on epigenetic mechanisms is contributing to understand pathological processes involving inflammatory responses, the prediction of disease risk based on the epigenotype, as well as the putative design of therapeutic interventions targeting the epigenome.
Collapse
Affiliation(s)
- Omar Ramos-Lopez
- Medicine and Psychology School, Autonomous University of Baja California, Tijuana, Baja California, Mexico
| | - Fermin I Milagro
- Department of Nutrition, Food Science and Physiology, Center for Nutrition Research, University of Navarra, 1 Irunlarrea Street, 31008, Pamplona, Spain.
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.
- CIBERobn, Fisiopatología de la Obesidad y la Nutrición, Carlos III Health Institute, Madrid, Spain.
| | - Jose I Riezu-Boj
- Department of Nutrition, Food Science and Physiology, Center for Nutrition Research, University of Navarra, 1 Irunlarrea Street, 31008, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - J Alfredo Martinez
- Department of Nutrition, Food Science and Physiology, Center for Nutrition Research, University of Navarra, 1 Irunlarrea Street, 31008, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- CIBERobn, Fisiopatología de la Obesidad y la Nutrición, Carlos III Health Institute, Madrid, Spain
- Precision Nutrition and Cardiometabolic Health, IMDEA-Food Institute (Madrid Institute for Advanced Studies), Madrid, Spain
| |
Collapse
|
10
|
Snow SJ, Henriquez AR, Fenton JI, Goeden T, Fisher A, Vallanat B, Angrish M, Richards JE, Schladweiler MC, Cheng WY, Wood CE, Tong H, Kodavanti UP. Diets enriched with coconut, fish, or olive oil modify peripheral metabolic effects of ozone in rats. Toxicol Appl Pharmacol 2020; 410:115337. [PMID: 33217375 DOI: 10.1016/j.taap.2020.115337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/29/2020] [Accepted: 11/12/2020] [Indexed: 12/17/2022]
Abstract
Dietary factors may modulate metabolic effects of air pollutant exposures. We hypothesized that diets enriched with coconut oil (CO), fish oil (FO), or olive oil (OO) would alter ozone-induced metabolic responses. Male Wistar-Kyoto rats (1-month-old) were fed normal diet (ND), or CO-, FO-, or OO-enriched diets. After eight weeks, animals were exposed to air or 0.8 ppm ozone, 4 h/day for 2 days. Relative to ND, CO- and OO-enriched diet increased body fat, serum triglycerides, cholesterols, and leptin, while all supplements increased liver lipid staining (OO > FO > CO). FO increased n-3, OO increased n-6/n-9, and all supplements increased saturated fatty-acids. Ozone increased total cholesterol, low-density lipoprotein, branched-chain amino acids (BCAA), induced hyperglycemia, glucose intolerance, and changed gene expression involved in energy metabolism in adipose and muscle tissue in rats fed ND. Ozone-induced glucose intolerance was exacerbated by OO-enriched diet. Ozone increased leptin in CO- and FO-enriched groups; however, BCAA increases were blunted by FO and OO. Ozone-induced inhibition of liver cholesterol biosynthesis genes in ND-fed rats was not evident in enriched dietary groups; however, genes involved in energy metabolism and glucose transport were increased in rats fed FO and OO-enriched diet. FO- and OO-enriched diets blunted ozone-induced inhibition of genes involved in adipose tissue glucose uptake and cholesterol synthesis, but exacerbated genes involved in adipose lipolysis. Ozone-induced decreases in muscle energy metabolism genes were similar in all dietary groups. In conclusion, CO-, FO-, and OO-enriched diets modified ozone-induced metabolic changes in a diet-specific manner, which could contribute to altered peripheral energy homeostasis.
Collapse
Affiliation(s)
- Samantha J Snow
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Andres R Henriquez
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Jenifer I Fenton
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, 48824, United States
| | - Travis Goeden
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, 48824, United States
| | - Anna Fisher
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Beena Vallanat
- Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Michelle Angrish
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Judy E Richards
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Mette C Schladweiler
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Wan-Yun Cheng
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Charles E Wood
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Haiyan Tong
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Urmila P Kodavanti
- Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States.
| |
Collapse
|
11
|
Pardo M, Qiu X, Zimmermann R, Rudich Y. Particulate Matter Toxicity Is Nrf2 and Mitochondria Dependent: The Roles of Metals and Polycyclic Aromatic Hydrocarbons. Chem Res Toxicol 2020; 33:1110-1120. [PMID: 32302097 PMCID: PMC7304922 DOI: 10.1021/acs.chemrestox.0c00007] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
Particulate matter
(PM), an important component of air pollution,
induces significant adverse health effects. Many of the observed health
effects caused by inhaled PM are associated with oxidative stress
and inflammation. This association has been linked in particular to
the particles’ chemical components, especially the inorganic/metal
and the organic/polycyclic aromatic hydrocarbon (PAH) fractions, and
their ability to generate reactive oxygen species in biological systems.
The transcription factor NF-E2 nuclear factor erythroid-related factor
2 (Nrf2) is activated by redox imbalance and regulates the expression
of phase II detoxifying enzymes. Nrf2 plays a key role in preventing
PM-induced toxicity by protecting against oxidative damage and inflammation.
This review focuses on specific PM fractions, particularly the dissolved
metals and PAH fractions, and their roles in inducing oxidative stress
and inflammation in cell and animal models with respect to Nrf2 and
mitochondria.
Collapse
Affiliation(s)
- Michal Pardo
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Xinghua Qiu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, P.R. China
| | - Ralf Zimmermann
- Joint Mass Spectrometry Centre, University of Rostock, 18055 Rostock, Germany.,Joint Mass Spectrometry Centre, Comprehensive Molecular Analytics (CMA) Cooperation Group Helmholtz Zentrum, 81379 München, Germany
| | - Yinon Rudich
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
12
|
Xing X, Hu L, Guo Y, Bloom MS, Li S, Chen G, Yim SHL, Gurram N, Yang M, Xiao X, Xu S, Wei Q, Yu H, Yang B, Zeng X, Chen W, Hu Q, Dong G. Interactions between ambient air pollution and obesity on lung function in children: The Seven Northeastern Chinese Cities (SNEC) Study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 699:134397. [PMID: 31677469 DOI: 10.1016/j.scitotenv.2019.134397] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/23/2019] [Accepted: 09/09/2019] [Indexed: 06/10/2023]
Abstract
Children are vulnerable to air pollution-induced lung function deficits, and the prevalence of obesity has been increasing in children. To evaluate the joint effects of long-term PM1 (particulate matter with an aerodynamic diameter ≤ 1.0 μm) exposure and obesity on children's lung function, a cross-sectional sample of 6740 children (aged 7-14 years) was enrolled across seven northeastern Chinese cities from 2012 to 2013. Weight and lung function, including forced vital capacity (FVC), forced expiratory volume in 1 s (FEV1), peak expiratory flow (PEF), and maximal mid-expiratory flow (MMEF), were measured according to standardized protocols. Average PM1, PM2.5, PM10 and nitrogen dioxide (NO2) exposure levels were estimated using a spatiotemporal model, and sulphur dioxide (SO2) and ozone (O3) exposure were estimated using data from municipal air monitoring stations. Two-level logistic regression and general linear models were used to analyze the joint effects of body mass index (BMI) and air pollutants. The results showed that long-term air pollution exposure was associated with lung function impairment and there were significant interactions with BMI. Associations were stronger among obese and overweight than normal weight participants (the adjusted odds ratios (95% confidence intervals) for PM1 and lung function impairments in three increasing BMI categories were 1.50 (1.07-2.11) to 2.55 (1.59-4.07) for FVC < 85% predicted, 1.44 (1.03-2.01) to 2.51 (1.53-4.11) for FEV1 < 85% predicted, 1.34 (0.97-1.84) to 2.04 (1.24-3.35) for PEF < 75% predicted, and 1.34 (1.01-1.78) to 1.93 (1.26-2.95) for MMEF < 75% predicted). Consistent results were detected in linear regression models for PM1, PM2.5 and SO2 on FVC and FEV1 impairments (PInteraction < 0.05). These modification effects were stronger among females and older participants. These results can provide policy makers with more comprehensive information for to develop strategies for preventing air pollution induced children's lung function deficits among children.
Collapse
Affiliation(s)
- Xiumei Xing
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Liwen Hu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yuming Guo
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Michael S Bloom
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; Department of Environmental Health Sciences, University at Albany, State University of New York, Rensselaer, NY 12144, USA; Department of Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, NY 12144, USA
| | - Shanshan Li
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Gongbo Chen
- Department of Global Health, School of Health Sciences, Wuhan University, Wuhan, China
| | - Steve Hung Lam Yim
- Department of Geography and Resource Management, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Namratha Gurram
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Mo Yang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiang Xiao
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Shuli Xu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qi Wei
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Hongyao Yu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Boyi Yang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaowen Zeng
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Wen Chen
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qiang Hu
- Department of Pediatric Surgery, Weifang People's Hospital, Weifang 261041, China.
| | - Guanghui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
13
|
Shi C, Han X, Mao X, Fan C, Jin M. Metabolic profiling of liver tissues in mice after instillation of fine particulate matter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 696:133974. [PMID: 31470317 DOI: 10.1016/j.scitotenv.2019.133974] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 08/17/2019] [Accepted: 08/17/2019] [Indexed: 06/10/2023]
Abstract
Human exposure to fine particulate matter (PM2.5) in various environment could lead to a number of adverse health effects. Little is known about the toxic mechanism and the further response caused by PM2.5 exposure. In this study, a metabolomics approach using gas chromatography-mass spectrometry (GC-MS) was adopted to evaluate the liver toxicity induced by different gradient concentrations of PM2.5. A multivariate statistical analysis had shown, a total of 12 endogenous metabolites including amino acids and organic acids were identified as potential biomarkers of PM2.5 and most of them were down-regulated. By analyzing the metabolic pathways using the identified biomarkers, the significantly interfered metabolic pathways when mice were exposed to PM2.5 were found as: glycine, serine and threonine metabolism, aminoacyl-tRNA biosynthesis, cysteine and methionine metabolism, alanine, aspartate and glutamate metabolism, methane metabolism, linoleic acid metabolism and valine, and leucine and isoleucine biosynthesis, all of which were closely related to liver metabolism. The findings of this study reveal detailed toxic metabolic effects of PM2.5 in liver tissues, provide ways for assessing the health risk of PM2.5 at molecular level, and further offer insights on the potential mechanism of its toxicity.
Collapse
Affiliation(s)
- Chunzhen Shi
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, China.
| | - Xi Han
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Xu Mao
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Chong Fan
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Meng Jin
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
14
|
Snow SJ, Henriquez AR, Costa DL, Kodavanti UP. Neuroendocrine Regulation of Air Pollution Health Effects: Emerging Insights. Toxicol Sci 2019; 164:9-20. [PMID: 29846720 DOI: 10.1093/toxsci/kfy129] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Air pollutant exposures are linked to cardiopulmonary diseases, diabetes, metabolic syndrome, neurobehavioral conditions, and reproductive abnormalities. Significant effort is invested in understanding how pollutants encountered by the lung might induce effects in distant organs. The role of circulating mediators has been predicted; however, their origin and identity have not been confirmed. New evidence has emerged which implicates the role of neuroendocrine sympathetic-adrenal-medullary (SAM) and hypothalamic-pituitary-adrenal (HPA) stress axes in mediating a wide array of systemic and pulmonary effects. Our recent studies using ozone exposure as a prototypical air pollutant demonstrate that increases in circulating adrenal-derived stress hormones (epinephrine and cortisol/corticosterone) contribute to lung injury/inflammation and metabolic effects in the liver, pancreas, adipose, and muscle tissues. When stress hormones are depleted by adrenalectomy in rats, most ozone effects including lung injury/inflammation are diminished. Animals treated with antagonists for adrenergic and glucocorticoid receptors show inhibition of the pulmonary and systemic effects of ozone, whereas treatment with agonists restore and exacerbate the ozone-induced injury/inflammation phenotype, implying the role of neuroendocrine activation. The neuroendocrine system is critical for normal homeostasis and allostatic activation; however, chronic exposure to stressors may lead to increases in allostatic load. The emerging mechanisms by which circulating mediators are released and are responsible for producing multiorgan effects of air pollutants insists upon a paradigm shift in the field of air pollution and health. Moreover, since these neuroendocrine responses are linked to both chemical and nonchemical stressors, the interactive influence of air pollutants, lifestyle, and environmental factors requires further study.
Collapse
Affiliation(s)
- Samantha J Snow
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, 27711
| | - Andres R Henriquez
- Oak Ridge Institute for Science and Education, Research Triangle Park, North Carolina, 27711
| | - Daniel L Costa
- Emeritus, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, 27711
| | - Urmila P Kodavanti
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, 27711
| |
Collapse
|
15
|
Hwang SE, Kwon H, Jeong SM, Kim HJ, Park JH. Ambient air pollution exposure and obesity-related traits in Korean adults. Diabetes Metab Syndr Obes 2019; 12:1365-1377. [PMID: 31496774 PMCID: PMC6691946 DOI: 10.2147/dmso.s208115] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 07/23/2019] [Indexed: 12/31/2022] Open
Abstract
PURPOSE Although some studies have tried to determine the impact of long-term air pollution exposure on obesity, they have mainly focused on body mass index (BMI) and the results are inconsistent. Therefore, we investigated the association of annual ambient air pollution exposure with various obesity traits, including computed tomography-measured abdominal fatness, in a large Korean adult population. PATIENTS AND METHODS A total of 5,114 participants who underwent routine health check-ups at Seoul National University Hospital were included in the analysis. We calculated the annual average concentrations of ambient air pollutants, such as particulate matter ≤10 μm in diameter (PM10) and nitrogen dioxide (NO2), using the individual's zip code. Obesity-related indicators included the BMI, waist circumference (WC), percent body fat (PBF), total adipose tissue (TAT), visceral adipose tissue (VAT), and subcutaneous adipose tissue (SAT). RESULTS The mean age of the population was 53.5 and 70.9% were men. The mean annual concentrations of PM10 and NO2 were 49.4 μg/m3 and 30.3 ppb, respectively. In the full covariates model, adjusted for demographic and clinical variables, interquartile range increase in annual average concentration of PM10 and NO2 was not associated with any obesity-related phenotypes including BMI, WC, PBF, TAT, VAT, and SAT (all P>0.05). Likewise, no significant association between air pollutants and obesity-related traits was observed in any subgroups, stratified by sex and age (all P>0.05). CONCLUSION Annual exposure to ambient air pollution is not associated with any obesity-related traits in Korean adults.
Collapse
Affiliation(s)
- Seo Eun Hwang
- Department of Family Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Hyuktae Kwon
- Department of Family Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Su-Min Jeong
- Department of Family Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Hyun-Jin Kim
- Big Data Center, National Cancer Control Institute, National Cancer Center, Goyang, South Korea
- Correspondence: Hyun-Jin KimBig Data Center, National Cancer Control Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si Gyeonggi-do10408, South KoreaTel +82 31 920 2914Fax +82 31 920 2189Email
| | - Jin-Ho Park
- Department of Family Medicine, Seoul National University Hospital, Seoul, South Korea
- Department of Family Medicine, Seoul National University College of Medicine, Seoul, South Korea
- Jin-Ho ParkDepartment of Family Medicine, Seoul National University Hospital, Seoul National University College of Medicine, 103 Daehakro, Jongno-gu, Seoul03080, South KoreaTel +82 22 072 0865Fax +82 2 766 3276Email
| |
Collapse
|
16
|
Sun B, Shi Y, Yang X, Zhao T, Duan J, Sun Z. DNA methylation: A critical epigenetic mechanism underlying the detrimental effects of airborne particulate matter. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 161:173-183. [PMID: 29883871 DOI: 10.1016/j.ecoenv.2018.05.083] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 05/20/2018] [Accepted: 05/29/2018] [Indexed: 06/08/2023]
Abstract
Exposure to airborne particulate matter (PM) does great harm to the health of human beings. To date, PM exposure has been closely associated with respiratory and cardiovascular diseases, as well as some types of cancer. As the associations of PM with the adverse health effects are well documented in literatures, the underlying mechanisms have not been completely clarified. With the field of epigenetics rising in recent years, PM-associated epigenetic alterations have gradually turned into the hot research topic. DNA methylation is one of the earliest-discovered and best-studied epigenetic mechanisms, of which the alteration can influence the transcription initiation of genes. A number of studies have been published to demonstrate that PM exposure is linked with DNA methylation patterns in the human genome. DNA methylation is the potential regulator of the biological effects of PM exposure. In the present review, DNA methylation related to PM exposure was elaborated on genome-wide and gene-specific methylation. In particular, genome-wide DNA methylation was composed of the alterations in global methylation content and genome-wide methylation profile; gene-specific methylation included the methylation changes in mechanism-related and disease-specific genes. Representative epidemiological and experimental studies were cited to elucidate the viewpoints, focusing on both PM-related methylation changes and the mediating effects of DNA methylation between PM and the health impacts. This review will provide advantageous clues for subsequent studies on the DNA methylation in relation to PM exposure.
Collapse
Affiliation(s)
- Baiyang Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Yanfeng Shi
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Xiaozhe Yang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Tong Zhao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|