1
|
Jiang S, He L, Cao L, Sun R, Dai Z, Liang YQ, Ren L, Sun S, Li C. Unraveling individual and combined toxicity of microplastics and tetracycline at environment-related concentrations to coral holobionts. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137823. [PMID: 40054197 DOI: 10.1016/j.jhazmat.2025.137823] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 12/14/2024] [Accepted: 03/01/2025] [Indexed: 04/16/2025]
Abstract
Coral holobionts constitute the foundational organisms of coral reef ecosystems. As an emerging pollutant, the projected accumulated levels of microplastics (MPs) are expected to continue increasing. Meanwhile, due to their properties, MPs can absorb multiple other marine pollutants, such as antibiotics (ATs). However, the co-toxicity mechanism of MPs and ATs to coral holobionts remains to be explored. Here, using Zoanthus sociatus as a model organism, we investigate the individual and combined toxicity of MPs and tetracycline (TC) at environment-related concentrations to coral holobionts. Microbiomics indicate that MPs and TC increase coral holobionts bacterial species richness while concurrently reducing the microbial community structure stability. The key metabolites and enzyme activity results demonstrated that the impacts of MPs and TC on corals encompassed antioxidant capacity, detoxification capability, immune function, and lipid metabolism. Transcriptomics shows that MPs and TC disrupt coral-algae relationships mainly through host nutrition limitation and inhibition of symbiotic algae carbon/nitrogen metabolism, respectively. A synergistic effect between MPs and TC has also been observed. In contrast, coral holobionts have shown adaptability through activating coral-symbiodiniaceae-bacteria interactions, mainly including: 1) enhancing the abundance of BMCs (beneficial microorganisms for corals); 2) enhancing host lipid accumulation; 3) immunoregulation; 4) symbiotic regulation. Overall, our findings provide new insights into the co-toxicity of MPs and TC, and highlight those MPs and TC at current environment concentration and predicted for most oceans in the coming decades, can ultimately cause coral bleaching.
Collapse
Affiliation(s)
- Shiqi Jiang
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Lei He
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Linglong Cao
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Ruikun Sun
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Zhenqing Dai
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Yan-Qiu Liang
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Lei Ren
- College of Coastal Agricultural Science, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Shengli Sun
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Chengyong Li
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, PR China; Analytical and Testing Center, Guangdong Ocean University, Zhanjiang 524088, PR China.
| |
Collapse
|
2
|
Qv M, Dai D, Wu Q, Wang W, Li L, Zhu L. Metagenomic insight into the horizontal transfer mechanism of fluoroquinolone antibiotic resistance genes mediated by mobile genetic element in microalgae-bacteria consortia. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:124946. [PMID: 40081035 DOI: 10.1016/j.jenvman.2025.124946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/27/2025] [Accepted: 03/09/2025] [Indexed: 03/15/2025]
Abstract
Antibiotics could accumulate in the environment with the discharge of wastewater from families, hospitals and livestock farms, which intensifies the spread of resistance genes around the world. Although microalgae-bacteria consortia (MBC) can efficiently remove antibiotics, the horizontal transfer mechanism of antibiotics resistance genes in MBC is still rarely reported. In this study, the removal efficiency of ofloxacin, norfloxacin and enrofloxacin by MBC under different antibiotic concentrations was investigated, while resistance genes in the MBC were identified and the mechanism of horizontal transfer was disclosed. The results showed that norfloxacin removal efficiency (up to 56.35 %) surpassed that of ofloxacin and enrofloxacin. The abundance of the fluoroquinolone resistance gene QnrS8 was the highest at 1331. The horizontal transfer of resistance gene QnrS8 and QnrS11 were mainly mediated by transposons. Fluoroquinolones increased the abundance of Brevundimonas (<0.10 % up to 9.63 %) and Bosea (0.96 % up to 17.67 %) involved in antibiotic removal. Arthrobacter and Acidovorax might be potential hosts which carried fluoroquinolone resistance genes. Structural equation model indicated that the key factor influencing the fluoroquinolone resistance genes abundance in MBC was transposons. These findings drew an insightful understanding of MBC application for fluoroquinolone antibiotics removal and the horizontal transfer mechanism of fluoroquinolone resistance genes.
Collapse
Affiliation(s)
- Mingxiang Qv
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan, 430079, China
| | - Dian Dai
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan, 430079, China
| | - Qirui Wu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan, 430079, China
| | - Wei Wang
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan, 430079, China
| | - Lanjing Li
- School of Biological Sciences, University of Auckland, Manaaki Whenua - Landcare Research, New Zealand
| | - Liandong Zhu
- School of Resource and Environmental Sciences, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan, 430079, China; State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
3
|
Yan Z, Cao X, Su H, Li C, Lin J, Tang K, Zhang J, Fan H, Chen Q, Tang J, Zhou Z. Coral-Symbiodiniaceae symbiotic associations under antibiotic stress: Accumulation patterns and potential physiological effects in a natural reef. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:137039. [PMID: 39764960 DOI: 10.1016/j.jhazmat.2024.137039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/13/2024] [Accepted: 12/28/2024] [Indexed: 03/12/2025]
Abstract
Antibiotics threaten scleractinian corals, but their accumulation patterns and physiological effects on corals in natural reefs remain unclear. This study investigated antibiotic occurrence in seawater and two coral species, Galaxea fascicularis and Pocillopora damicornis, and explored the physiological effects of bioaccumulated antibiotics in a fringing reef of the South China Sea. Nineteen antibiotic components were detected in seawater, with total antibiotic concentrations (ΣABs) ranging from 17.69 to 44.22 ng L⁻¹ . Eleven antibiotic components were accumulated in the coral hosts, and five components were observed in their algal symbionts. Higher ΣABs were significantly associated with increased total antioxidant capacity in the coral hosts of P. damicornis, while G. fascicularis exhibited a significant increase in algal symbiont density. Furthermore, ofloxacin was linked to increased algal symbiont density of G. fascicularis, while several antibiotic components, including tilmicosin, sulfapyridine, ofloxacin, and lincomycin hydrochloride, were observed to reduce antioxidant levels in the algal symbionts of G. fascicularis. No significant correlations between antibiotic components and physiological activities were detected in P. damicornis. These results highlight species-specific bioaccumulation patterns and physiological responses to antibiotics, suggesting that prolonged contaminations could destabilize coral-Symbiodiniaceae symbiosis. The findings improve understanding of the ecological risks of antibiotic pollution in reefs.
Collapse
Affiliation(s)
- Zhicong Yan
- School of Marine Science and Engineering, Hainan University, Haikou 570228, China
| | - Xiaocong Cao
- School of Marine Science and Engineering, Hainan University, Haikou 570228, China; Hainan Research Academy of Environmental Sciences, Haikou 571126, China
| | - Hao Su
- School of Marine Science and Engineering, Hainan University, Haikou 570228, China
| | - Changqing Li
- Sanya Coral Reef National Marine Nature Reserve, Sanya 572019, China
| | - Jiamin Lin
- School of Marine Science and Engineering, Hainan University, Haikou 570228, China
| | - Kai Tang
- School of Marine Science and Engineering, Hainan University, Haikou 570228, China
| | - Jiahua Zhang
- School of Marine Science and Engineering, Hainan University, Haikou 570228, China
| | - Hangbo Fan
- School of Marine Science and Engineering, Hainan University, Haikou 570228, China
| | - Qin Chen
- Hainan Open University, Haikou 570228, China
| | - Jia Tang
- School of Marine Science and Engineering, Hainan University, Haikou 570228, China.
| | - Zhi Zhou
- School of Marine Science and Engineering, Hainan University, Haikou 570228, China.
| |
Collapse
|
4
|
Peng T, Song B, Wang Y, Yuan J, Yang Z, Tang L. Trophic transfer of sulfonamide antibiotics in aquatic food chains: A comprehensive review with a focus on environmental health risks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 369:125823. [PMID: 39923974 DOI: 10.1016/j.envpol.2025.125823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
Antibiotics, which have been identified as emerged pollutants, are creating an increase in environmental concerns, with sulfonamide antibiotics (SAs) being among the most commonly discovered antibiotics. Due to their widespread usage and inadequate sewage treatment, SAs are frequently released into the aquatic environment. The introduction of SAs into aquatic environments can kill or inhibit the growth or metabolic activity of microorganisms, thereby affecting biological communities and ecological functions and disrupting the equilibrium of aquatic ecosystems. The transmission of SAs to human beings can occur through trophic transfer of food chains, particularly when humans consume aquatic food. This study examines the trophic transfer of SAs along the aquatic food chain, provides a summarize of the spatial distribution of SAs in aquatic environments, and evaluates the environmental risks associated with it. The prevalence of SAs was predominantly noted in the aqueous phase, with relatively lower concentrations detected in sediments, solidifying their status as one of the most widespread antibiotics among aquatic organisms. SAs, characterized by their high biomagnification capacity and strong bioaccumulative properties in invertebrates, emerge as the antibiotic type with the greatest ecological risks. The ecological risk posed by sulfonamide antibiotics to aquatic organisms is more pronounced than the health risk to humans, suggesting that the adverse effects on aquatic life warrant greater attention. Additionally, this study offers practical recommendations to address the limitations of previous research, emphasizing the importance of regulating exposure and establishing a robust health risk prediction system as effective measures for antibiotic control.
Collapse
Affiliation(s)
- Tianwei Peng
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Biao Song
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Yuchen Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Jie Yuan
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Zhengqing Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| |
Collapse
|
5
|
Chang F, Yin X, Ju H, Zhang Y, Yin L, Zhou X, Feng Y, Diao X. Organic ultraviolet filters in Hainan coral reefs: Distribution, accumulation, and ecological risks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125541. [PMID: 39706560 DOI: 10.1016/j.envpol.2024.125541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/03/2024] [Accepted: 12/14/2024] [Indexed: 12/23/2024]
Abstract
Organic ultraviolet filters (OUVFs) have been widely used as functional ingredients of sunscreen products and have entered into marine ecosystems, particularly in tropical areas where solar UV radiation is strong. These chemicals, with their potential toxicity and ecological risk, have raised widespread concern for the protection of the fragile marine ecosystem of coral reefs. In this study, fourteen OUVFs were analyzed among 24 coral species, together with their habitats including seawater and sediment from the coastal coral reef regions of Hainan Island, South China Sea. Surprisingly, all of fourteen OUVFs were detected in each sample, indicating the wide distribution of OUVFs among sites and samples. Among the fourteen OUVFs, benzophenone-3 (BP-3) and 4-methylbenzylidene camphor (4-MBC) were the most abundant, with concentrations ranging from 35.3 to 75.6 and 38.3 to 61.4 ng/L in seawater, from 13.2 to 25.9 and 7.0 to 17.4 ng/g dw in sediment, and from 4.5 to 21.3 and 4.4 to 19.7 ng/g dw in corals, respectively. Analysis of OUVFs in 24 coral species pointed that OUVFs accumulation in corals is morphology dependent: the highest concentration of OUVFs was identified in Galaxea fascicularis with abundant of polyps and tentacles while the lowest levels of OUVFs were found in Porites mayeri (smooth or lobed surface). In corals, we found that these OUVFs accumulated, depending on the coral species and the types of OUVFs. The ecological risk assessment further indicated that BP-3, 4-MBC and BP-8 had posed risks to corals. In addition, significantly higher concentrations of OUVFs were observed in Sanya (a seaside tourist resort) than in the other sites, suggesting that tourist activity and use of sunscreen products are the key to high inputs of sunscreen agents into marine ecosystem. Overall, our study demonstrates a potential risk role for OUVFs in coral protection in tropical areas where coral bleaching events occur.
Collapse
Affiliation(s)
- Fengtong Chang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China; School of Environment and Ecology, Hainan University, Haikou, 570228, China.
| | - Xiuran Yin
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China.
| | - Hanye Ju
- College of Life Sciences, Hainan Normal University, Haikou, 571158, Hainan, China.
| | - Yankun Zhang
- College of Life Sciences, Hainan Normal University, Haikou, 571158, Hainan, China.
| | - Lianzheng Yin
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China.
| | - Xueqing Zhou
- Analytical & Testing Center, Hainan University, Haikou, 570228, China; Center for Advanced Studies in Precision Instruments, Hainan University Haikou, 570228, China.
| | - Yujie Feng
- Institute of Plant Protection, Hainan Academy of Agricultural Sciences, Haikou, 571100, China; Research Center of Quality Safety and Standards for Agricultural Products of Hainan Academy of Agricultural Science, Haikou, 571100, China.
| | - Xiaoping Diao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China.
| |
Collapse
|
6
|
Chen J, Yu K, Yu X, Zhang R, Chen B. Transcriptomic and physiological analyses reveal the toxic effects of inorganic filters (nZnO and nTiO 2) on scleractinian coral Galaxea fascicularis. ENVIRONMENTAL RESEARCH 2025; 267:120663. [PMID: 39709120 DOI: 10.1016/j.envres.2024.120663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/02/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
The effects of sunscreen on scleractinian corals have garnered widespread attention; however, the toxic effects and mechanisms remain unclear. This study investigated the toxicological effects of two common inorganic filters used in sunscreens, nano zinc oxide and titanium dioxide (nZnO and nTiO₂), on the reef-building coral Galaxea fascicularis, focusing on the phenotypic, physiological, and transcriptomic responses. The results showed that after exposure to 0.8 mg/L of nZnO and 30 mg/L of nTiO₂ for 48 h, all coral polyps exhibited retraction. Zn and Ti ions were detected in coral tissues at concentrations of 67.18 and 24.87 μg/g, respectively, indicating the accumulation of nZnO and nTiO2 in coral tissues. The zooxanthellae density, Fv/Fm, and chlorophyll-a content decreased significantly. The activity of antioxidant enzymes showed an increasing trend. Meanwhile, glutamine synthetase and glutamate dehydrogenase activities exhibited a decreasing trend. The health status of corals was impacted as a result of nZnO and nTiO2 stress. Transcriptomic analysis showed that the toxicity mechanisms of nZnO and nTiO2 differed in corals. Following exposure to nZnO, differentially expressed genes (DEGs) in corals were mainly enriched in signaling pathways related to immune response. The genes related to innate immunity, such as MASP1, MUC5AC, TLRs, and C2, were significantly upregulated, indicating that nZnO exposure induces an innate immune response in corals. Meanwhile, following nTiO2 exposure, the upregulated DEGs were mainly enriched in signaling pathways related to transporter activity. In contrast, the downregulated DEGs were mainly enriched in energy metabolism pathways, indicating that nTiO2 disrupted the energy supply of corals, thereby leading to an increased demand for nutrient transport. This study reveals the toxic effects of nZnO and nTiO2, and their mechanisms of action on scleractinian corals, providing a reference for further assessing the toxicity of sunscreen on corals.
Collapse
Affiliation(s)
- Jian Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| | - Xiaopeng Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Ruijie Zhang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Biao Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| |
Collapse
|
7
|
Yu X, Gutang Q, Wang Y, Wang S, Li Y, Li Y, Liu W, Wang X. Microplastic and associated emerging contaminants in marine fish from the South China Sea: Exposure and human risks. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136200. [PMID: 39437472 DOI: 10.1016/j.jhazmat.2024.136200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/29/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Microplastics can act as vectors of chemical contaminants in aquatic environments, but the extent to which this phenomenon contributes to chemical exposure in marine organisms remains poorly understood. We investigated the occurrence of microplastics and emerging contaminants (ECs), including antibiotics and per- and polyfluoroalkyl substances (PFAS) in 14 marine fish species. Microplastics were detected in all marine fish species, mainly in the gastrointestinal tract. Fluoroquinolones and tetracyclines were the dominant antibiotics in fish muscles with maximum concentrations of 24.84 and 26.95 ng g-1 ww, while perfluorooctanesulfonic acid (PFOS, 0.039-0.95 ng g-1 ww) was the dominant component in the PFAS profile. Fish with more microplastics had significantly higher concentrations of fluoroquinolones and perfluoroalkyl acids than fish with less microplastics (p < 0.05), but the correlation was not observed in other chemicals. Structural equation modeling revealed the contribution of microplastics in fish on the level of ECs contamination. The health quotient value indicated the low health risk of single compounds via fish consumption to humans; however, the combined risk of microplastics and ECs still needs to be considered. This work highlights the link between microplastics with associated ECs ingested by aquatic organisms and the human health risk of consuming polluted seafood.
Collapse
Affiliation(s)
- Xiaoxuan Yu
- State Key Laboratory of Marine Environmental Science, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Qilin Gutang
- Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Yuxuan Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Sijia Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Youshen Li
- State Key Laboratory of Marine Environmental Science, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Yongyu Li
- State Key Laboratory of Marine Environmental Science, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Wenhua Liu
- Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Xinhong Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
8
|
Navon G, Nordland O, Kaplan A, Avisar D, Shenkar N. Detection of 10 commonly used pharmaceuticals in reef-building stony corals from shallow (5-12 m) and deep (30-40 m) sites in the Red Sea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124698. [PMID: 39122171 DOI: 10.1016/j.envpol.2024.124698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/07/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Although pharmaceutically-active compounds (PhACs) are increasingly being found to be present in marine environments, their presence in coral reefs, already under threat from various stressors, has remains unexplored. This study focused on PhAC presence in two stony-coral genera, collected from different depths and sites in the Red Sea. The findings reveal the presence of ten different PhACs, with elevated concentrations detected in corals from shallow sites and in areas with heavy human activity. Notably, all samples contained at least one PhAC, with the antibiotic sulfamethoxazole being the most prevalent compound, detected in 93% of the samples, at concentrations ranging from 1.5 to 2080 ng/g dry weight (dw) tissue, with an average concentration of 106 ng/g dw. These findings underscore the urgent need for conservation initiatives aimed at protecting coral-reef ecosystems from the escalating threat of anthropogenic contamination, including such potential risks as the development of antibiotic resistance in marine organisms and the disruption of critical spawning synchrony among coral populations.
Collapse
Affiliation(s)
- Gal Navon
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Olivia Nordland
- The Water Research Center, Porter School of the Environment and Earth Sciences, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Aviv Kaplan
- The Water Research Center, Porter School of the Environment and Earth Sciences, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Dror Avisar
- The Water Research Center, Porter School of the Environment and Earth Sciences, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Noa Shenkar
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel; The Steinhardt Museum of Natural History and National Research Center, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
9
|
Tang HZ, Zhao T, Yin QJ, Zheng PF, Zhu FC, Tang HY, Li AQ. A meta-analysis of antibiotic residues in the Beibu Gulf. MARINE ENVIRONMENTAL RESEARCH 2024; 198:106560. [PMID: 38776723 DOI: 10.1016/j.marenvres.2024.106560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/12/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
Antibiotic residue stands as a significant ongoing environmental issue, with aquaculture being a major source of annual antibiotic discharge into the ocean. Nevertheless, there is still an incomplete evaluation of antibiotic residues in the Beibu Gulf, an area encompassed by two prominent aquaculture nations, China and Vietnam. The present systematic review and meta-analysis was conducted to examine the presence antibiotic residues in the Beibu Gulf based on published studies. Data were obtained through eight databases up to December 19th, 2023, and were updated on April 15th, 2024. The pooled concentration of antibiotic residues in seawater was 5.90 (ng/L), ranging from 5.73 to 6.06 (ng/L), and was 8.03 (ng/g), ranging from 7.77 to 8.28 (ng/g) in sediments. Fluoroquinolones, tetracyclines, and macrolides were identified as the main antibiotics found in both seawater and sediment samples. The Beibu Gulf showed higher antibiotic levels in its western and northeastern areas. Additionally, the nearshore mangrove areas displayed the highest prevalence of antibiotic residues. It is strongly advised to conduct regular long-term monitoring of antibiotic residues in the Beibu Gulf. Collaborative surveys covering the entire Beibu Gulf involving China and Vietnam are recommended.
Collapse
Affiliation(s)
- Hong-Zhi Tang
- Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, China; Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, China.
| | - Tianyu Zhao
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Qun-Jian Yin
- Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, China; Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, China
| | - Peng-Fei Zheng
- Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, China; Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, China
| | - Fang-Chao Zhu
- Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, China; Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, China
| | - Hong-Yong Tang
- China Certification & Inspection Group Hunan CO., LTD, Changsha, China
| | - An-Qi Li
- Laboratory of Deep-sea Microbial Cell Biology, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| |
Collapse
|
10
|
Yan A, Zhang R, Yu K, Kang Y, Huang X, Hu J, Xie S, Yang X, Wang J. Organophosphate esters (OPEs) in corals of the South China Sea: Occurrence, distribution, and bioaccumulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172212. [PMID: 38580121 DOI: 10.1016/j.scitotenv.2024.172212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Organophosphate esters (OPEs) have garnered significant attention in recent years. In view of the enormous ecosystem services value and severe degradation of coral reefs in the South China Sea, this study investigated the occurrence, distribution, and bioaccumulation of 11 OPEs in five coral regions: Daya Bay (DY), Weizhou Island (WZ), Sanya Luhuitou (LHT), Xisha (XS) Islands, and Nansha (NS) Islands. Although OPEs were detected at a high rate, their concentration in South China Sea seawater (1.56 ± 0.89 ng L-1) remained relatively low compared to global levels. All OPEs were identified in coral tissues, with Luhuitou (575 ± 242 ng g-1 dw) showing the highest pollution levels, attributed to intense human activities. Coral mucus, acting as a defense against environmental stresses, accumulated higher ∑11OPEs (414 ± 461 ng g-1 dw) than coral tissues (412 ± 197 ng g-1 dw) (nonparametric test, p < 0.05), and their compositional characteristics varied greatly. In the case of harsh aquatic environments, corals increase mucus secretion and then accumulate organic pollutants. Tissue-mucus partitioning varied among coral species. Most OPEs were found to be bioaccumulative (BAFs >5000 L kg-1) in a few coral tissue samples besides Triphenyl phosphate (TPHP). Mucus' role in the bioaccumulation of OPEs in coral shouldn't be ignored.
Collapse
Affiliation(s)
- Annan Yan
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China.
| | - Ruijie Zhang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China.
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China.
| | - Yaru Kang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China.
| | - Xueyong Huang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China.
| | - Junjie Hu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China.
| | - Songlin Xie
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China.
| | - Xinyu Yang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China.
| | - Jingyu Wang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China.
| |
Collapse
|
11
|
Becchi A, Mantovani M, Lasagni M, Collina E, Montano S, Galli P, Saliu F. Application of non-lethal bioSPME-LC-MS/MS for the detection of human pharmaceuticals in soft corals: A survey at the North Nilandhe atoll (Maldives). CHEMOSPHERE 2024; 356:141781. [PMID: 38554875 DOI: 10.1016/j.chemosphere.2024.141781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/10/2024] [Accepted: 03/22/2024] [Indexed: 04/02/2024]
Abstract
At present the information regarding the occurrence of human pharmaceuticals (PhaCs) in coral reefs and their potential impacts on the associated fauna is limited. To optimize the collection of data in these delicate environments, we employed a solid-phase microextraction (bioSPME) and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) procedure that enabled in vivo determinations in soft corals. Specifically, we researched the antibiotics Ofloxacin Sulfamethoxazole and Clarithromycin, the anti-inflammatory Diclofenac Propyphenazone Ketoprofen and Amisulpride, the neuroactive compounds Gabapentin-lactam, the beta-blocker Metoprolol and the antiepileptic Carbamazepine. Reproducibility was between 2.1% and 9.9% and method detection limits LODs) were between 0.2 and 1.6 ng/g and LOQs between 0.8 and 5.4 mg/g. The method was then applied to establish a baseline for the occurrence of these compounds in the Maldivian archipelago. Colonies of Sarcophyton sp. and Sinularia sp. were sampled along an inner-outer reef transect. Five of the ten targeted PhaCs were identified, and 40% of the surveyed coral colonies showed the occurrence of at least one of the selected compounds. The highest concentrations were found inside the atoll rim. Oxoflacin (9.5 ± 3.9 ng/g) and Ketoprofen (4.5 ± 2.3 ng/g) were the compounds with the highest average concentrations. Outside the atoll rim, only one sample showed contamination levels above the detection limit. No significant differences were highlighted among the two surveyed soft coral species, both in terms of average concentrations and bioconcentration factors (BCFs).
Collapse
Affiliation(s)
- Alessandro Becchi
- Earth and Environmental Science Department, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Marco Mantovani
- Earth and Environmental Science Department, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Marina Lasagni
- Earth and Environmental Science Department, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Elena Collina
- Earth and Environmental Science Department, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Simone Montano
- MaRHE Center (Marine Research and High Education Centre), Magoodhoo Island, Faafu Atoll, Maldives
| | - Paolo Galli
- University of Dubai, PO Box: 14143, Dubai Academic City, United Arab Emirates
| | - Francesco Saliu
- Earth and Environmental Science Department, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy.
| |
Collapse
|
12
|
Wu R, Sin YY, Cai L, Wang Y, Hu M, Liu X, Xu W, Kwan KY, Gonçalves D, Chan BKK, Zhang K, Chui APY, Chua SL, Fang JKH, Leung KMY. Pharmaceutical Residues in Edible Oysters along the Coasts of the East and South China Seas and Associated Health Risks to Humans and Wildlife. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5512-5523. [PMID: 38478581 PMCID: PMC10976893 DOI: 10.1021/acs.est.3c10588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 03/27/2024]
Abstract
The investigation of pharmaceuticals as emerging contaminants in marine biota has been insufficient. In this study, we examined the presence of 51 pharmaceuticals in edible oysters along the coasts of the East and South China Seas. Only nine pharmaceuticals were detected. The mean concentrations of all measured pharmaceuticals in oysters per site ranged from 0.804 to 15.1 ng g-1 of dry weight, with antihistamines being the most common. Brompheniramine and promethazine were identified in biota samples for the first time. Although no significant health risks to humans were identified through consumption of oysters, 100-1000 times higher health risks were observed for wildlife like water birds, seasnails, and starfishes. Specifically, sea snails that primarily feed on oysters were found to be at risk of exposure to ciprofloxacin, brompheniramine, and promethazine. These high risks could be attributed to the monotonous diet habits and relatively limited food sources of these organisms. Furthermore, taking chirality into consideration, chlorpheniramine in the oysters was enriched by the S-enantiomer, with a relative potency 1.1-1.3 times higher when chlorpheniramine was considered as a racemate. Overall, this study highlights the prevalence of antihistamines in seafood and underscores the importance of studying enantioselectivities of pharmaceuticals in health risk assessments.
Collapse
Affiliation(s)
- Rongben Wu
- State
Key Laboratory of Marine Pollution, City
University of Hong Kong, Kowloon
Tong, Hong Kong SAR 999077, China
- Department
of Food Science and Nutrition, The Hong
Kong Polytechnic University, Hung
Hom, Hong Kong SAR 999077, China
| | - Yan Yin Sin
- State
Key Laboratory of Marine Pollution, City
University of Hong Kong, Kowloon
Tong, Hong Kong SAR 999077, China
| | - Lin Cai
- Shenzhen
Institute of Guangdong Ocean University, Shenzhen 518120, China
| | - Youji Wang
- International
Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China
| | - Menghong Hu
- International
Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China
| | - Xiaoshou Liu
- College
of Marine Life Sciences and Frontiers Science Center for Deep Ocean
Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Wenzhe Xu
- College of
Marine and Environmental Sciences, Tianjin
University of Science and Technology, Tianjin 300457, China
| | - Kit Yue Kwan
- College of
Marine Science, Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity
Conservation, Beibu Gulf University, Qinzhou City, Guangxi Zhuang
Autonomous Region 535011, China
| | - David Gonçalves
- Institute
of Science and Environment, University of
Saint Joseph, Nossa
Senhora de Fátima, Macao SAR 999078, China
| | | | - Kai Zhang
- National
Observation and Research Station of Coastal Ecological Environments
in Macao, Macao Environmental Research Institute, Macau University of Science and Technology, Taipa, Macao SAR 999078, China
| | - Apple Pui-Yi Chui
- State
Key Laboratory of Marine Pollution, City
University of Hong Kong, Kowloon
Tong, Hong Kong SAR 999077, China
- Simon F.S.
Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR 999077, China
| | - Song Lin Chua
- Department
of Applied Biology and Chemical Technology, State Key Laboratory of
Chemical Biology and Drug Discovery, and Research Center for Deep
Space Explorations, The Hong Kong Polytechnic
University, Hung Hom, Hong Kong SAR 999077, China
| | - James Kar-Hei Fang
- State
Key Laboratory of Marine Pollution, City
University of Hong Kong, Kowloon
Tong, Hong Kong SAR 999077, China
- Department
of Food Science and Nutrition, The Hong
Kong Polytechnic University, Hung
Hom, Hong Kong SAR 999077, China
- Research
Institute for Future Food, and Research Institute for Land and Space, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR 999077, China
| | - Kenneth Mei-Yee Leung
- State
Key Laboratory of Marine Pollution, City
University of Hong Kong, Kowloon
Tong, Hong Kong SAR 999077, China
- Department
of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong
SAR 999077, China
- Southern
Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| |
Collapse
|
13
|
Wei C, Wang Y, Zhang R, Liu F, Zhang ZE, Wang J, Yu K. Spatiotemporal distribution and potential risks of antibiotics in coastal water of Beibu Gulf, South China Sea: Livestock and poultry emissions play essential effect. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133550. [PMID: 38290337 DOI: 10.1016/j.jhazmat.2024.133550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/06/2024] [Accepted: 01/16/2024] [Indexed: 02/01/2024]
Abstract
Antibiotics have been the subject of much attention in recent years due to their widespread use and the potential ecological risks and resistance risks. In this study, we conducted an extensive survey of 19 antibiotics in a wide range of waters of the Beibu Gulf during summer and winter (154 samples). The total concentrations of the 19 antibiotics (Σ19ABs, ng/L) were significantly higher in winter (n.d.-364) than in summer (n.d.-70.1) and were mainly concentrated in areas of seagoing rivers (1.50-364). The primary route for antibiotics entering Beibu Gulf was through riverine input. Precisely, florfenicol (FF) (n.d.-278 ng/L) discharged from livestock and poultry farms upstream of Nanliu River, predominantly in swine farming, constitutes the main pollutant in Beibu Gulf throughout the year. The Nanliu River (988 kg/a) accounts for 85% of the gulf's total annual antibiotic emission flux. Source analysis identified livestock and poultry farming, particularly swine farming, as the primary pollution source, contributing 58% in summer. Risk assessment reveals that algae (0.51 ± 0.56) exhibited relatively high sensitivity to antibiotics, presenting a medium-high risk at specific sites in Nanliu River during winter. Additionally, FF discharged from swine farming demonstrates a certain level of antibiotic resistance risk. Therefore, reinforcing control measures for antibiotic discharges from livestock and poultry farming, especially upstream of Nanliu River, can effectively mitigate antibiotic-related risks in the water bodies of Beibu Gulf.
Collapse
Affiliation(s)
- Chaoshuai Wei
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea; Coral Reef Research Center of China; School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Yinghui Wang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea; Coral Reef Research Center of China; School of Marine Sciences, Guangxi University, Nanning 530004, China; Institute of Green and Low Carbon Technology, Guangxi Institute of Industrial Technology, Nanning 530201, China
| | - Ruijie Zhang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea; Coral Reef Research Center of China; School of Marine Sciences, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China.
| | - Fang Liu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea; Coral Reef Research Center of China; School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Zheng-En Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong Province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Jingzhen Wang
- Guangxi Key Laboratory of Marine Environmental Change and Disaster in the Beibu Gulf, Bubei Gulf University, Qinzhou, 535011, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea; Coral Reef Research Center of China; School of Marine Sciences, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| |
Collapse
|
14
|
Teglia CM, Hadad HR, Uberti-Manassero N, Siano ÁS, Repetti MR, Goicoechea HC, Culzoni MJ, Maine MA. Removal of enrofloxacin using Eichhornia crassipes in microcosm wetlands. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:14845-14857. [PMID: 38285256 DOI: 10.1007/s11356-024-32146-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/18/2024] [Indexed: 01/30/2024]
Abstract
The global consumption of antibiotics leads to their possible occurrence in the environment. In this context, nature-based solutions (NBS) can be used to sustainably manage and restore natural and modified ecosystems. In this work, we studied the efficiency of the NBS free-water surface wetlands (FWSWs) using Eichhornia crassipes in microcosm for enrofloxacin removal. We also explored the behavior of enrofloxacin in the system, its accumulation and distribution in plant tissues, the detoxification mechanisms, and the possible effects on plant growth. Enrofloxacin was initially taken up by E. crassipes (first 100 h). Notably, it accumulated in the sediment at the end of the experimental time. Removal rates above 94% were obtained in systems with sediment and sediment + E. crassipes. In addition, enrofloxacin was found in leaves, petioles, and roots (8.8-23.6 µg, 11-78.3 µg, and 10.2-70.7 µg, respectively). Furthermore, enrofloxacin, the main degradation product (ciprofloxacin), and other degradation products were quantified in the tissues and chlorosis was observed on days 5 and 9. Finally, the degradation products of enrofloxacin were analyzed, and four possible metabolic pathways of enrofloxacin in E. crassipes were described.
Collapse
Affiliation(s)
- Carla M Teglia
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000, Santa Fe, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Hernán R Hadad
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Laboratorio de Química Analítica Ambiental, Instituto de Química Aplicada del Litoral (IQAL, CONICET-UNL), Facultad de Ingeniería Química, Universidad Nacional del Litoral (UNL), Santiago del Estero 2829, 3000, Santa Fe, Argentina
| | - Nora Uberti-Manassero
- Cátedra de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional del Litoral, Kreder 2805, Esperanza, Santa Fe, Argentina
| | - Álvaro S Siano
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Laboratorio de Péptidos Bioactivos (LPB), Departamento de Química Orgánica, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000, Santa Fe, Argentina
| | - María R Repetti
- Facultad de Ingeniería Química, Programa de Investigación y Análisis de Residuos y Contaminantes Químicos, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Héctor C Goicoechea
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María J Culzoni
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, 3000, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María A Maine
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Laboratorio de Química Analítica Ambiental, Instituto de Química Aplicada del Litoral (IQAL, CONICET-UNL), Facultad de Ingeniería Química, Universidad Nacional del Litoral (UNL), Santiago del Estero 2829, 3000, Santa Fe, Argentina
| |
Collapse
|
15
|
Qi R, Xiao G, Miao J, Zhou Y, Li Z, He Z, Zhang N, Song A, Pan L. Toxicity assessment and detoxification metabolism of sodium pentachlorophenol (PCP-Na) on marine economic species: a case study of Moerella iridescens and Exopalaemon carinicauda. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:113587-113599. [PMID: 37851259 DOI: 10.1007/s11356-023-30438-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/09/2023] [Indexed: 10/19/2023]
Abstract
Sodium pentachlorophenol (PCP-Na) is widespread in the marine environment; however, its impact on marine organisms remains under-researched. Moerella iridescens and Exopalaemon carinicauda are marine species of economic importance in China and under threat from PCP-Na pollution. Thus, this study aimed to assess the toxicity and detoxification metabolism of PCP-Na on M. iridescens and E. carinicauda. The study revealed that the 96 h median lethal concentration (LC50) of PCP-Na for M. iridescens and E. carinicauda were 9.895 mg/L and 14.143 mg/L, respectively. A species sensitivity distribution (SSD) for PCP-Na was developed specifically for marine organisms, determining a hazardous concentration to 5% of the species (HC5) of 0.047 mg/L. During the sub-chronic exposure period, PCP-Na accumulated significantly in M. iridescens and E. carinicauda, with highest concentrations of 41.22 mg/kg in the soft tissues of M. iridescens, 42.58 mg/kg in the hepatopancreas of E. carinicauda, and only 0.85 mg/kg in the muscle of E. carinicauda. Furthermore, the study demonstrated that detoxifying metabolic enzymes and antioxidant defense system enzymes of E. carinicauda responded stronger to PCP-Na compared to M. iridescens, suggesting that E. carinicauda may possess a stronger detoxification capacity. Notably, five biomarkers were identified and proposed for monitoring and evaluating PCP-Na contamination. Overall, the results indicated that M. iridescens and E. carinicauda exhibit greater tolerance to PCP-Na than other marine species, but they are susceptible to accumulating PCP-Na in their tissues, posing a significant health risk. Consequently, conducting aquatic health risk assessments in areas with potential PCP-Na contamination is strongly recommended.
Collapse
Affiliation(s)
- Ruicheng Qi
- Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Yushan Road 5, Qingdao, 266003, Qingdao, People's Republic of China
| | - Guoqiang Xiao
- Zhejiang Mariculture Research Institute, 325005, Wenzhou, People's Republic of China
| | - Jingjing Miao
- Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Yushan Road 5, Qingdao, 266003, Qingdao, People's Republic of China
| | - Yueyao Zhou
- Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Yushan Road 5, Qingdao, 266003, Qingdao, People's Republic of China
| | - Zeyuan Li
- Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Yushan Road 5, Qingdao, 266003, Qingdao, People's Republic of China
| | - Zhiheng He
- Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Yushan Road 5, Qingdao, 266003, Qingdao, People's Republic of China
| | - Ning Zhang
- Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Yushan Road 5, Qingdao, 266003, Qingdao, People's Republic of China
| | - Aimin Song
- Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Yushan Road 5, Qingdao, 266003, Qingdao, People's Republic of China
| | - Luqing Pan
- Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Yushan Road 5, Qingdao, 266003, Qingdao, People's Republic of China.
| |
Collapse
|
16
|
Yuan S, Huang J, Qian W, Zhu X, Wang S, Jiang X. Are Physical Sunscreens Safe for Marine Life? A Study on a Coral-Zooxanthellae Symbiotic System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15846-15857. [PMID: 37818715 DOI: 10.1021/acs.est.3c04603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Limited toxic and ecological studies were focused on physical sunscreen that is considered to have "safer performance", in which nanosize zinc oxide (nZnO) and nanosize titanium dioxide (nTiO2) generally are added as ultraviolet filters. Herein, the common button coral Zoanthus sp. was newly used to assess the toxic effects and underlying mechanisms of physical sunscreen. Results showed that physical sunscreen induced severe growth inhibition effects and largely compelled the symbiotic zooxanthellae, indicating that their symbiotic systems were threatened and, also, that neural and photosynthesis functions were influenced. Zn2+ toxicity and bioaccumulation were identified as the main toxic mechanisms, and nTiO2 particles released from physical sunscreen also displayed limited bioattachment and toxicity. Oxidative stress, determined by increased reactive oxygen species, superoxide dismutase, and malondialdehyde content, was indicated as another important toxic mechanism. Furthermore, when Zoanthus sp. was restored, the inhibited individual coral could be largely recovered after a short (3 d) exposure time; however, a longer exposure time damaged the coral irretrievably, which revealed the latent environmental risks of physical sunscreen. This study investigated the toxic effect of physical sunscreen on Zoanthus sp. in a relatively comprehensive manner, thus providing new insights into the toxic response of sunscreen on marine organisms.
Collapse
Affiliation(s)
- Shengwu Yuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environment Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing 100012, China
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Jingying Huang
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Wei Qian
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- School of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Xiaoshan Zhu
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- School of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Shuhang Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environment Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Xia Jiang
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environment Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing 100012, China
| |
Collapse
|
17
|
Xu W, Ahmed W, Mahmood M, Li W, Mehmood S. Physiological and biochemical responses of soft coral Sarcophyton trocheliophorum to doxycycline hydrochloride exposure. Sci Rep 2023; 13:17665. [PMID: 37848653 PMCID: PMC10582170 DOI: 10.1038/s41598-023-44383-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 10/07/2023] [Indexed: 10/19/2023] Open
Abstract
In light of the rapid expansion of the marine aquaculture industry, there has been widespread and irregular usage of aquatic drugs to combat biological diseases, which significantly impact the neighboring aquatic ecosystems. This study delves into the impact of the antibiotic aquatic drug known as doxycycline hydrochloride (DOX) on offshore soft corals, providing valuable data for the responsible use and management of aquatic drugs. In this investigation, we subjected Sarcophyton trocheliophorum to acute exposure to varying concentrations of DOX (0, 1, 5, and 10 mg L-1). We meticulously assessed critical parameters and observed alterations in protein levels, superoxide dismutase (SOD) activity, catalase (CAT) activity, lipid peroxidation (LPO), malondialdehyde (MDA) levels, Acid phosphatase (ACP) activity, alkaline phosphatase (AKP) activity, glutathione (GSH) concentration, glutathione S-transferase (GST) activity, glutathione Peroxidase (GSH-Px) activity, zooxanthellae density, and chlorophyll content. Our findings reveal that in the presence of DOX-induced environmental stress, there is a significant increase in LPO, MDA, chlorophyll, carotenoid levels, and the activities of ACP, GST, and GSH-Px in soft corals. Simultaneously, there is a noteworthy decrease in zooxanthellae density. Additionally, the protein concentration and SOD activity in soft corals experience substantial reduction when exposed to 5 mg L-1 DOX. Notably, CAT activity varies significantly in environments with 1 and 10 mg L-1 DOX. Moreover, these conditions exhibit a discernible influence on AKP activity, GSH content, and chlorophyll levels. These findings suggest that DOX exposure carries the potential for toxicity in aquaculture settings, affecting protein synthesis in soft corals and influencing oxidative stress, lipid peroxidation, immunity, and detoxification processes within these organisms. There is also a risk of compromising the coral defense system, potentially leading to coral bleaching. Furthermore, this study underscores the significant impact on photosynthesis, growth, and the metabolic dynamics of the coral-zooxanthellae symbiotic system. Consequently, our research offers vital insights into the mortality and bleaching effects of aquatic drugs on marine corals, offering a foundation for the prudent use and management of such substances.
Collapse
Affiliation(s)
- Wenxin Xu
- College of Ecology and Environment, Hainan University, Haikou, 570228, China
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China
| | - Waqas Ahmed
- College of Ecology and Environment, Hainan University, Haikou, 570228, China
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China
| | - Mohsin Mahmood
- College of Ecology and Environment, Hainan University, Haikou, 570228, China
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China
| | - Weidong Li
- College of Ecology and Environment, Hainan University, Haikou, 570228, China.
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China.
| | - Sajid Mehmood
- College of Ecology and Environment, Hainan University, Haikou, 570228, China.
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China.
| |
Collapse
|
18
|
Golding LA, Binet MT, Adams MS, Hochen J, Humphrey CA, Price GAV, Reichelt-Brushett AJ, Salmon M, Stauber JL. Acute and chronic toxicity of manganese to tropical adult coral (Acropora millepora) to support the derivation of marine manganese water quality guideline values. MARINE POLLUTION BULLETIN 2023; 194:115242. [PMID: 37453169 DOI: 10.1016/j.marpolbul.2023.115242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
Adult corals are among the most sensitive marine organisms to dissolved manganese and experience tissue sloughing without bleaching (i.e., no loss of Symbiodinium spp.) but there are no chronic toxicity data for this sensitive endpoint. We exposed adult Acropora millepora to manganese in 2-d acute and 14-d chronic experiments using tissue sloughing as the toxicity endpoint. The acute tissue sloughing median effect concentration (EC50) was 2560 μg Mn/L. There was no chronic toxicity to A. millepora at concentrations up to and including the highest concentration of 1090 μg Mn/L i.e., the chronic no observed effect concentration (NOEC). A coral-specific acute-to-chronic ratio (ACR) (EC50/NOEC) of 2.3 was derived. These data were combined with chronic toxicity data for other marine organisms in a species sensitivity distribution (SSD). Marine manganese guidelines were 190, 300, 390 and 570 μg Mn/L to provide long-term protection of 99, 95, 90, and 80 % of marine species, respectively.
Collapse
Affiliation(s)
- Lisa A Golding
- CSIRO, Environment, Tharawal Country, New Illawarra Road, Lucas Heights, New South Wales 2234, Australia.
| | - Monique T Binet
- CSIRO, Environment, Tharawal Country, New Illawarra Road, Lucas Heights, New South Wales 2234, Australia
| | - Merrin S Adams
- CSIRO, Environment, Tharawal Country, New Illawarra Road, Lucas Heights, New South Wales 2234, Australia
| | - Justin Hochen
- National Sea Simulator, Australian Institute of Marine Science, Townsville, Queensland 4810, Australia
| | - Craig A Humphrey
- National Sea Simulator, Australian Institute of Marine Science, Townsville, Queensland 4810, Australia
| | - Gwilym A V Price
- CSIRO, Environment, Tharawal Country, New Illawarra Road, Lucas Heights, New South Wales 2234, Australia; Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | | | - Matthew Salmon
- National Sea Simulator, Australian Institute of Marine Science, Townsville, Queensland 4810, Australia
| | - Jenny L Stauber
- CSIRO, Environment, Tharawal Country, New Illawarra Road, Lucas Heights, New South Wales 2234, Australia; La Trobe University, Wodonga, Victoria 3690, Australia
| |
Collapse
|
19
|
Hussain A, Kumar SHK, Prathiviraj R, Kumar AA, Renjith K, Kiran GS, Selvin J. The genome of Symbiodiniaceae-associated Stutzerimonas frequens CAM01 reveals a broad spectrum of antibiotic resistance genes indicating anthropogenic drift in the Palk Bay coral reef of south-eastern India. Arch Microbiol 2023; 205:319. [PMID: 37626254 DOI: 10.1007/s00203-023-03656-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023]
Abstract
An increase in antibiotic pollution in reef areas will lead to the emergence of antibiotic-resistant bacteria, leading to ecological disturbances in the sensitive coral holobiont. This study provides insights into the genome of antibiotics-resistant Stutzerimonas frequens CAM01, isolated from Favites-associated Symbiodiniaceae of a near-shore polluted reef of Palk Bay, India. The draft genome contains 4.67 Mbp in size with 52 contigs. Further genome analysis revealed the presence of four antibiotic-resistant genes, namely, adeF, rsmA, APH (3")-Ib, and APH (6)-Id that provide resistance by encoding resistance-nodulation-cell division (RND) antibiotic efflux pump and aminoglycoside phosphotransferase. The isolate showed resistance against 73% of the antibiotics tested, concurrent with the predicted AMR genes. Four secondary metabolites, namely Aryl polyene, NRPS-independent-siderophore, terpenes, and ectoine were detected in the isolate, which may play a role in virulence and pathogenicity adaptation in microbes. This study provides key insights into the genome of Stutzerimonas frequens CAM01 and highlights the emergence of antibiotic-resistant bacteria in coral reef ecosystems.
Collapse
Grants
- BT/PR40420/NDB/39/741/2020. Department of Biotechnology, Ministry of Science and Technology, India
- BT/PR40420/NDB/39/741/2020. Department of Biotechnology, Ministry of Science and Technology, India
- BT/PR40420/NDB/39/741/2020. Department of Biotechnology, Ministry of Science and Technology, India
- BT/PR40420/NDB/39/741/2020. Department of Biotechnology, Ministry of Science and Technology, India
- BT/PR40420/NDB/39/741/2020. Department of Biotechnology, Ministry of Science and Technology, India
Collapse
Affiliation(s)
- Afreen Hussain
- Department of Microbiology, Pondicherry University, Kalapet, Puducherry, 605014, India
| | - S Hari Krishna Kumar
- Department of Microbiology, Pondicherry University, Kalapet, Puducherry, 605014, India
| | - R Prathiviraj
- Department of Microbiology, Pondicherry University, Kalapet, Puducherry, 605014, India
| | - Ashish Ashwin Kumar
- Department of Microbiology, Pondicherry University, Kalapet, Puducherry, 605014, India
| | - Kalyani Renjith
- Department of Microbiology, Pondicherry University, Kalapet, Puducherry, 605014, India
| | - G Seghal Kiran
- Department of Food Science and Technology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Joseph Selvin
- Department of Microbiology, Pondicherry University, Kalapet, Puducherry, 605014, India.
| |
Collapse
|
20
|
Pei J, Hu J, Zhang R, Liu N, Yu W, Yan A, Han M, Liu H, Huang X, Yu K. Occurrence, bioaccumulation and ecological risk of organic ultraviolet absorbers in multiple coastal and offshore coral communities of the South China Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161611. [PMID: 36646224 DOI: 10.1016/j.scitotenv.2023.161611] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/06/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
The occurrence of organic ultraviolet absorbers (OUVAs) in coral reef regions has aroused widespread concern. This study focused on the occurrence, distribution, bioaccumulation and ecological risk of ten OUVAs in both coastal and offshore coral reef regions in the South China Sea. While the Σ10OUVAs was 85 % lower in the offshore seawater (15.1 ng/L) than in the coastal seawater (102.1 ng/L), the Σ10OUVAs was 21 % lower in the offshore corals (1.82 μg/g dry weight (dw)) than in the coastal corals (2.31 μg/g dw). This difference was speculated to relate to the high intensity of human activities in the coastal regions. Moreover, the offshore corals showed higher bioaccumulative capability toward OUVAs (log bioaccumulation factors (BAFs): 1.22-5.07) than the coastal corals (log BAFs: 0.17-4.38), which was presumably the influence of varied physiological status under different environmental conditions. The results of the ecological risk assessment showed that BP-3 resulted in 73 % of coastal corals and 20 % of offshore corals at a risk of bleaching. Therefore, the usage and discharge of BP-3 should be managed and controlled by the countries adjacent to the South China Sea for the protection of coral reefs.
Collapse
Affiliation(s)
- Jiying Pei
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China.
| | - Junjie Hu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Ruijie Zhang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China.
| | - Nai Liu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Wenfeng Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China.
| | - Annan Yan
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Minwei Han
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China.
| | - Huanxin Liu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Xueyong Huang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China.
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China.
| |
Collapse
|
21
|
Xu L, Chen H, Han X, Yu K, Wang Y, Du B, Zeng L. First report on per- and polyfluoroalkyl substances (PFASs) in coral communities from the Northern South China sea: Occurrence, seasonal variation, and interspecies differences. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120214. [PMID: 36150619 DOI: 10.1016/j.envpol.2022.120214] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/20/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
In this study, the contamination levels and seasonal variation of 22 PFASs were investigated in coastal reef-building corals (n = 68) from the northern South China Sea (SCS) during wet and dry seasons. Perfluorohexane sulfonate (PFHxS) was the predominant PFASs in all coral samples, representing 43% of the total PFAS. Long-chain PFASs, as well as PFAS alternatives, were frequently detected above the MQL (>88%) but showed relatively low concentrations compared to short-chain PFASs in most species and seasons. Seasonal variation of PFAS concentrations were observed in branching corals, indicating that the accumulation of PFASs may be associated with coral morphological structures. Interspecies differences in PFAS levels agree well with different bioaccumulation potentials among coral species. Redundancy analysis (RDA) showed that seasonal factor and coral genus could partly influence PFAS concentrations in coral tissues. In summary, our study firstly reported the occurrence of PFASs in coral communities from the SCS and highlights the necessity for future investigations on more toxicity data for coral communities.
Collapse
Affiliation(s)
- Lijia Xu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, China; Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Hui Chen
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Xu Han
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, Guangxi University, Nanning, 530004, China
| | - Yongzhi Wang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, China
| | - Bibai Du
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China
| | - Lixi Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou 511443, China.
| |
Collapse
|
22
|
Kang Y, Zhang R, Yu K, Han M, Pei J, Chen Z, Wang Y. Organochlorine pesticides (OCPs) in corals and plankton from a coastal coral reef ecosystem, south China sea. ENVIRONMENTAL RESEARCH 2022; 214:114060. [PMID: 35981611 DOI: 10.1016/j.envres.2022.114060] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/31/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Recent studies have indicated that coral mucus plays an important role in the bioaccumulation of a few organic pollutants by corals, but no relevant studies have been conducted on organochlorine pesticides (OCPs). Previous studies have also indicated that OCPs widely occur in a few coral reef ecosystems and have a negative effect on coral health. Therefore, this study focused on the occurrence and bioaccumulation of a few OCPs, such as dichlorodiphenyltrichloroethanes (DDTs), hexachlorobenzene (HCB) and p,p'-methoxychlor (MXC), in the coral tissues and mucus as well as in plankton and seawater from a coastal reef ecosystem (Weizhou Island) in the South China Sea. The results indicated that DDTs were the predominant OCPs in seawater and marine biota. Higher concentrations of OCPs in plankton may contribute to the enrichment of OCPs by corals. The significantly higher total OCP concentration (∑8OCPs) found in coral mucus than in coral tissues suggested that coral mucus played an essential role in resisting enrichment of OCPs by coral tissues. This study explored the different functions of coral tissues and mucus in OCP enrichment and biodegradation for the first time, highlighting the need for OCP toxicity experiments from both tissue and mucus perspectives.
Collapse
Affiliation(s)
- Yaru Kang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea; Coral Reef Research Center of China; School of Marine Sciences, Guangxi University, Nanning, 530004, China.
| | - Ruijie Zhang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea; Coral Reef Research Center of China; School of Marine Sciences, Guangxi University, Nanning, 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China.
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea; Coral Reef Research Center of China; School of Marine Sciences, Guangxi University, Nanning, 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China.
| | - Minwei Han
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea; Coral Reef Research Center of China; School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Jiying Pei
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea; Coral Reef Research Center of China; School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Zhenghua Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea; Coral Reef Research Center of China; School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Yinghui Wang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea; Coral Reef Research Center of China; School of Marine Sciences, Guangxi University, Nanning, 530004, China
| |
Collapse
|
23
|
Liu Y, Hua Z, Lu Y, Gu L, Luan C, Li X, Wu J, Chu K. Quinolone distribution, trophodynamics, and human exposure risk in a transit-station lake for water diversion in east China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119985. [PMID: 35985438 DOI: 10.1016/j.envpol.2022.119985] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/27/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Quinolone antibiotics (QNs) pollution in lake environments is increasingly raising public concern due to their potential combined toxicity and associated risks. However, the spatiotemporal distribution and trophodynamics of QNs in transit-station lakes for water diversion are not well documented or understood. In this study, a comprehensive investigation of QNs in water, sediment, and aquatic fauna, including norfloxacin (NOR), ciprofloxacin (CIP), enrofloxacin (ENR), and ofloxacin (OFL), was conducted in Luoma Lake, a major transit station for the eastern route of the South-to-North Water Diversion Project in China. The target QNs were widely distributed in the water (∑QNs: 70.12 ± 62.79 ng/L) and sediment samples (∑QNs: 13.35 ± 10.78 ng/g dw) in both the non-diversion period (NDP) and the diversion period (DP), where NOR and ENR were predominant. All the QNs were detected in all biotic samples in DP (∑QNs: 80.04 ± 20.59 ng/g dw). The concentration of ∑QNs in the water in NDP was significantly higher than those in DP, whereas the concentration in the sediments in NDP was comparable to those in DP. ∑QNs in the water-sediment system exhibited decreasing trends from northwest (NW) to southeast (SE) in both periods; however, the Koc (organic carbon normalized partition coefficients) of individual QNs in DP sharply rose compared with those in NDP, which indicated that water diversion would alter the environmental fate of QNs in Luoma Lake. In DP, all QNs, excluding NOR, were all biodiluted across the food web; whereas their bioaccumulation potentials in the SE subregion were higher than those in the NW subregion, which was in contrast to the spatial distribution of their exposure concentrations. The estimated daily QN intakes via drinking water and aquatic products suggested that residents in the SE side were exposed to greater health risks, despite less aquatic pollution in the region.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, PR China
| | - Zulin Hua
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, PR China
| | - Ying Lu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, PR China
| | - Li Gu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, PR China
| | - Chengmei Luan
- Jiangsu Province Hydrology and Water Resources Investigation Bureau, Nanjing, 210098, PR China
| | - Xiaoqing Li
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, PR China
| | - Jianyi Wu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, PR China
| | - Kejian Chu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, PR China.
| |
Collapse
|
24
|
Madikizela LM, Ncube S. Health effects and risks associated with the occurrence of pharmaceuticals and their metabolites in marine organisms and seafood. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155780. [PMID: 35537516 DOI: 10.1016/j.scitotenv.2022.155780] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/21/2022] [Accepted: 05/04/2022] [Indexed: 06/14/2023]
Abstract
Pharmaceuticals and their metabolites are continuously invading the marine environment due to their input from the land such as their disposal into the drains and sewers which is mostly followed by their transfer into wastewater treatment plants (WWTPs). Their incomplete removal in WWTPs introduces pharmaceuticals into oceans and surface water. To date, various pharmaceuticals and their metabolites have been detected in marine environment. Their occurrence in marine organisms raises concerns regarding toxic effects and development of drug resistant genes. Therefore, it is crucial to review the health effects and risks associated with the presence of pharmaceuticals and their metabolites in marine organisms and seafood. This is an important study area which is related to the availability of seafood and its quality. Hence, this study provides a critical review of the information available in literature which relates to the occurrence and toxic effects of pharmaceuticals in marine organisms and seafood. This was initiated through conducting a literature search focussing on articles investigating the occurrence and effects of pharmaceuticals and their metabolites in marine organisms and seafood. In general, most studies on the monitoring of pharmaceuticals and their metabolites in marine environment are conducted in well developed countries such as Europe while research in developing countries is still limited. Pharmaceuticals present in freshwater are mostly found in seawater and marine organisms. Furthermore, the toxicity caused by different pharmaceutical mixtures was observed to be more severe than that of individual compounds.
Collapse
Affiliation(s)
- Lawrence Mzukisi Madikizela
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, 1710, South Africa.
| | - Somandla Ncube
- Department of Chemistry, Sefako Makgatho Health Sciences University, P.O Box 60, Medunsa 0204, South Africa
| |
Collapse
|
25
|
Han M, Liu F, Kang Y, Zhang R, Yu K, Wang Y, Wang R. Occurrence, distribution, sources, and bioaccumulation of polycyclic aromatic hydrocarbons (PAHs) in multi environmental media in estuaries and the coast of the Beibu Gulf, China: a health risk assessment through seafood consumption. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:52493-52506. [PMID: 35258733 DOI: 10.1007/s11356-022-19542-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
The coastal zone is a crucial transitional area between land and ocean, which is facing enormous pressure due to global climate change and anthropogenic activities. It is essential to pay close attention to the pollution caused by polycyclic aromatic hydrocarbons (PAHs) in the coastal environment and their effect on human health. The pollution status of PAHs was investigated in the Beibu Gulf, taking into consideration various environmental media. The results showed that the total concentration of 16 PAHs (Σ16PAHs) was significantly higher in winter than in summer. Compared to the coastal area, the status of PAHs in the estuarine areas was found to be more severe in summer, while the regional difference was insignificant in winter. In summer, the Σ16PAHs in estuarine waters (71.4 ± 9.58 ng/L) > coastal waters (50.4 ± 9.65 ng/L); estuarine sediment (146 ± 116 ng/g) > coastal zone (76.9 ± 108 ng/g). The source apportionment indicated that spilled oil, biomass, and coal burning were the primary sources of PAHs in the water. The predominant sources of pollution in the sediments were spilled oil, fossil fuel burning, and vehicle emissions. With regard to the status of PAHs in marine organisms in the coastal area of the Beibu Gulf, the highest average concentration of PAHs was indicated in shellfishes (183 ± 165 ng/g), followed by fishes (73.7 ± 57.2 ng/g), shrimps (42.7 ± 19.2 ng/g), and crabs (42.7 ± 19.2 ng/g) in Beibu Gulf coastal area. The calculated bioaccumulation factor indicates a low bioaccumulation capacity of PAHs in various seafood considering the ambient environment. The human health risk assessment considering multiple age groups indicates minimal health risk on accidental ingestion of PAHs through seafood. However, it is suggested that the intake of shellfish in children be controlled.
Collapse
Affiliation(s)
- Minwei Han
- Guangxi Laboratory On the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Coral Reef Research Center of China, Guangxi University, Nanning, 530004, China
| | - Fang Liu
- Guangxi Laboratory On the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Coral Reef Research Center of China, Guangxi University, Nanning, 530004, China
| | - Yaru Kang
- Guangxi Laboratory On the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Coral Reef Research Center of China, Guangxi University, Nanning, 530004, China
| | - Ruijie Zhang
- Guangxi Laboratory On the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Coral Reef Research Center of China, Guangxi University, Nanning, 530004, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China.
| | - Kefu Yu
- Guangxi Laboratory On the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Coral Reef Research Center of China, Guangxi University, Nanning, 530004, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China.
| | - Yinghui Wang
- Guangxi Laboratory On the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Coral Reef Research Center of China, Guangxi University, Nanning, 530004, China
| | - Ruixuan Wang
- Guangxi Laboratory On the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Coral Reef Research Center of China, Guangxi University, Nanning, 530004, China
| |
Collapse
|
26
|
Tang J, Zhang J, Su L, Jia Y, Yang Y. Bioavailability and trophic magnification of antibiotics in aquatic food webs of Pearl River, China: Influence of physicochemical characteristics and biotransformation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153285. [PMID: 35066051 DOI: 10.1016/j.scitotenv.2022.153285] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
Information on trophodynamics of antibiotics and subsequent relationships to antibiotic metabolism in river ecosystem is still unavailable, limiting the evaluation of their bioaccumulation and trophodynamics in aquatic food webs. In the present study, concentrations and relative abundance of 11 antibiotics were investigated in surface water, sediment and 22 aquatic taxa (e.g., fish, invertebrates and plankton) from Pearl River, South China. The logarithmic bioaccumulation factors (log BAFs) of antibiotics generally showed positive relationships with their log D (pH-adjusted log Kow), implying that their bioaccumulation of ionizable antibiotics depends on it is in an ionized form. Higher BAFs of antibiotics in benthic biota were observed than those in fish, indicating that sediment ingestion was a possible route of antibiotic exposure. The logarithmic biota-sediment accumulation factors (log BSAFs) of benthic biota increased when log D increased from -4.79 to -0.01, but declined thereafter. Trophodynamics of antibiotics was investigated, and intrinsic clearance were measured in liver microsomes of Tilapia zillii (trophic level [TL]: 2.5), Anabas testudineu (TL: 3.9), and Coilia grayi (TL: 5.0). Only ciprofloxacin (CFX) showed significant trophic magnification (Trophic Magnification Factor [TMF] = 1.95), and a higher metabolism rate in lower trophic levels suggest that metabolic biotransformation play a significant role in driving biomagnification of antibiotics.
Collapse
Affiliation(s)
- Jinpeng Tang
- Research Center of Hydrobiology, Department of Ecology, Jinan University, Guangzhou 510632, PR China; School of Ecology, Sun Yat-sen University, Guangzhou 510006, PR China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 511443, PR China.
| | - Jinhua Zhang
- Research Center of Hydrobiology, Department of Ecology, Jinan University, Guangzhou 510632, PR China
| | - Linhui Su
- Research Center of Hydrobiology, Department of Ecology, Jinan University, Guangzhou 510632, PR China
| | - Yanyan Jia
- School of Ecology, Sun Yat-sen University, Guangzhou 510006, PR China.
| | - Yang Yang
- Research Center of Hydrobiology, Department of Ecology, Jinan University, Guangzhou 510632, PR China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 511443, PR China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou 510632, PR China.
| |
Collapse
|
27
|
Ashok A, Høj L, Brinkman DL, Negri AP, Agusti S. Food-chain length determines the level of phenanthrene bioaccumulation in corals. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 297:118789. [PMID: 34990739 DOI: 10.1016/j.envpol.2022.118789] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/12/2021] [Accepted: 01/01/2022] [Indexed: 06/14/2023]
Abstract
Exposure from the dissolved-phase and through food-chains contributes to bioaccumulation of polycyclic aromatic hydrocarbons (PAHs) in organisms such as fishes and copepods. However, very few studies have investigated the accumulation of PAHs in corals. Information on dietary uptake contribution to PAHs accumulation in corals is especially limited. Here, we used Cavity-Ring-Down Spectroscopy (CRDS) to investigate the uptake rates and accumulation of a 13C-labeled PAH, phenanthrene, in Acropora millepora corals over 14 days. Our experiment involved three treatments representing exposure levels of increasing food-chain length. In Level W, corals were exposed to 13C-phenanthrene directly dissolved in seawater. In Level 1 representing herbivory, Dunaliella salina microalgal culture pre-exposed to 13C-phenanthrene for 48 h was added to the coral treatment jars. In Level 2 representing predation, corals were provided a diet of copepod (Parvocalanus crassirostris) nauplii fed on D. salina pre-exposed to 13C-phenanthrene. Bioconcentration factors (BCF) and bioaccumulation factors (BAF) were calculated as appropriate for all organisms, and biomagnification factors (BMF) were calculated for A. millepora. We found that while phenanthrene uptake rates were not significantly different for the treatments, the accumulated concentration in corals was significantly higher in Level W (33.5 ± 2.83 mg kg-1) than in Level 1 (27.55 ± 2.77 mg kg-1) and Level 2 (29.36 ± 3.84 mg kg-1). Coral log BAF values increased with food-chain length; Level 2 log BAF (6.45) was higher than Level W log BCF (4.18) and Level 1 log BAF (4.5). Coral BMF was also higher for Level 2 than for Level 1. Exposure to dissolved or diet-bound phenanthrene had no significant effect on the coral symbionts' photosynthetic efficiency (Fv/Fm) as monitored by pulse-amplitude-modulation (PAM) fluorometry, indicating the PAH can be accumulated without toxic effects to their Photosystem II. Our study highlights the critical role of dietary exposure for pollutant accumulation in corals.
Collapse
Affiliation(s)
- Ananya Ashok
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| | - Lone Høj
- Australian Institute of Marine Science (AIMS), Townsville, Queensland, Australia
| | - Diane L Brinkman
- Australian Institute of Marine Science (AIMS), Townsville, Queensland, Australia
| | - Andrew P Negri
- Australian Institute of Marine Science (AIMS), Townsville, Queensland, Australia
| | - Susana Agusti
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
28
|
Kang Y, Zhang R, Yu K, Han M, Wang Y, Huang X, Wang R, Liu F. First report of organochlorine pesticides (OCPs) in coral tissues and the surrounding air-seawater system from the South China Sea: Distribution, source, and environmental fate. CHEMOSPHERE 2022; 286:131711. [PMID: 34340115 DOI: 10.1016/j.chemosphere.2021.131711] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
The levels, fate, and potential sources of 22 organochlorine pesticides (OCPs) in coral tissues and the surrounding air-seawater system from the South China Sea (SCS) were elucidated for the first time. ∑22OCPs (total concentration of 22 OCPs) (16.1-223 pg L-1) was relatively higher in coastal seawater than in offshore seawater, which may be the widespread influence of coastal pollution inputs under the western boundary current. The atmospheric ∑22OCPs were predominantly distributed in the gas phase (48.0-2264 pg m-3) and were mainly influenced by continental air mass origins. The air-seawater exchange of selected OCPs showed that OCPs tended to migrate from the atmosphere to seawater. The distribution of ∑22OCPs in coral tissues (0.02-52.2 ng g-1 dw) was significantly correlated with that in air samples, suggesting that OCPs may have a migration pattern of atmosphere-ocean corals in the SCS. Corals exhibited higher bioaccumulation ability (Log BAFs: 2.42-7.41) for OCPs. Source analysis showed that the new application of technical Chlordanes (CHLs) was primarily responsible for the current levels of CHLs in the surrounding environment over the SCS, while historical residues were the primary sources of other OCPs.
Collapse
Affiliation(s)
- Yaru Kang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Ruijie Zhang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China.
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China.
| | - Minwei Han
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Yinghui Wang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Xueyong Huang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Ruixuan Wang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Fang Liu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China
| |
Collapse
|
29
|
Ranjbar Jafarabadi A, Dashtbozorg M, Raudonytė-Svirbutavičienė E, Riyahi Bakhtiari A. A potential threat to the coral reef environments: Polybrominated diphenyl ethers and phthalate esters in the corals and their ambient environment (Persian Gulf, Iran). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 775:145822. [PMID: 33631596 DOI: 10.1016/j.scitotenv.2021.145822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/08/2021] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Pollution of the surrounding habitat poses one of the biggest threats to the coral health and even survival. This study focuses on the occurrence, distribution, bioaccumulation and bioconcentration of polybrominated diphenyl ethers (PBDEs) and phthalate esters (PAEs) in corals, their zooxanthellae and mucus, as well as in their ambient environment in Larak coral reef (Persian Gulf) for the first time. The highest concentrations of the pollutants were recorded in mucus, followed by zooxanthellae, tissue and skeleton. Soft corals with higher lipid content contained more PBDEs and PAEs. Pollutants were both efficiently bioconcentrated from water and bioaccumulated from the ambient sediment, albeit bioconcentration played the most prominent role. Elevated PBDEs and especially PAEs concentrations were detected in the skeletons of the bleached corals if compared to the skeleton samples of the non-bleached individuals.
Collapse
Affiliation(s)
- Ali Ranjbar Jafarabadi
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran.
| | - Mehdi Dashtbozorg
- Department of Environmental Science, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Alireza Riyahi Bakhtiari
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran.
| |
Collapse
|
30
|
Zhang R, Han M, Yu K, Kang Y, Wang Y, Huang X, Li J, Yang Y. Distribution, fate and sources of polycyclic aromatic hydrocarbons (PAHs) in atmosphere and surface water of multiple coral reef regions from the South China Sea: A case study in spring-summer. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125214. [PMID: 33529835 DOI: 10.1016/j.jhazmat.2021.125214] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Our previous study revealed PAHs' wide occurrence in corals from multiple coral reef regions (CRRs) in the South China Sea. However, little is known about their occurrence, distribution, fate, and sources in the ambient environment of these CRRs. This study aimed to resolve these research gaps. The results showed ∑15PAHs (total concentrations of 15 US EPA priority controlled PAHs exclude naphthalene) in the atmosphere (gas-phase: 0.31-49.6 ng m-3; particle-phase: 2.6-649 pg m-3) were mainly influenced by air mass origins. Southwesterly wind caused higher ∑15PAHs than the southeasterly wind. The ∑15PAHs in seawater from the nearshore (462 ± 244 ng L-1) was higher than that from offshore Zhongsha Islands (80.5 ± 72.1 ng L-1) because of the effect of terrigenous pollution and ocean current. Source apportionment indicated that the mixed sources of spilled oil and combustion from neighboring countries were the main contributors to PAHs in these CRRs. The total deposition fluxes showed that PAHs tended to migrate from the atmosphere to seawater. Global warming may inhibit this process, but PAHs still have a migration pattern of atmosphere-ocean-corals, which will further increase the environmental pressure on coral reef ecology.
Collapse
Affiliation(s)
- Ruijie Zhang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea; Coral Reef Research Center of China; School of Marine Sciences, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China.
| | - Minwei Han
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea; Coral Reef Research Center of China; School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea; Coral Reef Research Center of China; School of Marine Sciences, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China.
| | - Yaru Kang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea; Coral Reef Research Center of China; School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Yinghui Wang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea; Coral Reef Research Center of China; School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Xueyong Huang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea; Coral Reef Research Center of China; School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Jun Li
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Ying Yang
- School of Marine Sciences, SunYat-SenUniversity, Guangzhou 510006, China
| |
Collapse
|
31
|
Chen H, Xu L, Zhou W, Han X, Zeng L. Occurrence, distribution and seasonal variation of chlorinated paraffins in coral communities from South China Sea. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123529. [PMID: 32721639 DOI: 10.1016/j.jhazmat.2020.123529] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 06/11/2023]
Abstract
Our previous study revealed bioaccumulation and trophic magnification of chlorinated paraffins (CPs) in marine organisms. However, little is known about the occurrence and distribution of CPs in coral reef ecosystems. In this study, the levels of short-chain chlorinated paraffins (SCCPs) and medium-chain chlorinated paraffins (MCCPs) were determined in ten common coral species from the coastal regions of Hainan Island, South China Sea. SCCPs and MCCPs were detected in all coral species in concentrations ranging from 184 to 7,410 and 305 to 14,800 ng g-1 lw, respectively. In most of the coral species, congener group patterns of the SCCPs and MCCPs were dominated by C10Cl6-8 and C14Cl7-8, respectively. The CP levels and congener group patterns changed slightly between the dry and wet seasons. Redundancy analyses indicated that the accumulation patterns of CPs in different corals were partly influenced by Symbiodinium densities and coral species. Significant negative correlations were found between Symbiodinium densities and CP levels. This is the first report of CP exposure in reef corals and highlights the need for CP toxicity data to evaluate the health of coral reef ecosystems.
Collapse
Affiliation(s)
- Hui Chen
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou, 511443, China; Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Science & Technology, Guangzhou, 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou, 510650, China
| | - Lijia Xu
- South China Institute of Environmental Sciences, The Ministry of Ecology and Environment of PRC, Guangzhou, 510530, China
| | - Wei Zhou
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou, 511443, China
| | - Xu Han
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou, 511443, China
| | - Lixi Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, Guangzhou, 511443, China.
| |
Collapse
|
32
|
Chen T, Li S, Zhao J, Feng Y. Uranium-thorium dating of coral mortality and community shift in a highly disturbed inshore reef (Weizhou Island, northern South China Sea). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 752:141866. [PMID: 32889282 DOI: 10.1016/j.scitotenv.2020.141866] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/19/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
Inshore coral habitats are at high risk of loss due to a combination of climate warming and regional-scale human impacts. As a result, they have undergone significant declines. Direct evidence of acute and chronic disturbance on most inshore coral assemblages is limited. Long-term, periodical surveys and historical baseline data essential for effective management are lacking. Using high-precision uranium-thorium (UTh) dating, we reconstruct a ~100-year-long history of extensive coral loss, changes in coral community structure, and a shifting baseline. The data were collected at Weizhou Island, northern South China Sea (SCS), which has highly disturbed inshore coral habitats that are typical globally. According to our UTh dates, major coral mortalities around Weizhou Island have occurred since the 1950s, with increasing frequency and severity since the 1980s. The extensive loss of branching Acropora and collapse of coral communities with peaks around 1960, 1984, and 1998 are accompanied by a shift toward low coral cover and noncoral-dominated assemblages. Prior to this collapse, the local coral community structure sustained remarkable long-term stability over millennia. The timing of the Acropora loss and massive coral mortalities coincides with multiple acute and chronic, natural and anthropogenic disturbance events. We suggest that priority should be given to directly addressing the causes of degradation and effectively controlling chronic disturbances before attempting to restore reef ecosystems. This is probably the only way to solve the "wicked problem" of sustaining the key functions and ecosystem services of inshore coral habitats such as those of Weizhou Island, northern SCS.
Collapse
Affiliation(s)
- Tianran Chen
- Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China.
| | - Shu Li
- Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Jianxin Zhao
- Radiogenic Isotope Facility, School of Earth and Environmental Sciences, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Yuexing Feng
- Radiogenic Isotope Facility, School of Earth and Environmental Sciences, University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
33
|
Wu Q, Pan CG, Wang YH, Xiao SK, Yu KF. Antibiotics in a subtropical food web from the Beibu Gulf, South China: Occurrence, bioaccumulation and trophic transfer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:141718. [PMID: 32889462 DOI: 10.1016/j.scitotenv.2020.141718] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 06/11/2023]
Abstract
Antibiotics are of particular concern because of their ubiquity in aquatic environment and long-term adverse effects on aquatic organisms and humans. However, there is no information about the bioaccumulation and trophic magnification of antibiotics in subtropical environments. In this study, we determined the concentrations of 22 antibiotics to investigate their occurrence, bioaccumulation and trophic magnification in a subtropical food web from the Beibu Gulf. The total concentrations of target antibiotics ranged from 52.94-77.76 ng/L in seawater, 9.69-15.43 ng/g dry weight (dw) in sediment, and 0.68-4.75 ng/g wet weight (ww) in marine organisms, respectively. Macrolides were the predominant antibiotics in water, while fluoroquinolones were more abundant in sediment and biota samples. The total concentrations of target antibiotics in examined marine taxa descended in the order: crustacean > cephalopod > fish, with antibiotic profiles displaying distinct difference among taxa. Log BAFs (bioaccumulation factor) for antibiotics in all organisms ranged from -0.50 for erythromycin-H2O (ETM-H2O) to 2.82 for sulfamonomethoxine (SMM). Significantly negative correlation was observed between the log Dow and log BAF values (p < .05), indicating that log Dow is a good predictor of antibiotics bioaccumulation potential in marine organisms. The trophic magnification factors (TMFs) for sulfadiazine (SDZ) and enoxacin (ENX) were greater than unity, suggesting the trophic magnification of these chemicals through the food web. In contrast, enrofloxacin (ENR), ciprofloxacin (CIX), ofloxacin (OFX), norfloxacin (NOX), ETM-H2O and trimethoprim (TMP) were biodiluted in the food web from the Beibu Gulf. This study provides substantial information on the fate and trophic transfer of antibiotics in a subtropical marine ecosystem.
Collapse
Affiliation(s)
- Qi Wu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; Coral Reef Research Center of China, Guangxi University, Nanning 530004, China; School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Chang-Gui Pan
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; Coral Reef Research Center of China, Guangxi University, Nanning 530004, China; School of Marine Sciences, Guangxi University, Nanning 530004, China.
| | - Ying-Hui Wang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; Coral Reef Research Center of China, Guangxi University, Nanning 530004, China; School of Marine Sciences, Guangxi University, Nanning 530004, China.
| | - Shao-Ke Xiao
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; Coral Reef Research Center of China, Guangxi University, Nanning 530004, China; School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Ke-Fu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning 530004, China; Coral Reef Research Center of China, Guangxi University, Nanning 530004, China; School of Marine Sciences, Guangxi University, Nanning 530004, China
| |
Collapse
|
34
|
Caroselli E, Frapiccini E, Franzellitti S, Palazzo Q, Prada F, Betti M, Goffredo S, Marini M. Accumulation of PAHs in the tissues and algal symbionts of a common Mediterranean coral: Skeletal storage relates to population age structure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140781. [PMID: 32673924 DOI: 10.1016/j.scitotenv.2020.140781] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/01/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widespread and harmful environmental pollutants that threaten marine ecosystems. Assessing their level and source is crucial to estimate the potential risks for marine organisms, as PAHs represent an additional threat to organism resilience under ongoing climatic change. Here we applied the QuEChERS extraction method to quantify four PAHs (i.e. acenaphthene, fluorene, fluoranthene, and pyrene) in three biological compartments (i.e. skeleton, tissue, and zooxanthellae symbiotic algae) of adult and old specimens of a scleractinian coral species (Balanophyllia europaea) that is widespread throughout the Mediterranean Sea. A higher concentration of all four investigated PAHs was observed in the zooxanthellae, followed by the coral tissue, with lowest concentration in the skeleton, consistently with previous studies on tropical species. In all the three biological compartments, the concentration of low molecular weight PAHs was higher with respect to high-molecular weight PAHs, in agreement with their bioaccumulation capabilities. PAH concentration was unrelated to skeletal age. Observed PAHs were of petrogenic origin, reflecting the pollution sources of the sampling area. By coupling PAH data with population age structure data measured in the field, the amount of PAHs stored in the long term (i.e. up to 20 years) in coral skeletons was quantified and resulted in 53.6 ng m-2 of acenaphthene, 69.4 ng m-2 of fluorene, 2.7 ng m-2 of fluoranthene, and 11.7 ng m-2 of pyrene. This estimate provides the basis for further assessments of long-term sequestration of PAHs from the marine environment in the whole Mediterranean, given the widespread distribution of the investigated coral species.
Collapse
Affiliation(s)
- Erik Caroselli
- Marine Science Group, Department of Biological, Geological and Environmental Sciences, University of Bologna, via Selmi 3, 40126 Bologna, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1/N, 61032 Fano, Italy.
| | - Emanuela Frapiccini
- Institute of Biological Resources and Marine Biotechnology (IRBIM), National Research Council (CNR), Largo Fiera della Pesca 2, 60125 Ancona, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1/N, 61032 Fano, Italy.
| | - Silvia Franzellitti
- Animal and Environmental Physiology Laboratory, Department of Biological, Geological and Environmental Sciences, University of Bologna, via S. Alberto 163, 48123 Ravenna, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1/N, 61032 Fano, Italy.
| | - Quinzia Palazzo
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1/N, 61032 Fano, Italy.
| | - Fiorella Prada
- Marine Science Group, Department of Biological, Geological and Environmental Sciences, University of Bologna, via Selmi 3, 40126 Bologna, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1/N, 61032 Fano, Italy.
| | - Mattia Betti
- Institute of Biological Resources and Marine Biotechnology (IRBIM), National Research Council (CNR), Largo Fiera della Pesca 2, 60125 Ancona, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1/N, 61032 Fano, Italy.
| | - Stefano Goffredo
- Marine Science Group, Department of Biological, Geological and Environmental Sciences, University of Bologna, via Selmi 3, 40126 Bologna, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1/N, 61032 Fano, Italy.
| | - Mauro Marini
- Institute of Biological Resources and Marine Biotechnology (IRBIM), National Research Council (CNR), Largo Fiera della Pesca 2, 60125 Ancona, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Viale Adriatico 1/N, 61032 Fano, Italy.
| |
Collapse
|
35
|
Wang W, Wang J, Nie H, Fan R, Huang Y. Occurrence, trophic magnification and potential risk of short-chain chlorinated paraffins in coral reef fish from the Nansha Islands, South China Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:140084. [PMID: 32554110 DOI: 10.1016/j.scitotenv.2020.140084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/25/2020] [Accepted: 06/07/2020] [Indexed: 05/22/2023]
Abstract
As emerging persistent organic pollutants in marine environment, short-chain chlorinated paraffins (SCCPs) have attracted increasing attentions recently. Coral reefs are important ocean ecosystems. However, data on SCCP pollution in the coral reef regions is still unavailable. In the present work, bioaccumulation of SCCPs in the coral reef ecosystems was reported for the first time. SCCP concentrations in coral reef fish from the Nansha Islands of the South China Sea were in the range of 37.9-25,400 ng/g lipid weight (lw) (average: 4400 ± 6590 ng/g lw; median: 1020 ng/g lw). C10 SCCPs were the dominating SCCP homologues, accounting for 59% to 80% of the total SCCPs (average: 70 ± 5.0%), followed by C11 SCCPs (average: 23 ± 4.5%). Regarding chlorine substitution, SCCPs were dominated by Cl7 SCCPs (average: 45 ± 2.5%) and Cl8 SCCPs (average: 30 ± 5.4%). Trophic magnification factor (TMF) of total SCCPs was 8.5, indicating trophic magnification potential of SCCPs in the coral reef ecosystems. In addition, a parabolic relationship was established between TMFs and log Kow of specific SCCP homologues. SCCP residues in the coral reef fish from the Nansha Islands of the South China Sea did not pose significant risk to human health.
Collapse
Affiliation(s)
- Wenjing Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jun Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Huayue Nie
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Rui Fan
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yumei Huang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
36
|
Liu S, Su H, Pan YF, Xu XR. Spatial and seasonal variations of antibiotics and antibiotic resistance genes and ecological risks in the coral reef regions adjacent to two typical islands in South China Sea. MARINE POLLUTION BULLETIN 2020; 158:111424. [PMID: 32753208 DOI: 10.1016/j.marpolbul.2020.111424] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
Although the occurrence of antibiotics and antibiotic resistance genes (ARGs) in aquatic environmental has been widely reported, the distribution and variations of these emerging contaminants in the coral reef regions remain unclear. This study investigated the occurrence of these contaminants, and their spatial and seasonal variations in both coral reef regions and non-coral reef regions adjacent to two typical islands in the South China Sea. Eighteen antibiotics and seven ARGs were detected in the surface water with total concentrations ranging from 43.2 to 441 ng/L, and 2.11 × 104 to 8.00 × 106 copies/L, respectively. Erythromycin-H2O was the most dominant antibiotic in all samples. QnrD was dominant in the dry season, whereas sul1, sul2, and floR were the most abundant in the wet season, indicating obvious seasonal variations. The distribution of ARGs was mainly influenced by changes in salinity caused by anthropogenic activities in wet season.
Collapse
Affiliation(s)
- Shan Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Haochang Su
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, P.R.China, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China.
| | - Yun-Feng Pan
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang-Rong Xu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China
| |
Collapse
|
37
|
Liang J, Yu K, Wang Y, Huang X, Huang W, Qin Z, Wang G, Su H, Chen B, Wu Z. Diazotroph Diversity Associated With Scleractinian Corals and Its Relationships With Environmental Variables in the South China Sea. Front Physiol 2020; 11:615. [PMID: 32625112 PMCID: PMC7314963 DOI: 10.3389/fphys.2020.00615] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/15/2020] [Indexed: 11/13/2022] Open
Abstract
Coral reef ecosystems cannot operate normally without an effective nitrogen cycle. For oligotrophic coral reef areas, coral-associated diazotrophs are indispensable participants in the nitrogen cycle. However, the distribution of these diazotrophs and the correlation with the physical and chemical variables of the surrounding seawater remain unclear. To this end, 68 scleractinian coral colonies were sampled from 6 coral reef areas with different environmental variables in the South China Sea to investigate the composition of associated diazotrophs based on nifH gene amplification using high-throughput sequencing. The six coral reefs can be clearly divided into two types (fringing reefs and island reefs), are affected by varying degrees of human activities and are located at different latitudes from 9°20’06”N to 22°34’55”N with different seawater temperatures. Alpha- and beta-diversity analyses showed that the distribution of diazotrophs among coral reefs exhibited significant geographical fluctuations (p ≤ 0.05) and non-significant interspecific fluctuations (p > 0.05). The predominant bacterial phyla included Proteobacteria, Chlorobi, Cyanobacteria, and two unclassified phyla. Chlorobi exhibited a relative abundance of 47–96% in coral samples from the high-latitude Daya Bay fringing reef affected by eutrophication. Unclassified bacteria II, with a relative abundance of 28–87%, was found in all coral samples from the midlatitude Luhuitou fringing reef affected by eutrophication. However, unclassified bacteria I and Proteobacteria dominated (>80% relative abundance) in most of the coral samples from the Weizhou Island fringing reef, which is far from land, and three island reefs (Huangyan Island, Xinyi Reef, and Sanjiao Reef) at relatively low latitudes. At the genus level, some core diazotrophs were found in different coral sample groups. In addition, correlation analysis with various environmental variables revealed that the variables were positively or negatively correlated with different diazotrophic genera. Coral-associated diazotrophs were common among coral individuals. However, their composition was closely related to the different environmental variables. These results provide insights into the geographical distribution characteristics of coral-associated diazotrophs and their evolutionary trends in response to environmental change in the South China Sea.
Collapse
Affiliation(s)
- Jiayuan Liang
- Coral Reef Research Center of China, Guangxi University, Nanning, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Nanning, China.,School of Marine Sciences, Guangxi University, Nanning, China
| | - Kefu Yu
- Coral Reef Research Center of China, Guangxi University, Nanning, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Nanning, China.,School of Marine Sciences, Guangxi University, Nanning, China
| | - Yinghui Wang
- Coral Reef Research Center of China, Guangxi University, Nanning, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Nanning, China.,School of Marine Sciences, Guangxi University, Nanning, China
| | - Xueyong Huang
- Coral Reef Research Center of China, Guangxi University, Nanning, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Nanning, China.,School of Marine Sciences, Guangxi University, Nanning, China
| | - Wen Huang
- Coral Reef Research Center of China, Guangxi University, Nanning, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Nanning, China.,School of Marine Sciences, Guangxi University, Nanning, China
| | - Zhenjun Qin
- Coral Reef Research Center of China, Guangxi University, Nanning, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Nanning, China.,School of Marine Sciences, Guangxi University, Nanning, China
| | - Guanghua Wang
- Coral Reef Research Center of China, Guangxi University, Nanning, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Nanning, China.,School of Marine Sciences, Guangxi University, Nanning, China
| | - Hongfei Su
- Coral Reef Research Center of China, Guangxi University, Nanning, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Nanning, China.,School of Marine Sciences, Guangxi University, Nanning, China
| | - Biao Chen
- Coral Reef Research Center of China, Guangxi University, Nanning, China.,Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Nanning, China.,School of Marine Sciences, Guangxi University, Nanning, China
| | - Zhengchao Wu
- State Key Laboratory of Tropical Oceanography (LTO), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
38
|
Yu F, Yang C, Huang G, Zhou T, Zhao Y, Ma J. Interfacial interaction between diverse microplastics and tetracycline by adsorption in an aqueous solution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 721:137729. [PMID: 32172114 DOI: 10.1016/j.scitotenv.2020.137729] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/01/2020] [Accepted: 03/02/2020] [Indexed: 05/22/2023]
Abstract
The accumulation of microplastics in offshore aquaculture waters has gradually become a threat to the survival of marine life, and the combined pollution of microplastics and other pollutants is attracting widespread attention. In this paper, tetracycline (TC) was selected as a typical antibiotic, and its adsorption behavior on the surface of diverse type and different sizes of microplastics was studied to explore their combined pollution in an aqueous solution. The results of isotherm fitting showed that the maximum adsorption capacity and coefficient of polyethylene (PE) were the largest, and the adsorption capacity of PE was the strongest among the three microplastics: polyethylene (PE), polystyrene (PS) and polyvinyl chloride (PVC). With increasing PE particle size, the maximum adsorption capacity and adsorption coefficient of TC showed a significant decreasing trend, with a slight fluctuation in the middle. The presence of Pb2+, Cr3+, Cd2+, and Zn2+ markedly enhanced the adsorption of TC to PE, and Cu2+ could reduce the adsorption of TC to PE. The presence of chloride ions did not affect the adsorption process, which indicated that the adsorption mechanism between TC and microplastics is mainly an ion exchange mechanism. These results showed that the surface properties of microplastics and the chemical properties of the aqueous solution played an important role in the adsorption of TC. This study provides important scientific guidance and a theoretical basis for the study of the interfacial behavior, migration and transformation of marine microplastics.
Collapse
Affiliation(s)
- Fei Yu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, PR China
| | - Changfu Yang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, PR China
| | - Guoqiong Huang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, PR China
| | - Tao Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Youcai Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Jie Ma
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Research Center for Environmental Functional Materials, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
39
|
Zhang R, Yu K, Li A, Wang Y, Pan C, Huang X. Antibiotics in coral reef fishes from the South China Sea: Occurrence, distribution, bioaccumulation, and dietary exposure risk to human. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 704:135288. [PMID: 31796281 DOI: 10.1016/j.scitotenv.2019.135288] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
Coral reef fishes are about 10% of commercial fishes worldwide. Their pollution is close to human's health. Antibiotics are one group of emerging organic pollutants in the marine environment. However, little data is available on the bioaccumulation and dietary risks of antibiotics in coral reef fish from the South China Sea (SCS) or any other parts of the global coral reef environment. In this study, we examined 19 antibiotics in 18 species of coral reef fish collected from coastal and offshore regions in the SCS. The results revealed that 17 antibiotics were detected in the fishes. Their average concentrations ranged from 1.3 × 10-5 to 7.9 × 10-1 ng/g ww, which were at the lower end of the global range about antibiotic levels in fish. The average total antibiotic concentrations (∑19ABs) were significantly higher in the offshore fish (1.2 ng/g ww) than in the coastal fish (0.16 ng/g ww). Different fish species or the protection of mucus produced by coastal fish at severe environmental stress may cause the differences. Fluoroquinolones (FQs) accounted for 89% and 74% of the average ∑19ABs in the offshore and coastal fish, respectively. It may relate to their relative high aqueous solubility and adsorption ability to particles. The log BAFs (bioaccumulation factors) of the antibiotics ranged from -0.34 to 4.12. Norfloxacin, dehydrated erythromycin (DETM), and roxithromycin were bioaccumulative in some offshore fish samples with their log BAFs higher than 3.7. The results of trophic magnification factors (TMFs) demonstrated that DETM underwent significant trophic dilution while enoxacin underwent trophic magnification in the food web of coral reef fishes. The estimated daily intakes of antibiotics via fish consumption by China residents ranged from 2.0 × 10-4 to 2.7 ng/kg weight body/day, which was 3 to 8 orders of magnitude lower than the respective acceptable daily intakes.
Collapse
Affiliation(s)
- Ruijie Zhang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China; Environmental and Occupational Health Sciences, School of Public Health, University of Illinois at Chicago, Chicago 60612, USA.
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China.
| | - An Li
- Environmental and Occupational Health Sciences, School of Public Health, University of Illinois at Chicago, Chicago 60612, USA.
| | - Yinghui Wang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China.
| | - Changgui Pan
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China.
| | - Xueyong Huang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China.
| |
Collapse
|
40
|
Han M, Zhang R, Yu K, Li A, Wang Y, Huang X. Polycyclic aromatic hydrocarbons (PAHs) in corals of the South China Sea: Occurrence, distribution, bioaccumulation, and considerable role of coral mucus. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121299. [PMID: 31585293 DOI: 10.1016/j.jhazmat.2019.121299] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/09/2019] [Accepted: 09/22/2019] [Indexed: 06/10/2023]
Abstract
Coral reefs have suffered degradation from climate change and water quality deterioration. Studies have shown that PAHs are present widely in some coastal seawater and coral tissues. However, no studies have focused on the PAHs in coastal coral mucus and offshore coral tissues. Targeting the South China Sea, this study for the first time investigated the occurrence, tissue-mucus partitioning, and bioaccumulation of PAHs in coastal and offshore corals. The tissue and mucus of the corals were processed separately. The results indicated that the total concentration of 15 of the 16 PAHs that are prioritized by U.S. EPA (excluding naphthalene) (∑15PAHs) was significantly higher in the coastal tissues (173 ± 314 ng g-1 dw) than in the offshore tissues (71 ± 109 ng g-1 dw), as well as in coastal seawater (196 ± 96 ng L-1) than in the offshore water (54 ± 9 ng L-1). ∑15PAHs is two orders of magnitude higher in the mucus (3200 ± 6470 ng g-1 dw) than in the tissues (128 ± 43 ng g-1 dw). By average, 29% of ∑15PAHs were accumulated in the mucus. The results suggest that mucus plays an important role in the bioaccumulation of PAHs by corals from ambient seawater.
Collapse
Affiliation(s)
- Minwei Han
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Ruijie Zhang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China; Environmental and Occupational Health Sciences, School of Public Health, University of Illinois at Chicago, Chicago 60612, USA.
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China.
| | - An Li
- Environmental and Occupational Health Sciences, School of Public Health, University of Illinois at Chicago, Chicago 60612, USA
| | - Yinghui Wang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Xueyong Huang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| |
Collapse
|
41
|
Teglia CM, Perez FA, Michlig N, Repetti MR, Goicoechea HC, Culzoni MJ. Occurrence, Distribution, and Ecological Risk of Fluoroquinolones in Rivers and Wastewaters. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:2305-2313. [PMID: 31291022 DOI: 10.1002/etc.4532] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/31/2019] [Accepted: 06/28/2019] [Indexed: 06/09/2023]
Abstract
The use of fluoroquinolones for the treatment of infections in humans and animals has increased in Argentina, and they can be found in large amounts in water bodies. The present study investigated the occurrence and associated ecological risk of 5 fluoroquinolones in rivers and farm wastewaters of San Luis, Santa Fe, Córdoba, Entre Ríos, and Buenos Aires provinces of Argentina by high-performance liquid chromatography coupled to fast-scanning fluorescence detection and ultra-high-performance liquid chromatography coupled to triple quadrupole mass spectrometry detection. The maximum concentrations of ciprofloxacin, enrofloxacin, ofloxacin, enoxacin, and difloxacin found in wastewater were 1.14, 11.9, 1.78, 22.1, and 14.2 μg L-1 , respectively. In the case of river samples, only enrofloxacin was found, at a concentration of 0.97 μg L-1 . The individual risk of aquatic organisms associated with water pollution due to fluoroquinolones was higher in bacteria, cyanobacteria, algae, plants, and anurans than in crustaceae and fish, with, in some cases, risk quotients >1. The proportion of samples classified as high risk was 87.5% for ofloxacin, 63.5% for enrofloxacin, 57.1% for ciprofloxacin, and 25% for enoxacin. Our results suggest that the prevalence of fluoroquinolones in water could be potentially risky for the aquatic ecosystem, and harmful to biodiversity. Environ Toxicol Chem 2019;38:2305-2313. © 2019 SETAC.
Collapse
Affiliation(s)
- Carla M Teglia
- Laboratorio de Desarrollo Analítico y Quimiometría, Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Florencia A Perez
- Laboratorio de Desarrollo Analítico y Quimiometría, Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe, Argentina
| | - Nicolás Michlig
- Programa de Investigación y Análisis de Residuos y Contaminantes Químicos, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - María R Repetti
- Programa de Investigación y Análisis de Residuos y Contaminantes Químicos, Facultad de Ingeniería Química, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Héctor C Goicoechea
- Laboratorio de Desarrollo Analítico y Quimiometría, Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - María J Culzoni
- Laboratorio de Desarrollo Analítico y Quimiometría, Cátedra de Química Analítica I, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|