1
|
Baratta M, Nezhdanov AV, Mashin AI, Nicoletta FP, De Filpo G. Carbon nanotubes buckypapers: A new frontier in wastewater treatment technology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171578. [PMID: 38460681 DOI: 10.1016/j.scitotenv.2024.171578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
Occurrence of contaminants in water is one of the major global concerns humanity is still facing today: most of them are extremely toxic and dangerous for human health, obliging their removal for a proper and correct process of sanitation. Among wastewater treatment technologies, in the view of development of sustainable and environmentally friendly processes, membrane adsorption has proved to be a fast and simple method in the removal of pollutants, offering great contaminants recovery percentages, fast adsorbent regeneration and recycle, and easy scale-up. Due to their large surface area and tunable chemistry, carbon nanotubes (CNTs)-based materials revealed to be extraordinary adsorbents, exceeding by far performances of ordinary organic and inorganic membranes such as polyethersulfone, polyvinylidene fluoride, polytetrafluoroethylene, ceramics, currently employed in membrane technologies for wastewater treatment. In consideration of this, the review aims to summarize recent developments in the field of carbon nanotubes-based materials for pollutants recovery from water through adsorption processes. After a brief introduction concerning what adsorption phenomenon is and how it is performed and governed by using carbon nanotubes-based materials, the review discusses into detail the employment of three common typologies of CNTs-based materials (CNTs powders, CNTs-doped polymeric membranes and CNTs membranes) in adsorption process for the removal of water pollutants. Particularly focus will be devoted on the emergent category of self-standing CNTs membranes (buckypapers), made entirely of carbon nanotubes, exhibiting superior performances than CNTs and CNTs-doped polymeric membranes in terms of preparation strategy, recovery percentages of pollutants and regeneration possibilities. The extremely encouraging results presented in this review aim to support and pave the way to the introduction of alternative and more efficient pathways in wastewater treatment technologies to contrast the problem of water pollution.
Collapse
Affiliation(s)
- Mariafrancesca Baratta
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy
| | | | - Alexandr Ivanovic Mashin
- Applied Physics & Microelectronics, Lobachevsky State University of Nizhni Novgorod, Nizhni Novgorod 603105, Russia
| | - Fiore Pasquale Nicoletta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Giovanni De Filpo
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy.
| |
Collapse
|
2
|
Alardhi SM, Salih HG, Ali NS, Khalbas AH, Salih IK, Saady NMC, Zendehboudi S, Albayati TM, Harharah HN. Olive stone as an eco-friendly bio-adsorbent for elimination of methylene blue dye from industrial wastewater. Sci Rep 2023; 13:21063. [PMID: 38030694 PMCID: PMC10687264 DOI: 10.1038/s41598-023-47319-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 11/12/2023] [Indexed: 12/01/2023] Open
Abstract
Adsorbents synthesized by activation and nanoparticle surface modifications are expensive and might pose health and ecological risks. Therefore, the interest in raw waste biomass materials as adsorbents is growing. In batch studies, an inexpensive and effective adsorbent is developed from raw olive stone (OS) to remove methylene blue (MB) from an aqueous solution. The OS adsorbent is characterized using scanning electron microscopy (SEM), Fourier Transform Infra-Red (FTIR), and Brunauer-Emmett-Teller (BET) surface area. Four isotherms are used to fit equilibrium adsorption data, and four kinetic models are used to simulate kinetic adsorption behavior. The obtained BET surface area is 0.9 m2 g-1, and the SEM analysis reveals significant pores in the OS sample that might facilitate the uptake of heavy compounds. The Langmuir and Temkin isotherm models best represent the adsorbtion of MB on the OS, with a maximum monolayer adsorption capacity of 44.5 mg g-1. The best dye color removal efficiency by the OS is 93.65% from an aqueous solution of 20 ppm at the OS doses of 0.2 g for 90 min contact time. The OS adsorbent serves in five successive adsorption cycles after a simple filtration-washing-drying process, maintaining MB removal efficiency of 91, 85, 80, and 78% in cycles 2, 3, 4, and 5, respectively. The pseudo second-order model is the best model to represent the adsorption process dynamics. Indeed, the pseudo second-order and the Elovich models are the most appropriate kinetic models, according to the correlation coefficient (R2) values (1.0 and 0.935, respectively) derived from the four kinetic models. The parameters of the surface adsorption are also predicted based on the mass transfer models of intra-particle diffusion and Bangham and Burt. According to the thermodynamic analysis, dye adsorption by the OS is endothermic and spontaneous. As a result, the OS material offers an efficient adsorbent for MB removal from wastewater that is less expensive, more ecologically friendly, and economically viable.
Collapse
Affiliation(s)
- Saja M Alardhi
- Nanotechnology and Advanced Materials Research Center, University of Technology-Iraq, Baghdad, Iraq
| | - Hussein G Salih
- Department of Chemical Engineering, University of Technology-Iraq, 52 Alsinaa St., PO Box 35010, Baghdad, Iraq
| | - Nisreen S Ali
- Materials Engineering Department, College of Engineering, Mustansiriyah University, Baghdad, Iraq
| | - Ali H Khalbas
- Department of Chemical Engineering, University of Technology-Iraq, 52 Alsinaa St., PO Box 35010, Baghdad, Iraq
| | - Issam K Salih
- Department of Chemical Engineering and Petroleum Industries, Al-Mustaqbal University, Babylon, 51001, Iraq
| | - Noori M Cata Saady
- Department of Civil Engineering, Memorial University, St. John's, NL, A1B 3X5, Canada
| | - Sohrab Zendehboudi
- Department of Process Engineering, Memorial University, St. John's, NL, A1B 3X5, Canada
| | - Talib M Albayati
- Department of Chemical Engineering, University of Technology-Iraq, 52 Alsinaa St., PO Box 35010, Baghdad, Iraq.
| | - Hamed N Harharah
- Department of Chemical Engineering, College of Engineering, King Khalid University, Abha, 61411, Kingdom of Saudi Arabia
| |
Collapse
|
3
|
El Aggadi S, Ennouhi M, Boutakiout A, Ennoukh FE, El Hourch A. Iron (III)-doped PbO 2 and its application as electrocatalyst for decomposition of phthalocyanine dye. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27332-3. [PMID: 37145356 DOI: 10.1007/s11356-023-27332-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/26/2023] [Indexed: 05/06/2023]
Abstract
The textile industry contributes significantly to environmental pollution through dyeing and finishing processes that release dyes into wastewater. Even small amounts of dyes can have harmful effects and cause negative impacts. These effluents have carcinogenic, toxic, and teratogenic properties and can take a long time to be naturally degraded through photo/bio-degradation processes. This work investigates degradation of Reactive Blue 21 (RB21) phthalocyanine dye using anodic oxidation process with PbO2 anode doped with iron III (0.1 M) (marked as Ti/PbO2-0.1Fe) and compared with pure PbO2. Ti/PbO2 films with and without doping were successfully prepared by electrodeposition technology on Ti substrates. Scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM/EDS) was used to characterize the electrode morphology. Also, linear scanning voltammetry (LSV) and cyclic voltammetry (CV) tests were conducted to investigate the electrochemical response of these electrodes. The influence of operational variables on the mineralization efficiency was studied as a function of pH, temperature, and current density. Doping Ti/PbO2 with Fe3+ (0.1 M) could reduce the particle to a smaller dimension and slightly increase the oxygen evolution potential (OEP). A large anodic peak was found for both electrodes prepared in the CV test, indicating that oxidation of the RB21 dye was easily achieved on the surface of the prepared anodes. No significant effect of initial pH on the mineralization of RB21 was observed. RB21 decolorization was more rapid at room temperature and increases with increasing current density. A possible degradation pathway for the anodic oxidation of RB21 in aqueous solution is proposed based on the identified reaction products. In general, it can be said that from the findings it was observed that the Ti/PbO2 and Ti/PbO2-0.1Fe electrodes show good performance on RB21 degradation. However, it was noted that the Ti/PbO2 electrode tends to deteriorate over time and exhibits poor substrate adhesion, while the Ti/PbO2-0.1Fe electrode displays superior substrate adhesion and stability.
Collapse
Affiliation(s)
- Sanaa El Aggadi
- Laboratory of Materials, Nanotechnologies and Environment, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, BP:1014, Rabat, Morocco.
| | - Mariem Ennouhi
- Laboratory of Materials, Nanotechnologies and Environment, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, BP:1014, Rabat, Morocco
| | - Amale Boutakiout
- Laboratory of Materials, Nanotechnologies and Environment, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, BP:1014, Rabat, Morocco
| | - Fatima Ezzahra Ennoukh
- Laboratory of Materials, Nanotechnologies and Environment, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, BP:1014, Rabat, Morocco
| | - Abderrahim El Hourch
- Laboratory of Materials, Nanotechnologies and Environment, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, BP:1014, Rabat, Morocco
| |
Collapse
|
4
|
Mohammed Mohammed HA, Souhaila M, Eddine LS, Hasan GG, Kir I, Mahboub MS. A novel biosynthesis of MgO/PEG nanocomposite for organic pollutant removal from aqueous solutions under sunlight irradiation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:57076-57085. [PMID: 36928702 DOI: 10.1007/s11356-023-26422-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
The novel synthesis of MgO from Laurus nobilis L. leaves was prepared using the green synthesis method. It is using direct blending process to decorate MgO/PEG nanocomposite to enhance the photodegradation properties and examine its physical properties using diverse characterization techniques, including XRD, FTIR, SEM, EDX, and UV-Vis. X-ray diffraction reveals a cubic phase of MgO with a 37-nm grain size. SEM images confirm spherical nanoparticles with a diameter size of 22.9 nm. The optical energy gap of MgO NPs was 4.4 eV, and the MgO/PEG nanocomposite was 4.1 eV, which made it an efficient catalyst under sunlight. The photocatalytic activity of Rose Bengal (RB) and Toluidine Blue (TB) dyes at 5 × 10-5 mol/l dye concentration indicates excellent degradation efficiencies of 98% and 95% in 120 min, respectively, under sunlight irradiation. MgO/PEG is an excellent candidate nanocomposite for applications of photodegradation and could be used for its potential capability to develop conventionally used techniques.
Collapse
Affiliation(s)
- Hamdi Ali Mohammed Mohammed
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, 39000, El Oued, Algeria
- Laboratory of Biotechnology Biomaterials and Condensed Matter, Faculty of Technology, University of El Oued, 39000, El Oued, Algeria
| | - Meneceur Souhaila
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, 39000, El Oued, Algeria
- Laboratory of Biotechnology Biomaterials and Condensed Matter, Faculty of Technology, University of El Oued, 39000, El Oued, Algeria
| | - Laouini Salah Eddine
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, 39000, El Oued, Algeria.
- Laboratory of Biotechnology Biomaterials and Condensed Matter, Faculty of Technology, University of El Oued, 39000, El Oued, Algeria.
| | - Gamil Gamal Hasan
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, 39000, El Oued, Algeria
| | - Iman Kir
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, 39000, El Oued, Algeria
- Laboratory of Biotechnology Biomaterials and Condensed Matter, Faculty of Technology, University of El Oued, 39000, El Oued, Algeria
| | | |
Collapse
|
5
|
Wang G, Li H, Li N, Chen D, He J, Xu Q, Lu J. Construction of Perylene‐based Amphiphilic Micelle and Its Efficient Adsorption and In Situ Photodegradation of Bisphenol A in Aqueous Solution. Angew Chem Int Ed Engl 2022; 61:e202210619. [DOI: 10.1002/anie.202210619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Guan Wang
- College of Chemistry Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 P. R. China
| | - Hua Li
- College of Chemistry Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 P. R. China
| | - Najun Li
- College of Chemistry Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 P. R. China
| | - Dongyun Chen
- College of Chemistry Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 P. R. China
| | - Jinghui He
- College of Chemistry Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 P. R. China
| | - Qingfeng Xu
- College of Chemistry Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 P. R. China
| | - Jianmei Lu
- College of Chemistry Chemical Engineering and Materials Science Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 P. R. China
| |
Collapse
|
6
|
Lignite-Based N-Doped Porous Carbon as an Efficient Adsorbent for Phenol Adsorption. Processes (Basel) 2022. [DOI: 10.3390/pr10091746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The treatment of phenolic-containing wastewater has received increased attention in recent years. In this study, the N-doped porous carbons were prepared from lignite with tripolycyanamide as the N source, and their phenol adsorption behaviors were investigated. Results clearly showed that the addition of tripolycyanamide largely improved the surface area, micropore volume, N content and thus the phenol adsorption capacity of lignite-based carbons. The N-doped sample prepared at 700 °C showed a surface area of 1630 m2/g and a phenol adsorption capacity as high as 182.4 mg/g at 20 °C, which were 2.0 and 1.6 times that of the lignite-based carbon without N-doping. Pseudo-second order and Freundlich adsorption isotherm models could better explain the phenol adsorption behaviors over lignite-based N-doped porous carbon. Theoretical calculations demonstrated that phenol adsorption energies over graphitic-N (−72 kJ/mol) and pyrrolic-N (−74 kJ/mol) groups were slightly lower than that over the N-free graphite layer (−71 kJ/mol), supporting that these N-containing groups contribute to enhance the phenol adsorption capacity. The adsorption mechanism of phenol over porous carbon might be interpreted by the π–π dispersion interactions between aromatic-ring and carbon planes, which could be enhanced by N-doping through increasing π electron densities in the carbon plane.
Collapse
|
7
|
Somu P, Narayanasamy S, Gomez LA, Rajendran S, Lee YR, Balakrishnan D. Immobilization of enzymes for bioremediation: A future remedial and mitigating strategy. ENVIRONMENTAL RESEARCH 2022; 212:113411. [PMID: 35561819 DOI: 10.1016/j.envres.2022.113411] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/19/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Over the years, extensive urbanization and industrialization have led to xenobiotics contamination of the environment and also posed a severe threat to human health. Although there are multiple physical and chemical techniques for xenobiotic pollutants management, bioremediation seems to be a promising technology from the environmental perspective. It is an eco-friendly and low-cost method involving the application of microbes, plants, or their enzymes to degrade xenobiotics into less toxic or non-toxic forms. Moreover, bioremediation involving enzymes has gained an advantage over microorganisms or phytoremediation due to better activity for pollutant degradation with less waste generation. However, the significant disadvantages associated with the application of enzymes are low stability (storage, pH, and temperature) as well as the low possibility of reuse as it is hard to separate from reaction media. The immobilization of enzymes without affecting their activity provides a possible solution to the problems and allows reusability by easing the process of separation with improved stability to various environmental factors. The present communication provides an overview of the importance of enzyme immobilization in bioremediation, carrier selection, and immobilization methods, as well as the pros and cons of immobilization and its prospects.
Collapse
Affiliation(s)
- Prathap Somu
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea; Department of Bioengineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 600124, India
| | - Saranya Narayanasamy
- Department of Bioengineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 600124, India
| | - Levin Anbu Gomez
- Department of Biotechnology, Karunya Institute of Technology and Sciences (Deemed to Be University), Coimbatore, 641114, India
| | - Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica, Chile
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | - Deepanraj Balakrishnan
- College of Engineering, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia.
| |
Collapse
|
8
|
Wang G, Li H, Li N, Chen D, He J, Xu Q, Lu JM. Construction of Perylene‐based Amphiphilic Micelle and Its Efficient Adsorption and In‐situ Photodegradation of Bisphenol A in Aqueous Solution. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Guan Wang
- Soochow University College of Chemistry, Chemical Engineering and Materials Science Soochow University, No. 199, Ren'ai Road, Suzhou city, Jiangsu province 215000 CHINA
| | - Hua Li
- Soochow University College of Chemistry, Chemical Engineering and Materials Science Soochow University, No. 199, Ren'ai Road, Suzhou city, Jiangsu province 215000 CHINA
| | - Najun Li
- Soochow University College of Chemistry, Chemical Engineering and Materials Science CHINA
| | - Dongyun Chen
- Soochow University College of Chemistry, Chemical Engineering and Materials Science CHINA
| | - Jinghui He
- Soochow University College of Chemistry, Chemical Engineering and Materials Science CHINA
| | - Qingfeng Xu
- Soochow University College of Chemistry, Chemical Engineering and Materials Science CHINA
| | - Jian-Mei Lu
- Soochow University College of Chemistry, Chemical Engineering and Materials Science No.199 Renai RoadSuzhou Industrial Park 215123 Suzhou CHINA
| |
Collapse
|
9
|
Ali NS, Jabbar NM, Alardhi SM, Majdi HS, Albayati TM. Adsorption of methyl violet dye onto a prepared bio-adsorbent from date seeds: isotherm, kinetics, and thermodynamic studies. Heliyon 2022; 8:e10276. [PMID: 36042747 PMCID: PMC9420514 DOI: 10.1016/j.heliyon.2022.e10276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/07/2022] [Accepted: 08/09/2022] [Indexed: 11/24/2022] Open
Abstract
Raw date seeds, as prospective natural, broadly obtainable and low-price agricultural waste for adsorbing cationic dyes from aqueous solutions, have been studied. In this work, Iraqi date seeds were prepared and characterised using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy and Brunauer–Emmett–Teller (BET) surface area analysis before being used as an efficient bio-adsorbent for methyl violet (MV) dye removal. Adsorption tests were conducted with three investigated parameters, namely, time of contact, first adsorbate concentration and adsorbent dose. Compared with the pseudo first-order model (coefficient of determination = 0.9001), the pseudo second-order model was determined to be the best-fitting model with a coefficient of determination (R2) of 0.9917. The equilibrium isotherms for MV were obtained, and their ultimate capacity of adsorption was (59.5 mg g1). Two isotherm models, Langmuir and Freundlich, were studied to fit the equilibrium data. Compared with the Freundlich isotherm model (R2 = 0.8154), the Langmuir model functioned better as an adsorption isotherm with R2 of 0.9837. In addition, the adsorption process was endothermic and spontaneous. The date seeds acted as active adsorbents to remove MV from the aqueous solutions in the model experiments.
Collapse
Affiliation(s)
- Nisreen S Ali
- Mustansiriyah University, College of Engineering, Materials Engineering Department, Baghdad, Iraq
| | - Noor M Jabbar
- Biochemical Engineering Department, Al-Khwarizmi Engineering College, University of Baghdad, Baghdad, Iraq
| | - Saja M Alardhi
- Nanotechnology and Advanced Materials Research Center, University of Technology, Iraq
| | - Hasan Sh Majdi
- Chemical Engineering Department and Petroleum Industries, Al-Mustaqbal University College, Babylon 51001, Iraq
| | - Talib M Albayati
- Chemical Engineering Department, University of Technology- Iraq, 52 Alsinaa St., PO Box 35010, Baghdad, Iraq
| |
Collapse
|
10
|
Sun DX, Liao XL, Zhang N, Huang T, Lei YZ, Xu XL, Wang Y. Biomimetic Modification of Super-wetting Electrospun Poly(vinylidene fluoride) Porous Fibers with Organic Dyes and Heavy Metal Ions Adsorption, Oil/Water Separation, and Sterilization Performances Toward Wastewater Treatment. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2714-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Insight into immobilization efficiency of Lipase enzyme as a biocatalyst on the graphene oxide for adsorption of Azo dyes from industrial wastewater effluent. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118849] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
12
|
Boubekri FZ, Benkhaled A, Elbahri Z. Design of experiments for the methylene blue adsorption study onto biocomposite material based on Algerian earth chestnut and cellulose derivatives. JOURNAL OF POLYMER ENGINEERING 2022. [DOI: 10.1515/polyeng-2021-0252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Novel bio-composite films based on Algerian earth chestnut i.e. Bunium incrassatum roots (Talghouda, TG) and cellulose derivatives (ethylcellulose; EC and cellulose acetate; AC) are prepared and tested for methylene blue (MB) adsorption from aqueous solutions. The biomaterial films are elaborated by dissolution solvent evaporation technique and are characterized by infrared spectroscopy, X-ray diffraction, SEM and optical microscopy. The pHpzc is also determined. For the adsorption tests, design of experiments based on 23 factorial design is built and followed. So, the effects of TG:EC:AC ratio, pH and MB initial concentration are discussed on the basis of mathematical modelling using Minitab software. Mathematical relations between equilibrium adsorption percentages and capacities versus selected variables were obtained and illustrated by surface plots. The interactive effects between variables have been also identified. The results showed that the MB adsorption percentage exceeded 83% and is mostly affected by pH value. Nevertheless the adsorption capacity is affected by MB initial concentration.
Collapse
Affiliation(s)
- Fatima Zohra Boubekri
- Laboratoire de Matériaux & Catalyse, Faculté des Sciences Exactes , Université Djillali Liabès de Sidi Bel Abbes , Djillali Liabes University of Sidi Bel Abbes , Sidi Bel Abbes 22000 , Algeria
| | - Amal Benkhaled
- Laboratoire Toxicomed , Université Abou bekr Belkaid , Tlemcen 13000 , Abou bekr Belkaid University of Tlemcen, Algeria
| | - Zineb Elbahri
- Laboratoire de Matériaux & Catalyse, Faculté des Sciences Exactes , Université Djillali Liabès de Sidi Bel Abbes , Djillali Liabes University of Sidi Bel Abbes , Sidi Bel Abbes 22000 , Algeria
| |
Collapse
|
13
|
Salem AR, El-Maghrabi HH. Preparation and characterization of modified anion exchange resin for uranium adsorption: estimation of nonlinear optimum isotherm, kinetic model parameters, error function analysis and thermodynamic studies. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2021.1956322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
| | - Heba H. El-Maghrabi
- Petroleum Refining Department, Egyptian Petroleum Research Institute (EPRI), Cairo, Egypt
| |
Collapse
|
14
|
Abbo HS, Gupta KC, Khaligh NG, Titinchi SJJ. Carbon Nanomaterials for Wastewater Treatment. CHEMBIOENG REVIEWS 2021. [DOI: 10.1002/cben.202100003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Hanna S. Abbo
- University of the Western Cape Department of Chemistry Cape Town South Africa
- University of Basrah Department of Chemistry Basrah Iraq
| | - K. C. Gupta
- Indian Institute of Technology Polymer Research Laboratory Department of Chemistry 247 667 Roorkee India
| | - Nader G. Khaligh
- University of Malaya Nanotechnology and Catalysis Research Center Institute of Postgraduate Studies Kuala Lumpur Malaysia
| | | |
Collapse
|
15
|
Wang T, Cheng Z, Liu Y, Tang W, Fang T, Xing B. Mechanistic understanding of highly selective adsorption of bisphenols on microporous-dominated nitrogen-doped framework carbon. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:143115. [PMID: 33127136 DOI: 10.1016/j.scitotenv.2020.143115] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
Producing a desirable adsorbent for removing endocrine disrupting compounds (EDCs) from aqueous solutions remains a major challenge. In this work, microporous-dominated nitrogen-doped framework carbons (MNFCs, s means the calcination temperature) with high specific surface area, ultra-microporous structure, and high nitrogen-doping can be obtained by a direct calcination of ethylene diamine tetraacetic acid tetrasodium (EDTA-4Na) without aid of any catalyst and nitrogen source. MNFCs were applied adsorbents to remove bisphenols from aqueous solution. Batch experiments showed MNFC-750 had a large adsorption capacity for bisphenols from aqueous solutions (409 mg/g for bisphenol A, 364 mg/g for bisphenol F, and 521 mg/g for bisphenol S) along with short equilibrium time (30 min), and good stability and reusability. Using multiple characterizations and comparative experiments along with theoretical calculations, we discovered that: (1) nitrogen-doping can significantly boost the adsorption capacity; (2) adsorption sites are mainly the pyridinic-N instead of pyrrolic-N and graphitic-N; and (3) the adsorption mechanisms were mainly driven by Lewis acid-base interaction, hydrophobic interaction, π-π interaction and hydrogen bond interaction. These findings indicate that MNFCs present a promising potential for practical applications and shed light on the rational design of nitrogen doped carbon-based adsorbents for efficient pollutant removal.
Collapse
Affiliation(s)
- Tao Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuang Cheng
- School of Materials and Environmental Engineering, Chizhou University, Chizhou 247000, China
| | - Yonghong Liu
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Tang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Tao Fang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| |
Collapse
|
16
|
Chang SH. Gold(III) recovery from aqueous solutions by raw and modified chitosan: A review. Carbohydr Polym 2021; 256:117423. [PMID: 33483013 DOI: 10.1016/j.carbpol.2020.117423] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/13/2020] [Accepted: 11/15/2020] [Indexed: 12/23/2022]
Abstract
Chitosan, a prestigious versatile biopolymer, has recently received considerable attention as a promising biosorbent for recovering gold ions, mainly Au(III), from aqueous solutions, particularly in modified forms. Confirming the assertion, this paper provides an up-to-date overview of Au(III) recovery from aqueous solutions by raw (unmodified) and modified chitosan. A particular emphasis is placed on the raw chitosan and its synthesis from chitin, characteristics of raw chitosan and their effects on metal sorption, modifications of raw chitosan for Au(III) sorption, and characterization of raw chitosan before and after modifications for Au(III) sorption. Comparisons of the sorption (conditions, percentage, capacity, selectivity, isotherms, thermodynamics, kinetics, and mechanisms), desorption (agents and percentage), and reusable properties between raw and modified chitosan in Au(III) recovery from aqueous solutions are also outlined and discussed. The major challenges and future prospects towards the large-scale applications of modified chitosan in Au(III) recovery from aqueous solutions are also addressed.
Collapse
Affiliation(s)
- Siu Hua Chang
- Faculty of Chemical Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang, 13500 Permatang Pauh, Penang, Malaysia; Faculty of Chemical Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia.
| |
Collapse
|
17
|
Yang Y, Xiong Z, Wang Z, Liu Y, He Z, Cao A, Zhou L, Zhu L, Zhao S. Super-adsorptive and photo-regenerable carbon nanotube based membrane for highly efficient water purification. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.119000] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
Fatima B, Siddiqui SI, Nirala RK, Vikrant K, Kim KH, Ahmad R, Chaudhry SA. Facile green synthesis of ZnO-CdWO 4 nanoparticles and their potential as adsorbents to remove organic dye. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:116401. [PMID: 33422746 DOI: 10.1016/j.envpol.2020.116401] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 12/15/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
In this work, ZnO-CdWO4 nanoparticles have been synthesized by the ecofriendly green method with lemon leaf extract to favorably anchor functional groups on their surface. The prepared ZnO-CdWO4 nanoparticles are used as adsorbent to treat Congo red (CR) dye after characterization through FT-IR, UV-Vis, TEM, SEM-EDX, and HRTEM techniques. The equilibrium partition coefficient and adsorption capacity values for CR by ZnO-CdWO4 are estimated as 21.4 mg g-1 μM-1 and 5 mg g-1, respectively (at an initial dye concentration of 10 mg L-1). The adsorption process is found as exothermic and spontaneous, as determined by the ΔG°, ΔS°, and ΔH° values. The Boyd plot has been used as a confirmatory tool to fit the adsorption kinetics data along with intraparticle diffusion and pseudo-second-order models. Based on this research, ZnO-CdWO4 nanoparticles are validated as an effective adsorbent for CR dye in aqueous solutions.
Collapse
Affiliation(s)
- Bushra Fatima
- Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025, India
| | | | - Ranjeet Kumar Nirala
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India; National Institute of Health and Family Welfare, Munirka, 110067, New Delhi, India
| | - Kumar Vikrant
- Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, Republic of Korea.
| | - Rabia Ahmad
- Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025, India
| | - Saif Ali Chaudhry
- Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025, India
| |
Collapse
|
19
|
Carbon nanotube membranes – Strategies and challenges towards scalable manufacturing and practical separation applications. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117929] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Tayibi S, Monlau F, Fayoud NE, Abdeljaoued E, Hannache H, Zeroual Y, Oukarroum A, Barakat A. Production and Dry Mechanochemical Activation of Biochars Derived from Moroccan Red Macroalgae Residue and Olive Pomace Biomass for Treating Wastewater: Thermodynamic, Isotherm, and Kinetic Studies. ACS OMEGA 2021; 6:159-171. [PMID: 33458468 PMCID: PMC7807483 DOI: 10.1021/acsomega.0c04020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/03/2020] [Indexed: 05/27/2023]
Abstract
This study aimed to produce activated biochars (BCs) from Moroccan algae residue (AG) and olive pomace (OP) using mechanochemical activation with NaOH and ball milling (BM) for treating artificial textile wastewater containing methylene blue (MeB). The produced OP-activated BC by BM showed the highest absolute value of ζ-potential (-59.7 mV) and high removal efficiency of MeB compared to other activated BCs. The nonlinear pseudo-first-order kinetic model was the most suitable model to describe the kinetics of adsorption of MeB onto biochars produced from AG and the NaOH-activated BC from OP, whereas the nonlinear pseudo-second-order kinetic model suits the OP raw biochar and BM-activated BC. The nonlinear Langmuir isotherm model was the most suitable model for describing MeB adsorption onto BCs, compared to the nonlinear Freundlich isotherm model. The maximum adsorption capacities of AG-activated BCs with NaOH and BM were 13.1 and 9.1 mg/g, respectively, while those of OP-activated BCs were 2.6 and 31.8 mg/g, respectively. The thermodynamic study indicates the spontaneous and endothermic nature of the adsorption process of most activated BCs. In addition, ΔS° values indicate the increase of randomness at the solid-liquid interface during MeB sorption onto BC.
Collapse
Affiliation(s)
- Saida Tayibi
- IATE,
Montpellier University, INRAE, Agro Institut, 34060 Montpelier, France
- Mohammed
VI Polytechnic University (UM6P), 43150 Ben Guerir, Morocco
- APESA,
Pôle Valorisation, Cap Ecologia, 64053 Lescar, France
- LIMAT,
Faculté des Sciences Ben M’Sik, Université Hassan II de, 20670 Casablanca, Morocco
| | - Florian Monlau
- APESA,
Pôle Valorisation, Cap Ecologia, 64053 Lescar, France
| | - Nour-Elhouda Fayoud
- IATE,
Montpellier University, INRAE, Agro Institut, 34060 Montpelier, France
- Mohammed
VI Polytechnic University (UM6P), 43150 Ben Guerir, Morocco
| | - Emna Abdeljaoued
- IATE,
Montpellier University, INRAE, Agro Institut, 34060 Montpelier, France
- Mohammed
VI Polytechnic University (UM6P), 43150 Ben Guerir, Morocco
| | - Hassane Hannache
- Mohammed
VI Polytechnic University (UM6P), 43150 Ben Guerir, Morocco
- LIMAT,
Faculté des Sciences Ben M’Sik, Université Hassan II de, 20670 Casablanca, Morocco
| | - Youssef Zeroual
- Situation
Innovation, OCP Group, Complexe industriel Jorf Lasfar, BP 118 El Jadida, Morocco
| | | | - Abdellatif Barakat
- IATE,
Montpellier University, INRAE, Agro Institut, 34060 Montpelier, France
| |
Collapse
|
21
|
Lau YJ, Karri RR, Mubarak NM, Lau SY, Chua HB, Khalid M, Jagadish P, Abdullah EC. Removal of dye using peroxidase-immobilized Buckypaper/polyvinyl alcohol membrane in a multi-stage filtration column via RSM and ANFIS. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:40121-40134. [PMID: 32656753 DOI: 10.1007/s11356-020-10045-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
The feasibility and performance of Jicama peroxidase (JP) immobilized Buckypaper/polyvinyl alcohol (BP/PVA) membrane for methylene blue (MB) dye removal was investigated in a customized multi-stage filtration column under batch recycle mode. The effect of independent variables, such as influent flow rate, ratio of H2O2/MB dye concentration, and contact time on the dye removal efficiency, were investigated using response surface methodology (RSM). To capture the inherent characteristics and better predict the removal efficiency, a data-driven adaptive neuro-fuzzy inference system (ANFIS) is implemented. Results indicated that the optimum dye removal efficiency of 99.7% was achieved at a flow rate of 2 mL/min, 75:1 ratio of H2O2/dye concentration with contact time of 183 min. The model predictions of ANFIS are significantly good compared with RSM, thus resulting in R2 values of 0.9912 and 0.9775, respectively. The enzymatic kinetic parameters, Km and Vmax, were evaluated, which are 1.98 mg/L and 0.0219 mg/L/min, respectively. Results showed that JP-immobilized BP/PVA nanocomposite membrane can be promising and cost-effective biotechnology for the practical application in the treatment of industrial dye effluents.
Collapse
Affiliation(s)
- Yien Jun Lau
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University, 98009, Miri, Sarawak, Malaysia
| | - Rama Rao Karri
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei (UTB), Gadong, Brunei Darussalam
| | - Nabisab Mujawar Mubarak
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University, 98009, Miri, Sarawak, Malaysia.
| | - Sie Yon Lau
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University, 98009, Miri, Sarawak, Malaysia
| | - Han Bing Chua
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University, 98009, Miri, Sarawak, Malaysia
| | - Mohammad Khalid
- Graphene & Advanced 2D Materials Research Group (GAMRG), School of Science and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia
| | - Priyanka Jagadish
- Graphene & Advanced 2D Materials Research Group (GAMRG), School of Science and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia
| | - Ezzat Chan Abdullah
- Department of Chemical Process Engineering, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia (UTM), Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| |
Collapse
|
22
|
Dehghani MH, Karri RR, Lima EC, Mahvi AH, Nazmara S, Ghaedi AM, Fazlzadeh M, Gholami S. Regression and mathematical modeling of fluoride ion adsorption from contaminated water using a magnetic versatile biomaterial & chelating agent: Insight on production & experimental approaches, mechanism and effects of potential interferers. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113653] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
23
|
Effect of Nano CuO Doping on Structural, Thermal and Optical Properties of PVA/PEG Blend. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01577-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
24
|
Almarashi JQM, Abdel-Kader MH. Exploring Nano-sulfide Enhancements on the Optical, Structural and Thermal Properties of Polymeric Nanocomposites. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01482-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|