1
|
Mahlouji M, Alavi SMH, Ghasemi J, Jalili AH, Mozanzadeh MT, Zhang S, Shazada NE, Butts IAE, Hoseinifar SH, Linhart O. Crude Oil-Induced Reproductive Disorders in Male Goldfish: Testicular Histopathology, Sex Steroid Hormones, and Sperm Swimming Kinematics. J Appl Toxicol 2025; 45:767-782. [PMID: 39721597 DOI: 10.1002/jat.4745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/30/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024]
Abstract
Crude oil contamination has been shown to impair reproduction in aquatic animals through carcinogenic and genotoxic properties. Here, we assessed the endocrine-disrupting function of crude oil on male reproductive system based on testicular histology, sex steroid hormones, and fertility endpoints in adult male goldfish (Carassius auratus), which were exposed to 0.02- to 2-mg/L crude oil for 21 days (Experiment #1) or to 5- to 250-mg/L crude oil for 9 days (Experiment #2). The crude oil contained 0.22-mg/L nickel (Ni), 1.10-mg/L vanadium (V), and 12.87-mg/L polycyclic aromatic hydrocarbons (PAHs). Twenty-four hours after adding crude oil, the sum of PAHs ranged from 0.30 to 2.28 μg/L in the aquaria containing 0.02- and 250-mg/L crude oil, respectively. Water analyses for heavy metals in Experiment #2 showed high concentrations (mg/L) of Ni (0.07-0-09) and V (0.10-0.21). For both experiments, exposure to crude oil did not impact gonadosomatic index; however, testes showed histopathological defects including hyperplasia or hypertrophy of Sertoli cells, depletion of the Leydig cells, necrosis of germ cells, and fibrosis of lobular wall. In Experiment #1, sperm production and motility, testosterone (T), and 17β-estradiol (E2) were not significantly different among treatments. In Experiment #2, the number of spermiating males decreased by ~50% following exposure to 250-mg/L crude oil. Sperm production, motility kinematics, T, and the T/E2 ratio significantly decreased in males exposed to ≥ 50-mg/L crude oil; however, E2 remained unchanged. Results show crude oil-induced imbalance of sex steroid hormones disrupts spermatogenesis resulting in diminished sperm production and motility.
Collapse
Affiliation(s)
- Mahboubeh Mahlouji
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | | | | | - Amir Hossein Jalili
- Gas Research Division, Research Institute of Petroleum Industry, Tehran, Iran
| | - Mansour Torfi Mozanzadeh
- South of Iran Aquaculture Research Centre, Iranian Fisheries Science Research Institute, Agricultural Research, Education and Extension Organization, Ahwaz, Iran
| | - Songpei Zhang
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Nururshopa Eskander Shazada
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Ian A E Butts
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama, USA
| | - Seyed Hossein Hoseinifar
- Department of Fisheries, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Otomar Linhart
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| |
Collapse
|
2
|
Strople LC, Vieweg I, Yadetie F, Odei DK, Thorsen A, Karlsen OA, Goksøyr A, Sørensen L, Sarno A, Hansen BH, Frantzen M, Hansen ØJ, Puvanendran V, Nahrgang J. Spawning time in adult polar cod ( Boreogadus saida) altered by crude oil exposure, independent of food availability. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2025; 88:43-66. [PMID: 37395093 DOI: 10.1080/15287394.2023.2228535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Fish early life stages are well known for their sensitivity to crude oil exposure. However, the effect of crude oil exposure on adults and their gametes during their spawning period is not well studied. Polar cod, a key arctic fish, may be at risk for crude oil exposure during this potentially sensitive life stage. Additionally, this species experiences lower food availability during their spawning season, with unknown combined consequences. In the present study, wild-caught polar cod were exposed to decreasing levels of a water-soluble fraction (WSF) of crude oil or control conditions and fed either at a low or high feed ration to assess the combined effect of both stressors. Samples were taken during late gonadal development, during active spawning (spawning window), and in the post-spawning period. Histology analysis of gonads from fish sampled during the spawning window showed that oil-exposed polar cod were more likely to have spawned compared to controls. Oil-exposed females had 947 differentially regulated hepatic genes, and their eggs had a higher polycyclic aromatic hydrocarbon body burden compared to controls. Feed ration did not consistently affect polar cod's response to oil exposure for the endpoints measured, however, did alone result in decreases in some sperm motility parameters. These results suggest that polar cod's spawning period is a sensitive life event to crude oil exposure, while feed limitation may play a minor role for this supposedly capital breeder. The effects of adult exposure to crude oil on gamete quality and the next generation warrant further investigation.
Collapse
Affiliation(s)
- Leah C Strople
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Ireen Vieweg
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Fekadu Yadetie
- Department of Biological Sciences, University of Bergen, Tromsø, Norway
| | - Derrick Kwame Odei
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | | | - Odd André Karlsen
- Department of Biological Sciences, University of Bergen, Tromsø, Norway
| | - Anders Goksøyr
- Department of Biological Sciences, University of Bergen, Tromsø, Norway
| | - Lisbet Sørensen
- Department of Climate and Environment, SINTEF Ocean, Trondheim, Norway
| | - Antonio Sarno
- Department of Climate and Environment, SINTEF Ocean, Trondheim, Norway
| | | | | | | | | | - Jasmine Nahrgang
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
3
|
Nahrgang J, Granlund C, Bender ML, Sørensen L, Greenacre M, Frantzen M. No observed developmental effects in early life stages of capelin (Mallotus villosus) exposed to a water-soluble fraction of crude oil during embryonic development. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:404-419. [PMID: 37171367 DOI: 10.1080/15287394.2023.2209115] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The rise in offshore oil and gas operations, maritime shipping, and tourism in northern latitudes enhances the risk of oil spills to sub-Arctic and Arctic coastal environments. Therefore, there is a need to understand the potential adverse effects of petroleum on key species in these areas. Here, we investigated the effects of oil exposure on the early life stages of capelin (Mallotus villosus), an ecologically and commercially important Barents Sea forage fish species that spawns along the coast of Northern Norway. Capelin embryos were exposed to five different concentrations (corresponding to 0.5-19 µg/L total PAHs) of water-soluble fraction (WSF) of crude oil from 6 days post fertilization (dpf) until hatch (25 dpf), and development of larvae in clean seawater was monitored until 52 dpf. None of the investigated endpoints (embryo development, larval length, heart rate, arrhythmia, and larval mortality) showed any effects. Our results suggest that the early life stages of capelin may be more robust to crude oil exposure than similar life stages of other fish species.
Collapse
Affiliation(s)
- Jasmine Nahrgang
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Cassandra Granlund
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Morgan Lizabeth Bender
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
- Akvaplan-niva, Fram Centre, Tromsø, Norway
- Owl Ridge Natural Resource Consultants, Inc, Anchorage, USA
| | | | - Michael Greenacre
- Department of Economics and Business, Universitat Pompeu Fabra, and Barcelona School of Management, Barcelona, Spain
| | | |
Collapse
|
4
|
Marçal R, Pacheco M, Guilherme S. DNA of crayfish spermatozoa as a target of waterborne pesticides - An ex vivo approach as a tool to short-term spermiotoxicity screening. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123300. [PMID: 32947705 DOI: 10.1016/j.jhazmat.2020.123300] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 05/12/2023]
Abstract
The spermiotoxic properties of aquatic contaminants might be the cause of low fertilization rate and decreased prolificacy, affecting the success of the impacted populations. The genotoxic potential of pesticides in spermatozoa as an undesirable effect on non-target organisms, namely aquatic invertebrates with external fertilization, emerges as a key question in ecogenotoxicological research. Thus, this study aimed to clarify if DNA integrity of red swamp crayfish (Procambarus clarkii) spermatozoa is affected by waterborne pesticides at environmentally relevant concentrations. By adopting an ex vivo approach, six pesticides were addressed in a short-term assay: herbicides glyphosate (9 and 90 μg L-1) and penoxsulam (2.3 and 23 μg L-1); insecticides dimethoate (2.4 and 24 μg L-1) and imidacloprid (13.1 and 131 μg L-1); fungicides pyrimethanil (2.2 and 22 μg L-1) and imazalil (16 and 160 μg L-1). Genotoxicity was observed in higher concentrations of glyphosate, penoxsulam, dimethoate, pyrimethanil, and imazalil. Imidacloprid was the only pesticide that did not cause non-specific DNA damage, although displaying pro-oxidant properties. Overall, the present study demonstrated the suitability of the ex vivo approach on spermiotoxicity screening, highlighting the potential ecological impact of pesticides on non-target species, such as P. clarkii, compromising sperm DNA integrity and, subsequently, the population success.
Collapse
Affiliation(s)
- R Marçal
- Centre for Environmental and Marine Studies (CESAM), Department of Biology University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - M Pacheco
- Centre for Environmental and Marine Studies (CESAM), Department of Biology University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - S Guilherme
- Centre for Environmental and Marine Studies (CESAM), Department of Biology University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
5
|
Orbach DN, Rooke AC, Evans JP, Pitcher TE, Purchase CF. Assessing the potential for post-ejaculatory female choice in a polyandrous beach-spawning fish. J Evol Biol 2020; 33:449-459. [PMID: 31860764 DOI: 10.1111/jeb.13579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 11/27/2022]
Abstract
In species with limited opportunities for pre-ejaculatory sexual selection (behavioural components), post-ejaculatory mechanisms may provide opportunities for mate choice after gametes have been released. Recent evidence from a range of taxa has revealed that cryptic female choice (i.e., female-mediated differential fertilization bias), through chemical cues released with or from eggs, can differentially regulate the swimming characteristics of sperm from various males and ultimately determine male fertilization success under sperm competition. We assessed the potential role that such female-modulated chemical cues play in influencing sperm swimming characteristics in beach-spawning capelin (Mallotus villosus), an externally fertilizing fish that mates as couples (one male and one female) or threesomes (two males and one female) with presumably limited opportunities for pre-ejaculatory sexual selection. We assayed sperm swimming characteristics under varying doses and donor origins of egg cues and also examined the possibility of assortative mating based on body size. We found mating groups were not associated by size, larger males did not produce better quality ejaculates, and egg cues (regardless of dosage or donor identity) did not influence sperm swimming characteristics. Our findings suggest that intersexual pre-ejaculatory sexual selection and cryptic female choice mediated by female chemical cues are poorly developed in capelin, possibly due to unique natural selection constraints on reproduction.
Collapse
Affiliation(s)
- Dara N Orbach
- Department of Life Sciences, Texas A&M University-Corpus Christi, Corpus Christi, TX, USA.,Department of Biological Sciences, Mount Holyoke College, South Hadley, MA, USA
| | - Anna C Rooke
- Department of Biology, Memorial University, St. John's, NL, Canada
| | - Jonathan P Evans
- Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Trevor E Pitcher
- Great Lakes Institute for Environmental Research and Department of Integrative Biology, University of Windsor, Windsor, ON, Canada
| | - Craig F Purchase
- Department of Biology, Memorial University, St. John's, NL, Canada
| |
Collapse
|
6
|
Mearns AJ, Bissell M, Morrison AM, Rempel-Hester MA, Arthur C, Rutherford N. Effects of pollution on marine organisms. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:1229-1252. [PMID: 31513312 DOI: 10.1002/wer.1218] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/17/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
This review covers selected 2018 articles on the biological effects of pollutants, including human physical disturbances, on marine and estuarine plants, animals, ecosystems, and habitats. The review, based largely on journal articles, covers field and laboratory measurement activities (bioaccumulation of contaminants, field assessment surveys, toxicity testing, and biomarkers) as well as pollution issues of current interest including endocrine disrupters, emerging contaminants, wastewater discharges, marine debris, dredging, and disposal. Special emphasis is placed on effects of oil spills and marine debris due largely to the 2010 Deepwater Horizon oil blowout in the Gulf of Mexico and proliferation of data on the assimilation and effects of marine debris. Several topical areas reviewed in the past (e.g., mass mortalities ocean acidification) were dropped this year. The focus of this review is on effects, not on pollutant sources, chemistry, fate, or transport. There is considerable overlap across subject areas (e.g., some bioaccumulation data may be appear in other topical categories such as effects of wastewater discharges, or biomarker studies appearing in oil toxicity literature). Therefore, we strongly urge readers to use keyword searching of the text and references to locate related but distributed information. Although nearly 400 papers are cited, these now represent a fraction of the literature on these subjects. Use this review mainly as a starting point. And please consult the original papers before citing them.
Collapse
Affiliation(s)
- Alan J Mearns
- Emergency Response Division, National Oceanic and Atmospheric Administration (NOAA), Seattle, Washington
| | - Mathew Bissell
- Emergency Response Division, National Oceanic and Atmospheric Administration (NOAA), Seattle, Washington
| | | | | | | | - Nicolle Rutherford
- Emergency Response Division, National Oceanic and Atmospheric Administration (NOAA), Seattle, Washington
| |
Collapse
|
7
|
Greer JB, Pasparakis C, Stieglitz JD, Benetti D, Grosell M, Schlenk D. Effects of corexit 9500A and Corexit-crude oil mixtures on transcriptomic pathways and developmental toxicity in early life stage mahi-mahi (Coryphaena hippurus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 212:233-240. [PMID: 31146055 DOI: 10.1016/j.aquatox.2019.05.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 06/09/2023]
Abstract
Crude oil and polycyclic aromatic hydrocarbon (PAH) exposure in early life stage fish has been well-characterized to induce phenotypic malformations such as altered heart development and other morphological impacts. The effects of chemical oil dispersants on toxicity are more controversial. To better understand how chemical dispersion of oil can impact toxicity in pelagic fish, embryos of mahi-mahi (Coryphaena hippurus) were exposed to three concentrations of the chemical dispersant Corexit 9500A, or Corexit 9500A-oil mixtures (chemically enhanced water accommodated fractions: CEWAF) of Deepwater Horizon crude oil for 48 h. RNA sequencing, gene ontology enrichment, and phenotypic measurements were conducted to assess toxicity. Exposure to Corexit 9500A altered expression of less than 50 genes at all concentrations (2.5, 5, and 10 mg/L nominal concentration) and did not induce acute mortality or phenotypic malformations, corroborating other studies showing minimal effects of Corexit 9500A on developing mahi-mahi embryos. CEWAF preparations contained environmentally relevant ∑PAH concentrations ranging from 1.4 to 3.1 μg/L and similarly did not alter larval morphology. Differentially expressed genes and significantly altered pathways related to cardiotoxicity, visual impairments, and Ca2+ homeostasis reinforced previous work that expression of genes associated with the heart and eye are highly sensitive molecular endpoints in oil-exposed early life stage fish. Differential expression and gene ontology pathways were similar across the three CEWAF treatments, indicating that increased chemical dispersion did not alter molecular outcomes within the range tested here. In addition, significant sublethal molecular responses occurred in the absence of observable phenotypic changes to the heart, indicating that effects of oil on early life stage fish may not be completely dependent on cardiac function.
Collapse
Affiliation(s)
- Justin B Greer
- Department of Environmental Sciences, University of California, Riverside, CA, United States.
| | - Christina Pasparakis
- Department of Marine Biology and Ecology, University of Miami, Miami, FL, United States
| | - John D Stieglitz
- Deptartment of Marine Ecosystems and Society, University of Miami, Miami, FL, United States
| | - Daniel Benetti
- Deptartment of Marine Ecosystems and Society, University of Miami, Miami, FL, United States
| | - Martin Grosell
- Department of Marine Biology and Ecology, University of Miami, Miami, FL, United States
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, CA, United States; Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
8
|
Beirão J, Baillon L, Litt MA, Langlois VS, Purchase CF. Impact of crude oil and the dispersant Corexit™ EC9500A on capelin (Mallotus villosus) embryo development. MARINE ENVIRONMENTAL RESEARCH 2019; 147:90-100. [PMID: 31023559 DOI: 10.1016/j.marenvres.2019.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 04/02/2019] [Accepted: 04/08/2019] [Indexed: 06/09/2023]
Abstract
Marine food webs are particularly vulnerable to oil spills if keystone species are impacted. To quantify lethal and sublethal toxicity in a key Holarctic forage fish, capelin embryos were exposed to Hibernia crude oil water accommodated fraction (WAF) produced at an oil-to-water ratio of 1:9 (v:v) and chemically-enhanced WAF (CEWAF) produced with the dispersant Corexit™ EC9500A at a dispersant-to-oil ratio of 1:10 (CEWAF H) or 1:50 (CEWAF L). Corexit alone yielded similar embryotoxicity to CEWAF. 10% CEWAF H, with total polycyclic aromatic hydrocarbons of 99.2 μg/L, decreased embryo survival following 10 h of exposure, while continual exposed to 1% CEWAF L decreased hatching and heart rates. Concentrations down to 0.1% CEWAF L increased in a dose-dependent manner the transcript level of cytochrome P4501a1 (cyp1a1) in hatched larvae. These data indicate that embryo-larval survival of capelin is likely at risk if an oil spill coincides in space and time with spawning.
Collapse
Affiliation(s)
- José Beirão
- Fish Evolutionary Ecology Research Group, Biology Department, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada; Faculty of Biosciences and Aquaculture, Nord University, NO - 8049, Bodø, Norway.
| | - Lucie Baillon
- Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement, Quebec City, QC, G1K 9A9, Canada
| | - Margaret A Litt
- Fish Evolutionary Ecology Research Group, Biology Department, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Valérie S Langlois
- Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement, Quebec City, QC, G1K 9A9, Canada
| | - Craig F Purchase
- Fish Evolutionary Ecology Research Group, Biology Department, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| |
Collapse
|