1
|
Duarte-Delgado D, Vogt I, Dadshani S, Léon J, Ballvora A. Expression interplay of genes coding for calcium-binding proteins and transcription factors during the osmotic phase provides insights on salt stress response mechanisms in bread wheat. PLANT MOLECULAR BIOLOGY 2024; 114:119. [PMID: 39485577 PMCID: PMC11530504 DOI: 10.1007/s11103-024-01523-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 09/17/2024] [Indexed: 11/03/2024]
Abstract
Bread wheat is an important crop for the human diet, but the increasing soil salinization is reducing the yield. The Ca2+ signaling events at the early stages of the osmotic phase of salt stress are crucial for the acclimation response of the plants through the performance of calcium-sensing proteins, which activate or repress transcription factors (TFs) that affect the expression of downstream genes. Physiological, genetic mapping, and transcriptomics studies performed with the contrasting genotypes Syn86 (synthetic, salt-susceptible) and Zentos (elite cultivar, salt-tolerant) were integrated to gain a comprehensive understanding of the salt stress response. The MACE (Massive Analysis of cDNA 3'-Ends) based transcriptome analysis until 4 h after stress exposure revealed among the salt-responsive genes, the over-representation of genes coding for calcium-binding proteins. The functional and structural diversity within this category was studied and linked with the expression levels during the osmotic phase in the contrasting genotypes. The non-EF-hand category from calcium-binding proteins was found to be enriched for the susceptibility response. On the other side, the tolerant genotype was characterized by a faster and higher up-regulation of genes coding for proteins with EF-hand domain, such as RBOHD orthologs, and TF members. This study suggests that the interplay of calcium-binding proteins, WRKY, and AP2/ERF TF families in signaling pathways at the start of the osmotic phase can affect the expression of downstream genes. The identification of SNPs in promoter sequences and 3' -UTR regions provides insights into the molecular mechanisms controlling the differential expression of these genes through differential transcription factor binding affinity or altered mRNA stability.
Collapse
Affiliation(s)
- Diana Duarte-Delgado
- INRES-Plant Breeding, University of Bonn, Bonn, Germany
- Research Group of Genetics of Agronomic Traits, Faculty of Agricultural Sciences, National University of Colombia, Bogotá, Colombia
- Bean Program, Crops for Nutrition and Health, Alliance Bioversity International & International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Inci Vogt
- INRES-Plant Breeding, University of Bonn, Bonn, Germany
| | - Said Dadshani
- INRES-Plant Breeding, University of Bonn, Bonn, Germany
| | - Jens Léon
- INRES-Plant Breeding, University of Bonn, Bonn, Germany
| | - Agim Ballvora
- INRES-Plant Breeding, University of Bonn, Bonn, Germany.
| |
Collapse
|
2
|
Marderstein AR, De Zuani M, Moeller R, Bezney J, Padhi EM, Wong S, Coorens THH, Xie Y, Xue H, Montgomery SB, Cvejic A. Single-cell multi-omics map of human fetal blood in Down syndrome. Nature 2024; 634:104-112. [PMID: 39322663 PMCID: PMC11446839 DOI: 10.1038/s41586-024-07946-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 08/14/2024] [Indexed: 09/27/2024]
Abstract
Down syndrome predisposes individuals to haematological abnormalities, such as increased number of erythrocytes and leukaemia in a process that is initiated before birth and is not entirely understood1-3. Here, to understand dysregulated haematopoiesis in Down syndrome, we integrated single-cell transcriptomics of over 1.1 million cells with chromatin accessibility and spatial transcriptomics datasets using human fetal liver and bone marrow samples from 3 fetuses with disomy and 15 fetuses with trisomy. We found that differences in gene expression in Down syndrome were dependent on both cell type and environment. Furthermore, we found multiple lines of evidence that haematopoietic stem cells (HSCs) in Down syndrome are 'primed' to differentiate. We subsequently established a Down syndrome-specific map linking non-coding elements to genes in disomic and trisomic HSCs using 10X multiome data. By integrating this map with genetic variants associated with blood cell counts, we discovered that trisomy restructured regulatory interactions to dysregulate enhancer activity and gene expression critical to erythroid lineage differentiation. Furthermore, as mutations in Down syndrome display a signature of oxidative stress4,5, we validated both increased mitochondrial mass and oxidative stress in Down syndrome, and observed that these mutations preferentially fell into regulatory regions of expressed genes in HSCs. Together, our single-cell, multi-omic resource provides a high-resolution molecular map of fetal haematopoiesis in Down syndrome and indicates significant regulatory restructuring giving rise to co-occurring haematological conditions.
Collapse
Affiliation(s)
| | - Marco De Zuani
- Department of Haematology, University of Cambridge, Cambridge, UK
- Cambridge Stem Cell Institute, Cambridge, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Rebecca Moeller
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Jon Bezney
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Evin M Padhi
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Shuo Wong
- Department of Haematology, University of Cambridge, Cambridge, UK
- Cambridge Stem Cell Institute, Cambridge, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Yilin Xie
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Haoliang Xue
- Department of Haematology, University of Cambridge, Cambridge, UK
- Cambridge Stem Cell Institute, Cambridge, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Stephen B Montgomery
- Department of Pathology, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Ana Cvejic
- Department of Haematology, University of Cambridge, Cambridge, UK.
- Cambridge Stem Cell Institute, Cambridge, UK.
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
3
|
Guo P, Yang R, Zhong S, Ding Y, Wu J, Wang Z, Wang H, Zhang J, Tu N, Zhou H, Chen S, Wang Q, Li D, Chen W, Chen L. Urolithin A attenuates hexavalent chromium-induced small intestinal injury by modulating PP2A/Hippo/YAP1 pathway. J Biol Chem 2024; 300:107669. [PMID: 39128717 PMCID: PMC11408861 DOI: 10.1016/j.jbc.2024.107669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/15/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024] Open
Abstract
Hexavalent chromium (Cr(VI)) exposure has been linked with gastrointestinal toxicity, whereas the molecular pathways and key targets remain elusive. Computational toxicology analysis predicted the correlation between protein phosphatase 2A (PP2A) and genes regarding Cr(VI)-induced intestinal injury. Here, we generated a mouse model with intestinal epithelium-specific knock out of Ppp2r1a (encoding PP2A Aα subunit) to investigate the mechanisms underlying Cr(VI)-induced small intestinal toxicity. Heterozygous (HE) mice and matched WT littermates were administrated with Cr(VI) at 0, 5, 20, and 80 mg/l for 28 successive days. Cr(VI) treatment led to crypt hyperplasia, epithelial cell apoptosis, and intestinal barrier dysfunction, accompanied by the decline of goblet cell counts and Occludin expression in WT mice. Notably, these effects were aggravated in HE mice, indicating that PP2A Aα deficiency conferred mice with susceptibility to Cr(VI)-induced intestinal injury. The combination of data analysis and biological experiments revealed Cr(VI) exposure could decrease YAP1 phosphorylation at Ser127 but increase protein expression and activity, together with elevated transcriptional coactivator with PDZ-binding motif protein driving epithelial crypt cells proliferation following damage, suggesting the involvement of Hippo/YAP1 signaling pathway in Cr(VI)-induced intestinal toxicity. Nevertheless, the enhanced phosphorylation of YAP1 in HE mice resulted in proliferation/repair defects in intestinal epithelium, thereby exacerbating Cr(VI)-induced gut barrier dysfunction. Notably, by molecular docking and further studies, we identified urolithin A, a microbial metabolite, attenuated Cr(VI)-induced disruption of intestinal barrier function, partly by modulating YAP1 expression and activity. Our findings reveal the novel molecular pathways participated in Cr(VI)-caused small intestinal injury and urolithin A could potentially protect against environmental hazards-induced intestinal diseases.
Collapse
Affiliation(s)
- Ping Guo
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China; School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Rongfang Yang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Shiyuan Zhong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yingying Ding
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jingnan Wu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ziwei Wang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China; Department of Pathology, Stony Brook Cancer Center, Stony Brook, New York, USA
| | - Huiqi Wang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jiaxin Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Nannan Tu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Hongwei Zhou
- Department of Toxicology, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Shen Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Qing Wang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Daochuan Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Wen Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Liping Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
4
|
Dong Q, Fu H, Jiang H. The role of exosome-shuttled miRNAs in heavy metal-induced peripheral tissues and neuroinflammation in Alzheimer's disease. Biomed Pharmacother 2024; 176:116880. [PMID: 38850652 DOI: 10.1016/j.biopha.2024.116880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/11/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024] Open
Abstract
Heavy metal-induced neuroinflammation is a significant pathophysiologic mechanism in Alzheimer's disease (AD). Microglia-mediated neuroinflammation plays a crucial role in the pathogenesis of AD. Multiple miRNAs are differentially expressed in peripheral tissues after heavy metal exposure, and increasing evidence suggests that they are involved in AD progression by regulating microglial homeostasis. Exosomes, which are capable of loading miRNAs and crossing the bloodbrain barrier, serve as mediators of communication between peripheral tissues and the brain. In this review, we summarize the current evidence on the link between miRNAs in peripheral tissues and neuroinflammation in AD after heavy metal exposure and propose a role for miRNAs in the microglial neurodegenerative phenotype (MGnD) of AD. This study will help to elucidate the link between peripheral tissue damage and MGnD-mediated neuroinflammation in AD after heavy metal exposure. Additionally, we summarize the regulatory effects of natural compounds on peripheral tissue-derived miRNAs, which could be potential therapeutic targets for natural compounds to regulate peripheral tissue-derived exosomal miRNAs to ameliorate heavy metal-induced MGnD-mediated neuroinflammation in patients with AD after heavy metal exposure.
Collapse
Affiliation(s)
- Qing Dong
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China.
| | - Huanyong Fu
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China.
| | - Hong Jiang
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China; The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, Shenyang, Liaoning 110122, China; Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
5
|
Liu Q, Lei Z. The Role of microRNAs in Arsenic-Induced Human Diseases: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37930083 DOI: 10.1021/acs.jafc.3c03721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
MicroRNAs (miRNAs) are noncoding RNAs with 20-22 nucleotides, which are encoded by endogenous genes and are capable of targeting the majority of human mRNAs. Arsenic is regarded as a human carcinogen, which can lead to many adverse health effects including diabetes, skin lesions, kidney disease, neurological impairment, male reproductive injury, and cardiovascular disease (CVD) such as cardiac arrhythmias, ischemic heart failure, and endothelial dysfunction. miRNAs can act as tumor suppressors and oncogenes via directly targeting oncogenes or tumor suppressors. Recently, miRNA dysregulation was considered to be an important mechanism of arsenic-induced human diseases and a potential biomarker to predict the diseases caused by arsenic exposure. Endogenic miRNAs such as miR-21, the miR-200 family, miR-155, and the let-7 family are involved in arsenic-induced human disease by inducing translational repression or RNA degradation and influencing multiple pathways, including mTOR/Arg 1, HIF-1α/VEGF, AKT, c-Myc, MAPK, Wnt, and PI3K pathways. Additionally, exogenous miRNAs derived from plants, such as miR-34a, miR-159, miR-2911, miR-159a, miR-156c, miR-168, etc., among others, can be transported from blood to specific tissue/organ systems in vivo. These exogenous miRNAs might be critical players in the treatment of human diseases by regulating host gene expression. This review summarizes the regulatory mechanisms of miRNAs in arsenic-induced human diseases, including cancers, CVD, and other human diseases. These special miRNAs could serve as potential biomarkers in the management and treatment of human diseases linked to arsenic exposure. Finally, the protective action of exogenous miRNAs, including antitumor, anti-inflammatory, anti-CVD, antioxidant stress, and antivirus are described.
Collapse
Affiliation(s)
- Qianying Liu
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhiqun Lei
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
6
|
Yang H, Mo M, Yang L, Yu J, Li J, Cheng S, Sun B, Xu B, Zhang A, Luo H. A Novel Quinazoline Derivative Prevents and Treats Arsenic-Induced Liver Injury by Regulating the Expression of RecQ Family Helicase. Int J Mol Sci 2023; 24:15521. [PMID: 37958505 PMCID: PMC10647758 DOI: 10.3390/ijms242115521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 11/15/2023] Open
Abstract
Arsenic is a carcinogenic metalloid toxicant widely found in the natural environment. Acute or prolonged exposure to arsenic causes a series of damages to the organs, mainly the liver, such as hepatomegaly, liver fibrosis, cirrhosis, and even hepatocellular carcinoma. Therefore, it is imperative to seek drugs to prevent arsenic-induced liver injury. Quinazolines are a class of nitrogen heterocyclic compounds with biological and pharmacological effects in vivo and in vitro. This study was designed to investigate the ameliorating effects of quinazoline derivatives on arsenic-induced liver injury and its molecular mechanism. We investigated the mechanism of the quinazoline derivative KZL-047 in preventing and ameliorating arsenic-induced liver injury in vitro by cell cycle and apoptosis. We performed real-time fluorescence quantitative polymerase chain reaction (qPCR) and Western blotting combined with molecular docking. In vivo, the experiments were performed to investigate the mechanism of KZL-047 in preventing and ameliorating arsenic-induced liver injury using arsenic-infected mice. Physiological and biochemical indices of liver function in mouse serum were measured, histopathological changes in liver tissue were observed, and immunohistochemical staining was used to detect changes in the expression of RecQ-family helicases in mouse liver tissue. The results of in vitro experiments showed that sodium arsenite (SA) inhibited the proliferation of L-02 cells, induced apoptosis, blocked the cell cycle at the G1 phase, and decreased the expression of RecQ family helicase; after KZL-047 treatment in arsenic-induced L-02 cells, the expression of RecQ family helicase was upregulated, and the apoptosis rate was slowed, leading to the restoration of the cell viability level. KZL-047 inhibited arsenic-induced oxidative stress, alleviated oxidative damage and lipid peroxidation in vivo, and ameliorated arsenic toxicity-induced liver injury. KZL-047 restored the expression of RecQ family helicase proteins, which is consistent with the results of in vitro studies. In summary, KZL-047 can be considered a potential candidate for the treatment of arsenic-induced liver injury.
Collapse
Affiliation(s)
- Heping Yang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China (M.M.); (B.S.)
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; (J.Y.); (S.C.); (B.X.)
| | - Min Mo
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China (M.M.); (B.S.)
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; (J.Y.); (S.C.); (B.X.)
| | - Langlang Yang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China (M.M.); (B.S.)
| | - Jia Yu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; (J.Y.); (S.C.); (B.X.)
- Natural Products Research Center of Guizhou Province, Guizhou Medical University, Guiyang 550014, China
| | - Jiao Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; (J.Y.); (S.C.); (B.X.)
- Natural Products Research Center of Guizhou Province, Guizhou Medical University, Guiyang 550014, China
| | - Sha Cheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; (J.Y.); (S.C.); (B.X.)
- Natural Products Research Center of Guizhou Province, Guizhou Medical University, Guiyang 550014, China
| | - Baofei Sun
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China (M.M.); (B.S.)
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; (J.Y.); (S.C.); (B.X.)
| | - Bixue Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; (J.Y.); (S.C.); (B.X.)
- Natural Products Research Center of Guizhou Province, Guizhou Medical University, Guiyang 550014, China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China (M.M.); (B.S.)
| | - Heng Luo
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; (J.Y.); (S.C.); (B.X.)
- Natural Products Research Center of Guizhou Province, Guizhou Medical University, Guiyang 550014, China
| |
Collapse
|
7
|
Ji X, Zhao Z. Exposure to enriched environment ameliorated chronic unpredictable mild stress-induced depression-like symptoms in rats via regulating the miR-92a-3p/kruppel-like factor 2 (KLF2) pathway. Brain Res Bull 2023; 195:14-24. [PMID: 36638871 DOI: 10.1016/j.brainresbull.2023.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 01/11/2023]
Abstract
BACKGROUND Silencing of miR-92a-3p may be beneficial in relieving depression of chronically stressed rats. The level of kruppel-like factor 2 (KLF2) was increased in the striatum of depressed rats after ketamine treatment. Enriched environment (EE) ameliorated depression-like behaviors in rats. However, the specific mechanism of EE treatment on depression induced by chronic unpredictable mild stress (CUMS) remains unclear. METHODS After CUMS-induced male Sprague Dawley rats were treated under EE or/and Adeno-Associated Virus (AAV)-miR-92a-3p, depression-like behaviors, cognitive ability, dendritic spine density, as well as levels of miR-92a-3p and KLF2 were detected by the behavioral tests, morris water maze test, Golgi staining, and quantitative real-time polymerase chain reaction (qRT-PCR) as needed. The body weight of rats was also measured. Next, primary hippocampal neurons were cultivated. The targeting relationship between miR-92a-3p and KLF2 was analyzed by TargetScan v7.2 and dual-luciferase reporter assay. After hippocampal neurons were transfected with miR-92a-3p mimic or/and overexpressed KLF2 vector, the cell viability, and apoptosis, together with the levels of KLF2, brain-derived neurotrophic factor (BDNF), phosphorylated (p)-tropomysin related kinase B (p-TrkB) and TrkB were determined by MTT assay, flow cytometry, qRT-PCR, and western blot as needed. RESULTS EE ameliorated CUMS-induced depression-like behaviors and cognitive ability, and elevated the neuronal dendritic spine density and KLF2 level, but reduced miR-92a-3p level in hippocampal tissues, while the above effects were reversed by AAV-miR-92a-3p. MiR-92a-3p mimic restrained cell viability, along with p-TrkB/ TrkB and BDNF levels, but promoted apoptosis in hippocampal neurons, which were reversed by overexpressed KLF2. CONCLUSION EE ameliorates CUMS-induced depression-like symptoms in rats via regulating the miR-92a-3p/KLF2 pathway.
Collapse
Affiliation(s)
- Xiao Ji
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Zhenwu Zhao
- Emergency Department, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China.
| |
Collapse
|
8
|
Yan N, Jing H, Wang J, Li Z, Xu K, Wang Q, Zheng J, Shi L, Cao X, Duan X. Arsenic Induces Blood‒Brain Barrier Disruption and Regulates T Lymphocyte Subpopulation Differentiation in the Cerebral Cortex and Hippocampus Associated with the Nrf2 Pathway In Vivo. Biol Trace Elem Res 2022:10.1007/s12011-022-03500-3. [PMID: 36435854 DOI: 10.1007/s12011-022-03500-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/18/2022] [Indexed: 11/28/2022]
Abstract
Increasing evidence has confirmed that the nervous system shows innate and adaptive immunity, which also participates in nerve damage. This study aimed to explore the neuroimmune imbalance induced by arsenic and its possible mechanism. Mice were exposed to NaAsO2 (0, 5, 10, 25, and 50 mg/L) for 1 month by drinking water. Y-maze and Morris water maze tests revealed that arsenic impaired learning and memory. The optical density of Evans blue showed a marked dose-dependent increase in the brain, and the mRNA and protein levels of the BBB tight junctions (TJs), occludin at 25 and 50 mg/L arsenic, and claudin-5 at 50 mg/L arsenic, were markedly decreased in the cerebral cortex. Arsenic downregulated occludin and claudin-5 mRNA expression at 50 mg/L and protein expression at 25 and 50 mg/L in the hippocampus. Immunohistochemical staining showed that 50 mg/L arsenic increased corticocerebral and hippocampal CD3+ T, CD4+ T, and CD8+ T cells; CD4 and CD8 proteins were increased with 25 and 50 mg/L arsenic. Arsenic decreased the corticocerebral and hippocampal Th1, Th17, and regulatory Treg transcription factors T-bet, Rorγt, and Foxp3 and the cytokine IFN-γ, IL-17, and TGF-β mRNA levels and increased the Th2 transcription factor GATA3 and cytokine IL-4 mRNA levels. Moreover, arsenic enhanced the expression of nuclear factor E2-related factor (Nrf2) and its downstream enzymes heme oxygenase-1 (HO-1) and glutathione-S-transferase (GST). In conclusion, these results demonstrate that arsenic exposure induces BBB dysfunction and T lymphocyte infiltration and affects CD4+ T lymphocyte differentiation, which may be associated with Nrf2 activation.
Collapse
Affiliation(s)
- Nan Yan
- Department of Medical Applied Technology, Shenyang Medical College, Liaoning, Shenyang, China
| | - Hui Jing
- Department of Toxicology, School of Public Health, Shenyang Medical College, Liaoning, Shenyang, China
| | - Jie Wang
- Department of Scientific Research, Shenyang Medical College, Liaoning, Shenyang, China
| | - Zhou Li
- Department of Toxicology, School of Public Health, Shenyang Medical College, Liaoning, Shenyang, China
| | - Kangjie Xu
- Department of Toxicology, School of Public Health, Shenyang Medical College, Liaoning, Shenyang, China
| | - Qian Wang
- Department of Toxicology, School of Public Health, Shenyang Medical College, Liaoning, Shenyang, China
| | - Jingwen Zheng
- Department of Toxicology, School of Public Health, Shenyang Medical College, Liaoning, Shenyang, China
| | - Lei Shi
- Affiliated Health School, Shenyang Medical College, Liaoning, Shenyang, China
| | - Xiankui Cao
- Department of General Surgery, Liaoning Province Cancer Hospital and Institute (Cancer Hospital of China Medical University), Liaoning, Shenyang, China.
| | - Xiaoxu Duan
- Department of Toxicology, School of Public Health, Shenyang Medical College, Liaoning, Shenyang, China.
| |
Collapse
|
9
|
Chakraborty A, Ghosh S, Biswas B, Pramanik S, Nriagu J, Bhowmick S. Epigenetic modifications from arsenic exposure: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:151218. [PMID: 34717984 DOI: 10.1016/j.scitotenv.2021.151218] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Arsenic is a notorious element with the potential to harm exposed individuals in ways that include cancerous and non-cancerous health complications. Millions of people across the globe (especially in South and Southeast Asian countries including China, Vietnam, India and Bangladesh) are currently being unknowingly exposed to precarious levels of arsenic. Among the diverse effects associated with such arsenic levels of exposure is the propensity to alter the epigenome. Although a large volume of literature exists on arsenic-induced genotoxicity, cytotoxicity, and inter-individual susceptibility due to active research on these subject areas from the last millennial, it is only recently that attention has turned on the ramifications and mechanisms of arsenic-induced epigenetic changes. The present review summarizes the possible mechanisms involved in arsenic induced epigenetic alterations. It focuses on the mechanisms underlying epigenome reprogramming from arsenic exposure that result in improper cell signaling and dysfunction of various epigenetic components. The mechanistic information articulated from the review is used to propose a number of novel therapeutic strategies with a potential for ameliorating the burden of worldwide arsenic poisoning.
Collapse
Affiliation(s)
- Arijit Chakraborty
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal 700107, India
| | - Soma Ghosh
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal 700107, India
| | - Bratisha Biswas
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal 700107, India
| | - Sreemanta Pramanik
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal 700107, India
| | - Jerome Nriagu
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, 109 Observatory Street, Ann Arbor, MI 48109-2029, USA
| | - Subhamoy Bhowmick
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal 700107, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
10
|
Identification of miRNAs Involved in Liver Injury Induced by Chronic Exposure to Cadmium. Toxicology 2022; 469:153133. [DOI: 10.1016/j.tox.2022.153133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/10/2022] [Accepted: 02/15/2022] [Indexed: 12/24/2022]
|
11
|
Harley J, Clarke BE, Patani R. The Interplay of RNA Binding Proteins, Oxidative Stress and Mitochondrial Dysfunction in ALS. Antioxidants (Basel) 2021; 10:antiox10040552. [PMID: 33918215 PMCID: PMC8066094 DOI: 10.3390/antiox10040552] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/26/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
RNA binding proteins fulfil a wide number of roles in gene expression. Multiple mechanisms of RNA binding protein dysregulation have been implicated in the pathomechanisms of several neurodegenerative diseases including amyotrophic lateral sclerosis (ALS). Oxidative stress and mitochondrial dysfunction also play important roles in these diseases. In this review, we highlight the mechanistic interplay between RNA binding protein dysregulation, oxidative stress and mitochondrial dysfunction in ALS. We also discuss different potential therapeutic strategies targeting these pathways.
Collapse
Affiliation(s)
- Jasmine Harley
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK;
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Benjamin E. Clarke
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK;
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Correspondence: (B.E.C.); (R.P.)
| | - Rickie Patani
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK;
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- National Hospital for Neurology and Neurosurgery, University College London NHS, London WC1N 3BG, UK
- Correspondence: (B.E.C.); (R.P.)
| |
Collapse
|
12
|
Tan Q, Lv Y, Zhao F, Zhou J, Yang Y, Liu Y, Zhang M, Lu F, Wei Y, Chen X, Zhang R, Chen C, Wu B, Zhang X, Li C, Huang H, Cai J, Cao Z, Yu D, Ji JS, Zhao S, Shi X. Association of low blood arsenic exposure with level of malondialdehyde among Chinese adults aged 65 and older. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143638. [PMID: 33288260 PMCID: PMC7897719 DOI: 10.1016/j.scitotenv.2020.143638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 04/13/2023]
Abstract
High environmental arsenic exposure can increase chronic oxidative stress in experimental studies and in occupational epidemiology studies. Many regulatory agencies have put forth arsenic exposure limits, it is still unclear that whether low environmental arsenic exposure was associated with adverse health outcome in general population. This study aimed to explore the association of low blood arsenic with malondialdehyde in community-dwelling older adults. We used a cross-sectional study of 2384 older adult individuals aged ≥65 years (mean age: 85 years) from the Healthy Aging and Biomarkers Cohort Study in 2017. The median blood arsenic level was 1.41 μg/L. High oxidative stress was categorized according to the 95th percentile of MDA levels (7.47 nmol/mL). Restricted cubic spline models showed that blood arsenic levels were positively associated with malondialdehyde levels (P < 0.01); and the risk of high oxidative stress was no longer significantly increased when blood arsenic level up to 8.74 μg/L. After adjusting for potential confounders, the odds ratios of high oxidative stress for the second, third, and fourth quartiles of blood arsenic were 2.35 (1.11-4.96), 3.87 (1.90-7.91), and 4.18 (2.00-8.72) (Ptrend < 0.01), compared with the first quartile. We concluded that even low arsenic exposure was associated with higher risk of oxidative stress, in a nonlinear dose-response.
Collapse
Affiliation(s)
- Qiyue Tan
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; School of Public Health, Jilin University, Changchun, Jilin, China
| | - Yuebin Lv
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Feng Zhao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jinhui Zhou
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yang Yang
- The University of Queensland Diamantina Institute, University of Queensland, Queensland, Australia
| | - Yingchun Liu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Mingyuan Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; School of Public Health, Jilin University, Changchun, Jilin, China
| | - Feng Lu
- Beijing Municipal Health Commission Information Center, (Beijing Municipal Health Commission Policy Research Center), Beijing 100034, China
| | - Yuan Wei
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; School of Public Health, Jilin University, Changchun, Jilin, China
| | - Xin Chen
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; School of Public Health, Jilin University, Changchun, Jilin, China
| | - Ruizhi Zhang
- School of Public Health, Jilin University, Changchun, Jilin, China
| | - Chen Chen
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Bing Wu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xiaochang Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Chengcheng Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hongyuan Huang
- School of Public Health, Jilin University, Changchun, Jilin, China
| | - Junfang Cai
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhaojin Cao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Di Yu
- The University of Queensland Diamantina Institute, University of Queensland, Queensland, Australia
| | - John S Ji
- Environmental Research Center, Duke Kunshan University, Kunshan, Jiangsu, China; Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Shuhua Zhao
- School of Public Health, Jilin University, Changchun, Jilin, China
| | - Xiaoming Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
13
|
Inesta-Vaquera F, Navasumrit P, Henderson CJ, Frangova TG, Honda T, Dinkova-Kostova AT, Ruchirawat M, Wolf CR. Application of the in vivo oxidative stress reporter Hmox1 as mechanistic biomarker of arsenic toxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116053. [PMID: 33213951 DOI: 10.1016/j.envpol.2020.116053] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/02/2020] [Accepted: 11/06/2020] [Indexed: 05/26/2023]
Abstract
Inorganic arsenic (iAs) is a naturally occurring metalloid present in drinking water and polluted air exposing millions of people globally. Epidemiological studies have linked iAs exposure to the development of numerous diseases including cognitive impairment, cardiovascular failure and cancer. Despite intense research, an effective therapy for chronic arsenicosis has yet to be developed. Laboratory studies have been of great benefit in establishing the pathways involved in iAs toxicity and providing insights into its mechanism of action. However, the in vivo analysis of arsenic toxicity mechanisms has been difficult by the lack of reliable in vivo biomarkers of iAs's effects. To address this issue we have applied the use of our recently developed stress reporter models to study iAs toxicity. The reporter mice Hmox1 (oxidative stress/inflammation; HOTT) and p21 (DNA damage) were exposed to iAs at acute and chronic, environmentally relevant, doses. We observed induction of the oxidative stress reporters in several cell types and tissues, which was largely dependent on the activation of transcription factor NRF2. We propose that our HOTT reporter model can be used as a surrogate biomarker of iAs-induced oxidative stress, and it constitutes a first-in-class platform to develop treatments aimed to counteract the role of oxidative stress in arsenicosis. Indeed, in a proof of concept experiment, the HOTT reporter mice were able to predict the therapeutic utility of the antioxidant N-acetyl cysteine in the prevention of iAs associated toxicity.
Collapse
Affiliation(s)
- Francisco Inesta-Vaquera
- Department of Systems Medicine. School of Medicine. University of Dundee, Ninewells Hospital, Dundee, DD1 9SY, UK.
| | - Panida Navasumrit
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Colin J Henderson
- Department of Systems Medicine. School of Medicine. University of Dundee, Ninewells Hospital, Dundee, DD1 9SY, UK
| | - Tanya G Frangova
- Department of Systems Medicine. School of Medicine. University of Dundee, Ninewells Hospital, Dundee, DD1 9SY, UK
| | - Tadashi Honda
- Department of Chemistry and Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, NY, 11794-3400, USA
| | - Albena T Dinkova-Kostova
- Department of Molecular Medicine. School of Medicine. University of Dundee, Ninewells Hospital, Dundee, DD1 9SY, UK
| | - Mathuros Ruchirawat
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - C Roland Wolf
- Department of Systems Medicine. School of Medicine. University of Dundee, Ninewells Hospital, Dundee, DD1 9SY, UK
| |
Collapse
|
14
|
Xiao T, Zou Z, Xue J, Syed BM, Sun J, Dai X, Shi M, Li J, Wei S, Tang H, Zhang A, Liu Q. LncRNA H19-mediated M2 polarization of macrophages promotes myofibroblast differentiation in pulmonary fibrosis induced by arsenic exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115810. [PMID: 33162208 DOI: 10.1016/j.envpol.2020.115810] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/02/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
Arsenic is a potent toxicant, and long-term exposure to inorganic arsenic causes lung damage. M2 macrophages play an important role in the pathogenesis of pulmonary fibrosis. However, the potential connections between arsenic and M2 macrophages in the development of pulmonary fibrosis are elusive. C57BL/6 mice were fed with drinking water containing 0, 10 and 20 ppm arsenite for 12 months. We have found that, in lung tissues of mice, arsenite, a biologically active form of arsenic, elevated H19, c-Myc, and Arg1; decreased let-7a; and caused pulmonary fibrosis. For THP-1 macrophages (THP-M) and bone-marrow-derived macrophages (BMDMs), 8 μM arsenite increased H19, c-Myc, and Arg1; decreased let-7a; and induced M2 polarization of macrophages, which caused secretion of the fibrogenic cytokine, TGF-β1. Down-regulation of H19 or up-regulation of let-7a reversed the arsenite-induced M2 polarization of macrophages. Arsenite-treated THP-M and BMDMs co-cultured with MRC-5 cells or primary lung fibroblasts (PLFs) elevated levels of p-SMAD2/3, SMAD4, α-SMA, and collagen I in lung fibroblasts and resulted in the activation of lung fibroblasts. Knockout of H19 or up-regulation of let-7a in macrophages reversed the effects. The results indicated that H19 functioned as an miRNA sponge for let-7a, which was involved in arsenite-induced M2 polarization of macrophages and induced the myofibroblast differentiation phenotype by regulation of c-Myc. In the sera of arseniasis patients, levels of hydroxyproline and H19 were higher, and levels of let-7a were lower than levels in the controls. These observations elucidate a possible mechanism for arsenic exposure-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Tian Xiao
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Zhonglan Zou
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Junchao Xue
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Binafsha Manzoor Syed
- Medical Research Centre, Liaquat University of Medical & Health Sciences, Jamshoro, 76090, Sindh, Pakistan
| | - Jing Sun
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Xiangyu Dai
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Ming Shi
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, Guangdong, People's Republic of China
| | - Junjie Li
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Shaofeng Wei
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Huanwen Tang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, Guangdong, People's Republic of China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Qizhan Liu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.
| |
Collapse
|
15
|
Lan W, Chen Z, Chen Y, Tan M, Chen Y, Chen J, Chi X, Chen Y. Glycochenodeoxycholic acid impairs transcription factor E3 -dependent autophagy-lysosome machinery by disrupting reactive oxygen species homeostasis in L02 cells. Toxicol Lett 2020; 331:11-21. [PMID: 32439580 DOI: 10.1016/j.toxlet.2020.05.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/12/2020] [Accepted: 05/12/2020] [Indexed: 12/18/2022]
Abstract
Cholestasis represents pathophysiologic syndromes defined as impaired bile flow from the liver. As an outcome, bile acids accumulate and promote hepatocyte injury, followed by liver cirrhosis and liver failure. Glycochenodeoxycholic acid (GCDCA) is relatively toxic and highly concentrated in bile and serum after cholestasis. However, the mechanism underlying GCDCA-induced hepatotoxicity remains unclear. In this study, we found that GCDCA inhibits autophagosome formation and impairs lysosomal function by inhibiting lysosomal proteolysis and increasing lysosomal pH, contributing to defects in autophagic clearance and subsequently leading to the death of L02 human hepatocyte cells. Notably, through tandem mass tag (TMT)-based quantitative proteomic analysis and database searches, 313 differentially expressed proteins were identified, of which 71 were increased and 242 were decreased in the GCDCA group compared with those in the control group. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that GCDCA suppressed the signaling pathway of transcription factor E3 (TFE3), which was the most closely associated with autophagic flux impairment. In contrast, GCDCA-inhibited lysosomal function and autophagic flux were efficiently attenuated by TFE3 overexpression. Specifically, the decreased expression of TFE3 was closely related to the disruption of reactive oxygen species (ROS) homeostasis, which could be prevented by inhibiting intracellular ROS with N-acetyl cysteine (NAC). In summary, our study is the first to demonstrate that manipulation of ROS/TFE3 signaling may be a therapeutic approach for antagonizing GCDCA-induced hepatotoxicity.
Collapse
Affiliation(s)
- Weifeng Lan
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, 350025, China
| | - Zhijian Chen
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, 350025, China
| | - Yongtai Chen
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, 350025, China
| | - Miduo Tan
- Surgery Department of Galactophore, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou, 412007, China
| | - Yuan Chen
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, 350025, China
| | - Jianwei Chen
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, 350025, China; Department of Hepatobiliary Surgery, 900 Hospital of the Joint Logistics Team, PLA, Fuzhou, Fujian, 350025, China
| | - Xiaobin Chi
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, 350025, China; Department of Hepatobiliary Surgery, 900 Hospital of the Joint Logistics Team, PLA, Fuzhou, Fujian, 350025, China.
| | - Yongbiao Chen
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, 350025, China; Department of Hepatobiliary Surgery, 900 Hospital of the Joint Logistics Team, PLA, Fuzhou, Fujian, 350025, China.
| |
Collapse
|