1
|
Sibiya A, Selvaraj C, Velusamy P, Nazar AKA, Vaseeharan B. Ecotoxicological effects of titanium dioxide nanoparticles on the freshwater mussel Lamellidens marginalis: physiological disruption, oxidative stress, and ecological implications. Sci Rep 2025; 15:13700. [PMID: 40259007 PMCID: PMC12012227 DOI: 10.1038/s41598-025-98715-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 04/11/2025] [Indexed: 04/23/2025] Open
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are widely distributed in aquatic environments due to their extensive industrial and commercial applications. Several studies have reported the adverse effects of TiO2 NPs on aquatic organisms; however, limited information is available regarding their impact on the freshwater mussel Lamellidens marginalis. The present study investigates the physiological and biochemical responses of L. marginalis following acute exposure (7 days) to varying concentrations of TiO2 NPs (Control, 5.0, 50, and 100 µg/L). Physiological parameters, including the condition index, filtration rate, and clearance rate, were assessed alongside hemocyte count, metabolic activity (electron transport system activity), and energy reserve content (glycogen, lipid, and protein levels). Additionally, oxidative stress biomarkers, including antioxidant enzyme activity, biotransformation enzyme activity, and lipid peroxidation levels, were evaluated. Results revealed a significant accumulation of TiO2 NPs in the gill tissues, accompanied by a marked decline in filtration rate and total hemocyte count, along with an increase in nitric oxide production. Exposure to higher concentrations of TiO2 NPs resulted in substantial alterations in energy reserve levels and oxidative stress biomarkers, indicative of metabolic disruption. Furthermore, mussels exposed to elevated TiO2 NP concentrations exhibited reduced feeding activity and energy expenditure, leading to impaired physiological performance, including potential consequences for growth and reproduction. Histopathological analysis demonstrated pronounced gill damage in mussels from the higher exposure groups. These findings emphasize the ecological risks associated with TiO2 NP contamination and underscore the need for stringent measures to mitigate their impact on freshwater bivalves.
Collapse
Affiliation(s)
- Ashokkumar Sibiya
- Nano Biosciences and Nanopharmacology Division, Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Science Campus 6th Floor, Alagappa University, Karaikudi, 630004, Tamil Nadu, India
| | - Chandrabose Selvaraj
- CSRDD Lab, Bioinformatics Division, Department of Marine Biotechnology, AMET University (Deemed to Be University), Tamil Nadu, East Coast Road, Kanathur, Chennai, 603112, India.
| | - Palaniyandi Velusamy
- Innovation and Incubation Centre for Health Sciences, Sree Balaji Medical College and Hospital (SBMCH), Bharath Institute of Higher Education and Research (BIHER), Chromepet, Chennai 600 044, Tamil Nadu, India
| | | | - Baskaralingam Vaseeharan
- Nano Biosciences and Nanopharmacology Division, Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Science Campus 6th Floor, Alagappa University, Karaikudi, 630004, Tamil Nadu, India.
| |
Collapse
|
2
|
El Amouri R, Tu Z, Abo-Raya MH, Pang X, Hu M, Wang Y. Nano-TiO 2 impairs the health of crabs Charybdis japonica under warming conditions through waterborne and dietary exposures. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137092. [PMID: 39798311 DOI: 10.1016/j.jhazmat.2025.137092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 12/26/2024] [Accepted: 01/01/2025] [Indexed: 01/15/2025]
Abstract
The widespread use of nano titanium dioxide (nano-TiO₂) poses ecological risks to marine ecosystems, especially when combined with ocean warming. However, most previous studies have only examined water-related exposures, leaving a gap in research on the impact of food transfer on organisms. In this work, the harmful impacts of nano-TiO2 on the Japanese swimming crab Charybdis japonica were studied through three scenarios: direct exposure (DE) of the crabs to warming and nano-TiO2, indirect exposure (IE) via consumption of thick-shelled mussels Mytilus coruscus exposed to the same conditions, and combined exposure (CE), where crabs were directly subjected to warming and nano-TiO2 while feeding affected mussels. Moreover, a control group was established, consisting of Japanese swimming crab C. japonica and mussel M. coruscus that were raised under standard temperature (22 °C) and 0 mg L-1 nano-TiO2 concentration conditions. Immune, oxidative, and gene expression parameters were measured in gills and hepatopancreas after 7 exposure days. Furthermore, titanium bioaccumulation, along with the morphometrical and histological analyses, were assessed in gills. Bioaccumulation results (1.69-6.83 μg/g) suggested that foodborne stressors induced higher titanium contents. Additionally, there were deformities in gills morphometry and histology. The multivariate analyses showed that warming and nano-TiO2 combination had a pronounced effect on the overall profile of biological responses in crabs; moreover, the exposure through food alone had the greatest impact on gills immune-oxidative parameters and hepatopancreas gene expressions. The harmful impacts of nano-TiO2 are significant and can manifest through waterborne and dietary exposure pathways, especially when combined with other stressors, warranting further research.
Collapse
Affiliation(s)
- Rim El Amouri
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Zhihan Tu
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Mohamed H Abo-Raya
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China; Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Xiaopeng Pang
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Menghong Hu
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Youji Wang
- International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
3
|
Wei S, Mao Y, Sokolova IM, Li Z, Li L, Khalid MS, Tu Z, Zhong Z, Hu M, Wang Y. Extreme heat event influences the toxic impacts of nano-TiO 2 with different crystal structures in mussel Mytilus coruscus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176916. [PMID: 39454788 DOI: 10.1016/j.scitotenv.2024.176916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/24/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024]
Abstract
The wide use of nano‑titanium dioxide (nano-TiO2) and its ubiquitous emission into aquatic environments are threatening environmental health. Ambient temperature can affect the aggregation state of nano-TiO2 in seawater, thus influencing the intake and physiological effects on marine species. We studied the physiological effects of mixed nano-TiO2 (a mixture of anatase and rutile crystals with an average particle size of 25 nm, P25) on mussels. Subsequently, we investigated the oxidative stress, immunotoxicity, neurotoxicity, and detoxification in Mytilus coruscus exposed to two different crystal structures of nano-TiO2 (anatase and rutile) at 100 μg/L concentration under marine heatwaves (MHWs, 28 °C). MHWs and nano-TiO2 exposure induced neurotoxicity and immune damage and caused dysregulation of redox balance in the gills. Moreover, MHWs exposure disturbed the glutathione system and detoxification function of mussels, resulting in enhanced toxicity of nano-TiO2 under co-exposure. Anatase exposure significantly impaired the antioxidant system and downregulated the relative expression of antioxidant-related genes (Nrf2 and Bcl-2), HSP-90, and immune parameters under MHWs, while producing higher ROS levels compared to rutile. Based on integrated biomarker response (IBR), mussels co-exposed to anatase and MHW showed the highest value (19.29). However, there was no significant difference in bioaccumulation of titanium between anatase (6.07 ± 0.47 μg/g) and rutile (5.3 ± 0.44 μg/g) exposures under MHWs. These results indicate that MHWs would elevate the potential hazard of nanoparticles to marine organisms.
Collapse
Affiliation(s)
- Shuaishuai Wei
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yiran Mao
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Inna M Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany; Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
| | - Zhuoqing Li
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Li'ang Li
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Malik Shahzaib Khalid
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Zhihan Tu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Zhen Zhong
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Menghong Hu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| | - Youji Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
4
|
Wei S, Xu P, Mao Y, Shi Y, Liu W, Li S, Tu Z, Chen L, Hu M, Wang Y. Differential intestinal effects of water and foodborne exposures of nano-TiO 2 in the mussel Mytilus coruscus under elevated temperature. CHEMOSPHERE 2024; 355:141777. [PMID: 38527634 DOI: 10.1016/j.chemosphere.2024.141777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
With the wide use of nanomaterials in daily life, nano-titanium dioxide (nano-TiO2) presents potential ecological risks to marine ecosystems, which can be exacerbated by ocean warming (OW). However, most previous studies have only centered around waterborne exposure, while there is a scarcity of studies concentrating on the impact of trophic transfer exposure on organisms. We investigated the differences in toxic effects of 100 μg/L nano-TiO2 on mussels via two pathways (waterborne and foodborne) under normal (24 °C) and warming (28 °C) conditions. Single nano-TiO2 exposure (waterborne and foodborne) elevated the superoxide dismutase (SOD) and catalase (CAT) activities as well as the content of glutathione (GSH), indicating activated antioxidatant response in the intestine. However, depressed antioxidant enzymes and accumulated peroxide products (LPO and protein carbonyl content, PCC) demonstrated that warming in combination with nano-TiO2 broke the prooxidant-antioxidant homeostasis of mussels. Our findings also indicated that nano-TiO2 and high temperature exhibited adverse impacts on amylase (AMS), trypsin (PS), and trehalase (THL). Additionally, activated immune function (lysozyme) comes at the cost of energy expenditure of protein (decreased protein concentration). The hydrodynamic diameter of nano-TiO2 at 24 °C (1693-2261 nm) was lower than that at 28 °C (2666-3086 nm). Bioaccumulation results (range from 0.022 to 0.432 μg/g) suggested that foodborne induced higher Ti contents in intestine than waterborne. In general, the combined effects of nano-TiO2 and warming demonstrated a more pronounced extent of interactive effects and severe damage to antioxidant, digestive, and immune parameters in mussel intestine. The toxicological impact of nano-TiO2 was intensified through trophic transfer. The toxic effects of nano-TiO2 are non-negligible and can be exerted together through both water- and foodborne exposure routes, which deserves further investigation.
Collapse
Affiliation(s)
- Shuaishuai Wei
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Peng Xu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yiran Mao
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yuntian Shi
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Wei Liu
- University of Geneva, Faculty of Sciences, Earth and Environment Sciences, Department F.-A. Forel for Environmental and Aquatic Sciences, CH-1211, Geneva, Switzerland
| | - Saishuai Li
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhihan Tu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Liming Chen
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Menghong Hu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, China
| | - Youji Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
5
|
Smii H, Leite C, Pinto J, Henriques B, Beyrem H, Soares AMVM, Dellali M, Pereira E, Freitas R. The environmental remediation capacity of Ulva lactuca: the potential of macroalgae to reduce the threats caused by Titanium in marine invertebrate species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159586. [PMID: 36273566 DOI: 10.1016/j.scitotenv.2022.159586] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/30/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
As a result of the wide use of Titanium (Ti) compounds in various products, Ti and Ti nanoparticles (nTi) are released into aquatic environments, inducing varying degrees of toxicity on aquatic fauna. Ulva lactuca, green macroalgae commonly found in coastal areas, has been extensively studied due to its worldwide distribution and capacity to accumulate trace elements under toxic conditions, which makes it a good universal sorbent. The present study aimed to establish the remediation properties of U. lactuca by evaluating the toxicity of Ti and nTi in bivalves, in the presence and absence of algae. Using the bivalve species Mytilus galloprovincialis, Ti toxicity was evaluated by assessing changes in mussel's metabolic capacity and oxidative status. Results evidenced cellular damage in M. galloprovincialis exposed to Ti and nTi. This was a result of the inactivation of antioxidant defences. The presence of U. lactuca limited cellular damage, however, this was not a result of the previously demonstrated bioremediation capacity, as no accumulation of Ti was verified in algal tissues. As a metabolic depression was verified for mussels exposed to Ti/nTi in the presence of algae, we hypothesise that U. lactuca may have been responsible for changes to the water quality which induced this response.
Collapse
Affiliation(s)
- Hanen Smii
- Department of Coastal Ecology and Ecotoxicology Unit, LR01ES14 Laboratory of Environment Biomonitoring, Faculty of Sciences of Bizerte, University of Carthage, Tunis 7021, Tunisia
| | - Carla Leite
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - João Pinto
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Bruno Henriques
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Hamouda Beyrem
- Department of Coastal Ecology and Ecotoxicology Unit, LR01ES14 Laboratory of Environment Biomonitoring, Faculty of Sciences of Bizerte, University of Carthage, Tunis 7021, Tunisia
| | - Amadeu M V M Soares
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Mohamed Dellali
- Department of Coastal Ecology and Ecotoxicology Unit, LR01ES14 Laboratory of Environment Biomonitoring, Faculty of Sciences of Bizerte, University of Carthage, Tunis 7021, Tunisia
| | - Eduarda Pereira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
6
|
Santos D, Leite C, Pinto J, Soares AMVM, Pereira E, Freitas R. How will different scenarios of rising seawater temperature alter the response of marine species to lithium? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:158728. [PMID: 36108826 DOI: 10.1016/j.scitotenv.2022.158728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/22/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
Marine ecosystems are suffering from the gradual rise in temperature due to climate change. Warming scenarios and the intensification of extreme climate events, such as marine heatwaves (MHWs), have been negatively affecting marine organisms. In addition, they are also threatened by anthropogenic pollution. Lithium (Li) is an emerging pollutant that has become a major concern due to its increasing use in a variety of applications. Understanding its influence on marine environments in combination with warming scenarios is crucial, as very little is known about its impact on marine organisms, especially when also considering the increasingly concerning impacts of climate change. With this in mind, this research aimed to assess how different scenarios of increasing temperature may affect the response of Mytilus galloprovincialis to Li. Mussels bioaccumulation levels, as well as physiological and biochemical biomarkers were analyzed after 28 days of exposure to Li under different temperature scenarios (control - 17 °C; warming - 21 °C and marine heatwave - MHW). The results indicate that mussels accumulated Li, independently of the temperature scenario. The respiration rate was higher in contaminated mussels than in the non-contaminated ones, with no differences among temperature scenarios. Furthermore, the metabolic rate decreased in non-contaminated mussels exposed to 21 °C and MHW, while mussels exposed to the combination of Li and MHW presented the highest metabolic rate. The mussels exposed to MHW and Li evidenced the highest cellular damage but Li was not neurotoxic in M. galloprovincialis. This study highlighted that MHW + Li was the most stressful condition, inducing clear negative effects in this species that can impair the growth and reproduction of an entire population. In general, the presented results highlight the importance of future studies in which it is necessary to combine the effects of pollutants and climate change scenarios, namely extreme weather events such as MHWs.
Collapse
Affiliation(s)
- Daniel Santos
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Carla Leite
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - João Pinto
- Departamento de Química & REQUIMTE, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Eduarda Pereira
- Departamento de Química & REQUIMTE, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
7
|
Leite C, Coppola F, Queirós V, Russo T, Polese G, Pretti C, Pereira E, Freitas R. Can temperature influence the impacts induced in Mytilus galloprovincialis by neodymium? Comparison between exposure and recovery periods. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 97:104029. [PMID: 36455836 DOI: 10.1016/j.etap.2022.104029] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/17/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Climate change-associated factors and pollutants, such as rare earth elements (REEs), have been identified as contributors to environmental changes. However, the toxicity resulting from the combination of these stressors has received little attention. Neodymium (Nd) is a REE that has been widely used, and this study aimed to evaluate the responses of Mytilus galloprovincialis to Nd exposure (10 µg/L), under actual (17 °C) and predicted warming conditions (21 °C), after fourteen days of exposure followed by fourteen days of recovery (without Nd), analyzing Nd accumulation, histopathological and biochemical alterations. The results showed that increased temperature and Nd exposure caused histopathological injuries in the gills. Contaminated mussels at 17 °C showed cellular damage, while at 21 °C, mussels were able to avoid cellular damage. After the recovery period, no improvements in gill's status were found and cellular damage was still present, highlighting the impacts caused by previous exposure to Nd.
Collapse
Affiliation(s)
- Carla Leite
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Francesca Coppola
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Vanessa Queirós
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Tania Russo
- Dipartimento di Biologia, Università degli studi di Napoli Federico II, 80126 Napoli, Italy
| | - Gianluca Polese
- Dipartimento di Biologia, Università degli studi di Napoli Federico II, 80126 Napoli, Italy
| | - Carlo Pretti
- Interuniversity Consortium of Marine Biology of Leghorn "G. Bacci", 57128 Livorno, Italy; Department of Veterinary Sciences, University of Pisa, San Piero a Grado, 56122 Pisa, Italy
| | - Eduarda Pereira
- Departamento de Química & LAQV-REQUIMTE, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
8
|
Zhou Y, Li Y, Lan W, Jiang H, Pan K. Short-Term Exposure to MPs and DEHP Disrupted Gill Functions in Marine Bivalves. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4077. [PMID: 36432362 PMCID: PMC9699028 DOI: 10.3390/nano12224077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 05/26/2023]
Abstract
The synergistic impact of microplastics (MPs) and organic pollutants remains poorly understood in the marine environment. This study aimed to assess the toxicity of polypropylene microplastics (PS) and/or di-(2-ethylhexyl) phthalate (DEHP) on marine clams. Both Ruditapes philippinarum and Tegillarca granosa were exposed to PS and DEHP individually and combined at environmentally relevant concentrations for 48 h. The filtration rate, antioxidant enzymes activity, lipid peroxidation, reactive oxygen species accumulation, and histological alterations were evaluated. Our results show that single or co-exposure to MPs and DEHP significantly decreases the filtration rate in both type of clams, but the latter exhibited stronger inhibition effect. Close examination of accumulation of reactive oxygen species and related biomarkers revealed that combined exposure exerts greater oxidative stress in the cells, which causes more serious histopathological damage in the gills of the bivalves. Our study implies that MPs, in synergy with organic pollutants, can be more harmful for marine organisms.
Collapse
Affiliation(s)
- Yanfei Zhou
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yanping Li
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Wenlu Lan
- Marine Environmental Monitoring Center of Guangxi, Beihai 536000, China
| | - Hao Jiang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Ke Pan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
9
|
de Almeida Rodrigues P, Ferrari RG, da Anunciação de Pinho JV, do Rosário DKA, de Almeida CC, Saint'Pierre TD, Hauser-Davis RA, Dos Santos LN, Conte-Junior CA. Baseline titanium levels of three highly consumed invertebrates from an eutrophic estuary in southeastern Brazil. MARINE POLLUTION BULLETIN 2022; 183:114038. [PMID: 36029587 DOI: 10.1016/j.marpolbul.2022.114038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/02/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Titanium (Ti) is considered a contaminant of emerging interest, as it displays toxic potential and has been increasingly employed in everyday products, pharmaceuticals, and food additives, mainly in nanoparticle form. However, several knowledge gaps are still noted, especially concerning its dynamics in the water. In this context, this study aimed to quantify total Ti concentrations in highly consumed swimming crabs, squid, and shrimp from an important estuary located in southeastern Brazil. Ti concentrations were higher than those reported in most studies carried out worldwide. Animal length and weight, as well as, depth, transparency, dissolved oxygen, and salinity, significantly influence Ti concentrations in the animals. Human health risks were also noted after calculating a simulated exposure to titanium dioxide, especially considering the uncertainties regarding the effects of this element and the absence of regulatory limits.
Collapse
Affiliation(s)
- Paloma de Almeida Rodrigues
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense, Federal University (UFF), Vital Brazil Filho, Niterói, RJ 24220-000, Brazil; Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil.
| | - Rafaela Gomes Ferrari
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil; Agrarian Sciences Center, Department of Zootechnics, Federal University of Paraiba, Areia, PB 58051-900, Brazil
| | - Júlia Vianna da Anunciação de Pinho
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil; National Institute of Health Quality Control, Fundação Oswaldo Cruz, Rio de Janeiro, RJ 21040-900, Brazil; Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ 21040-900, Brazil
| | - Denes Kaic Alves do Rosário
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil
| | - Cristine Couto de Almeida
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil; National Institute of Health Quality Control, Fundação Oswaldo Cruz, Rio de Janeiro, RJ 21040-900, Brazil; Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ 21040-900, Brazil
| | | | - Rachel Ann Hauser-Davis
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ 21040-360, Brazil.
| | - Luciano Neves Dos Santos
- Laboratory of Theoretical and Applied Ichthyology, Institute of Biosciences, Federal University of the State of Rio de Janeiro, Rio de Janeiro, RJ 22290-240, Brazil
| | - Carlos Adam Conte-Junior
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense, Federal University (UFF), Vital Brazil Filho, Niterói, RJ 24220-000, Brazil; Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil; National Institute of Health Quality Control, Fundação Oswaldo Cruz, Rio de Janeiro, RJ 21040-900, Brazil; Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ 21040-900, Brazil; Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil; Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil
| |
Collapse
|
10
|
Sturla Lompré J, Moleiro P, De Marchi L, Soares AMVM, Pretti C, Chielini F, Pereira E, Freitas R. Bioaccumulation and ecotoxicological responses of clams exposed to terbium and carbon nanotubes: Comparison between native (Ruditapes decussatus) and invasive (Ruditapes philippinarum) species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:146914. [PMID: 33901954 DOI: 10.1016/j.scitotenv.2021.146914] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
In the last decades the use of rare earth elements (REEs) increased exponentially, including Terbium (Tb) which has been widely used in newly developed electronic devices. Also, the production and application of nanoparticles has been growing, being Carbon Nanotubes (CNTs) among the most commonly used. Accompanying such development patterns, emissions towards the aquatic environments are highly probable, with scarce information regarding the potential toxicity of these pollutants to inhabiting species, especially considering their mixture. In the present study the effects of Tb and CNTs exposure (acting alone or as a mixture) on native and invasive clams' species (Ruditapes decussatus and Ruditapes philippinarum, respectively) were evaluated, assessing clams' accumulation and metabolic capacities, oxidative status as well neurotoxic impacts. Results obtained after a 28-days exposure period showed that the accumulation of Tb in both species was not affected by the presence of the CNTs and similar Tb concentrations were found in both species. The effects caused by Tb and CNTs, acting alone or as a mixture induced greater alterations in R. philippinarum antioxidant capacity in comparison to native R. decussatus, but no cellular damages were observed in both species. Nevertheless, although metabolic impairment was only observed in clams exposed to Tb, loss of redox balance and neurotoxicity were evidenced by both species regardless the exposure treatment. These findings highlight the potential impacts caused by CNTs and Tb, which may affect clams' normal physiological functioning, impairing their reproduction and growth capacities. The obtained results point out the need for further investigation considering the mixture of pollutants.
Collapse
Affiliation(s)
- Julieta Sturla Lompré
- Center for the Study of Marine Systems (CESIMAR-CONICET), National Patagonian Center, Bv. Almte Brown 2915, Puerto Madryn, Argentina; Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Pedro Moleiro
- Department de Chemistry, University de Aveiro, 3810-193 Aveiro, Portugal
| | - Lucia De Marchi
- Interuniversity Consortium of Marine Biology of Leghorn "G. Bacci", 57128 Livorno, Italy; Department of Biology, University of Pisa, Via Derna 1, 56126 Pisa, Italy
| | - Amadeu M V M Soares
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carlo Pretti
- Interuniversity Consortium of Marine Biology of Leghorn "G. Bacci", 57128 Livorno, Italy; Department of Veterinary Sciences, University of Pisa, San Piero a Grado, Pisa 56122, Italy
| | - Federica Chielini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Udr INSTM Pisa, Pisa 56126, Italy
| | - Eduarda Pereira
- Department de Chemistry and REQUIMTE, University de Aveiro, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
11
|
Li Z, Hu M, Song H, Lin D, Wang Y. Toxic effects of nano-TiO 2 in bivalves-A synthesis of meta-analysis and bibliometric analysis. J Environ Sci (China) 2021; 104:188-203. [PMID: 33985722 DOI: 10.1016/j.jes.2020.11.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 06/12/2023]
Abstract
Since the beginning of the 21st century, the increasing production and application of nano-TiO2 in consumer products have inevitably led to its release into aquatic systems and therefore caused the exposure of aquatic organisms, resulting in growing environmental concerns. However, the safety of nano-TiO2 in aquatic environments has not been systematically assessed, especially in coastal and estuary waters where a large number of filter-feeding animals live. Bivalves are considered around the world to be a unique target group for nanoparticle toxicity, and numerous studies have been conducted to test the toxic effects of nano-TiO2 on bivalves. The aim of this review was to systematically summarize and analyze published data concerning the toxicological effects of nano-TiO2 in bivalves. In particular, the toxicity of nano-TiO2 to the antioxidant system and cell physiology was subjected to meta-analysis to reveal the mechanism of the toxicological effects of nano-TiO2 and the factors affecting its toxicological effects. To reveal the cooperation, hot keywords and co-citations in this field, bibliometric analysis was conducted, and the results showed that the toxicological molecular mechanisms of nano-TiO2 and the combined effects of nano-TiO2 and other environmental factors are two major hot spots. Finally, some perspectives and insights were provided in this review for future research on nano-TiO2 toxicology in bivalves.
Collapse
Affiliation(s)
- Zhuoqing Li
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Menghong Hu
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Hanting Song
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Daohui Lin
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China.
| | - Youji Wang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
12
|
Leite C, Coppola F, Monteiro R, Russo T, Polese G, Silva MRF, Lourenço MAO, Ferreira P, Soares AMVM, Pereira E, Freitas R. Toxic impacts of rutile titanium dioxide in Mytilus galloprovincialis exposed to warming conditions. CHEMOSPHERE 2020; 252:126563. [PMID: 32443264 DOI: 10.1016/j.chemosphere.2020.126563] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 06/11/2023]
Abstract
Climate change is leading to a gradual increase in the ocean temperature, which can cause physiological and biochemical impairments in aquatic organisms. Along with the environmental changes, the presence of emerging pollutants such as titanium dioxide (TiO2) in marine coastal systems has also been a topic of concern, especially considering the interactive effects that both factors may present to inhabiting organisms. In the present study, it has been assessed the effects of the presence in water of particles of rutile, the most common polymorph of TiO2, in Mytilus galloprovincialis, under actual and predicted warming conditions. Organisms were exposed to different concentrations of rutile (0, 5, 50, 100 μg/L) at control (18 ± 1.0 °C) and increased (22 ± 1.0 °C) temperatures. Histopathological and biochemical changes were evaluated in mussels after 28 days of exposure. Histopathological examination revealed similar alterations on mussels' gills and digestive glands with increasing rutile concentrations at both temperatures. Biochemical markers showed that contaminated mussels have an unchanged metabolic capacity at 18 °C, which increased at 22 °C. Although antioxidant defences were activated in contaminated organisms at 22 °C, cellular damage was still observed. Overall, our findings showed that histopathological impacts occurred after rutile exposure regardless of the temperature, while biochemical alterations were only significantly noticeable when temperature was enhanced to 22 °C. Thus, this study demonstrated that temperature rise may significantly enhance the sensitivity of bivalves towards emerging pollutants.
Collapse
Affiliation(s)
- Carla Leite
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Francesca Coppola
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Rui Monteiro
- Departamento de Química & CESAM/LAQV-REQUIMTE, Universidade de Aveiro, 3810-193, Aveiro, Portugal; CIIMAR, Universidade do Porto, 4050-123 Porto, Portugal
| | - Tania Russo
- Dipartimento di Biologia, Universitá degli studi di Napoli Federico II, 80126, Napoli, Italy
| | - Gianluca Polese
- Dipartimento di Biologia, Universitá degli studi di Napoli Federico II, 80126, Napoli, Italy
| | - Mariana R F Silva
- CICECO- Instituto de Materiais de Aveiro, Departamento de Engenharia de Materiais e Cerâmica, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Mirtha A O Lourenço
- CICECO- Instituto de Materiais de Aveiro, Departamento de Engenharia de Materiais e Cerâmica, Universidade de Aveiro, 3810-193, Aveiro, Portugal; Istituto Italiano di Tecnologia, Center for Sustainable Future Technologies, Via Livorno, 60, 10144, Torino TO, Italy
| | - Paula Ferreira
- CICECO- Instituto de Materiais de Aveiro, Departamento de Engenharia de Materiais e Cerâmica, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Eduarda Pereira
- Departamento de Química & CESAM/LAQV-REQUIMTE, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
13
|
Leite C, Coppola F, Monteiro R, Russo T, Polese G, Lourenço MAO, Silva MRF, Ferreira P, Soares AMVM, Freitas R, Pereira E. Biochemical and histopathological impacts of rutile and anatase (TiO 2 forms) in Mytilus galloprovincialis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 719:134886. [PMID: 31837882 DOI: 10.1016/j.scitotenv.2019.134886] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 10/06/2019] [Accepted: 10/06/2019] [Indexed: 06/10/2023]
Abstract
Titanium dioxide (TiO2) particles have been widely used in various industrial applications and consumer products. Due to their large production and use, they will eventually enter into aquatic environments. Once in the aquatic environment TiO2 particles may interact with the organisms and induce toxic effects. Since the most common crystallographic forms of TiO2 are rutile and anatase, the present study evaluated the effect of these two forms of TiO2 particles in Mytilus galloprovincialis. For this, mussels were exposed to different concentrations of rutile and anatase particles (0, 5, 50, 100 µg/L) for twenty-eight days. Ti concentrations, histopathological alterations and biochemical effects were evaluated. Similar Ti concentrations were found in mussels exposed to rutile and anatase, with the highest values in mussels exposed to the highest exposure concentration. Histopathological results demonstrated that both forms of TiO2 induced alterations on gills and digestive glands along the increasing exposure gradient. Biochemical markers showed that mussels exposed to rutile maintained their metabolic capacity (assessed by the activity of the Electron Transport System, ETS), while anatase increased the metabolism of mussels. Mussels exposed to rutile increased their detoxifying defences which, due to the low tested concentrations, were sufficient to avoid cellular damage. On the other hand, mussels exposed to anatase suffered cellular damages despite the increase of the antioxidant defences which may be related to the high ETS activity. Both rutile and anatase particles were toxic to M. galloprovincialis, being the highest oxidative stress exerted by the crystalline form anatase.
Collapse
Affiliation(s)
- Carla Leite
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Francesca Coppola
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Rui Monteiro
- Departamento de Química, CESAM & LAQV-REQUIMTE, Universidade de Aveiro, 3810-193 Aveiro, Portugal; CIIMAR, Universidade do Porto, 4450-208, Matosinhos, Portugal
| | - Tania Russo
- Dipartimento di Biologia, Universitá degli studi di Napoli Federico II, 80126 Napoli, Italy
| | - Gianluca Polese
- Dipartimento di Biologia, Universitá degli studi di Napoli Federico II, 80126 Napoli, Italy
| | - Mirtha A O Lourenço
- Departamento de Engenharia de Materiais e Cerâmica, CICECO-Aveiro Instituto de Materiais, Universidade de Aveiro, 3810-193 Aveiro, Portugal; Istituto Italiano di Tecnologia, Center for Sustainable Future Technologies, Via Livorno, 60, 10144 Torino, TO, Italy
| | - Mariana R F Silva
- Departamento de Engenharia de Materiais e Cerâmica, CICECO-Aveiro Instituto de Materiais, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Paula Ferreira
- Departamento de Engenharia de Materiais e Cerâmica, CICECO-Aveiro Instituto de Materiais, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| | - Eduarda Pereira
- Departamento de Química, CESAM & LAQV-REQUIMTE, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
14
|
Freitas R, Costa S, D Cardoso CE, Morais T, Moleiro P, Matias AC, Pereira AF, Machado J, Correia B, Pinheiro D, Rodrigues A, Colónia J, Soares AMVM, Pereira E. Toxicological effects of the rare earth element neodymium in Mytilus galloprovincialis. CHEMOSPHERE 2020; 244:125457. [PMID: 32050323 DOI: 10.1016/j.chemosphere.2019.125457] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
The wide range of applications of rare earth elements (REE) is leading to their occurrence in worldwide aquatic environments. Among the most popular REE is Neodymium (Nd), being widely used in permanent magnets, lasers, and glass additives. Neodymium-iron-boron (NdFeB) magnets is the main application of Nd since they are used in electric motors, hard disk drives, speakers and generators for wind turbines. Recent studies have already evaluated the toxic potential of different REE, but no information is available on the effects of Nd towards marine bivalves. Thus, the present study evaluated the biochemical alterations caused by Nd in the mussel Mytilus galloprovincialis exposed to this element for 28 days. The results obtained clearly demonstrated that Nd was accumulated by mussels, leading to mussel's metabolic capacity increase and GLY expenditure, in an attempt to fuel up defense mechanisms. Antioxidant and biotransformation defenses were insufficient in the elimination of ROS excess, resulting from the presence of Nd and increased electron transport system activity, which caused cellular damages (measured by lipid peroxidation) and loss of redox balance (assessed by the ratio between reduced and oxidized glutathione). The results obtained clearly highlight the potential toxicity of REEs and, in particular of Nd, with impacts at cellular level, which may have consequences in mussel's survival, growth and reproduction, affecting mussel's population.
Collapse
Affiliation(s)
- Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal.
| | - Silvana Costa
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Celso E D Cardoso
- Departamento de Química & LAQV-REQUIMTE, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Tiago Morais
- Departamento de Química, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Pedro Moleiro
- Departamento de Química, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Ana C Matias
- Departamento de Química, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Ana F Pereira
- Departamento de Química, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Joana Machado
- Departamento de Química, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Beatriz Correia
- Departamento de Química, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Diana Pinheiro
- Departamento de Química, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Adriana Rodrigues
- Departamento de Química, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - João Colónia
- Departamento de Química, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Eduarda Pereira
- Departamento de Química & LAQV-REQUIMTE, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
15
|
Pinto J, Costa M, Leite C, Borges C, Coppola F, Henriques B, Monteiro R, Russo T, Di Cosmo A, Soares AMVM, Polese G, Pereira E, Freitas R. Ecotoxicological effects of lanthanum in Mytilus galloprovincialis: Biochemical and histopathological impacts. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 211:181-192. [PMID: 31003043 DOI: 10.1016/j.aquatox.2019.03.017] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/18/2019] [Accepted: 03/24/2019] [Indexed: 06/09/2023]
Abstract
Inappropriate processing and disposal of electronic waste contributes to the contamination of aquatic systems by various types of pollutants such as the rare-earth elements (REE) in which lanthanum (La) is included. Knowledge on the toxicity of these elements in marine organisms is still scarce when compared to other metals such as mercury (Hg) and arsenic (As). Therefore, this study aims to assess the toxicity of La on the mussel Mytilus galloprovincialis, considered a good bioindicator of aquatic pollution, through the analysis of metabolic, oxidative stress, neurotoxicity and histopathological markers. Organisms were exposed to different concentrations of La for a period of 28 days (0, 0.1, 1, 10 mg/L) under controlled temperature (18 °C ± 1.0) and salinity (30 ± 1) conditions. La concentrations in mussels increased in higher exposure concentrations. La exposure demonstrated a biochemical response in mussels, evidenced by lowered metabolism and accumulation of energy reserves, activation of the antioxidant defences SOD and GPx as well as the biotransformation enzymes GSTs, especially at intermediate concentrations. Despite oxidative stress being shown by a decrease in GSH/GSSG, oxidative damage was avoided as evidenced by lower LPO and PC levels. Inhibition of the enzyme AChE demonstrated the neurotoxicity of La in this species. Histopathological indices were significantly different from the control group, indicating impacts in gonads, gills and digestive glands of mussels due to La. These results show that La can be considered a risk for marine organisms and thus its discharge into the environment should be monitored.
Collapse
Affiliation(s)
- João Pinto
- Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Marcelo Costa
- Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Carla Leite
- Departamento de Biologia, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Cláudia Borges
- Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Francesca Coppola
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Bruno Henriques
- Departamento de Química & CESAM & LAQV-REQUIMTE, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Rui Monteiro
- Departamento de Química & CESAM & LAQV-REQUIMTE, Universidade de Aveiro, 3810-193 Aveiro, Portugal; CIIMAR, Universidade do Porto, 4050-123 Porto, Portugal
| | - Tania Russo
- Dipartimento di Biologia, Universitá degli studi di Napoli Federico II, 80126 Napoli, Italy
| | - Anna Di Cosmo
- Dipartimento di Biologia, Universitá degli studi di Napoli Federico II, 80126 Napoli, Italy
| | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Gianluca Polese
- Dipartimento di Biologia, Universitá degli studi di Napoli Federico II, 80126 Napoli, Italy
| | - Eduarda Pereira
- Departamento de Química & CESAM & LAQV-REQUIMTE, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|