1
|
Panfili M, Guicciardi o Guizzardi S, Frapiccini E, Truzzi C, Girolametti F, Marini M, Santojanni A, Annibaldi A, Illuminati S, Colella S. Influence of Contaminants Mercury and PAHs on Somatic Indexes of the European Hake ( Merluccius merluccius, L. 1758). Animals (Basel) 2024; 14:2938. [PMID: 39457868 PMCID: PMC11503758 DOI: 10.3390/ani14202938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/18/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
This research investigates the dynamics of contaminant exposure in European hake (Merluccius merluccius, L. 1758) from the Adriatic Sea (Central Mediterranean Sea) by examining the levels of total mercury (THg) and polycyclic aromatic hydrocarbons (PAHs) in the muscle fish tissues. The study explores the correlations between these pollutants and somatic indexes to identify the early warning signals of pollution and ecological effects. The levels of pollutants are influenced by season and sex. Lipids appear to have a minimal effect on the PAH levels, whereas they exhibit a positive correlation with mercury levels in the muscle. No significant relationships between the pollutants and condition indexes were observed, except for a positive correlation between THg and the gonadosomatic index, indicating a potential impact on the reproductive health of fish. In contrast, PAHs showed no meaningful correlation with condition indexes. Differences in contaminant accumulations and lipid levels between sexes reflect variations in metabolic activity, reproductive costs, and adaptive strategies to seasonal changes and energy demands. This study highlights the importance of long-term monitoring to improve pollution management, environmental conservation, and the protection of marine organisms' health.
Collapse
Affiliation(s)
- Monica Panfili
- Institute for Marine Biological Resources and Biotechnologies, National Research Council (IRBIM-CNR), 60125 Ancona, Italy; (M.P.); (S.G.o.G.); (M.M.); (A.S.); (S.C.)
| | - Stefano Guicciardi o Guizzardi
- Institute for Marine Biological Resources and Biotechnologies, National Research Council (IRBIM-CNR), 60125 Ancona, Italy; (M.P.); (S.G.o.G.); (M.M.); (A.S.); (S.C.)
| | - Emanuela Frapiccini
- Institute for Marine Biological Resources and Biotechnologies, National Research Council (IRBIM-CNR), 60125 Ancona, Italy; (M.P.); (S.G.o.G.); (M.M.); (A.S.); (S.C.)
| | - Cristina Truzzi
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy; (F.G.); (A.A.); (S.I.)
| | - Federico Girolametti
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy; (F.G.); (A.A.); (S.I.)
| | - Mauro Marini
- Institute for Marine Biological Resources and Biotechnologies, National Research Council (IRBIM-CNR), 60125 Ancona, Italy; (M.P.); (S.G.o.G.); (M.M.); (A.S.); (S.C.)
| | - Alberto Santojanni
- Institute for Marine Biological Resources and Biotechnologies, National Research Council (IRBIM-CNR), 60125 Ancona, Italy; (M.P.); (S.G.o.G.); (M.M.); (A.S.); (S.C.)
| | - Anna Annibaldi
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy; (F.G.); (A.A.); (S.I.)
| | - Silvia Illuminati
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy; (F.G.); (A.A.); (S.I.)
| | - Sabrina Colella
- Institute for Marine Biological Resources and Biotechnologies, National Research Council (IRBIM-CNR), 60125 Ancona, Italy; (M.P.); (S.G.o.G.); (M.M.); (A.S.); (S.C.)
| |
Collapse
|
2
|
Palomba M, Marchiori E, Tedesco P, Fioravanti M, Marcer F, Gustinelli A, Aco-Alburqueque R, Belli B, Canestrelli D, Santoro M, Cipriani P, Mattiucci S. An update and ecological perspective on certain sentinel helminth endoparasites within the Mediterranean Sea. Parasitology 2023; 150:1139-1157. [PMID: 37942726 PMCID: PMC10941224 DOI: 10.1017/s0031182023000951] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 11/10/2023]
Abstract
The Mediterranean Sea is recognized as a marine biodiversity hotspot. This enclosed basin is facing several anthropogenic-driven threats, such as seawater warming, pollution, overfishing, bycatch, intense maritime transport and invasion by alien species. The present review focuses on the diversity and ecology of specific marine trophically transmitted helminth endoparasites (TTHs) of the Mediterranean ecosystems, aiming to elucidate their potential effectiveness as ‘sentinels’ of anthropogenic disturbances in the marine environment. The chosen TTHs comprise cestodes and nematodes sharing complex life cycles, involving organisms from coastal and marine mid/upper-trophic levels as definitive hosts. Anthropogenic disturbances directly impacting the free-living stages of the parasites and their host population demographies can significantly alter the distribution, infection levels and intraspecific genetic variability of these TTHs. Estimating these parameters in TTHs can provide valuable information to assess the stability of marine trophic food webs. Changes in the distribution of particular TTHs species can also serve as indicators of sea temperature variations in the Mediterranean Sea, as well as the bioaccumulation of pollutants. The contribution of the chosen TTHs to monitor anthropogenic-driven changes in the Mediterranean Sea, using their measurable attributes at both spatial and temporal scales, is proposed.
Collapse
Affiliation(s)
- Marialetizia Palomba
- Department of Ecological and Biological Sciences (DEB), Tuscia University, Viterbo, Italy
| | - Erica Marchiori
- Department of Animal Medicine, Production and Health, University of Padova, Legnaro, Padua, Italy
| | - Perla Tedesco
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna, Italy
| | - Marialetizia Fioravanti
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna, Italy
| | - Federica Marcer
- Department of Animal Medicine, Production and Health, University of Padova, Legnaro, Padua, Italy
| | - Andrea Gustinelli
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna, Italy
| | - Renato Aco-Alburqueque
- Department of Public Health and Infectious Diseases, Section of Parasitology, Sapienza University of Rome, Rome, Italy
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Beatrice Belli
- Department of Public Health and Infectious Diseases, Section of Parasitology, Sapienza University of Rome, Rome, Italy
| | - Daniele Canestrelli
- Department of Ecological and Biological Sciences (DEB), Tuscia University, Viterbo, Italy
| | - Mario Santoro
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Paolo Cipriani
- Department of Public Health and Infectious Diseases, Section of Parasitology, Sapienza University of Rome, Rome, Italy
- Section of Contaminants and Biohazards, Institute of Marine Research (IMR), Nordnes, Bergen, Norway
| | - Simonetta Mattiucci
- Department of Public Health and Infectious Diseases, Section of Parasitology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
3
|
Oros M, Barčák D, Miklisová D, Uhrovič D, Brázová T. A fish-parasite sentinel system in an assessment of the spatial distribution of polychlorinated biphenyls. Sci Rep 2023; 13:5164. [PMID: 36997612 PMCID: PMC10063543 DOI: 10.1038/s41598-023-31939-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/20/2023] [Indexed: 04/01/2023] Open
Abstract
The spatial distribution of polychlorinated biphenyls (PCBs), in the Zemplínska Šírava water reservoir and adjacent tributaries in the Bodrog River Basin were investigated using a fish-parasite sentinel system. PCB concentrations were detected in various fish matrices (dorsal and abdominal muscles, liver and intestine) of the Wels catfish (Silurus glanis) and its intestinal cestode Glanitaenia osculata. PCB concentrations in the fish from the water reservoir, located closest to the chemical plant, the primary source of the PCB pollution, were the highest. The analysis of these contaminants in catfish matrices showed the highest concentrations in the abdominal muscle, followed by the dorsal muscle, liver and intestine. Concentrations of ∑PCBs exceeding the limits for food set by European regulations were measured in the muscle tissue of catfish at all sites, even in the Bodrog River, 60 km away from the primary source of contamination, posing a significant risk to humans in the Zemplín region. For the first time, the ability of cestode G. osculata to accumulate higher amounts of PCBs compared to fish matrices has been demonstrated. Due to the enormous ability of the parasites to accumulate PCBs, we recommend this approach for alternative biomonitoring of PCBs in contaminated aquatic environments.
Collapse
Affiliation(s)
- Mikuláš Oros
- Institute of Parasitology, Slovak Academy of Sciences, Košice, Slovakia
| | - Daniel Barčák
- Institute of Parasitology, Slovak Academy of Sciences, Košice, Slovakia
| | - Dana Miklisová
- Institute of Parasitology, Slovak Academy of Sciences, Košice, Slovakia
| | - Dalibor Uhrovič
- Institute of Parasitology, Slovak Academy of Sciences, Košice, Slovakia
| | - Tímea Brázová
- Institute of Parasitology, Slovak Academy of Sciences, Košice, Slovakia.
| |
Collapse
|
4
|
Zhu Y, Huang Z, Tang M, Li Q, Liu Y, Bai X. A charged nanocomposite membrane via co-deposition of gallic acid and polyethyleneimine-silver for improving separation and antibacterial properties. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:711-728. [PMID: 36789713 DOI: 10.2166/wst.2023.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Pharmaceuticals have been continuously detected from surface water and groundwater. In order to improve the rejection performance of pharmaceuticals by a nanofiltration membrane (NF), a positively charged membrane was prepared by co-deposition of natural gallic acid and polyethyleneimine on the polyacrylonitrile hydrolysis membrane. Effects of gallic acid concentration, polyethylene imine concentration, reaction time, and the molecular weight of polyethylene imine were documented. The physical and chemical properties of the membrane were also investigated by surface morphology, hydrophilicity, surface charge, and molecular weight cut-off. The optimized membrane had a molecular weight cut-off of about 958 Da and possessed a pure water permeability of 74.21 L·m-2·h-1·MPa-1. The results exhibited salt rejection in the following order: MgCl2 > CaCl2 > MgSO4 > Na2CO3 > NaCl > Na2SO4, while the rejection ability of pharmaceuticals is as follows: amlodipine > atenolol > carbamazepine > ibuprofen, suggesting that the positively charged membrane has enhanced retention to both divalent cations and charged pharmaceuticals. In addition, the antibacterial membrane was obtained by loading silver nanoparticles onto the positively charged membrane, which greatly improved the antibacterial ability of the membrane.
Collapse
Affiliation(s)
- Yihang Zhu
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zhonghua Huang
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Mengdi Tang
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Qunxia Li
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yulong Liu
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xinhui Bai
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
5
|
Unravelling the trophic interaction between a parasitic barnacle ( Anelasma squalicola) and its host Southern lanternshark ( Etmopterus granulosus) using stable isotopes. Parasitology 2022; 149:1976-1984. [PMID: 36076261 PMCID: PMC10090636 DOI: 10.1017/s0031182022001299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The parasitic barnacle, Anelasma squalicola, is a rare and evolutionary fascinating organism. Unlike most other filter-feeding barnacles, A. squalicola has evolved the capability to uptake nutrient from its host, exclusively parasitizing deepwater sharks of the families Etmopteridae and Pentanchidae. The physiological mechanisms involved in the uptake of nutrients from its host are not yet known. Using stable isotopes and elemental compositions, we followed the fate of nitrogen, carbon and sulphur through various tissues of A. squalicola and its host, the Southern lanternshark Etmopterus granulosus, to better understand the trophic relationship between parasite and host. Like most marine parasites, A. squalicola is lipid-rich and clear differences were found in the stable isotope ratios between barnacle organs. It is evident that the deployment of a system of ‘rootlets’, which merge with host tissues, allows A. squalicola to draw nutrients from its host. Through this system, proteins are then rerouted to the exterior structural tissues of A. squalicola while lipids are used for maintenance and egg synthesis. The nutrient requirement of A. squalicola was found to change from protein-rich to lipid-rich between its early development stage and its definitive size.
Collapse
|
6
|
Goutte A, Molbert N. Benefits of Parasitism in Polluted Environments: A Review and Perspectives. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.847869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The frequency and strength of biotic interactions are thought to be shaped by environmental conditions. In this study, we reviewed and discussed the potential effects of toxic chemicals in driving shifts along the parasite-mutualist continuum. Some parasites have the astonishing capacity to accumulate trace metals and organic pollutants from various taxa within freshwater, marine, and terrestrial ecosystems. Recent studies have provided evidence of clear benefits for the host: when exposed to contaminants, infected organisms exhibited reduced contamination levels, less severe oxidative stress, and histological alterations, as well as higher body condition and survival rate compared with their uninfected conspecifics. Such effects might arise when the costs of parasitism are lower than their benefits in specific environmental conditions. Assessing the potential outcomes for parasites exploiting contaminated hosts is a crucial but neglected issue, since ecotoxicological effects on parasites may alter interspecific relationships. We identified possible avenues for future research using innovative tools and long-term experimental manipulations of both parasitism and pollution to better understand how toxic chemicals can modulate the strength and direction of host-parasite interactions.
Collapse
|
7
|
Girolametti F, Panfili M, Colella S, Frapiccini E, Annibaldi A, Illuminati S, Marini M, Truzzi C. Mercury levels in Merluccius merluccius muscle tissue in the central Mediterranean Sea: Seasonal variation and human health risk. MARINE POLLUTION BULLETIN 2022; 176:113461. [PMID: 35193004 DOI: 10.1016/j.marpolbul.2022.113461] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/04/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
In this study we analysed total mercury (THg) levels in European hake (Merluccius merluccius) - an ecologically and commercially important species throughout the Mediterranean - caught in the northern and central Adriatic Sea. To the best of our knowledge, this is the first study evaluating THg levels in hake fillets in relation to ecological (season) and biological (body size, sex, sexual maturity, lipid content) parameters. THg levels in muscle showed no sex-related differences; in contrast, significant season-related differences were found in females, with higher levels in spring-summer compared with autumn-winter. No season-related differences were seen in males. A significant sex effect was found for body size and sexual maturity. Females showed a correlation between THg level and length, THg being significantly higher in mature compared with immature specimens. No significant sex effect was found for muscle lipid content, because a correlation between THg concentration and tissue lipids was found in both sexes. Since the mean THg concentration found in M. merluccius fillets (0.64 ± 0.29 mg kg-1 dry weight; range, 0.20-1.53) was consistently under the level set by EU regulations, this study demonstrates that European hake caught in the northern and central Adriatic is safe for human consumption.
Collapse
Affiliation(s)
- Federico Girolametti
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Monica Panfili
- Institute for Biological Resources and Marine Biotechnologies, National Research Council (IRBIM-CNR), 60125 Ancona, Italy
| | - Sabrina Colella
- Institute for Biological Resources and Marine Biotechnologies, National Research Council (IRBIM-CNR), 60125 Ancona, Italy
| | - Emanuela Frapiccini
- Institute for Biological Resources and Marine Biotechnologies, National Research Council (IRBIM-CNR), 60125 Ancona, Italy.
| | - Anna Annibaldi
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies (FMC), 61032 Fano, Italy
| | - Silvia Illuminati
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Mauro Marini
- Institute for Biological Resources and Marine Biotechnologies, National Research Council (IRBIM-CNR), 60125 Ancona, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies (FMC), 61032 Fano, Italy
| | - Cristina Truzzi
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| |
Collapse
|
8
|
Brázová T, Miklisová D, Barčák D, Uhrovič D, Šalamún P, Orosová M, Oros M. Hazardous pollutants in the environment: Fish host-parasite interactions and bioaccumulation of polychlorinated biphenyls. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118175. [PMID: 34543958 DOI: 10.1016/j.envpol.2021.118175] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
The present paper reports on the interrelationships of fish, parasites and the bioaccumulation of hazardous organic compounds in the Zemplínska Šírava water reservoir in eastern Slovakia, which is heavily polluted with polychlorinated biphenyls (PCBs). The concentrations of these contaminants were measured in various fish matrices (dorsal and abdominal muscle tissues, hepatopancreas, intestine wall and adipose tissue) of the freshwater bream, Abramis brama (Cyprinidae), and in its intestinal parasite Caryophyllaeus laticeps (Cestoda), which was used for the first time as a model for a PCB bioaccumulation study. Regarding the fish, the highest concentrations of PCBs were found in the intestine, followed by hepatopancreas and muscle tissues. The amounts of PCBs were higher in abdominal muscles than in their dorsal parts. Concentrations of ∑PCBs above the limits set by European regulations were detected in both muscle parts in the fish, confirming the persistent unfavorable conditions in this locality and high risk for biota and humans. Based on bioconcentration factor values (BCFs), PCBs reached much higher levels in cestodes compared to bream matrices. Some significant differences in PCB amounts between infected and uninfected bream were determined. Fulton's condition factor (CF) significantly differed in infected and non-infected fish (p ˂ 0.05), with CF values surprisingly lower in fish free of parasites compared to parasitized fish, which suggests a "mutualistic" relationship between the parasite and its host.
Collapse
Affiliation(s)
- Tímea Brázová
- Institute of Parasitology, Slovak Academy of Sciences, Košice, Slovakia
| | - Dana Miklisová
- Institute of Parasitology, Slovak Academy of Sciences, Košice, Slovakia
| | - Daniel Barčák
- Institute of Parasitology, Slovak Academy of Sciences, Košice, Slovakia
| | - Dalibor Uhrovič
- Institute of Parasitology, Slovak Academy of Sciences, Košice, Slovakia
| | - Peter Šalamún
- Institute of Parasitology, Slovak Academy of Sciences, Košice, Slovakia
| | - Martina Orosová
- Institute of Parasitology, Slovak Academy of Sciences, Košice, Slovakia
| | - Mikuláš Oros
- Institute of Parasitology, Slovak Academy of Sciences, Košice, Slovakia.
| |
Collapse
|
9
|
Mille T, Bisch A, Caill-Milly N, Cresson P, Deborde J, Gueux A, Morandeau G, Monperrus M. Distribution of mercury species in different tissues and trophic levels of commonly consumed fish species from the south Bay of Biscay (France). MARINE POLLUTION BULLETIN 2021; 166:112172. [PMID: 33631695 DOI: 10.1016/j.marpolbul.2021.112172] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
Mercury (Hg) is a contaminant of global concern in marine ecosystems, notably due to its ability to accumulate and concentrate in food webs. Concentrations of total mercury (THg), methylmercury (MeHg) and inorganic mercury (IHg) were assessed and compared in different tissues (liver, muscle, and gonads) of three common fish species (hake Merluccius merluccius, red mullet Mullus surmuletus, and sole Solea solea) from the continental shelf from the southern part of the Bay of Biscay. Several studies investigated Hg concentration in fish muscle, but few assessed concentrations in other organs, despite the importance of such data to understand contaminant organotropism and metabolization. Results showed that trophic position and feeding habitat are required to understand the variability of Hg concentration in muscle between fish species. In addition, high MeHg/THg ratio in muscle could be explained by the predatory behavior of the studied fish species and the biomagnification of this Hg species within the food web, MeHg. Despite differences between species, Hg concentration was always higher in muscle (from 118 ± 64 to 338 ± 101 ng g-1 w.w.) and liver (from 122 ± 108 to 271 ± 95 ng g-1 w.w.). These results can be related to physiological processes especially the MeHg detoxification strategies.
Collapse
Affiliation(s)
- Tiphaine Mille
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM-MIRA, UMR 5254, 64600 Anglet, France
| | - Amaëlle Bisch
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM-MIRA, UMR 5254, 64600 Anglet, France
| | - Nathalie Caill-Milly
- Ifremer, LITTORAL, Laboratoire Environnement Ressources d'Arcachon, 64600 Anglet, France
| | - Pierre Cresson
- Ifremer, Centre Manche Mer du Nord, Laboratoire Ressources Halieutiques Manche Mer du Nord, 150 quai Gambetta, 62200 Boulogne sur Mer, France
| | - Jonathan Deborde
- Ifremer, LITTORAL, Laboratoire Environnement et Ressources des Pertuis Charentais (LER/PC), BP133, 17390 La Tremblade, France
| | - Aurore Gueux
- Ifremer, LITTORAL, Laboratoire Environnement et Ressources des Pertuis Charentais (LER/PC), BP133, 17390 La Tremblade, France
| | - Gilles Morandeau
- Ifremer, LITTORAL, Laboratoire Environnement Ressources d'Arcachon, 64600 Anglet, France
| | - Mathilde Monperrus
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM-MIRA, UMR 5254, 64600 Anglet, France.
| |
Collapse
|