1
|
Sun B, Pan Y, Sokolova I, Shao Y, Hu M, Wang Y. Perfluorooctanoate and nano-titanium dioxide modulate male gonadal function in the mussel Mytilus coruscus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 279:107251. [PMID: 39842193 DOI: 10.1016/j.aquatox.2025.107251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 01/24/2025]
Abstract
Perfluorooctanoic acid (PFOA) and nano-titanium dioxide (nano-TiO₂) are widely used in industrial applications such as manufacturing and textiles, and can be released into the environment, causing toxicity to marine organisms. To study the effects of these pollutants on the gonadal development, we exposed the males of Mytilus coruscus to varying PFOA concentrations (2 and 200 μg/L) alone or combined with nano-TiO2 (0.1 mg/L, size: 25 nm) for 14 days. Co-exposure to PFOA and nano-TiO₂ resulted in a short-term (7 days) decrease in the gonadosomatic index (GSI), which recovered to baseline levels. In contrast, long-term (14 days) exposure induced changes in the testes, including increased protein content, decreased lipid content, reductions in spermatic area and sperm count, and elevated apoptotic cell levels. Furthermore, key genes essential for gonadal maturation were significantly upregulated after long-term exposure. PFOA and nano-TiO2 can disrupt the gonadal function in the male mussels by interfering with Wnt family signaling pathways, modulation of steroid and lipid metabolism and induction of apoptosis. Therefore, PFOA and nanoparticle pollutants may pose a significant risk to the reproductive capacity of mussels' populations from polluted coastal environments.
Collapse
Affiliation(s)
- Bingyan Sun
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China
| | - Yiting Pan
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China
| | - Inna Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany
| | - Ying Shao
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China
| | - Menghong Hu
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai 201306, PR China.
| | - Youji Wang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China.
| |
Collapse
|
2
|
Hu R, Yang X, He J, Wu S. Oxidative Stress and Autophagy: Unraveling the Hidden Threat to Boars' Fertility. Antioxidants (Basel) 2024; 14:2. [PMID: 39857336 PMCID: PMC11761863 DOI: 10.3390/antiox14010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/11/2024] [Accepted: 12/21/2024] [Indexed: 01/27/2025] Open
Abstract
This review systematically examines the influence of oxidative stress on the reproductive function of male livestock, with a particular focus on the modulation of autophagy. Spermatogenesis, a highly precise biological process, is vulnerable to a range of internal and external factors, among which oxidative stress notably disrupts autophagic processes within the testes. This disruption results in diminished sperm quality, impaired testosterone synthesis, and compromised integrity of the blood-testis barrier. Furthermore, this review elucidates the molecular mechanisms by which oxidative stress-induced autophagy dysfunction impairs spermatogenesis and mitochondrial function, consequently reducing sperm motility. These findings aim to provide a theoretical foundation and serve as a reference for improving reproductive performance and sperm quality in livestock.
Collapse
Affiliation(s)
- Ruizhi Hu
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xizi Yang
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Jianhua He
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Shusong Wu
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
3
|
Guo Z, Zeng Q, Li Q, Shan B, Huo Y, Shi X, Li Q, Du X. LncRNA NORFA promotes the synthesis of estradiol and inhibits the apoptosis of sow ovarian granulosa cells through SF-1/CYP11A1 axis. Biol Direct 2024; 19:107. [PMID: 39523350 PMCID: PMC11552157 DOI: 10.1186/s13062-024-00563-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Biosynthesis of 17β-estradiol (E2) is a crucial ovarian function in mammals, which is essential for follicular development and pregnancy outcome. Exploring the epigenetic regulation of E2 synthesis is beneficial for maintaining ovary health and the optimal reproductive traits. NORFA is the first validated sow fertility-associated long non-coding RNA (lncRNA). However, its role on steroidogenesis is elusive. The aim of this study is to investigate the regulation and underlying mechanism of NORFA to E2 synthesis in sow granulosa cells (GCs). RESULTS Through Pearson correlation analysis and comparative detection, we found that NORFA expression was positively correlated with the levels of pregnenolone (PREG) and E2 in follicles, which also exhibited similar alteration patterns during follicular atresia. ELISA was conducted and indicated for the first time that NORFA induced the synthesis of PREG and E2 in sow GCs in a dose- and time-dependent manner. RNA-seq, GSEA and quantitative analyses results validated that CYP11A1, the coding gene of P450SCC which is the first step rate-limiting enzyme of E2 synthesis, was a positive functional target of NORFA. Mechanistically, NORFA promotes SF-1 expression by stabilizing NR5A1 mRNA through directly interacting with its 3'-UTR, and also tethers SF-1 to shuttle into nucleus. Additionally, SF-1 in the nucleus activates CYP11A1 transcription by directly binding to its promoter, which ultimately induces E2 synthesis and inhibits GC apoptosis. CONCLUSION Our findings highlight that NORFA, a multifunctional lncRNA, induces E2 synthesis and inhibits GC apoptosis through the SF-1/CYP11A1 axis in a ceRNA-independent manner, which provide valuable clues and potential targets for follicular atresia inhibition and female fertility improvement.
Collapse
Affiliation(s)
- Zhennan Guo
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Qiang Zeng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Qiqi Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- College of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Zhenjiang, Jiangsu, 212400, China
| | - Baosen Shan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Yangan Huo
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xiaoli Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
- National Experimental Teaching Demonstration Center for Animal Science, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Qifa Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xing Du
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| |
Collapse
|
4
|
Erradhouani C, Bortoli S, Aït‐Aïssa S, Coumoul X, Brion F. Metabolic disrupting chemicals in the intestine: the need for biologically relevant models: Zebrafish: what can we learn from this small environment-sensitive fish? FEBS Open Bio 2024; 14:1397-1419. [PMID: 39218795 PMCID: PMC11492336 DOI: 10.1002/2211-5463.13878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/08/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Although the concept of endocrine disruptors first appeared almost 30 years ago, the relatively recent involvement of these substances in the etiology of metabolic pathologies (obesity, diabetes, hepatic steatosis, etc.) has given rise to the concept of Metabolic Disrupting Chemicals (MDCs). Organs such as the liver and adipose tissue have been well studied in the context of metabolic disruption by these substances. The intestine, however, has been relatively unexplored despite its close link with these organs. In vivo models are useful for the study of the effects of MDCs in the intestine and, in addition, allow investigations into interactions with the rest of the organism. In the latter respect, the zebrafish is an animal model which is used increasingly for the characterization of endocrine disruptors and its use as a model for assessing effects on the intestine will, no doubt, expand. This review aims to highlight the importance of the intestine in metabolism and present the zebrafish as a relevant alternative model for investigating the effect of pollutants in the intestine by focusing, in particular, on cytochrome P450 3A (CYP3A), one of the major molecular players in endogenous and MDCs metabolism in the gut.
Collapse
Affiliation(s)
- Chedi Erradhouani
- Ecotoxicologie des Substances et des MilieuxINERISVerneuil‐en‐HalatteFrance
- Université Paris CitéFrance
- Inserm UMR‐S 1124ParisFrance
| | | | - Selim Aït‐Aïssa
- Ecotoxicologie des Substances et des MilieuxINERISVerneuil‐en‐HalatteFrance
| | | | - François Brion
- Ecotoxicologie des Substances et des MilieuxINERISVerneuil‐en‐HalatteFrance
| |
Collapse
|
5
|
Liu M, Zhang X, Luan H, Zhang Y, Xu W, Feng W, Song P. Bioenzymatic detoxification of mycotoxins. Front Microbiol 2024; 15:1434987. [PMID: 39091297 PMCID: PMC11291262 DOI: 10.3389/fmicb.2024.1434987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 07/08/2024] [Indexed: 08/04/2024] Open
Abstract
Mycotoxins are secondary metabolites produced during the growth, storage, and transportation of crops contaminated by fungi and are physiologically toxic to humans and animals. Aflatoxin, zearalenone, deoxynivalenol, ochratoxin, patulin, and fumonisin are the most common mycotoxins and can cause liver and nervous system damage, immune system suppression, and produce carcinogenic effects in humans and animals that have consumed contaminated food. Physical, chemical, and biological methods are generally used to detoxify mycotoxins. Although physical methods, such as heat treatment, irradiation, and adsorption, are fast and simple, they have associated problems including incomplete detoxification, limited applicability, and cause changes in food characteristics (e.g., nutritive value, organoleptic properties, and palatability). Chemical detoxification methods, such as ammonification, ozonation, and peroxidation, pollute the environment and produce food safety risks. In contrast, bioenzymatic methods are advantageous as they achieve selective detoxification and are environmentally friendly and reusable; thus, these methods are the most promising options for the detoxification of mycotoxins. This paper reviews recent research progress on common mycotoxins and the enzymatic principles and mechanisms for their detoxification, analyzes the toxicity of the degradation products and describes the challenges faced by researchers in carrying out enzymatic detoxification. In addition, the application of enzymatic detoxification in food and feed is discussed and future directions for the development of enzymatic detoxification methods are proposed for future in-depth study of enzymatic detoxification methods.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Peng Song
- College of Life Sciences, Liaocheng University, Liaocheng, China
| |
Collapse
|
6
|
Salla RF, Costa MJ, Abdalla FC, Oliveira CR, Tsukada E, Boeing GANS, Prado J, Carvalho T, Ribeiro LP, Rebouças R, Toledo LF. Estrogen contamination increases vulnerability of amphibians to the deadly chytrid fungus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170337. [PMID: 38301782 DOI: 10.1016/j.scitotenv.2024.170337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/31/2023] [Accepted: 01/19/2024] [Indexed: 02/03/2024]
Abstract
Aquatic contaminants and infectious diseases are among the major drivers of global amphibian declines. However, the interaction of these factors is poorly explored and could better explain the amphibian crisis. We exposed males and females of the Brazilian Cururu Toad, Rhinella icterica, to an environmentally relevant concentration of the estrogen 17-alpha-ethinylestradiol (an emerging contaminant) and to the chytrid infection (Batrachochytrium dendrobatidis), in their combined and isolated forms, and the ecotoxicity was determined by multiple biomarkers: cutaneous, hematological, cardiac, hepatic, and gonadal analysis. Our results showed that Cururu toads had many physiological alterations in response to the chytrid infection, including the appearance of cutaneous Langerhans's cells, increased blood leukocytes, increased heart contraction force and tachycardia, increased hepatic melanomacrophage cells, which in turn led to gonadal atrophy. The estrogen, in turn, increased the susceptibility of the toads to the chytrid infection (higher Bd loads) and maximized the deleterious effects of the pathogen: reducing leukocytes, decreasing the contraction force, and causing greater tachycardia, increasing hepatic melanomacrophage cells, and leading to greater gonadal atrophy, which were more extreme in females. The exposure to estrogen also revealed important toxicodynamic pathways of this toxicant, as shown by the immunosuppression of exposed animals, and the induction of the first stages of feminization in males, which corroborates that the synthetic estrogen acts as an endocrine disruptor. Such an intricate relationship is unprecedented and reinforces the importance of studying the serious consequences that multiple environmental stressors can cause to aquatic populations.
Collapse
Affiliation(s)
- Raquel F Salla
- Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Instituto de Biologia, Universidade Estadual de Campinas (Unicamp), Campinas, São Paulo, Brazil; Programa de Pós-graduação em Biotecnologia e Monitoramento Ambiental (PPGBMA), Universidade Federal de São Carlos, Sorocaba, São Paulo, Brazil.
| | - Monica Jones Costa
- Programa de Pós-graduação em Biotecnologia e Monitoramento Ambiental (PPGBMA), Universidade Federal de São Carlos, Sorocaba, São Paulo, Brazil; Laboratório de Fisiologia da Conservação (LaFisC), Universidade Federal de São Carlos, Sorocaba, São Paulo, Brazil
| | - Fabio Camargo Abdalla
- Programa de Pós-graduação em Biotecnologia e Monitoramento Ambiental (PPGBMA), Universidade Federal de São Carlos, Sorocaba, São Paulo, Brazil; Laboratório de Biologia Estrutural e Funcional (LaBEF), Universidade Federal de São Carlos, Sorocaba, São Paulo, Brazil
| | - Cristiane R Oliveira
- Programa de Pós-graduação em Biotecnologia e Monitoramento Ambiental (PPGBMA), Universidade Federal de São Carlos, Sorocaba, São Paulo, Brazil
| | - Elisabete Tsukada
- Programa de Pós-graduação em Biotecnologia e Monitoramento Ambiental (PPGBMA), Universidade Federal de São Carlos, Sorocaba, São Paulo, Brazil
| | - Guilherme Andrade Neto Schmitz Boeing
- Programa de Pós-graduação em Biotecnologia e Monitoramento Ambiental (PPGBMA), Universidade Federal de São Carlos, Sorocaba, São Paulo, Brazil; Laboratório de Biologia Estrutural e Funcional (LaBEF), Universidade Federal de São Carlos, Sorocaba, São Paulo, Brazil
| | - Joelma Prado
- Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Instituto de Biologia, Universidade Estadual de Campinas (Unicamp), Campinas, São Paulo, Brazil
| | - Tamilie Carvalho
- Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Instituto de Biologia, Universidade Estadual de Campinas (Unicamp), Campinas, São Paulo, Brazil; Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Luisa P Ribeiro
- Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Instituto de Biologia, Universidade Estadual de Campinas (Unicamp), Campinas, São Paulo, Brazil
| | - Raoni Rebouças
- Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Instituto de Biologia, Universidade Estadual de Campinas (Unicamp), Campinas, São Paulo, Brazil
| | - Luís Felipe Toledo
- Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Instituto de Biologia, Universidade Estadual de Campinas (Unicamp), Campinas, São Paulo, Brazil
| |
Collapse
|
7
|
Dai C, Hou M, Yang X, Wang Z, Sun C, Wu X, Wang S. Increased NAD + levels protect female mouse reproductive system against zearalenone-impaired glycolysis, lipid metabolism, antioxidant capacity and inflammation. Reprod Toxicol 2024; 124:108530. [PMID: 38159578 DOI: 10.1016/j.reprotox.2023.108530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
The reproductive system is a primary target organ for zearalenone (ZEN, a widespread fusarium mycotoxin) to exert its toxic effects, including decreased antioxidant capacity and aggravated inflammatory response. These ZEN-induced reproductive abnormalities are partially caused by the declining levels of nicotinamide adenine dinucleotide (NAD+), which results in an imbalance in lipid/glucose metabolism. Accordingly, the present study aimed to investigate whether supplements of nicotinamide mononucleotide (NMN, a NAD+ precursor) in female mice could protect against ZEN-induced reproductive toxicity. In this study, thirty female mice were randomly divided into three groups that were intragastrically administered with i) 0.5% DMSO (the Ctrl group), ii) 3 mg/(kg bw.d) ZEN (the ZEN group), or iii) ZEN + 500 mg/(kg bw.d) NMN (the ZEN/NMN group) for two weeks. The results revealed that, compared with the Ctrl group, animals exposed to ZEN exhibited reproductive toxicity, such as decreased antioxidant capacity and aggravated inflammatory response in reproductive tissues. These effects were strongly correlated with lower activities in key glycolytic enzymes (e.g., ALDOA and PGK), but increased expressions in key lipid-synthesis genes (e.g., LPIN1 and ATGL). These changes contribute to lipid accumulation, specifically for diacylglycerols (DAGs). Furthermore, these ZEN-induced changes were linked with disturbed NAD+ synthesis/degradation, and subsequently decreased NAD+ levels. Notably, NMN supplements in mice protected against these ZEN-induced reproductive abnormalities by boosting NAD+ levels. Herein, the present findings demonstrate that potential strategies to enhance NAD+ levels can protect against ZEN-induced reproductive toxicity.
Collapse
Affiliation(s)
- Chao Dai
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Institute of Life Sciences, Chongqing Medical University, Chongqing 400032, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengqian Hou
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400032, China
| | - Xudong Yang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300392, China
| | - Zhefeng Wang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changpo Sun
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China; Standards and Quality Center of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Xin Wu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| | - Shujin Wang
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400032, China.
| |
Collapse
|
8
|
Galgano S, Conway L, Fellows A, Houdijk J. Impact of precursor-derived peracetic acid on post-weaning diarrhea, intestinal microbiota, and predicted microbial functional genes in weaned pigs. Front Microbiol 2024; 15:1356538. [PMID: 38333588 PMCID: PMC10850238 DOI: 10.3389/fmicb.2024.1356538] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/08/2024] [Indexed: 02/10/2024] Open
Abstract
Post-weaning diarrhea affects piglets in the nursery phase of production, leading to a substantial impact both at the farm and financial levels. The multifactorial etiology of this disease includes housing conditions, pig genetics, microbial composition, and metagenomic assets. Among the common therapeutic approaches, the widely used zinc oxide underwent a European Union ban in 2022 due to its negative environmental impact and correlation to increased antimicrobial resistance. During this study, we have tested two levels of inclusion of the potential antimicrobial alternative peracetic acid, delivered in water via the hydrolysis of the precursors sodium percarbonate and tetraacetylethylenediamine, in comparison to zinc oxide and an untreated control during a 2-week animal study. We assessed the microbial composition and predicted the metagenome, together with performance and physiological parameters, in order to describe the microbial functional role in etiopathology. Both zinc oxide and peracetic acid resulted in amelioration of the diarrheal status by the end of the trial period, with noticeable zinc oxide effects visible from the first week. This was accompanied by improved performance when compared to the first-week figures and a decreased stomach pH in both peracetic acid levels. A significant reduction in both stomach and caecal Proteobacteria was recorded in the zinc oxide group, and a significant reduction of Campylobacter in the stomach was reported for both zinc oxide and one of the peracetic acid concentrations. Among other functional differences, we found that the predicted ortholog for the zonula occludens toxin, a virulence factor present in pathogens like Escherichia coli and Campylobacter jejuni, was less abundant in the stomach of treated pigs compared to the control group. In water, peracetic acid delivered via precursor hydrolysis has the potential to be a valid intervention, an alternative to antimicrobial, to assist the weaning of piglets. Our findings support the view that post-weaning diarrhea is a complex multifactorial disease with an important metagenomic component characterized by the differential abundance of specific predicted orthologs and microbial genera in the stomach and caecum of pigs.
Collapse
Affiliation(s)
- Salvatore Galgano
- Monogastric Science Research Centre, Scotland's Rural College (SRUC), Edinburgh, United Kingdom
| | | | | | - Jos Houdijk
- Monogastric Science Research Centre, Scotland's Rural College (SRUC), Edinburgh, United Kingdom
| |
Collapse
|
9
|
Galvez-Llompart M, Zanni R, Manyes L, Meca G. Elucidating the mechanism of action of mycotoxins through machine learning-driven QSAR models: Focus on lipid peroxidation. Food Chem Toxicol 2023; 182:114120. [PMID: 37944785 DOI: 10.1016/j.fct.2023.114120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/06/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
Understanding the mechanisms of mycotoxin toxicity is crucial for establishing effective guidelines and preventive strategies. In this study, machine learning models based on quantitative structure-activity relationship (QSAR) were employed to predict the lipid peroxidation activity of mycotoxins. Two different algorithms using Linear Discriminant Analysis (LDA) and Artificial Neural Networks (ANNs) have been trained using a dataset of 70 mycotoxins. The LDA model had an average correct classification rate of 91%, while the ANN model achieved a perfect 100% classification rate. Following an internal validation process, the models were utilized to predict mycotoxins with known lipid peroxidation activity. The machine learning models achieved an 88% correct classification rate for these mycotoxins. Finally, by utilizing classified algorithms, the study aimed to infer the mechanism of action related to lipid peroxidation for 91 unstudied mycotoxins. These models provide a fast, accurate, and cost-effective means to assess the potential toxicity and mechanism of action of mycotoxins. The findings of this study contribute to a comprehensive understanding of mycotoxin toxicology and assist researchers and toxicologists in evaluating health risks associated with mycotoxin exposure and developing appropriate preventive strategies and potential therapeutic interventions to mitigate the effects of mycotoxins.
Collapse
Affiliation(s)
- Maria Galvez-Llompart
- Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, University of Valencia, 46100, Burjassot, Valencia, Spain; Department of Physical Chemistry, University of Valencia, 46100, Burjassot, Valencia, Spain.
| | - Riccardo Zanni
- Department of Physical Chemistry, University of Valencia, 46100, Burjassot, Valencia, Spain
| | - Lara Manyes
- Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, University of Valencia, 46100, Burjassot, Valencia, Spain
| | - Giuseppe Meca
- Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, University of Valencia, 46100, Burjassot, Valencia, Spain
| |
Collapse
|
10
|
Li X, Zhang F, Wang J, Feng Y, Zhang S, Li L, Tan J, Shen W. LncRNA profiles of Cyanidin-3-O-glucoside ameliorated Zearalenone-induced damage in porcine granulosa cells. Gene 2023; 884:147693. [PMID: 37549855 DOI: 10.1016/j.gene.2023.147693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/20/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Long non-coding RNA (lncRNA), a class of RNA molecules with transcripts longer than 200 nt, is crucial for maintaining animal reproductive function. Zearalenone (ZEN) damaged animal reproduction by targeting ovarian granulosa cells (GCs), especially in pigs. Nonetheless, it is not quite clear that whether Cyanidin-3-O-glucoside (C3G) exert effects on porcine GCs (pGCs) after ZEN exposure by altering lncRNA expression. Here, we sought to gain novel information regarding C3G protect against damages induced by ZEN in pGCs. The pGCs were divided into control (Ctrl), ZEN, ZEN + C3G (Z + C), and C3G groups. Results revealed that C3G effectively increased cell viability and suppressed ZEN-induced apoptosis in pGCs. 87 and 82 differentially expressed lncRNAs (DELs) were identified in ZEN vs. Ctrl and Z + C vs. ZEN group, respectively. Gene Ontology (GO) analysis observed that the DELs were related to cell metabolism and cell-matrix adhesion biological processes. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis found that the DELs were associated with the phosphatidylinositide 3-kinases (PI3K)-protein kinase B (AKT) signaling pathway. In brief, we demonstrated that C3G could shield apoptosis induced by ZEN, which may be connected with the changes of lncRNA expression profiles in pGCs. This study complemented our understanding of the genetic basis and molecular mechanisms by which C3G mitigated the toxicity of ZEN in pGCs.
Collapse
Affiliation(s)
- Xiuxiu Li
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China; College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Fali Zhang
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China; College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Jingya Wang
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Yanqin Feng
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Shuer Zhang
- Animal Husbandry General Station of Shandong Province, Jinan 250010, China
| | - Lan Li
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Jinghe Tan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Wei Shen
- College of Life Sciences, Key Laboratory of Animal Reproduction and Biotechnology in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
11
|
Peltoniemi O, Tanskanen T, Kareskoski M. One Health challenges for pig reproduction. Mol Reprod Dev 2023; 90:420-435. [PMID: 36638261 DOI: 10.1002/mrd.23666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/15/2023]
Abstract
The current state of the world challenges pig reproduction as an important part of One Health, which involves interrelationships between animal, human and environmental health. The One Health concept underlines a comparative aspect in reproductive physiology and disease occurrence, bridging knowledge from one species to another. Seasonal changes in the environment affect pig reproduction and climate change may further strengthen those effects. Endocrine-disrupting chemicals (EDCs), and specifically phthalates and heavy metals, interfere with endocrine function, and thereby sexual behavior, fertilization capacity and steroidogenesis. Reproductive infections and extended semen storage are important indications for antimicrobial use. Innovative solutions are needed to explore alternatives to antimicrobials. Efforts to ensure reproductive efficiency have prolonged farrowing as litter size has doubled over the past three decades, compromising immune transfer and welfare. Physiological, metabolic and programming related events around parturition are key areas for future One Health research in pig reproduction. In conclusion, climate change challenges reproductive management and breeding. More resilient pigs that can tolerate harsh environment but maintain high reproductive performance are needed. EDCs continue to grow as an environmental challenge for reproductive management and alternatives to antibiotics will be required.
Collapse
Affiliation(s)
- Olli Peltoniemi
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Faculty of Veterinary Medicine, Helsinki One Health, University of Helsinki, Helsinki, Finland
| | - Topi Tanskanen
- Faculty of Veterinary Medicine, Helsinki One Health, University of Helsinki, Helsinki, Finland
| | - Maria Kareskoski
- Department of Production Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
12
|
Schmidhauser M, Hankele AK, Ulbrich SE. Reconsidering "low-dose"-Impacts of oral estrogen exposure during preimplantation embryo development. Mol Reprod Dev 2023; 90:445-458. [PMID: 36864780 DOI: 10.1002/mrd.23675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 02/06/2023] [Indexed: 03/04/2023]
Abstract
Perturbations of estrogen signaling during developmental stages of high plasticity may lead to adverse effects later in life. Endocrine-disrupting chemicals (EDC) are compounds that interfere with the endocrine system by particularly mimicking the action of endogenous estrogens as functional agonists or antagonists. EDCs compose synthetic and naturally occurring compounds discharged into the environment, which may be taken up via skin contact, inhalation, orally due to contaminated food or water, or via the placenta during in utero development. Although estrogens are efficiently metabolized by the liver, the role of circulating glucuro- and/or sulpho-conjugated estrogen metabolites in the body has not been fully addressed to date. Particularly, the role of intracellular cleavage to free functional estrogens could explain the hitherto unknown mode of action of adverse effects of EDC at very low concentrations currently considered safe. We summarize and discuss findings on estrogenic EDC with a focus on early embryonic development to highlight the need for reconsidering low dose effects of EDC.
Collapse
Affiliation(s)
- Meret Schmidhauser
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland
| | | | - Susanne E Ulbrich
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland
| |
Collapse
|
13
|
Shi R, Huang Y, Yang Y, Wu Z, Chen Z, Ruan G. Synthesis of spherical amine-functionalized silica molecular sieve and application as selective adsorbents for aromatic hydrocarbons analysis. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
14
|
Gałązka A, Jankiewicz U. Endocrine Disrupting Compounds (Nonylphenol and Bisphenol A)-Sources, Harmfulness and Laccase-Assisted Degradation in the Aquatic Environment. Microorganisms 2022; 10:2236. [PMID: 36422306 PMCID: PMC9698202 DOI: 10.3390/microorganisms10112236] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 01/23/2025] Open
Abstract
Environmental pollution with organic substances has become one of the world's major problems. Although pollutants occur in the environment at concentrations ranging from nanograms to micrograms per liter, they can have a detrimental effect on species inhabiting aquatic environments. Endocrine disrupting compounds (EDCs) are a particularly dangerous group because they have estrogenic activity. Among EDCs, the alkylphenols commonly used in households deserve attention, from where they go to sewage treatment plants, and then to water reservoirs. New methods of wastewater treatment and removal of high concentrations of xenoestrogens from the aquatic environment are still being searched for. One promising approach is bioremediation, which uses living organisms such as fungi, bacteria, and plants to produce enzymes capable of breaking down organic pollutants. These enzymes include laccase, produced by white rot fungi. The ability of laccase to directly oxidize phenols and other aromatic compounds has become the focus of attention of researchers from around the world. Recent studies show the enormous potential of laccase application in processes such as detoxification and biodegradation of pollutants in natural and industrial wastes.
Collapse
Affiliation(s)
| | - Urszula Jankiewicz
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-787 Warsaw, Poland
| |
Collapse
|
15
|
Ji J, Yu J, Ye Y, Sheng L, Fang J, Yang Y, Sun X. Biodegradation methods and product analysis of zearalenone and its future development trend: A review. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
16
|
Yang Y, Huang Y, Wu Z, Shi R, Chen Z, Ruan G. Porous capillary monolithic column coupled with ultrahigh performance liquid chromatography-tandem mass spectrometry for fast and effective separation and determination of estrogens. Anal Chim Acta 2022; 1227:340270. [DOI: 10.1016/j.aca.2022.340270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/10/2022] [Accepted: 08/14/2022] [Indexed: 11/01/2022]
|
17
|
Microfiltration Membranes for the Removal of Bisphenol A from Aqueous Solution: Adsorption Behavior and Mechanism. WATER 2022. [DOI: 10.3390/w14152306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This study mainly investigated the adsorption behavior and mechanism of microfiltration membranes (MFMs) with different physiochemical properties (polyamide (PA), polyvinylidene fluoride (PVDF), nitrocellulose (NC), and polytetrafluoroethylene (PTFE)) for bisphenol A (BPA). According to the adsorption isotherm and kinetic, the maximum adsorption capacity of these MFMs was PA (161.29 mg/g) > PVDF (80.00 mg/g) > NC (18.02 mg/g) > PTFE (1.56 mg/g), and the adsorption rate was PVDF (K1 = 2.373 h−1) > PA (K1 = 1.739 h−1) > NC (K1 = 1.086 h−1). The site energy distribution analysis showed that PA MFMs had the greatest adsorption sites, followed by PVDF and NC MFMs. The study of the adsorption mechanism suggested that the hydrophilic microdomain and hydrophobic microdomain had a micro-separation for PA and PVDF, which resulted in a higher adsorption capacity of PA and PVDF MFMs. The hydrophilic microdomain providing hydrogen bonding sites and the hydrophobic microdomain providing hydrophobic interaction, play a synergetic role in improving the BPA adsorption. Due to the hydrogen bonding force being greater than the hydrophobic force, more hydrogen bonding sites on the hydrophobic surface resulted in a higher adsorption capacity, but the hydrophobic interaction contributed to improving the adsorption rate. Therefore, the distribution of the hydrophilic microdomain and hydrophobic microdomain on MFMs can influence the adsorption capacity and the adsorption rate for BPA or its analogues. These consequences provide a novel insight for better understanding the adsorption behavior and mechanism on MFMs.
Collapse
|
18
|
Abrantes-Soares F, Lorigo M, Cairrao E. Effects of BPA substitutes on the prenatal and cardiovascular systems. Crit Rev Toxicol 2022; 52:469-498. [PMID: 36472586 DOI: 10.1080/10408444.2022.2142514] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bisphenol A (BPA) is a ubiquitous chemical compound constantly being released into the environment, making it one of the most persistent endocrine-disrupting chemical (EDC) in nature. This EDC has already been associated with developing various pathologies, such as diabetes, obesity, and cardiovascular, renal, and behavioral complications, among others. Therefore, over the years, BPA has been replaced, gradually, by its analog compounds. However, these compounds are structurally similar to BPA, so, in recent years, questions have been raised concerning their safety for human health. Numerous investigations have been performed to determine the effects BPA substitutes may cause, particularly during pregnancy and prenatal life. On the other hand, studies investigating the association of these compounds with the development of cardiovascular diseases (CVD) have been developed. In this sense, this review summarizes the existing literature on the transgenerational transfer of BPA substitutes and the consequent effects on maternal and offspring health following prenatal exposure. In addition, these compounds' effects on the cardiovascular system and the susceptibility to develop CVD will be presented. Therefore, this review aims to highlight the need to investigate further the safety and benefits, or hazards, associated with replacing BPA with its analogs.
Collapse
Affiliation(s)
- Fatima Abrantes-Soares
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Margarida Lorigo
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.,FCS-UBI, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Elisa Cairrao
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.,FCS-UBI, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
19
|
Hernández-Mesa M, Narduzzi L, Ouzia S, Soetart N, Jaillardon L, Guitton Y, Le Bizec B, Dervilly G. Metabolomics and lipidomics to identify biomarkers of effect related to exposure to non-dioxin-like polychlorinated biphenyls in pigs. CHEMOSPHERE 2022; 296:133957. [PMID: 35157878 DOI: 10.1016/j.chemosphere.2022.133957] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Recent epidemiological studies show that current levels of exposure to polychlorinated biphenyls (PCBs) remain of great concern, as there is still a link between such exposures and the development of chronic environmental diseases. In this sense, most studies have focused on the health effects caused by exposure to dioxin-like PCBs (DL-PCBs), although chemical exposure to non-dioxin-like PCB (NDL-PCB) congeners is more significant. In addition, adverse effects of PCBs have been documented in humans after accidental and massive exposure, but little is known about the effect of chronic exposure to low-dose PCB mixtures. In this work, exposure to Aroclor 1260 (i.e. a commercially available mixture of PCBs consisting primarily of NDL-PCB congeners) in pigs is investigated as new evidence in the risk assessment of NDL-PCBs. This animal model has been selected due to the similarities with human metabolism and to support previous toxicological studies carried out with more frequently used animal models. Dietary exposure doses in the order of few ng/kg body weight (b.w.) per day were applied. As expected, exposure to Aroclor 1260 led to the bioaccumulation of NDL-PCBs in perirenal fat of pigs. Metabolomics and lipidomics have been applied to reveal biomarkers of effect related to Aroclor 1260 exposure, and by extension to NDL-PCB exposure, for 21 days. In the metabolomics analysis, 33 metabolites have been identified (level 1 and 2) as significantly altered by the Aroclor 1260 administration, while in the lipidomics analysis, 39 metabolites were putatively annotated (level 3) and associated with NDL-PCB exposure. These biomarkers are mainly related to the alteration of fatty acid metabolism, glycerophospholipid metabolism and tryptophan-kynurenine pathway.
Collapse
Affiliation(s)
| | | | - Sadia Ouzia
- Oniris, INRAE, LABERCA, 44300, Nantes, France
| | | | | | | | | | | |
Collapse
|
20
|
Melatonin Rescues Dimethoate Exposure-Induced Meiotic and Developmental Defects of Porcine Oocytes. Animals (Basel) 2022; 12:ani12070832. [PMID: 35405822 PMCID: PMC8997005 DOI: 10.3390/ani12070832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/20/2022] [Accepted: 03/23/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Environmental pollution poses concerns for public health. Dimethoate is a pesticide widely used in agricultural fields and home gardens. Recent studies have shown that dimethoate exposure impaired reproductive functions in male and female animals. However, whether dimethoate exposure affects oocyte maturation and how to reduce the toxicity of dimethoate remain unclear. Here, we showed that dimethoate exposure impaired nuclear and cytoplasmic maturation of porcine oocytes. Melatonin supplementation restored the meiotic maturation of dimethoate-exposed oocytes by suppressing the generation of excessive reactive oxygen species and autophagy and DNA damage accumulation. Therefore, melatonin counteracts the toxic effects of dimethoate exposure on porcine oocyte maturation. These findings imply that melatonin could be a promising agent in improving the quality of dimethoate-exposed oocytes from humans and animals. Abstract Dimethoate (DT) is an environmental pollutant widely used in agricultural fields and home gardens. Studies have shown that exposure to DT causes reproductive defects in both male and female animals. However, the effects of DT exposure on oocyte maturation and the approach to counteract it are not yet known. Here, we investigated the toxicity of DT on porcine oocyte maturation and the protective effects of melatonin (MT) on DT-exposed oocytes. DT exposure with 1.5 mM partially inhibited cumulus cell expansion and significantly reduced the rate of first polar body extrusion (pb1) during oocyte maturation. Parthenogenetically activated embryos derived from DT-exposed oocytes could not develop to the 2-cell and blastocyst stage. Furthermore, DT exposure led to a significant increase in the rates of misaligned chromosomes, disorganized spindles, and abnormal actin assembly. DT exposure severely disrupted the distribution patterns of mitochondria in oocytes but did not change the subcellular localizations of cortical granules. Importantly, MT supplementation rescued the meiotic and developmental defects of DT-exposed oocytes through repressing the generation of excessive reactive oxygen species (ROS) and autophagy, and DNA damage accumulation. These results demonstrate that melatonin protects against meiotic defects induced by DT during porcine oocyte maturation.
Collapse
|
21
|
Ohoro CR, Adeniji AO, Okoh AI, Okoh OO. Spatial and seasonal variations of endocrine disrupting compounds in water and sediment samples of Markman Canal and Swartkops River Estuary, South Africa and their ecological risk assessment. MARINE POLLUTION BULLETIN 2021; 173:113012. [PMID: 34607130 DOI: 10.1016/j.marpolbul.2021.113012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 05/12/2023]
Abstract
The presence of pharmaceuticals in surface water and sediment has sparked up a global concern, as they could cause harm to human health. In this study, we investigated five pharmaceuticals (caffeine, carbamazepine, sulfamethoxazole, testosterone, and trimethoprim) in surface water and sediment samples from Swartkops River Estuary and Markman Stormwater Canal, in the Eastern Cape Province, South Africa. Ultra-Performance Liquid Chromatography (UPLC) systems coupled with a hyphenated quadrupole-time-of-flight mass spectrometry (QTOF-MS) was used for the analysis. Of the five pharmaceuticals investigated, three were detected in sediment samples at concentrations ranging from BDL - 23.86 μg/kg (dw). Caffeine and sulfamethoxazole were below the detection limit. The finding of this current study suggests that Markman and Motherwell's stormwater canals were potential contributors to pollution in Swartkops River Estuary. Ecotoxicity risk assessment indicated that trimethoprim and carbamazepine could constitute potential risk to aquatic organisms in Markman Canal and Swartkops Estuary, suggesting the need for proper control measure to prevent the pollution from toxicants in aquatic resources.
Collapse
Affiliation(s)
- Chinemerem Ruth Ohoro
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa; Department of Pure and Applied Chemistry, University of Fort Hare, Alice 5700, South Africa.
| | - Abiodun Olagoke Adeniji
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa; Department of Pure and Applied Chemistry, University of Fort Hare, Alice 5700, South Africa; Department of Chemistry and Chemical Technology, National University of Lesotho, P. O. Roma, 180, Lesotho
| | - Anthony Ifeanyi Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa; Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa; Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Omobola Oluranti Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa; Department of Pure and Applied Chemistry, University of Fort Hare, Alice 5700, South Africa
| |
Collapse
|
22
|
Jeong JY, Kim B, Ji SY, Baek YC, Kim M, Park SH, Kim KH, Oh SI, Kim E, Jung H. Effect of Pesticide Residue in Muscle and Fat Tissue of Pigs Treated with Propiconazole. Food Sci Anim Resour 2021; 41:1022-1035. [PMID: 34796328 PMCID: PMC8564320 DOI: 10.5851/kosfa.2021.e53] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 01/15/2023] Open
Abstract
This study estimated the effect of exposure to propiconazole through
implementation and residues in finishing pigs. We analyzed the expression of
fibrosis-related genes and performed histological analysis of the blood, liver,
kidney, muscle, ileum, and fat tissues. The animals were exposed for 28 d to
different concentrations of propiconazole (0.09, 0.44, 0.88, 4.41, and 8.82
mg/kg bw/d). Quantitative, gene expression, and histological analyses in tissues
were performed using liquid chromatography mass spectrometry, real-time PCR, and
Masson’s trichrome staining, respectively. Final body weight did not
differ among groups. However, genes involved in fibrosis were significantly
differentially regulated in response to propiconazole concentrations. Glucose,
alanine aminotransferase, and total bilirubin levels were significantly
increased compared with those in the control group, while alkaline phosphatase
level was decreased (p<0.05) after exposure to propiconazole. The residue
limits of propiconazole were increased in the finishing phase at 4.41 and 8.82
mg/kg bw/d. The liver, kidney, and ileum showed blue staining after
propiconazole treatment, confirmed by Masson's trichrome staining. In
conclusion, these findings suggest that propiconazole exposure disturbs the
expression of fibrosis-related genes. This study on dietary propiconazole in
pigs can provide a basis for determining maximum residue limits and a better
understanding of metabolism in pigs and meat products.
Collapse
Affiliation(s)
- Jin Young Jeong
- Animal Nutrition & Physiology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Byeonghyeon Kim
- Animal Nutrition & Physiology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Sang Yun Ji
- Animal Nutrition & Physiology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Youl Chang Baek
- Animal Nutrition & Physiology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Minji Kim
- Animal Nutrition & Physiology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Seol Hwa Park
- Animal Nutrition & Physiology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Ki Hyun Kim
- Animal Welfare Research Team, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Sang-Ik Oh
- Division of Animal Disease & Health, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Eunju Kim
- Division of Animal Disease & Health, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Hyunjung Jung
- Animal Nutrition & Physiology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| |
Collapse
|
23
|
Jia D, Li Q, Hanna K, Mailhot G, Brigante M. Efficient removal of estrogenic compounds in water by Mn III-activated peroxymonosulfate: Mechanisms and application in sewage treatment plant water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117728. [PMID: 34247005 DOI: 10.1016/j.envpol.2021.117728] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/18/2021] [Accepted: 07/03/2021] [Indexed: 06/13/2023]
Abstract
In this paper, the degradation of three endocrine-disrupting chemicals (EDCs): bisphenol A (BPA), 17β-estradiol (E2) and 17α-ethinylestradiol (EE2) by manganite (γ-MnOOH) activated peroxymonosulfate (PMS) was investigated. Preliminary optimisation experiments showed that complete degradation of the three EDCs was achieved after 30 min of reaction using 0.1 g L-1 of γ-MnOOH and 2 mM of PMS. The degradation rate constants were determined to be 0.20, 0.22 and 0.15 min-1 for BPA, E2 and EE2, respectively. Combining radical scavenging approaches, Electron paramagnetic resonance (EPR) and X-ray photoelectron spectroscopy (XPS) analyses, we revealed for the first time that about 40% of EDCs degradation can be attributed to heterogeneous electron transfer reaction involving freshly generated Mn(IV), and 60% to sulfate radical degradation pathway. The influence of various inorganic ions on the γ-MnOOH/PMS system indicated that removal efficiency was slightly affected by chloride and carbonate ions, while nitrate and nitrite ions had negligible impacts. The application of γ-MnOOH/PMS system in real sewage treatment plant water (STPW) showed that degradation rate constants of EDCs decreased to 0.035-0.048 min-1 and complete degradation of the three EDCs after 45 min. This study provides new insights into the reactivity of combined γ-MnOOH and PMS, and opens new ways for the application of Mn-bearing species in wastewater treatment technologies.
Collapse
Affiliation(s)
- Daqing Jia
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, F-63000, Clermont-Ferrand, France
| | - Qinzhi Li
- Univ. Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR6226, F-35000, Rennes, France
| | - Khalil Hanna
- Univ. Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR6226, F-35000, Rennes, France; Institut Universitaire de France (IUF), MESRI, 1 rue Descartes, 75231, Paris, France
| | - Gilles Mailhot
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, F-63000, Clermont-Ferrand, France
| | - Marcello Brigante
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, F-63000, Clermont-Ferrand, France.
| |
Collapse
|
24
|
Lee Y, Rattan S, Barakat R, Inman Z, De La Torre KM, Meling DD, Monaco MH, Irudayaraj JM, Cann IK, Ko CJ, Donovan SM, Flaws JA, Warner GR. Early postnatal exposure to di(2-ethylhexyl) phthalate causes sex-specific disruption of gonadal development in pigs. Reprod Toxicol 2021; 105:53-61. [PMID: 34425191 PMCID: PMC8511162 DOI: 10.1016/j.reprotox.2021.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/11/2021] [Accepted: 08/18/2021] [Indexed: 01/21/2023]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a chemical commonly used as a plasticizer to render polyvinyl chloride products more durable and flexible. Although exposure to DEHP has raised many health concerns due to the identification of DEHP as an endocrine disruptor, it is still used in consumer products, including polyvinyl chloride plastics, medical tubing, car interiors, and children's toys. To investigate the impact of early life exposure to DEHP on the ovary and testes, newborn piglets were orally dosed with DEHP (20 or 200 mg/kg/day) or vehicle control (tocopherol-stripped corn oil) for 21 days. Following treatment, ovaries, testes, and sera were harvested for histological assessment and measurement of steroid hormone levels. In male piglets, progesterone and pregnenolone levels were significantly lower in both treatment groups compared to control, whereas in female piglets, progesterone was significantly higher in the 20 mg group compared to control, indicating sex-specific effects in a non-monotonic manner. Follicle numbers and gene expression of steroidogenic enzymes and apoptotic factors were not altered in treated ovaries compared to controls. In DEHP-treated testes, germ cell migration was impaired and germ cell death was significantly increased compared to controls. Overall, the results of this study suggest that neonatal exposure to DEHP in pigs leads to sex-specific disruption of the reproductive system.
Collapse
Affiliation(s)
- Yuna Lee
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Saniya Rattan
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Radwa Barakat
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States; Department of Toxicology, Faculty of Veterinary Medicine, Benha University, Qalyubia, Egypt
| | - Zane Inman
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Kathy M De La Torre
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Daryl D Meling
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Marcia H Monaco
- Department of Food Science and Human Nutrition, College of Agricultural, Consumer and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Joseph M Irudayaraj
- Department of Bioengineering, Grainger College of Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States; Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Isaac K Cann
- Department of Food Science and Human Nutrition, College of Agricultural, Consumer and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States; Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Chemyong J Ko
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Sharon M Donovan
- Department of Food Science and Human Nutrition, College of Agricultural, Consumer and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Jodi A Flaws
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States; Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Genoa R Warner
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States.
| |
Collapse
|
25
|
Huang CW, Liao WR, How CM, Yen PL, Wei CC. Chronic exposure of zearalenone inhibits antioxidant defense and results in aging-related defects associated with DAF-16/FOXO in Caenorhabditis elegans. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117233. [PMID: 33940230 DOI: 10.1016/j.envpol.2021.117233] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
Zearalenone (ZEN), a mycotoxin with endocrine disruptive activity and oxidative stress generating ability, has been a worldwide environmental concern for its prevalence and persistency. However, the long-term effect of ZEN on aging process is not fully elucidated. Thus, the present study applied the Caenorhabditis elegans model to investigate the aging-related toxic effect and possible underlying mechanisms under prolonged and chronic ZEN exposure. Our results showed that locomotive behaviors significantly decreased in ZEN (0.3, 1.25, 5, 10, 50 μM) treated C. elegans. In addition, lifespan and aging markers including pharyngeal pumping and lipofuscin were also adversely affected by ZEN (50 μM). Furthermore, ZEN (50 μM) increased ROS level and downregulated antioxidant genes resulted from inhibition of nuclear DAF-16 translocation in aged C. elegans, which was further confirmed by more significant aging-related defects observed in ZEN treated daf-16 mutant. In conclusion, our findings suggest that the aging process and aging-related decline were induced by long-term exposure of ZEN in C. elegans, which is associated with oxidative stress, inhibition of antioxidant defense, and transcription factor DAF-16/FOXO.
Collapse
Affiliation(s)
- Chi-Wei Huang
- Institute of Food Safety and Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei, 100, Taiwan
| | - Wan-Ru Liao
- Institute of Food Safety and Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei, 100, Taiwan
| | - Chun Ming How
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 106, Taiwan
| | - Pei-Ling Yen
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 106, Taiwan
| | - Chia-Cheng Wei
- Institute of Food Safety and Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei, 100, Taiwan; Department of Public Health, National Taiwan University, No. 17, Xuzhou Rd., Taipei, 100, Taiwan.
| |
Collapse
|
26
|
Jakimiuk E, Radwińska J, Woźny M, Pomianowski A, Brzuzan P, Wojtacha P, Obremski K, Zielonka Ł. The Influence of Zearalenone on Selected Hemostatic Parameters in Sexually Immature Gilts. Toxins (Basel) 2021; 13:625. [PMID: 34564628 PMCID: PMC8473075 DOI: 10.3390/toxins13090625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 11/18/2022] Open
Abstract
Vascular toxicity induced by xenobiotics is associated with dysfunctions or damage to endothelial cells, changes in vascular permeability or dysregulation of the vascular redox state. The aim of this study was to determine whether per os administration of zearalenone (ZEN) influences selected hemostatic parameters in prepubertal gilts. This study was performed on female gilts divided into a control group which received placebo and an experimental group which received ZEN at a dose of 5.0 µg·kg-1 b.w. × day-1. On days 14, 28 and 42, blood samples were collected from the animals for analyses of hematological, coagulation and fibrinolysis parameters, nitric oxide, von Willebrand factor antigen content and catalase activity. The results demonstrated that the treatment of gilts with ZEN at a dose below no observable adverse effect level did not affect the primary hemostasis and the blood coagulation cascade. However, ZEN could have temporarily affected the selected indicators of endothelial cell function (increase of von Willebrand factor, decrease of nitric oxide levels) and the oxidative status plasma (decrease of catalase activity) of the exposed gilts. In summary, these results suggest that the adaptive response to ZEN-exposure can induce a transient imbalance in the vascular system by acting on vascular endothelial cells.
Collapse
Affiliation(s)
- Ewa Jakimiuk
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13/29, 10-718 Olsztyn, Poland; (K.O.); (Ł.Z.)
| | - Justyna Radwińska
- Department of Internal Diseases with Clinic, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 14, 10-718 Olsztyn, Poland; (J.R.); (A.P.)
| | - Maciej Woźny
- Department of Environmental Biotechnology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Słoneczna 45G, 10-709 Olsztyn, Poland;
| | - Andrzej Pomianowski
- Department of Internal Diseases with Clinic, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 14, 10-718 Olsztyn, Poland; (J.R.); (A.P.)
| | - Paweł Brzuzan
- Department of Environmental Biotechnology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Słoneczna 45G, 10-709 Olsztyn, Poland;
| | - Paweł Wojtacha
- Department of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Plac Cieszynski 1, 10-726 Olsztyn, Poland;
| | - Kazimierz Obremski
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13/29, 10-718 Olsztyn, Poland; (K.O.); (Ł.Z.)
| | - Łukasz Zielonka
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13/29, 10-718 Olsztyn, Poland; (K.O.); (Ł.Z.)
| |
Collapse
|
27
|
Dou L, Mou F, Li J, Wang S. The endocrine disruptor hexachlorobenzene can cause oxidative damage in the testis of mice. Andrologia 2021; 53:e14195. [PMID: 34374107 DOI: 10.1111/and.14195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/05/2021] [Accepted: 07/11/2021] [Indexed: 12/13/2022] Open
Abstract
Hexachlorobenzene is a widespread endocrine disruptor. However, the effect of hexachlorobenzene on the reproductive toxicity of male animals is not described in detail. To investigate the toxic effects of hexachlorobenzene in mouse testes, hexachlorobenzene (100, 400 and 1,600 mg/kg) is fed to mice. The morphology of the testes was analysed by haematoxylin and eosin staining. We also investigated the expression of biomarkers for oxidative stress. Database screening identified proteins that interact with hexachlorobenzene and the aryl hydrocarbon receptor, a weak ligand of hexachlorobenzene. Gene enrichment analysis and protein-protein interaction analyses were also performed. Real-time PCR detected the expression levels of the aryl hydrocarbon receptor in four different stages of testicular cells. We identified significantly increased activity levels of superoxide dismutase (p < 0.05) and catalase (p < 0.05) in mouse testes that had been subjected to oxidative damage. The cell thickness and the number of cell layers in the seminiferous tubules had decreased by varying degrees after the hexachlorobenzene treatment. Particularly, cytokines and proteins involved in transcriptional regulation showed enrichment. The highest levels of aryl hydrocarbon receptor expression were detected in the spermatocytic cell line. Hexachlorobenzene exposure caused testicular damage in mice. The toxicity characteristics of hexachlorobenzene were not dose-dependent.
Collapse
Affiliation(s)
- Lu Dou
- Central Laboratory, Chongqing University Three Gorges Hospital, Wanzhou, Chongqing, China
| | - Fangzheng Mou
- Internal Medicine of Traditional Chinese Medicine, Chongqing University Three Gorges Hospital, Wanzhou, Chongqing, China
| | - Jing Li
- Central Laboratory, Chongqing University Three Gorges Hospital, Wanzhou, Chongqing, China.,College of Life Sciences, Chongqing Medical University, Yuzhong, Chongqing, China
| | - Shuhong Wang
- Department of Andrology, Chongqing University Three Gorges Hospital, Wanzhou, Chongqing, China
| |
Collapse
|
28
|
Yadav D, Rangabhashiyam S, Verma P, Singh P, Devi P, Kumar P, Hussain CM, Gaurav GK, Kumar KS. Environmental and health impacts of contaminants of emerging concerns: Recent treatment challenges and approaches. CHEMOSPHERE 2021; 272:129492. [PMID: 35534951 DOI: 10.1016/j.chemosphere.2020.129492] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/30/2020] [Accepted: 12/26/2020] [Indexed: 06/14/2023]
Abstract
In the past few decades, new contaminants of emerging concern (CECs) in the air, water, and soil have gained significant attention due to their adverse impact on human health and the environment. The sources of CECs have been identified in different forms from domestic and industrial activities such as personal care products and pharmaceuticals. It has been established that aqueous medium plays a major role in the dissemination of various contaminants, like drinking water, reservoirs, lakes, rivers and waste with water medium. There remains inadequate technology for the treatment of CECs in the wastewater systems. Though different techniques have advanced for the treatment of CECs, they still pose a severe threat to human health and disturb the ecological balance. In this review, the characteristics, recent technologies, risk assessment and management of CECs have been discussed. The primary aim is to highlight the new innovative and cost-effective technologies for the remediations of CECs in all forms. Biochar is readily and economically available in abundance and an economical adsorbent with 100% adsorptive removal for H2PO4-. The bibliometric analysis also performed to understand the emerging research trends on the treatment techniques, which can help in developing a guiding pathway to modern research in academia and industry.
Collapse
Affiliation(s)
- Deepak Yadav
- Chemical Engineering Department, Harcourt Butler Technical University (Formerly HBTI), Kanpur, India.
| | - S Rangabhashiyam
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613401, Tamilnadu, India
| | - Pramit Verma
- Integrative Ecology Laboratory (IEL), Institute of Environment & Sustainable Development (IESD), Banaras Hindu University, Varanasi, India
| | - Pardeep Singh
- Department of Environment Studies, PGDAV College University of Delhi, New Delhi, India.
| | - Pooja Devi
- CSIR- Central Scientific Instruments Organisation, Sector-30C, Chandigarh, India
| | - Pradeep Kumar
- Department of Chemical Engineering & Technology, IIT (BHU), Varanasi, India
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environment Science, New Jersey Institute of Technology, Newark, New Jersey, 07102, USA
| | - Gajendra Kumar Gaurav
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Developmenton Shallow Lakes and College of Civil, Hohai University, Nanjing, 210098, PR China
| | - Kuppusamy Sathish Kumar
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes,Ministry of Education, College of Environment, Hohai University, Nanjing, Jiangsu Province, PR China
| |
Collapse
|
29
|
Li Y, Yang L, Zhen H, Chen X, Sheng M, Li K, Xue W, Zhao H, Meng S, Cao G. Determination of estrogens and estrogen mimics by solid-phase extraction with liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1168:122559. [PMID: 33652260 DOI: 10.1016/j.jchromb.2021.122559] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/08/2020] [Accepted: 01/15/2021] [Indexed: 12/18/2022]
Abstract
An analytical method has been developed and validated for the determination of six estrogens and estrogen mimics, namely estriol (E3), bisphenol A (BPA), 17β-estradiol (E2), estrone (E1), ethynyl estradiol (EE2) and dienestrol (DIE), with frequent occurrence in the natural environment. Solid phase extraction coupled with liquid chromatography tandem mass spectrometry (SPE-LC-MS/MS) using electrospray ionization (ESI) in a negative mode was applied to concentration, identification, and quantification of estrogens and estrogen mimics. The SPE conditions were optimized as the selection of C18 as cartridges and MeOH as an eluent, and the control of solution pH at 9.0. The method was validated by satisfactory recoveries (80-130%) and intra-day and inter-day precision (<18.4%, as relative standard deviation), and excellent linearity for calibration curves (R2 > 0.996). The limits of detection (LODs) for six target estrogenic compounds ranged between 2.5 and 19.2 ng/L. The effects of matrix background on the determination were evaluated in terms of LODs, LOQs, analyte recovery, and slopes of calibration curves in five different water matrices. Matrix effects by tap water were negligible. However, both matrix suppression and enhancement (i.e., E3, E1, DIE) were observed in surface water and wastewater. The positive correlation between LODs and TOC in various water matrices indicated the negative effect of organic pollutants on the method sensitivity. The sum of target estrogenic compounds in environmental samples were within 17-9462 ng/L.
Collapse
Affiliation(s)
- Yejin Li
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Linyan Yang
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology, Shanghai 200237, China.
| | - Huajun Zhen
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xueming Chen
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Resources, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Mei Sheng
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kai Li
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Weibo Xue
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Huihui Zhao
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shujuan Meng
- School of Space and Environment, Beihang University, Beijing 100191, China
| | - Guomin Cao
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
30
|
Pack E, Stewart J, Rhoads M, Knight J, De Vita R, Clark-Deener S, Schmale DG. Quantification of zearalenone and α-zearalenol in swine liver and reproductive tissues using GC-MS. Toxicon X 2020; 8:100058. [PMID: 33089147 PMCID: PMC7566953 DOI: 10.1016/j.toxcx.2020.100058] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 11/10/2022] Open
Abstract
The mycotoxin zearalenone (ZEN) is a common contaminant of swine feed which has been related to a wide range of reproductive anomalies in swine, such as pelvic organ prolapse, anestrous, and pseudopregnancy. New information is needed to understand how ZEN and related metabolites accumulate in swine reproductive tissues. We conducted a feeding study to track ZEN and the metabolite α-zearalenol (α-ZEL) in swine liver and reproductive tissues. Thirty pubertal gilts were randomly assigned one of three treatments, with ten pigs in each treatment group: (1) base feed with solvent for 21 days, (2) ZEN-spiked feed for seven days followed by base feed with solvent for 14 days, and (3) ZEN-spiked feed for 21 days. At the end of the trial, liver, anterior vagina, posterior vagina, cervix, uterus, ovaries, and broad ligament were collected from pigs. ZEN was found in the anterior vagina, posterior vagina, cervix, and ovaries, with significantly higher concentrations in the cervix relative to other reproductive tissues. ZEN and α-ZEL were found in liver tissue from pigs in each treatment group. Our results show that ZEN accumulates more in the cervix than other reproductive tissues. The presence of ZEN in reproductive tissues may be indicative of ZEN-related reproductive symptoms. Future work could examine how ZEN concentrations vary in reproductive tissues as a factor of the pigs age, weight, sex, or parity, to establish parameters that make pig more sensitive to ZEN. A feeding trial was conducted where gilts consumed varying amounts of zearalenone. Zearalenone was found in the anterior vagina, posterior vagina, cervix, and ovaries. Zearalenone concentrations were highest in the cervix. Zearalenone and alpha-zearalenol were found in the liver.
Collapse
Affiliation(s)
- Erica Pack
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Jacob Stewart
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Michelle Rhoads
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - James Knight
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Raffaella De Vita
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Sherrie Clark-Deener
- Department of Large Animal Clinical Science, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, 24061, USA
| | - David G Schmale
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| |
Collapse
|
31
|
Effects of Deoxynivalenol and Zearalenone on the Histology and Ultrastructure of Pig Liver. Toxins (Basel) 2020; 12:toxins12070463. [PMID: 32698427 PMCID: PMC7404993 DOI: 10.3390/toxins12070463] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 02/08/2023] Open
Abstract
The purpose of this study was to determine the effects of single and combined administrations of deoxynivalenol (DON) and zearalenone (ZEN) on the histology and ultrastructure of pig liver. The study was performed on immature gilts, which were divided into four equal groups. Animals in the experimental groups received DON at a dose of 12 μg/kg body weight (BW) per day, ZEN at 40 μg/kg BW per day, or a mixture of DON (12 μg/kg BW per day) and ZEN (40 μg/kg BW). The control group received vehicle. The animals were killed after 1, 3, and 6 weeks of experiment. Treatment with mycotoxins resulted in several changes in liver histology and ultrastructure, including: (1) an increase in the thickness of the perilobular connective tissue and its penetration to the lobules in gilts receiving DON and DON + ZEN; (2) an increase in the total microscopic liver score (histology activity index (HAI)) in pigs receiving DON and DON + ZEN; (3) dilatation of hepatic sinusoids in pigs receiving ZEN, DON and DON + ZEN; (4) temporary changes in glycogen content in all experimental groups; (5) an increase in iron accumulation in the hepatocytes of gilts treated with ZEN and DON + ZEN; (6) changes in endoplasmic reticulum organization in the hepatocytes of pigs receiving toxins; (7) changes in morphology of Browicz-Kupffer cells after treatment with ZEN, DON, and DON + ZEN. The results show that low doses of mycotoxins used in the present study, even when applied for a short period, affected liver morphology.
Collapse
|