1
|
Dragun Z, Kiralj Z, Fiket Ž, Ivanković D. Preliminary insight into the intracellular behaviour of rare earths and other technology-critical elements (TCEs) in northern pike liver: study of TCE-binding biomolecules via size-exclusion HPLC-ICP-MS. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2025; 27:262-276. [PMID: 39791281 DOI: 10.1039/d4em00674g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Technology-critical elements (TCEs) refer to the elements that play an important role in many emerging technologies and the production of advanced materials, and these include lanthanides, tungsten and vanadium. Actinides, Tl, and Pb, which also belong to TCEs, are abundantly used in power generation, industrial applications, and modern agricultural practices. The information on the influence of these elements on the aquatic environment and biota is still rather scarce. Thus, the distributions of the above-mentioned metals among cytosolic biomolecules of different molecular masses in the liver of the northern pike (Esox lucius) from the Mrežnica River (Croatia) were studied to obtain an insight into their intracellular behaviour and potential for toxicity. The applied method was a hyphenated system of size-exclusion high-performance liquid chromatography and inductively coupled plasma mass spectrometry. In the samples with lower cytosolic concentrations, the obtained distributions of several TCEs (lanthanides, W, Th, and U) and Pb, among biomolecules of a wide range of molecular masses, which covered the entire column separation range (<10 to >600 kDa), indicated their nonspecific binding to various intracellular components. In the sample with the highest cytosolic concentration, a shift towards the highest molecular masse (>600 kDa) was observed for lanthanides and actinides, which is a sign of their possible binding to protein aggregates. In contrast, W and Pb showed a preference for medium molecular mass biomolecules (30-100 kDa). Moreover, it was hypothesized that prominent elution of U and Pb observed in the low molecular mass region (<10 kDa) possibly indicated their partial detoxification. Potential Pb associations with metallothionein-like proteins were also recorded (∼6-7 kDa). The remaining two elements, V and Tl, exhibited more specific intracellular binding, as they were eluted within one/two narrow peaks in the high molecular mass region (575 kDa/100-400 kDa). The tendency of the studied TCEs and other potentially toxic elements to bind to medium and high molecular mass intracellular proteins necessitates further research of their specific targets.
Collapse
Affiliation(s)
- Zrinka Dragun
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Bijenička cesta 54, Zagreb, Croatia.
| | - Zoran Kiralj
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Bijenička cesta 54, Zagreb, Croatia.
| | - Željka Fiket
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Bijenička cesta 54, Zagreb, Croatia.
| | - Dušica Ivanković
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Bijenička cesta 54, Zagreb, Croatia.
| |
Collapse
|
2
|
Uddin MH, Ritu JR, Putnala SK, Rachamalla M, Chivers DP, Niyogi S. Selenium toxicity in fishes: A current perspective. CHEMOSPHERE 2024; 364:143214. [PMID: 39214409 DOI: 10.1016/j.chemosphere.2024.143214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/14/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Anthropogenic activities have led to increased levels of contaminants that pose significant threats to aquatic organisms, particularly fishes. One such contaminant is Selenium (Se), a metalloid which is released by various industrial activities including mining and fossil fuel combustion. Selenium is crucial for various physiological functions, however it can bioaccumulate and become toxic at elevated concentrations. Given that fishes are key predators in aquatic ecosystems and a major protein source for humans, Se accumulation raises considerable ecological and food safety concerns. Selenium induces toxicity at the cellular level by disrupting the balance between reactive oxygen species (ROS) production and antioxidant capacity leading to oxidative damage. Chronic exposure to elevated Se impairs a wide range of critical physiological functions including metabolism, growth and reproduction. Selenium is also a potent teratogen and induces various types of adverse developmental effects in fishes, mainly due to its maternal transfer to the eggs. Moreover, that can persist across generations. Furthermore, Se-induced oxidative stress in the brain is a major driver of its neurotoxicity, which leads to impairment of several ecologically important behaviours in fishes including cognition and memory functions, social preference and interactions, and anxiety response. Our review provides an up-to-date and in-depth analysis of the various adverse physiological effects of Se in fishes, while identifying knowledge gaps that need to be addressed in future research for greater insights into the impact of Se in aquatic ecosystems.
Collapse
Affiliation(s)
- Md Helal Uddin
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada; Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| | - Jinnath Rehana Ritu
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada; Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| | - Sravan Kumar Putnala
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada.
| | - Mahesh Rachamalla
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada.
| | - Douglas P Chivers
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada.
| | - Som Niyogi
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada; Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, S7N 5B3, Canada.
| |
Collapse
|
3
|
Li H, Zeng Y, Wang C, Chen W, Zou M. Variation in the burden and chemical forms of thallium in non-detoxified tissues of tilapia fish (Oreochromis niloticus) from waterborne exposure. CHEMOSPHERE 2023; 333:138884. [PMID: 37187377 DOI: 10.1016/j.chemosphere.2023.138884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/26/2023] [Accepted: 05/06/2023] [Indexed: 05/17/2023]
Abstract
Thallium (Tl) is highly toxic to aquatic ecosystems, but information about its concentration and distribution characteristics in different fish tissues is limited. In this study, juvenile tilapia (Oreochromis niloticus) were exposed to Tl solutions with different sub-lethal concentrations for 28 days, and the Tl concentrations and distribution patterns in the fish non-detoxified tissues (gills, muscle, and bone) were analyzed. The Tl chemical form fractions, Tl-ethanol, Tl-HCl, and Tl-residual, corresponding to easy, moderate, and difficult migration fraction, respectively, in the fish tissues were obtained by sequential extractant approach. The Tl concentrations of different fractions and total burden were determined using graphite furnace atomic absorption spectrophotometry. Exposure-concentration effect determined the Tl burden in the fish tissues. The average Tl-total concentration factors were 360, 447, and 593 in the bone, gills, and muscle, respectively, and the limited variation during the exposure period indicates that tilapia have a strong ability to self-regulate and achieve Tl homeostasis. However, Tl fractions varied in tissues, and the Tl-HCl fraction dominated in the gills (60.1%) and bone (59.0%), switchover Tl-ethanol fraction dominated in the muscle (68.3%). This study has shown that Tl can be easily taken up by fish during 28-days-period and largely distributed in non-detoxified tissues especially muscle, in which concurrent risks of high Tl-total burden and high levels of Tl in the form of easy migration fraction, posing possible risks to public health.
Collapse
Affiliation(s)
- Haiyan Li
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs & Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, China
| | - Yanyi Zeng
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs & Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, China.
| | - Chao Wang
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs & Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, China
| | - Weiwei Chen
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, China
| | - Mengyao Zou
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| |
Collapse
|
4
|
Filipović Marijić V, Krasnići N, Valić D, Kapetanović D, Vardić Smrzlić I, Jordanova M, Rebok K, Ramani S, Kostov V, Nastova R, Dragun Z. Pollution impact on metal and biomarker responses in intestinal cytosol of freshwater fish. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:63510-63521. [PMID: 37055686 DOI: 10.1007/s11356-023-26844-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 04/03/2023] [Indexed: 04/15/2023]
Abstract
In the present study, essential and nonessential metal content and biomarker responses were investigated in the intestine of fish collected from the areas polluted by mining. Our objective was to determine metal and biomarker levels in tissue responsible for dietary intake, which is rarely studied in water pollution research. The study was conducted in the Bregalnica River, reference location, and in the Zletovska and Kriva Rivers (the Republic of North Macedonia), which are directly influenced by the active mines Zletovo and Toranica, respectively. Biological responses were analyzed in Vardar chub (Squalius vardarensis; Karaman, 1928), using for the first time intestinal cytosol as a potentially toxic cell fraction, since metal sensitivity is mostly associated with cytosol. Cytosolic metal levels were higher in fish under the influence of mining (Tl, Li, Cs, Mo, Sr, Cd, Rb, and Cu in the Zletovska River and Cr, Pb, and Se in the Kriva River compared to the Bregalnica River in both seasons). The same trend was evident for total proteins, biomarkers of general stress, and metallothioneins, biomarkers of metal exposure, indicating cellular disturbances in the intestine, the primary site of dietary metal uptake. The association of cytosolic Cu and Cd at all locations pointed to similar pathways and homeostasis of these metallothionein-binding metals. Comparison with other indicator tissues showed that metal concentrations were higher in the intestine of fish from mining-affected areas than in the liver and gills. In general, these results indicated the importance of dietary metal pathways, and cytosolic metal fraction in assessing pollution impacts in freshwater ecosystems.
Collapse
Affiliation(s)
- Vlatka Filipović Marijić
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička Cesta 54, 10000, Zagreb, Croatia.
| | - Nesrete Krasnići
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička Cesta 54, 10000, Zagreb, Croatia
- Institute of Science and Technology Austria, Am Campus 1, 3400, Klosterneuburg, Austria
| | - Damir Valić
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička Cesta 54, 10000, Zagreb, Croatia
| | - Damir Kapetanović
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička Cesta 54, 10000, Zagreb, Croatia
| | - Irena Vardić Smrzlić
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička Cesta 54, 10000, Zagreb, Croatia
| | - Maja Jordanova
- Department for Cytology, Histology, and Embryology, Faculty of Natural Sciences and Mathematics, Ss Cyril and Methodius University, Arhimedova 3, Skopje, 1000, Republic of North Macedonia
| | - Katerina Rebok
- Department for Cytology, Histology, and Embryology, Faculty of Natural Sciences and Mathematics, Ss Cyril and Methodius University, Arhimedova 3, Skopje, 1000, Republic of North Macedonia
| | - Sheriban Ramani
- Department for Ecology, Hydrometeorological Service, 18 Skupi, Skopje, 1000, Republic of North Macedonia
| | - Vasil Kostov
- Institute of Animal Science, Bul. Ilinden, 92A, Skopje, 1000, Republic of North Macedonia
| | - Rodne Nastova
- Institute of Animal Science, Bul. Ilinden, 92A, Skopje, 1000, Republic of North Macedonia
| | - Zrinka Dragun
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička Cesta 54, 10000, Zagreb, Croatia
| |
Collapse
|
5
|
Terrones-Saeta JM, Suárez-Macías J, Bernardo-Sánchez A, Álvarez de Prado L, Menéndez Fernández M, Corpas-Iglesias FA. Treatment of Soil Contaminated by Mining Activities to Prevent Contamination by Encapsulation in Ceramic Construction Materials. MATERIALS 2021; 14:ma14226740. [PMID: 34832142 PMCID: PMC8623602 DOI: 10.3390/ma14226740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/31/2021] [Accepted: 11/03/2021] [Indexed: 11/20/2022]
Abstract
Mining is an essential activity for obtaining materials necessary for the well-being and development of society. However, this activity produces important environmental impacts that must be controlled. More specifically, there are different soils near new or abandoned mining productions that have been contaminated with potentially toxic elements, and currently represent an important environmental problem. In this research, a contaminated soil from the mining district of Linares was studied for its use as a raw material for the conforming of ceramic materials, bricks, dedicated to construction. Firstly, the contaminated soil was chemically and physically characterized in order to evaluate its suitability. Subsequently, different families of samples were conformed with different percentages of clay and contaminated soil. Finally, the conformed ceramics were physically and mechanically characterized to examine the variation produced in the ceramic material by the incorporation of the contaminated soil. In addition, in this research, leachate tests were performed according to the TCLP method determining whether encapsulation of potentially toxic elements in the soil occurs. The results showed that all families of ceramic materials have acceptable physical properties, with a soil percentage of less than 80% being acceptable to obtain adequate mechanical properties and a maximum of 70% of contaminated soil to obtain acceptable leachate according to EPA regulations. Therefore, the maximum percentage of contaminated soil that can be incorporated into the ceramic material is 70% in order to comply with all standards. Consequently, this research not only avoids the contamination that contaminated soil can produce, but also valorizes this element as a raw material for new materials, avoiding the extraction of clay and reducing the environmental impact.
Collapse
Affiliation(s)
- Juan María Terrones-Saeta
- Research Group TEP-222 “Materials and Mining Engineering”, Higher Polytechnic School of Linares, Scientific and Technological Campus of Linares, University of Jaén, 23700 Linares, Spain; (J.S.-M.); (F.A.C.-I.)
- Correspondence:
| | - Jorge Suárez-Macías
- Research Group TEP-222 “Materials and Mining Engineering”, Higher Polytechnic School of Linares, Scientific and Technological Campus of Linares, University of Jaén, 23700 Linares, Spain; (J.S.-M.); (F.A.C.-I.)
| | - Antonio Bernardo-Sánchez
- Department of Mining, Topography and Structures, University of León, 24071 León, Spain; (A.B.-S.); (L.Á.d.P.); (M.M.F.)
| | - Laura Álvarez de Prado
- Department of Mining, Topography and Structures, University of León, 24071 León, Spain; (A.B.-S.); (L.Á.d.P.); (M.M.F.)
| | - Marta Menéndez Fernández
- Department of Mining, Topography and Structures, University of León, 24071 León, Spain; (A.B.-S.); (L.Á.d.P.); (M.M.F.)
| | - Francisco Antonio Corpas-Iglesias
- Research Group TEP-222 “Materials and Mining Engineering”, Higher Polytechnic School of Linares, Scientific and Technological Campus of Linares, University of Jaén, 23700 Linares, Spain; (J.S.-M.); (F.A.C.-I.)
| |
Collapse
|
6
|
Guzmán-Martínez F, Arranz-González JC, Ortega MF, García-Martínez MJ, Rodríguez-Gómez V. A new ranking scale for assessing leaching potential pollution from abandoned mining wastes based on the Mexican official leaching test. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 273:111139. [PMID: 32768761 DOI: 10.1016/j.jenvman.2020.111139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/04/2020] [Accepted: 07/25/2020] [Indexed: 06/11/2023]
Abstract
Potentially toxic elements (PTEs) present in abandoned mining wastes (AMW) are of great concern because of potential risks to human health and ecosystems. Indices of contamination (IC) applied to mining wastes are calculated using the total concentration of PTEs and comparing them with regional geochemical backgrounds. However, determining the total content of heavy metals is insufficient to assess the hazard of mining wastes. Therefore, in addition to total concentration, the potential risk is also evaluated through water mobility of elements. Accordingly, leaching procedures are useful tools for the geochemical characterization of soluble constituents that are mobilized. In this study, the solubility of PTEs from different types of mining wastes is comparatively assessed using three standard leaching methods (European; U.S. Geological Survey and; Mexican). The Hazard Average Quotient (HAQ) was calculated to assess the potential Toxicity Factor (TF). TF is an indicator of the relative potential toxicity of wastes and is the basis for the classification of AMW. A comparative assessment provides evidence that there are no statistically significant differences in PTEs solubility by the three leaching methods and it was also found that the pH of the eluates was dictated by the type of waste. Results suggest that the IC gives an indicator of the potential contamination of soils and sediments by erosive processes, or a long-term measure, whereas TF assesses the possibility of contaminating water in the short term. The most significant finding is the new ranking scale of TF, as a function of HAQ, applied to the Mexican standard leaching test. This factor, together with other considerations relating to risk-generating processes, might then be applied in places having large amounts of recorded AMW, such as the Iberian Peninsula and Latin America, where effective management is required to rank sites, based on preliminary environmental and human risk assessment.
Collapse
Affiliation(s)
- Fredy Guzmán-Martínez
- Universidad Politécnica de Madrid, Escuela Técnica Superior de Ingenieros de Minas y Energía, Ríos Rosas, 21, 28003, Madrid, Spain; Mexican Geological Survey, Boulevard Felipe Angeles Km. 93.50-4, 42083, Pachuca, Mexico.
| | | | - Marcelo F Ortega
- Universidad Politécnica de Madrid, Escuela Técnica Superior de Ingenieros de Minas y Energía, Ríos Rosas, 21, 28003, Madrid, Spain
| | - María Jesús García-Martínez
- Universidad Politécnica de Madrid, Escuela Técnica Superior de Ingenieros de Minas y Energía, Ríos Rosas, 21, 28003, Madrid, Spain
| | | |
Collapse
|
7
|
Ivanova L, Rebok K, Jordanova M, Dragun Z, Kostov V, Ramani S, Valić D, Krasnići N, Filipović Marijić V, Kapetanović D. The effect of different pollutants exposure on the pigment content of pigmented macrophage aggregates in the spleen of Vardar chub (Squalius vardarensis Karaman, 1928). Microsc Res Tech 2020; 83:1141-1152. [PMID: 32472963 DOI: 10.1002/jemt.23506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 11/12/2022]
Abstract
Pigmented macrophage aggregates (MAs) are known to change under influence of various factors, such as aging, season, starvation, and/or pollution. In this study, changes in the pigment content of the MAs in the spleen of Vardar chub (Squalius vardarensis, Karaman) (n = 129) collected in spring and autumn, from three rivers with different pollution impact was examined: Zletovska River (metals), Kriva River (metals and municipal wastewater), and Bregalnica River (municipal wastewater). Collected data revealed increased relative volume and number of MAs containing hemosiderin under the influence of metals, significant in autumn (p < .05). In chub exposed to metals combined with municipal wastewater, significant increase of lipochrome accumulation in MAs in autumn, melanin in MAs in fish captured in the spring season, and number of splenic MAs containing combination of melanin and lipochrome was noted. Volumes and number of MAs containing combination of hemosiderin and lipochrome increased in spleen of fish captured in autumn from both Zletovska River and Kriva River, most likely due to the contribution of hemosiderin and lipochrome, respectively. Values measured for the various pigments in splenic MAs in fish captured from Bregalnica River, were overall closer to the values measured for fish captured from Kriva River. Notably, melanin and lipochrome are more likely to be found in fish from waters influenced by municipal wastewater (organic pollution) and hemosiderin in fish spleen from water influenced by mining activity (heavy metals pollution).
Collapse
Affiliation(s)
- Lozenka Ivanova
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University in Skopje, Skopje, Macedonia
| | - Katerina Rebok
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University in Skopje, Skopje, Macedonia
| | - Maja Jordanova
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University in Skopje, Skopje, Macedonia
| | - Zrinka Dragun
- Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Ruđer Bošković Institute, Zagreb, Croatia
| | | | - Sheriban Ramani
- Hydrobiology and Ecology Department, Ministry of Agriculture, Forestry and Water Economy, Hydrometeorological Administration, Division for Water, Air and Soil Quality Monitoring and Laboratory Analyses, Skopje, Macedonia
| | - Damir Valić
- Division for Marine and Environmental Research, Laboratory for Aquaculture and Pathology of Aquatic Organisms, Ruđer Bošković Institute, Zagreb, Croatia
| | - Nesrete Krasnići
- Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Ruđer Bošković Institute, Zagreb, Croatia
| | - Vlatka Filipović Marijić
- Division for Marine and Environmental Research, Laboratory for Biological Effects of Metals, Ruđer Bošković Institute, Zagreb, Croatia
| | - Damir Kapetanović
- Division for Marine and Environmental Research, Laboratory for Aquaculture and Pathology of Aquatic Organisms, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|