1
|
Pang L, Chen J, Li W, Chatzisymeon E, Xu K, Yang P. Particle size of zero-valent iron affects the risks from antibiotic resistance genes in waste activated sludge during anaerobic digestion. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137785. [PMID: 40043404 DOI: 10.1016/j.jhazmat.2025.137785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 02/20/2025] [Accepted: 02/26/2025] [Indexed: 04/16/2025]
Abstract
Zero-valent iron (ZVI) is the promising enhancer for sludge anaerobic digestion (AD) performance and for mitigating the proliferation of antibiotic resistance genes (ARGs). However, concerns about its size effects in shifting the behavior and risk of ARGs in sludge, during the AD process. Here, the metagenomics-based profile of ARGs, along with their potential (pathogenic) hosts in sludge were investigated, during mesophilic AD enhanced by ZVI with three different sizes. Results showed that the size of ZVI affected the profiles of ARGs, with nano-ZVI (nZVI, 50 nm) demonstrating the most significant reduction in abundance (by 45.0 %) and diversity (by 8.6 %) of total ARGs, followed by micron-ZVI (150 μm) and iron scrap (1 mm). Similar trends were also observed for high-risk ARGs, pathogens, and potential pathogenic hosts for ARGs. Notably, nZVI achieved the greatest reductions in the abundance of risk ARGs and potential pathogenic hosts (superbugs) by 58.8 % and 53.9 %, respectively. Correlation and redundancy analyses revealed that, the size of ZVI induced concentration differences in ammonium nitrogen, pH, carbonaceous matters, iron, and potential microbial hosts were the main reasons for the variation in the risk of ARGs. Moreover, the down-regulation of genes involved in oxidative stress contributed to the lower risk of ARGs in the three ZVI groups, especially in nZVI. This study provides insights into AD processes of solid wastes using ZVI enhancers.
Collapse
Affiliation(s)
- Lina Pang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China
| | - Jianglin Chen
- College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China
| | - Wenqian Li
- College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China
| | - Efthalia Chatzisymeon
- School of Engineering, Institute for Infrastructure and Environment, The University of Edinburgh, Edinburgh EH9 3JL, United Kingdom
| | - Kailin Xu
- College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China
| | - Ping Yang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
2
|
Fu T, Mi H, Shen C, Zhang S, Shangguan H, Tang J, Lin H, Yu Z. Electric field-assisted aerobic composting: From basic principles to applications. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 386:125791. [PMID: 40373445 DOI: 10.1016/j.jenvman.2025.125791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/29/2025] [Accepted: 05/10/2025] [Indexed: 05/17/2025]
Abstract
Aerobic composting is an effective method for the resourceful disposal of organic solid waste. The primary factors that limit the effectiveness of conventional aerobic composting are low oxygen utilization and insufficient pile temperature. To address these challenges, a novel electric field-assisted aerobic composting (EAC) process has been developed, which applies a low-voltage electric field to traditional aerobic compost piles to enhance oxygen utilization and increase pile temperature. EAC technology demonstrates excellent environmental benefits in improving compost maturity, reducing greenhouse gas emissions, promoting heavy metal immobilization, and controlling antibiotic risks. These features and advantages position EAC as a promising new technology for aerobic composting. However, a comprehensive and critical review of the advancements in the principles, design, and optimization of the EAC system is still lacking, which restricts the scalability and developmental potential of the technology. Herein, this review critically analyzes the current advancements in the EAC process and provides directions for future applications, thereby offering essential insights for overcoming challenges and developing more economically efficient composting strategies.
Collapse
Affiliation(s)
- Tao Fu
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Huan Mi
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan, 354300, China
| | - Chang Shen
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan, 354300, China
| | - Shuqun Zhang
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan, 354300, China
| | - Huayuan Shangguan
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan, 354300, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiahuan Tang
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan, 354300, China.
| | - Hao Lin
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan, 354300, China
| | - Zhen Yu
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China.
| |
Collapse
|
3
|
Yang Y, Chen W, Yin J, Jiang T, Zhao L, Li G, Wang G, Yuan J. Interactions between fungi and bacteria hosts carrying MGEs is dominant for ARGs fate during manure mesophilic composting. WASTE MANAGEMENT (NEW YORK, N.Y.) 2025; 194:1-12. [PMID: 39764902 DOI: 10.1016/j.wasman.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/23/2024] [Accepted: 01/02/2025] [Indexed: 05/01/2025]
Abstract
The mycelial networks of fungi promote the interaction between the originally isolated bacteria, thereby potentially enhancing the exchange of nutrients and the horizontal transfer of genetic materials. However, the driving effect of fungi on antibiotic resistance genes (ARGs) during mesophilic facultative composting is still unclear. This study aims to elucidate the changes in ARGs and underlying mechanisms during the mesophilic composting of manure. Results indicated that reduction rates of ARGs in sheep and pig manure over a 90-day composting period were 34.68% and 60.10%, respectively. The sul1, sul2 and tetX were identified as recalcitrant ARGs in both composting treatments, with the additional unique recalcitrant gene addA observed in sheep manure. Fungal communities appeared to have a more significant influence on the cooperation between bacteria and fungi. Massive fungi interacted intensively with bacterial hosts carrying both ARGs and mobile genetic elements (MGEs). In sheep and pig manure, there were 53 and 38 potential bacterial hosts (genus level) carrying both ARGs and MGEs, associated close interactions with fungi. Structural equation modeling revealed that compost properties influence ARGs by affecting the abundance of core fungi and the hosts carrying MGEs, and that core fungi could also impact ARGs by influencing the bacterial hosts carrying MGEs. Core fungi have the potential to facilitate the horizontal transfer of ARGs by enhancing bacterial network interactions.
Collapse
Affiliation(s)
- Yan Yang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Wenjie Chen
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Jie Yin
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Tao Jiang
- Division of Environmental Engineering, New Energy Materials and Chemistry College, Leshan Normal University, Sichuan 614000, China
| | - Lu Zhao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Guoying Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Jing Yuan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
4
|
Taylor GO, Ogunlaja A, Olukanni OD, Awopetu OM, Okodua F, Godson DO, Otusile A, Ekpe D, Deguenon E, Sintondji KM, Dougnon V, Ogunlaja OO, Olorunnisola CG, Omorogie MO, Alfred MO, Unuabonah EI. Risk assessment and photo-disinfection of antibiotic residues and antibiotic-resistant bacteria in water sources from Ede, Nigeria. Heliyon 2025; 11:e41538. [PMID: 39866425 PMCID: PMC11759553 DOI: 10.1016/j.heliyon.2024.e41538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 12/17/2024] [Accepted: 12/26/2024] [Indexed: 01/28/2025] Open
Abstract
Environmental antibiotic residues (EARs) and antibiotic-resistant bacteria (ARB) are known to contribute to global antimicrobial resistance (AMR). This study investigated EAR levels in selected wells, river, abattoir wastewater, bottled water and sachet water from Ede, Nigeria. Ecological risk quotient (RQ) and health risk (Hazard quotient) of the levels of these EARs, ARB and multidrug-resistant bacteria (MDR) with their antibiotic resistance were calculated. Antibiotic residues detected included tetracycline-TET (14.2-135.8 μg/L), chloramphenicol-CHL (6.8-224.7 μg/L), metronidazole-MET (3.7-83.8 μg/L), sulfamethoxazole-SUL (0.56-18.6 μg/L), and ciprofloxacin-CIP (3.8-97 μg/L). Antibiotic residues in STW samples were below the detection limit while ampicillin was not detected in any of the water samples. Chloramphenicol posed the highest ecological risk to algae while infants were particularly at risks of ciprofloxacin and metronidazole resistance in various water sources. No health risk due to bottled water exposure is observed for any population group. The mean log10 bacteria count (cfu/mL) followed the trend abattoir (5.68) > river (5.67) > hand-dug well (5.53) > sachet (5.03) > bottled (4.83). The most occurring ARB in water samples are Bacillus spp (36.3 %) > Staphylococcus (27.5 %) and the most dominant MDR isolate is Bacillus cereus. All isolates exhibited 62.5, 100, 31.3, 77.5, 58.8 and 33.8 % resistance to AMP, MET, CIP, TET, CHL and SUL, respectively. Visible-light composite material (Cu/Zn-doped delaminated kaolinite) completely disinfected 12.5 and 15.8 L of water containing Log10 7.5 cfu/mL of ARB Enterobacter sp and Bacillus sp respectively with no regrowth in treated water after storage for three days. Levels of EAR in the water sources in this study are among the highest in aquatic systems worldwide and can potentially lead to community AMR. Usage, discharge and sales of antibiotics should be guided by policies while routine monitoring of drinking water sources should be encouraged to reduce the AMR burden in the region. The photocatalytic material used in this study for water disinfection offers a promising, cost-effective solution for mitigating AMR risks from drinking water.
Collapse
Affiliation(s)
- Gloria O. Taylor
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, P.M.B 230, Ede, Osun State, Nigeria
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, Osun State, Nigeria
| | - Aemere Ogunlaja
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, P.M.B 230, Ede, Osun State, Nigeria
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, Osun State, Nigeria
| | - Olumide D. Olukanni
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, Osun State, Nigeria
- Department of Biochemistry, Faculty of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria
| | - Oluwatosin M. Awopetu
- Department of Biochemistry, Faculty of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria
| | - Frances Okodua
- Department of Biochemistry, Faculty of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria
| | - Daniel O. Godson
- Department of Biochemistry, Faculty of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria
| | - Afolarin Otusile
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, P.M.B 230, Ede, Osun State, Nigeria
| | - Daniella Ekpe
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, P.M.B 230, Ede, Osun State, Nigeria
| | - Esther Deguenon
- Research Unit in Applied Microbiology and Pharmacology of Natural Substances, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, Benin
| | - Kevin M. Sintondji
- Research Unit in Applied Microbiology and Pharmacology of Natural Substances, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, Benin
| | - Victorien Dougnon
- Research Unit in Applied Microbiology and Pharmacology of Natural Substances, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, Benin
| | - Olumuyiwa O. Ogunlaja
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, Osun State, Nigeria
- Department of Chemical Sciences, Faculty of Natural Medical and Applied Sciences, Lead City University, Ibadan, Nigeria
| | - Chidinma G. Olorunnisola
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, Osun State, Nigeria
- Institute of Chemistry, University of Potsdam, D-14476, Potsdam, Germany
| | - Martins O. Omorogie
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, Osun State, Nigeria
- Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria
| | - Moses O. Alfred
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, Osun State, Nigeria
- Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria
| | - Emmanuel I. Unuabonah
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, Osun State, Nigeria
- Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Osun State, Nigeria
| |
Collapse
|
5
|
Wang S, Li W, Xi B, Cao L, Huang C. Mechanisms and influencing factors of horizontal gene transfer in composting system: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177017. [PMID: 39427888 DOI: 10.1016/j.scitotenv.2024.177017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
Organic solid wastes such as livestock manure and sewage sludge are important sources and repositories of antibiotic resistance genes (ARGs). Composting, a solid waste treatment technology, has demonstrated efficacy in degrading various antibiotics and reducing ARGs. However, some recalcitrant ARGs (e.g., sul1, sul2) will enrich during the composting maturation period. These ARGs persist in compost products and spread through horizontal gene transfer (HGT). We analyzed the reasons behind the increase of ARGs during the maturation phase. It was found that the proliferation of ARG-host bacteria and HGT process play an important role. This article revealed that microbial physiological responses, environmental factors, pollutants, and quorum sensing (QS) can all influence the HGT process in composting systems. We examined the influence of these factors on HGT in the compost system and summarized potential mechanisms by analyzing the alterations in microbial communities. We comprehensively summarized the HGT hazards that these factors may present in composting systems. Finally, we summarized methods to inhibit HGT in compost, such as using additives, quorum sensing inhibitors (QSIs), microbial inoculation, and predicting HGT events. Overall, the HGT mechanism and driving force in complex composting systems are still insufficiently studied. In view of the current situation, using predictions to assess the risk of HGT in composting may be advisable.
Collapse
Affiliation(s)
- Simiao Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wei Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Lijia Cao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Caihong Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
6
|
Qiu T, Shen L, Guo Y, Gao M, Gao H, Li Y, Zhao G, Wang X. Impact of aeration rate on the transfer range of antibiotic-resistant plasmids during manure composting. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124851. [PMID: 39216666 DOI: 10.1016/j.envpol.2024.124851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/14/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Conjugative plasmids are important vectors of mobile antibiotic resvistance genes (ARGs), facilitating their horizontal transfer within the environment. While composting is recognized as an effective method to reduce antibiotics and ARGs in animal manure, its impact on the bacterial host communities containing antibiotic-resistant plasmids remains unclear. In this study, we investigated the permissiveness of bacterial community during composting when challenged with multidrug-resistant conjugative RP4 plasmids, employing Pseudomonas putida as the donor strain. Ultimately, this represents the first exploration of the effects of aeration rates on the range of RP4 plasmid transfer hosts. Transconjugants were analyzed through fluorescent reporter gene-based fluorescence-activated cell sorting and Illumina sequencing. Overall, aeration rates were found to influence various physicochemical parameters of compost, including temperature, pH, total organic matter, total nitrogen, and potassium. Regarding RP4 plasmid host bacteria, the dominant phylum was determined to shift from Bacteroidetes in the raw material to Proteobacteria in the compost. Notably, a moderate-intensity aeration rate (0.05 L/min/L) was found to be more effective in reducing the diversity and richness of the RP4 plasmid host bacterial community. Following composting, the total percentage of dominant transconjugant-related genera decreased by 66.15-76.62%. Ultimately, this study determined that the aeration rate negatively impacts RP4 plasmid host abundance primarily through alterations to the environmental factors during composting. In summary, these findings enhance our understanding of plasmid host bacterial communities under varying composting aeration rates and offer novel insights into preventing the dissemination of ARGs from animal manure to farmland.
Collapse
Affiliation(s)
- Tianlei Qiu
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Lei Shen
- College of Life Sciences, Langfang Normal University, Langfang, China
| | - Yajie Guo
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Min Gao
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Haoze Gao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Ying Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Guozhu Zhao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xuming Wang
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.
| |
Collapse
|
7
|
Chen X, Song X, Liang Y, Wang F, Pan C, Wei Z. Evaluation of the potential horizontal gene transfer ability during chicken manure and pig manure composting. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124621. [PMID: 39067739 DOI: 10.1016/j.envpol.2024.124621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Resistance genes have been identified as emerging pollutants due to their ability to rapidly spread in the environment through horizontal gene transfer (HGT). Microbial community serves as the pivotal factor influencing the frequency of HGT during manure composting. However, the characteristics of HGT in microbial community from different types of manure were unclear. Therefore, this study aimed to evaluate the potential risk of HGT in bacterial community through the co-composting of chicken manure and pig manure in different proportions. The experimental results showed that the abundance of sulfonamide antibiotic resistance genes and integrase genes was higher during pig manure composting than those during chicken manure composting. In addition, the addition of pig manure also increased resistance genes abundance during chicken manure composting. These results suggested that the potential HGT risk was greater during pig manure composting. Furthermore, microbial analysis of co-composting suggested that bacterial community of pig manure was more competitive and adaptable than that of chicken manure. Ultimately, statistical analysis indicated that compared to chicken manure composting, the potential ability of HGT was greater during pig manure composting. This study provided the vital theoretical support and scientific guidance for mitigating the HGT risk during manure composting.
Collapse
Affiliation(s)
- Xiaomeng Chen
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoyang Song
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yao Liang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Feng Wang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Chaonan Pan
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; College of Life Science, Tianjin Normal University, Tianjin 300387, China.
| |
Collapse
|
8
|
Ali MA, Sardar MF, Dar AA, Niaz M, Ali J, Wang Q, Zheng Y, Luo Y, Albasher G, Li F. Integrative approach to mitigate chromium toxicity in soil and enhance antioxidant activities in rice (Oryza sativa L.) using magnesium-iron nanocomposite and Staphylococcus aureus strains. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:398. [PMID: 39190219 DOI: 10.1007/s10653-024-02145-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 07/24/2024] [Indexed: 08/28/2024]
Abstract
Pollutants in soil, particularly chromium (Cr), pose high environmental and health risks due to their persistence, bioavailability, and potential for causing toxicity. Cr impairment in plants act as a deleterious environmental pollutant that enters the food chain and eventually disturbs human health. Current study demonstrated the potential of integrative foliar application of magnesium-iron (Mg + Fe) nanocomposite with Staphylococcus aureus strains to alleviate Cr toxicity in rice (Oryza sativa) crops by improving yield and defense system. Growth and yield traits such as shoot length (15%), root length (17%), shoot fresh weight (14%), shoot dry weight (9%), root fresh weight (23%), root dry weight (7%), number of tillers (33%), number of grains (10%) and spike length (13%) improved by combined application of Mg + Fe (20 mg L-1) nanocomposite and S. aureus strains with Cr (110 mg kg-1), compared to when applied alone. Mutual Mg + Fe and S. aureus strains application augmented the SPAD value (9%), total chlorophyll (11%), a (12%), b (17%), and carotenoids (32%), with Cr (110 mg kg-1), compared to alone. Malondialdehyde (13%), hydrogen peroxide (H2O2) (11%), and electrolyte leakage (7%) were significantly regulated in shoots with combined Mg + Fe and S. aureus strains application with Cr (110 mg kg-1) contrasted to alone. Peroxidase (20%), superoxide dismutase (17%), ascorbate peroxidase (18%), and catalase (20%) were increased in shoots with combined Mg + Fe and S. aureus strains application with Cr (110 mg kg-1) in comparison to alone. The combined application of Mg + Fe (20 mgL-1) nanocomposite and S. aureus strains with Cr (110 mg kg-1) enhanced the macro-micronutrients in shoots compared to alone. Cr accumulation in roots (21%), shoots (25%), and grains (47%) were significantly reduced under Cr (110 mg kg-1) with combined Mg + Fe and S. aureus strains application, compared to alone. Subsequently, applying combined Mg + Fe and S. aureus strains is a sustainable solution to boost crop production under Cr toxicity.
Collapse
Affiliation(s)
- Muhammad Azhar Ali
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, College of Environmental Science and Engineering, Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266100, China
| | - Muhammad Fahad Sardar
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Afzal Ahmed Dar
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, Canada
| | - Mohsin Niaz
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, Shandong, China
| | - Jawad Ali
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Qian Wang
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, College of Environmental Science and Engineering, Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266100, China
| | - Yu Zheng
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, College of Environmental Science and Engineering, Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266100, China
| | - Yadan Luo
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, College of Environmental Science and Engineering, Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266100, China
| | - Gadah Albasher
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Fengmin Li
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, College of Environmental Science and Engineering, Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266100, China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| |
Collapse
|
9
|
Luo Q, Wang H, Lu X, Wang C, Chen R, Cheng J, He T, Fu T. Potential of combined reactor and static composting applications for the removal of heavy metals and antibiotic resistance genes from chicken manure. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120592. [PMID: 38508009 DOI: 10.1016/j.jenvman.2024.120592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/01/2024] [Accepted: 03/10/2024] [Indexed: 03/22/2024]
Abstract
Chicken manure (CM) can pose a serious threat to environmental and human health, and need to be managed properly. The compost can effectively treat CM. However, there is limited research on the heavy metals and antibiotic resistance genes (ARGs) during compost CM. In this study, the combined application of reactor and static composting (RSC) was used to produce organic fertilizer of CM (OCM), and heavy metals, ARGs and bacterial community structure was investigated. The results show that RSC could be used to produce OCM, and OCM meet the National organic fertilizer standard (NY/T525-2021). Compared to the initial CM, DTPA-Cu, DTPA-Zn, DTPA-Pb, DTPA-Cr, DTPA-Ni and DTPA-As in OCM decreased by 40.83%, 23.73%, 34.27%, 38.62%, 16.26%, and 43.35%, respectively. RSC decreased the relative abundance of ARGs in CM by 84.06%, while the relative abundance of sul1 and ermC increased. In addition, the relative abundance and diversity of ARGs were mainly influenced by the bacterial community, with Actinobacteria, Firmicutes, and Proteobacteria becoming the dominant phyla during composting, and probably being the main carriers and dispersers of most of the ARGs. Network analyses confirmed that Gracilibacillus, Lactobacillus, Nocardiopsis, Mesorhizobium and Salinicoccus were the main potential hosts of ARGs, with the main potential hosts of sul1 and ermC being Mesorhizobium and Salinicoccus. The passivation and physicochemical properties of heavy metals contribute to the removal of ARGs, with sul1 and ermC being affected by the toal heavy metals. Application of RSC allows CM to produce mature, safe organic fertilizer after 32 d and reduces the risk of rebound from ARGs, but the issues of sul1 and ermC gene removal cannot be ignored.
Collapse
Affiliation(s)
- Qu Luo
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, Guizhou, China; Guizhou Engineering Laboratory of Mountain Livestock and Poultry Farming Pollution Control and Resource Technology, Institute of New Rural Development, Guizhou University, Guiyang, 550025, China
| | - Hu Wang
- Guizhou Chuyang Ecological Environmental Protection Technology Co., Ltd., Guizhou, 550003, China
| | - Xiaoqing Lu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, Guizhou, China; Guizhou Engineering Laboratory of Mountain Livestock and Poultry Farming Pollution Control and Resource Technology, Institute of New Rural Development, Guizhou University, Guiyang, 550025, China
| | - Can Wang
- Lijiang Agricultural Environmental Protection Monitoring Station, Lijiang, Yunnan, 674100, China
| | - Ruiying Chen
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, Guizhou, China; Guizhou Engineering Laboratory of Mountain Livestock and Poultry Farming Pollution Control and Resource Technology, Institute of New Rural Development, Guizhou University, Guiyang, 550025, China
| | - Jianbo Cheng
- Guizhou Engineering Laboratory of Mountain Livestock and Poultry Farming Pollution Control and Resource Technology, Institute of New Rural Development, Guizhou University, Guiyang, 550025, China
| | - Tengbing He
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, Guizhou, China; Guizhou Engineering Laboratory of Mountain Livestock and Poultry Farming Pollution Control and Resource Technology, Institute of New Rural Development, Guizhou University, Guiyang, 550025, China
| | - Tianling Fu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, Guizhou, China; Guizhou Engineering Laboratory of Mountain Livestock and Poultry Farming Pollution Control and Resource Technology, Institute of New Rural Development, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
10
|
Ye Y, Peng C, Zhu D, Yang R, Deng L, Wang T, Tang Y, Lu L. Identification of sulfamethazine degraders in swine farm-impacted river and farmland: A comparative study of aerobic and anaerobic environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169299. [PMID: 38104834 DOI: 10.1016/j.scitotenv.2023.169299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/20/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
Sulfonamides (SAs) are extensively used antibiotics in the prevention and treatment of animal diseases, leading to significant SAs pollution in surrounding environments. Microbial degradation has been proposed as a crucial mechanism for removing SAs, but the taxonomic identification of microbial functional guilds responsible for SAs degradation in nature remain largely unexplored. Here, we employed 13C-sulfamethazine (SMZ)-based DNA-stable isotope probing (SIP) and metagenomic sequencing to investigate SMZ degraders in three distinct swine farm wastewater-receiving environments within an agricultural ecosystem. These environments include the aerobic riparian wetland soil, agricultural soil, and anaerobic river sediment. SMZ mineralization activities exhibited significant variation, with the highest rate observed in aerobic riparian wetland soil. SMZ had a substantial impact on the microbial community compositions across all samples. DNA-SIP analysis demonstrated that Thiobacillus, Auicella, Sphingomonas, and Rhodobacter were dominant active SMZ degraders in the wetland soil, whereas Ellin6067, Ilumatobacter, Dongia, and Steroidobacter predominated in the agricultural soil. The genus MND1 and family Vicinamibacteraceae were identified as SMZ degrader in both soils. In contrast, anaerobic SMZ degradation in the river sediment was mainly performed by genera Microvirga, Flavobacterium, Dechlorobacter, Atopostipes, and families Nocardioidaceae, Micrococcaceae, Anaerolineaceae. Metagenomic analysis of 13C-DNA identified key SAs degradation genes (sadA and sadC), and various of dioxygenases, and aromatic hydrocarbon degradation-related functional genes, indicating their involvement in degradation of SMZ and its intermediate products. These findings highlight the variations of indigenous SAs oxidizers in complex natural habitats and emphasize the consideration of applying these naturally active degraders in future antibiotic bioremediation.
Collapse
Affiliation(s)
- Yuqiu Ye
- College of Life Sciences, China West Normal University, Nanchong 637002, China
| | - Chao Peng
- College of Life Sciences, China West Normal University, Nanchong 637002, China; Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637009, China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Ruiyu Yang
- College of Life Sciences, China West Normal University, Nanchong 637002, China
| | - Linjie Deng
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China
| | - Tao Wang
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China
| | - Yun Tang
- College of Life Sciences, China West Normal University, Nanchong 637002, China
| | - Lu Lu
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China; Key Laboratory of Nanchong City of Ecological Environment Protection and Pollution Prevention in Jialing River Basin, China West Normal University, Nanchong 637009, China.
| |
Collapse
|
11
|
Sheer A, Fahad Sardar M, Younas F, Zhu P, Noreen S, Mehmood T, Ur Rahman Farooqi Z, Fatima S, Guo W. Trends and social aspects in the management and conversion of agricultural residues into valuable resources: A comprehensive approach to counter environmental degradation, food security, and climate change. BIORESOURCE TECHNOLOGY 2024; 394:130258. [PMID: 38151206 DOI: 10.1016/j.biortech.2023.130258] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/11/2023] [Accepted: 12/23/2023] [Indexed: 12/29/2023]
Abstract
The circular economy is essential as it encourages the reuse and recycling of resources while reducing waste, which ultimately helps to reduce environmental pollution and boosts economic efficiency. The current review highlights the management of agricultural and livestock residues and their conversion into valuable resources to combat environmental degradation and improve social well-being. The current trends in converting agricultural residues into useful resources emphasize the social benefits of waste management and conversion. It also emphasizes how waste conversion can reduce environmental degradation and enhance food security. Using agricultural residues can increase soil health and agricultural output while reducing pollution, greenhouse gas emissions, and resource depletion. Promoting sustainable waste-to-resource conversion processes requires a combination of strategies that address technical, economic, social, and environmental aspects. These multiple strategies are highlighted along with prospects and considerations.
Collapse
Affiliation(s)
- Abbas Sheer
- College of Law, University of Sharjah, Sharjah, UAE
| | - Muhammad Fahad Sardar
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, Qingdao 266237, China.
| | - Fazila Younas
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Pengcheng Zhu
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Saima Noreen
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Tariq Mehmood
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Engineering, Permoserstr 15, D-04318 Leipzig, Germany
| | - Zia Ur Rahman Farooqi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad 38040, Pakistan
| | - Sidra Fatima
- College of Forestry Economic and Management, Beijing Forestry University BFU, Beijing, China
| | - Weihua Guo
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, Qingdao 266237, China.
| |
Collapse
|
12
|
Ma W, Lian J, Rene ER, Zhang P, Liu X. Enhanced thyroxine removal from micro-polluted drinking water resources in a bio-electrochemical reactor amended with TiO 2@GAC particles: Efficiency, mechanism and energy consumption. ENVIRONMENTAL RESEARCH 2023; 237:116949. [PMID: 37625538 DOI: 10.1016/j.envres.2023.116949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/17/2023] [Accepted: 08/20/2023] [Indexed: 08/27/2023]
Abstract
A three-dimensional bioelectrochemical system (3D-BES) with both electrocatalytic and biodegradation functions was designed and developed to enhance iodine-containing hormone removal from micro-polluted oligotrophic drinking water sources and to reduce energy consumption. Thyroxine (T4) removal efficiency was 99.0% in the 3D-BES amendment with TiO2@GAC as the particle electrodes, which was 20.5% higher than the total efficiency of single biodegradation (28.7%) plus electrochemical decomposition (49.8%). The high T4 removal efficiency was a result of biochemical synergistic degradation, enhancement of electron transfer and utilization, enrichment of functional microorganisms, and the expression of dehalogenation functional genes. The electron transfer was increased by 1.63 times in 3D-BES compared to the 2D-BES, which contributed to: (i) ∼17.8% enhancement of dehalogenation, (ii) 2.35 times enhancement of the attenuation rate, and (iii) 60% reduction in energy consumption. Moreover, the aggregation of microorganisms and the hydrophobic T4 onto TiO2@GAC shortened the transfer distance of matter and energy, which induced the degradation steps to be shortened and the toxic decay to be accelerated from T4 and its metabolites. These comprehensive functions also enhanced the 31.8% ATPase activity, 7.3% abundance of the functional reductive dehalogenation genera, and 52.3% dehalogenation genes expression for Pseudomonas, Ancylobacter, and Dehalogenimonas, which contributed to an increase in T4 removal. This work provides an environmental-friendly biochemical synergistic method for the detoxification of T4 polluted water.
Collapse
Affiliation(s)
- Weifang Ma
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Jiangru Lian
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, P.O. Box 3015, 2601DA, Delft, the Netherlands
| | - Panyue Zhang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Xiang Liu
- School of Environment, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
13
|
Ma R, Wang J, Liu Y, Wang G, Yang Y, Liu Y, Kong Y, Lin J, Li Q, Li G, Yuan J. Dynamics of antibiotic resistance genes and bacterial community during pig manure, kitchen waste, and sewage sludge composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118651. [PMID: 37499413 DOI: 10.1016/j.jenvman.2023.118651] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/04/2023] [Accepted: 07/15/2023] [Indexed: 07/29/2023]
Abstract
Organic solid wastes (OSWs) are important reservoirs for antibiotic resistance genes (ARGs). Aerobic composting transforms OSWs into fertilizers. In this study, we investigated ARGs dynamics and their driving mechanisms in three OSW composts: pig manure (PM), kitchen waste (KC), and sewage sludge (SG). The dominant ARGs were different in each OSW, namely tetracycline, aminoglycoside, and macrolide resistance (PM); tetracyclines and aminoglycosides (KC); and sulfonamides (SG). ARGs abundance decreased in PM (71%) but increased in KC (5.9-fold) and SG (1.3-fold). Interestingly, the ARGs abundance was generally similar in all final composts, which was contributed to the similar bacterial community in final composts. In particular, sulfonamide and β-lactam resistant genes removed (100%) in PM, while sulfonamide in KC (38-fold) and tetracycline in SG (5-fold) increased the most. Additionally, ARGs abundance rebounded during the maturation period in all treatments. Firmicutes, Proteobacteria, and Actinobacteria were the main ARGs hosts. Several persistent and high-risk genes included tetW, aadA, aadE, tetX, strB, tetA, mefA, intl1, and intl2. The structural equation models showed ARGs removal was mainly affected by physicochemical parameters and bacterial communities in PM, the ARGs enrichment in KC composting correlated with increased mobile genetic elements (MGEs). In general, thermophilic aerobic composting can inhibit the vertical gene transfer (VGT) of pig manure and horizontal gene transfer (HGT) of sludge, but it increases the HGT of kitchen waste, resulting in a dramatic increase of ARGs in KC compost. More attention should be paid to the ARGs risk of kitchen waste composting.
Collapse
Affiliation(s)
- Ruonan Ma
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agriculture University, Beijing, 100193, China
| | - Jiani Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agriculture University, Beijing, 100193, China
| | - Yan Liu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agriculture University, Beijing, 100193, China
| | - Guoying Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agriculture University, Beijing, 100193, China
| | - Yan Yang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agriculture University, Beijing, 100193, China
| | - Ying Liu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agriculture University, Beijing, 100193, China
| | - Yilin Kong
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agriculture University, Beijing, 100193, China
| | - Jiacong Lin
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Qinfen Li
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agriculture University, Beijing, 100193, China
| | - Jing Yuan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agriculture University, Beijing, 100193, China.
| |
Collapse
|
14
|
Farooqi ZUR, Qadir AA, Alserae H, Raza A, Mohy-Ud-Din W. Organic amendment-mediated reclamation and build-up of soil microbial diversity in salt-affected soils: fostering soil biota for shaping rhizosphere to enhance soil health and crop productivity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:109889-109920. [PMID: 37792186 DOI: 10.1007/s11356-023-30143-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/25/2023] [Indexed: 10/05/2023]
Abstract
Soil salinization is a serious environmental problem that affects agricultural productivity and sustainability worldwide. Organic amendments have been considered a practical approach for reclaiming salt-affected soils. In addition to improving soil physical and chemical properties, organic amendments have been found to promote the build-up of new halotolerant bacterial species and microbial diversity, which plays a critical role in maintaining soil health, carbon dynamics, crop productivity, and ecosystem functioning. Many reported studies have indicated the development of soil microbial diversity in organic amendments amended soil. But they have reported only the development of microbial diversity and their identification. This review article provides a comprehensive summary of the current knowledge on the use of different organic amendments for the reclamation of salt-affected soils, focusing on their effects on soil properties, microbial processes and species, development of soil microbial diversity, and microbial processes to tolerate salinity levels and their strategies to cope with it. It also discusses the factors affecting the microbial species developments, adaptation and survival, and carbon dynamics. This review is based on the concept of whether addition of specific organic amendment can promote specific halotolerant microbe species, and if it is, then which amendment is responsible for each microbial species' development and factors responsible for their survival in saline environments.
Collapse
Affiliation(s)
- Zia Ur Rahman Farooqi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan.
| | - Ayesha Abdul Qadir
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Hussein Alserae
- Department of Soil Sciences and Water Resources, College of Agricultural Engineering Science, Baghdad University, Baghdad, Iraq
| | - Ali Raza
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Waqas Mohy-Ud-Din
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
- Department of Soil and Environmental Sciences, Ghazi University, Dera Ghazi Khan, 32200, Pakistan
| |
Collapse
|
15
|
Zhu N, Long Y, Kan Z, Zhu Y, Jin H. Reduction of mobile genetic elements determines the removal of antibiotic resistance genes during pig manure composting after thermal pretreatment. BIORESOURCE TECHNOLOGY 2023; 387:129672. [PMID: 37586429 DOI: 10.1016/j.biortech.2023.129672] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023]
Abstract
Animal manure is a primary repository of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs). This work explored the efficiency of ARGs and MGEs removal during pig manure composting after thermal pretreatment (TPC) and the underlying mechanisms. TPC resulted in a decrease of 94.7% and 92.3% in the relative abundance of ARGs and MGEs which was 48.9% and 76.6% lower than control, respectively. Network analysis indicated that reductions of ARGs and MGEs in TPC were relevant to decrease in the amount and abundance of bacterial hosts. Furthermore, total ARGs abundance in TPC was correlated with that of intI1 and Tn916/1545 (P < 0.001). Redundancy analysis supported a leading role of MGEs in ARGs dynamics in TPC. Reduction of MGEs rather than bacterial hosts contributed mainly to ARGs removal in TPC, as revealed by structural equation modeling. In conclusion, TPC was an effective method to treat animal manure containing ARGs.
Collapse
Affiliation(s)
- Ning Zhu
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yujiao Long
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zexin Kan
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanyun Zhu
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Hongmei Jin
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
16
|
Chen X, Lin H, Dong Y, Li B, Liu C, Zhang L, Lu Y, Jin Q. Enhanced simultaneous removal of sulfamethoxazole and zinc (II) in the biochar-immobilized bioreactor: Performance, microbial structures and gene functions. CHEMOSPHERE 2023; 338:139466. [PMID: 37442390 DOI: 10.1016/j.chemosphere.2023.139466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/20/2023] [Accepted: 07/09/2023] [Indexed: 07/15/2023]
Abstract
Biochar-immobilized functional bacteria Bacillus SDB4 was applied for sulfamethoxazole (SMX) and zinc (Zn2+) simultaneous removal in the bioreactor. Under the optimal operating conditions of HRT of 10 h, pH of 7.0, SMX concentration of 10 mg L-1 and Zn2+ concentration of 50 mg L-1, the removal efficiencies of SMX and Zn2+ by the immobilized reactor (IR) were 97.42% and 96.14%, respectively, 20.39% and 30.15% higher than those by free bioreactor (FR). SEM-EDS and FTIR results revealed that the functional groups and light metals on the carrier promoted the biosorption and biotransformation of SMX and Zn2+ in IR. Moreover, the improvement of SMX and Zn2+ removal might be related to the abundance enhancement of functional bacteria and genes. Bacillus SDB4 responsible for SMX and Zn2+ removal was the main strain in IR and FR. Biochar increased the relative abundance of Bacillus from 32.12% in FR to 38.73% in IR and improved the abundances of functional genes (such as carbohydrate metabolism, replication and repair and membrane transport) by 1.82%-11.04%. The correlations among the physicochemical properties, microbial communities, functional genes and SMX-Zn2+ co-contaminant removal proposed new insights into the mechanisms of biochar enhanced microbial removal of antibiotics and heavy metals in biochar-immobilized bioreactors.
Collapse
Affiliation(s)
- Xi Chen
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hai Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China.
| | - Yingbo Dong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Bing Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Chenjing Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Liping Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yanrong Lu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Qi Jin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
17
|
Chi Y, Song S, Xiong K. Effects of different grassland use patterns on soil bacterial communities in the karst desertification areas. Front Microbiol 2023; 14:1208971. [PMID: 37720153 PMCID: PMC10500843 DOI: 10.3389/fmicb.2023.1208971] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/07/2023] [Indexed: 09/19/2023] Open
Abstract
Soil bacteria are closely related to soil environmental factors, and their community structure is an important indicator of ecosystem health and sustainability. A large number of artificial grasslands have been established to control rocky desertification in the karst areas of southern China, but the influence of different use patterns on the soil bacterial community in artificial grasslands is not clear. In this study, three grassland use patterns [i.e., grazing (GG), mowing (MG), and enclosure (EG)] were used to investigate the effects of different use patterns on the soil bacterial community in artificial grassland by using 16S rDNA Illumina sequencing and 12 soil environmental indicators. It was found that, compared with EG, GG significantly changed soil pH, increased alkaline hydrolyzable nitrogen (AN) content (P < 0.05), and decreased soil total phosphorus (TP) content (P < 0.05). However, MG significantly decreased the contents of soil organic carbon (SOC), total phosphorus (TP), available nitrogen (AN), ammonium nitrogen (NH4+-N), β-1,4-glucosidase (BG), and N-acetyl-β-D-glucamosonidase (NAG) (P < 0.05). The relative abundance of chemoheterotrophy was significantly decreased by GG and MG (P < 0.05). GG significantly increased the relative abundance of Acidobacteria and Gemmatimonadota (P < 0.05) and significantly decreased the relative abundance of Proteobacteria (P < 0.05), but the richness index (Chao 1) and diversity index (Shannon) of the bacterial community in GG, MG, and EG were not significantly different (P > 0.05). The pH (R2 = 0.79, P = 0.029) was the main factor affecting the bacterial community structure. This finding can provide a scientific reference for ecological restoration and sustainable utilization of grasslands in the karst desertification areas.
Collapse
Affiliation(s)
- Yongkuan Chi
- School of Karst Science, Guizhou Normal University, Guiyang, China
- Guizhou Engineering Laboratory for Karst Desertification Control and Eco-Industry, Guiyang, China
| | - Shuzhen Song
- School of Karst Science, Guizhou Normal University, Guiyang, China
| | - Kangning Xiong
- School of Karst Science, Guizhou Normal University, Guiyang, China
- Guizhou Engineering Laboratory for Karst Desertification Control and Eco-Industry, Guiyang, China
| |
Collapse
|
18
|
Paswan M, Adhikary S, Salama HH, Rusu AV, Zuorro A, Dholakiya BZ, Trif M, Bhattacharya S. Microbial Synthesis of Lactic Acid from Cotton Stalk for Polylactic Acid Production. Microorganisms 2023; 11:1931. [PMID: 37630489 PMCID: PMC10458930 DOI: 10.3390/microorganisms11081931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Cotton stalk, a waste product in agriculture, serves as a beneficial, low-cost material as a medium for microbial synthesis of lactic acid as desired for polylactic acid synthesis. Cotton stalk was used as a substrate for microbial lactic acid synthesis, and a novel strain of Lactococcus cremoris was reported to synthesize 51.4 g/L lactic acid using cellulose recovered from the cotton stalk. In total, 18 Lactobacillus isolates were isolated from kitchen waste, soil, sugarcane waste, and raw milk samples screened for maximum lactic acid production. It was found that one of the Lactococcus cremoris isolates was found to synthesize maximum lactic acid at a concentration of 51.4 g/L lactic acid in the hydrolysate prepared from cotton stalk. The upstream process parameters included 10% inoculum size, hydrolysate containing reducing sugars 74.23 g/L, temperature 37 °C, agitation 220 rpm, production age 24 h. Only the racemic (50:50) mixture of D-LA and L-LA (i.e., D/L-LA) is produced during the chemical synthesis of lactic acid, which is undesirable for the food, beverage, pharmaceutical, and biomedical industries because only the L-form is digestible and is not suitable for biopolymer, i.e., PLA-based industry where high optically purified lactic acid is required. Furthermore, polylactic acid was synthesized through direct polycondensation methods using various catalysts such as chitosan, YSZ, and Sb2O3. PLA is biocompatible and biodegradable in nature (its blends and biocomposites), supporting a low-carbon and circular bioeconomy.
Collapse
Affiliation(s)
- Meenakshi Paswan
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat 395007, India; (M.P.); (B.Z.D.)
| | - Sudipto Adhikary
- Process Design and Engineering Cell, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 346002, India;
| | - Heba Hassan Salama
- National Research Centre, Dairy Department, Food Industries and Nutrition Research Institute, 33 El-Buhouth Str. (Former El-Tahrir Str.), Dokki, Giza 12622, Egypt;
| | - Alexandru Vasile Rusu
- CENCIRA Agrofood Research and Innovation Centre, Ion Meșter 6, 400650 Cluj-Napoca, Romania
| | - Antonio Zuorro
- Department of Chemical Engineering, Materials and Environment, Sapienza University of Rome, 00184 Rome, Italy;
| | - Bharatkumar Z. Dholakiya
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat 395007, India; (M.P.); (B.Z.D.)
| | - Monica Trif
- Food Research Department, Centre for Innovative Process Engineering (CENTIV) GmbH, 28857 Syke, Germany;
| | - Sourish Bhattacharya
- Process Design and Engineering Cell, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 346002, India;
- Academy of Scientific and Innovative Research (AcSIR), Bhavnagar 364002, India
| |
Collapse
|
19
|
Fan Q, Zhang J, Shi H, Chang S, Hou F. Metagenomic Profiles of Yak and Cattle Manure Resistomes in Different Feeding Patterns before and after Composting. Appl Environ Microbiol 2023; 89:e0064523. [PMID: 37409977 PMCID: PMC10370317 DOI: 10.1128/aem.00645-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/04/2023] [Indexed: 07/07/2023] Open
Abstract
Antibiotic resistance is a global threat to public health, with antibiotic resistance genes (ARGs) being one of the emerging contaminants; furthermore, animal manure is an important reservoir of biocide resistance genes (BRGs) and metal resistance genes (MRGs). However, few studies have reported differences in the abundance and diversity of BRGs and MRGs between different types of animal manure and the changes in BRGs and MRGs before and after composting. This study employed a metagenomics-based approach to investigate ARGs, BRGs, MRGs, and mobile genetic elements (MGEs) of yak and cattle manure before and after composting under grazing and intensive feeding patterns. The total abundances of ARGs, clinical ARGs, BRGs, MRGs, and MGEs were lower in the manure of grazing livestock than in the manure of the intensively fed group. After composting, the total abundances of ARGs, clinical ARGs, and MGEs in intensively fed livestock manure decreased, whereas those of ARGs, clinical ARGs, MRGs, and MGEs increased in grazing livestock manure. The synergy between MGEs mediated horizontal gene transfer and vertical gene transmission via host bacteria proliferation, which was the main driver that altered the abundance and diversity of ARGs, BRGs, and MRGs in livestock manure and compost. Additionally, tetQ, IS91, mdtF, and fabK were potential indicators for estimating the total abundance of clinical ARGs, BRGs, MRGs, and MGEs in livestock manure and compost. These findings suggest that grazing livestock manure can be directly discharged into the fields, whereas intensively fed livestock manure should be composted before returning to the field. IMPORTANCE The recent increase in the prevalence of antibiotic resistance genes (ARGs), biocide resistance genes (BRGs), and metal resistance genes (MRGs) in livestock manure poses risks to human health. Composting is known to be a promising technology for reducing the abundance of resistance genes. This study investigated the differences and changes in the abundances of ARGs, BRGs, and MRGs between yak and cattle manure under grazing and intensive feeding patterns before and after composting. The results indicate that the feeding pattern significantly affected the abundances of resistance genes in livestock manure. Manure in intensive farming should be composted before being discharged into the field, while grazing livestock manure is not suitable for composting due to an increased number of resistance genes.
Collapse
Affiliation(s)
- Qingshan Fan
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Jing Zhang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Hairen Shi
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Shenghua Chang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Fujiang Hou
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
20
|
Ma S, Liu H, Hou J, Zhang J. External static magnetic field potentiates the reduction of antibiotic resistance genes during swine manure composting. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130882. [PMID: 36738618 DOI: 10.1016/j.jhazmat.2023.130882] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/10/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Livestock and poultry manure are repositories of antibiotic resistance genes (ARGs). Accumulating evidence suggests that composting is an important way to effectively attenuate ARGs, but how to reinforce the reduction in ARGs during composting needs to be further investigated. This study explored the influence of an external static magnetic field on ARG mitigation enhancement during swine manure composting. The results showed that a total of 12 high-risk ARGs were identified. A relatively high magnetic field intensity (14.81 mT) was more effective in reducing the abundance of high-risk ARGs, and the removal rate was 20.66-100 %. It also reduced the abundance of 27.14 % of integrons, 79.44 % of insertion sequences, and 8.78 % of plasmids. Partial least squares path modeling showed that a relatively high magnetic field intensity treatment promoted the reduction in ermB by reducing the abundance of Phascolarctobacterium, Streptococcus, and insertion sequences. It also mitigated sul1 expression by reducing the abundance of Acinetobacter and integrons, and it mitigated tetM expression by decreasing Lactobacillus, Streptococcus, insertion sequences, and plasmids. These findings demonstrate that an external static magnetic field is an effective method for intensifying the reduction in ARGs, providing a feasible reference for controlling the potential ARG risk of organic waste composting.
Collapse
Affiliation(s)
- Shuangshuang Ma
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongtao Liu
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jiayi Hou
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Jun Zhang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|
21
|
Wang M, Qi X, Shi Y, Zhao J, Ahmad S, Akhtar K, Chen B, Lian T, He B, Wen R. Sugarcane straw returning is an approaching technique for the improvement of rhizosphere soil functionality, microbial community, and yield of different sugarcane cultivars. Front Microbiol 2023; 14:1133973. [PMID: 36998394 PMCID: PMC10043380 DOI: 10.3389/fmicb.2023.1133973] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/24/2023] [Indexed: 03/15/2023] Open
Abstract
Sugarcane straw returned to the field has rapidly increased due to the bane on straw burning in China. Straw returning of new sugarcane cultivars has been practiced in the fields. Still, its response has not been explored on soil functionality, microbial community and yield of different sugarcane cultivars. Therefore, a comparison was made between an old sugarcane cultivar ROC22 and a new sugarcane cultivar Zhongzhe9 (Z9). The experimental treatments were: without (R, Z), with straw of the same cultivar (RR, ZZ), and with straw of different cultivars (RZ, ZR). Straw returning improved the contents of soil total nitrogen (TN by 73.21%), nitrate nitrogen (NO3—N by 119.61%), soil organic carbon (SOC by 20.16%), and available potassium (AK by 90.65%) at the jointing stage and were not significant at the seedling stage. The contents of NO3—N was 31.94 and 29.58%, available phosphorus (AP 53.21 and 27.19%), and available potassium (AK 42.43 and 11.92%) in RR and ZZ were more than in RZ and ZR. Straw returning with the same cultivar (RR, ZZ) significantly increased the richness and diversity of the rhizosphere microbial community. The microbial diversity of cultivar Z9 (treatment Z) was greater than that of cultivar ROC22 (Treatment R). In the rhizosphere, the relative abundance of beneficial microorganisms Gemmatimonadaceae, Trechispora, Streptomyces, Chaetomium, etc., increased after the straw returned. Sugarcane straw enhanced the activity of Pseudomonas and Aspergillus and thus increased the yield of sugarcane., The richness and diversity of the rhizosphere microbial community of Z9 increased at maturity. In ROC22, bacterial diversity increased, and fungal diversity decreased. These findings collectively suggested that the impact of Z9 straw returning was more beneficial than ROC22 on the activity of rhizosphere microorganism’s soil functionality and sugarcane production.
Collapse
Affiliation(s)
- Mengrong Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Ministry and Province Co-sponsored Collaborative Innovation Center for Sugarcane and Sugar Industry, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China
| | - Xiaohang Qi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Ministry and Province Co-sponsored Collaborative Innovation Center for Sugarcane and Sugar Industry, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China
| | - Yujie Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Ministry and Province Co-sponsored Collaborative Innovation Center for Sugarcane and Sugar Industry, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China
| | - Junyang Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Ministry and Province Co-sponsored Collaborative Innovation Center for Sugarcane and Sugar Industry, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China
| | - Shakeel Ahmad
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Ministry and Province Co-sponsored Collaborative Innovation Center for Sugarcane and Sugar Industry, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China
| | - Kashif Akhtar
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Ministry and Province Co-sponsored Collaborative Innovation Center for Sugarcane and Sugar Industry, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China
| | - Baoshan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Ministry and Province Co-sponsored Collaborative Innovation Center for Sugarcane and Sugar Industry, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Tengxiang Lian
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Bing He
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
- *Correspondence: Bing He,
| | - Ronghui Wen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Ministry and Province Co-sponsored Collaborative Innovation Center for Sugarcane and Sugar Industry, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning, China
- Ronghui Wen,
| |
Collapse
|
22
|
Zhang X, Ding Z, Usman S, Zhang J, Chen M, Guo X. Metagenomics insights into the effects of lactic acid bacteria inoculation on the biological reduction of antibiotic resistance genes in alfalfa silage. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130329. [PMID: 36444055 DOI: 10.1016/j.jhazmat.2022.130329] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/01/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Antibiotic resistance genes (ARGs) are a new type of pollutant and pose major threats to public health. However, the distribution and transmission risk of ARGs in alfalfa silage as the main forage for ruminants have not been studied. This study first deciphered the effects of Lactobacillus plantarum MTD/1 or Lactobacillus buchneri 40788 inoculations on distribution and transmission mechanism of ARGs in alfalfa silage by metagenomics. Results showed that multidrug and bacitracin resistance genes were the dominant ARGs in ensiled alfalfa. The natural ensiling process increased the abundances of bacitracin, beta_lactam, and aminoglycoside in alfalfa silage with 30% DM, and vancomycin in alfalfa silage with 40% DM. Meanwhile, prolonged wilting increased ARG enrichment in fresh alfalfa. Interestingly, alfalfa silage inoculated with L. plantarum MTD/1 or L. buchneri 40788 reduced the abundances of total ARG, and multidrug, MLS, vancomycin, aminoglycoside, tetracycline, and fosmidomycin resistance genes by reductions of the host bacteria and the enrichment of ARGs located in the plasmid. The hosts of ARG in alfalfa silage were mainly derived from harmful bacteria or pathogens, and some of the clinical ARGs were observed in alfalfa silage. Basically, the combined effect of microbes, MGEs, and fermentation quality was the major driver of ARG transfer and dissemination in microecosystem of ensiling, where the microbes appeared to be the crucial factor. In summary, inoculation with the present lactic acid bacteria could reduce ARG abundance in ensiled alfalfa, and a better effect was observed in L. plantarum-treated silage than in L. buchneri treated silage.
Collapse
Affiliation(s)
- Xia Zhang
- State Key Laboratory of Grassland and Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, PR China; Probiotics and Biological Feed Research Center, Lanzhou University, Lanzhou 730000, PR China
| | - Zitong Ding
- State Key Laboratory of Grassland and Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China; Probiotics and Biological Feed Research Center, Lanzhou University, Lanzhou 730000, PR China
| | - Samaila Usman
- State Key Laboratory of Grassland and Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, PR China
| | - Jiayao Zhang
- State Key Laboratory of Grassland and Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, PR China; Probiotics and Biological Feed Research Center, Lanzhou University, Lanzhou 730000, PR China
| | - Mengyan Chen
- State Key Laboratory of Grassland and Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China; Probiotics and Biological Feed Research Center, Lanzhou University, Lanzhou 730000, PR China
| | - Xusheng Guo
- State Key Laboratory of Grassland and Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China; Probiotics and Biological Feed Research Center, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
23
|
Song Y, Liu R, Yang L, Xiao X, He G. Effects of Moss-Dominated Biocrusts on Soil Microbial Community Structure in an Ionic Rare Earth Tailings Area of Southern China. TOXICS 2022; 10:782. [PMID: 36548615 PMCID: PMC9781051 DOI: 10.3390/toxics10120782] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Moss-dominated biocrusts are widespread in degraded mining ecosystems and play an important role in soil development and ecosystem primary succession. In this work, the soil microbial community structure under moss-dominated biocrusts in ionic rare earth tailings was investigated to reveal the relationship between different types of moss and taxonomy/function of microbiomes. The results showed that microbial community structure was significantly influenced by four moss species (Claopodium rugulosifolium, Orthotrichum courtoisii, Polytrichum formosum, and Taxiphyllum giraldii). The microbial assembly was more prominent in Claopodium rugulosifolium soil than in the other moss soils, which covers 482 bacterial genera (including 130 specific genera) and 338 fungal genera (including 72 specific genera), and the specific genus is 40% to 1300% higher than that of the other three mosses. Although only 141 and 140 operational taxonomic units (OTUs) rooted in bacterial and fungal clusters, respectively, were shared by all four mosses grown in ionic rare earth tailings, this core microbiome could represent a large fraction (28.2% and 38.7%, respectively) of all sequence reads. The bacterial population and representation are the most abundant, which mainly includes Sphingomonas, Clostridium_sensu_stricto_1, and unclassified filamentous bacteria and chloroplasts, while the fungi population is relatively singular. The results also show that biocrust dominated by moss has a positive effect on soil microbe activity and soil nutrient conditions. Overall, these findings emphasize the importance of developing moss-dominated biocrusts as hotspots of ecosystem functioning and precious microbial genetic resources in degraded rare-earth mining areas and promoting a better understanding of biocrust ecology in humid climates under global change scenarios.
Collapse
Affiliation(s)
- Yongsheng Song
- Key Laboratory of Agricultural Environmental Pollution Prevention and Control in Red Soil Hilly Region of Jiangxi Province, School of Life Sciences, Jinggangshan University, Ji’an 343009, China
| | - Renlu Liu
- Key Laboratory of Agricultural Environmental Pollution Prevention and Control in Red Soil Hilly Region of Jiangxi Province, School of Life Sciences, Jinggangshan University, Ji’an 343009, China
| | - Liren Yang
- Ji’an Agricultural and Rural Industry Development Service Center, Ji’an 343000, China
| | - Xiaoyu Xiao
- Key Laboratory of Agricultural Environmental Pollution Prevention and Control in Red Soil Hilly Region of Jiangxi Province, School of Life Sciences, Jinggangshan University, Ji’an 343009, China
| | - Genhe He
- Key Laboratory of Agricultural Environmental Pollution Prevention and Control in Red Soil Hilly Region of Jiangxi Province, School of Life Sciences, Jinggangshan University, Ji’an 343009, China
| |
Collapse
|
24
|
Zhang Y, Song K, Zhang J, Xu X, Ye G, Cao H, Chen M, Cai S, Cao X, Zheng X, Lv W. Removal of sulfamethoxazole and antibiotic resistance genes in paddy soil by earthworms (Pheretima guillelmi): Intestinal detoxification and stimulation of indigenous soil bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158075. [PMID: 35985593 DOI: 10.1016/j.scitotenv.2022.158075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Vermiremediation, which use earthworms to remove contaminants from soil, has been proven to be an alternative, low-cost technology. However, the effects of earthworm activity, especially the degraders in earthworm intestines, on the fate of sulfamethoxazole (SMX), and the effects of intestinal bacteria on degrading bacteria in soil are unclear. In this study, the effects of earthworms on the fate of SMX and related antibiotic resistance genes (ARGs) were investigated. Special attention was paid to the impact of earthworms on SMX degradation efficiency, degradation products, related ARGs, and degraders in both soil and earthworm intestines; the effect of intestinal bacteria on soil bacteria associated with SMX was also studied. Earthworms significantly accelerated SMX degradation by both intestinal detoxification and the stimulation of indigenous soil bacteria. Compared with the treatment without earthworms, the treatment with earthworms reduced SMX residues by 25.1 %, 49.2 %, 35.7 %, 34.2 %, and 35.7 % on the 10th, 20th, 30th, 60th, and 90th days, respectively. Compared with those in soil (treated with earthworms), the SMX residues in wormcasts were further reduced by 12.2-29.0 % from the 2nd to the 20th day, producing some unique anaerobic degradation products that were distinct from those in the soil. In earthworm intestines, SMX degradation was enhanced by bacteria of the genera Microvirga, Sphingomonas, Methylobacterium, Bacillus, and Tumebacillus. All of these bacteria (except Bacillus spp.) entered and colonised the soil with wormcasts, further promoting SMX degradation. Additionally, earthworms removed a significant number of ARGs by increasing the fraction of potential SMX degraders and inhibiting the potential hosts of ARGs and int1. This study demonstrated that earthworms could remediate SMX-contaminated soil by enhancing the removal of SMX and ARGs.
Collapse
Affiliation(s)
- Yue Zhang
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Ke Song
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Juanqin Zhang
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Xiaoyun Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Geng Ye
- Shanghai Agricultural Science and Technology Service Center, Shanghai 200335, China
| | - Huan Cao
- Shanghai Agricultural Science and Technology Service Center, Shanghai 200335, China
| | - Ming Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Shumei Cai
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xianqing Zheng
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| | - Weiguang Lv
- Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| |
Collapse
|
25
|
Zhu P, Wu Y, Ru Y, Hou Y, San KW, Yu X, Guo W. Industrial-scale aerobic composting of livestock manures with the addition of biochar: Variation of bacterial community and antibiotic resistance genes caused by various composting stages. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120270. [PMID: 36162559 DOI: 10.1016/j.envpol.2022.120270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/04/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
The presence of large amounts of antibiotic resistance genes (ARGs) in livestock manures poses an impending, tough safety risk to ecosystems. To investigate more comprehensively the mechanisms of ARGs removal from industrial-scale composting of livestock manure based on biochar addition, we tracked the dynamics of bacterial community and ARGs at various stages of aerobic composting of livestock manures with 10% biochar. There were no significant effects of biochar on the bacterial community and the profiles of ARGs. During aerobic composting, the relative abundance of ARGs and mobile genetic elements (MGEs) showed overall trends of decreasing and then increasing. The key factor driving the dynamics of ARGs was bacterial community composition, and the potential hosts of ARGs were Caldicoprobacter, Tepidimicrobium, Ignatzschineria, Pseudogracilibacillus, Actinomadura, Flavobacterium and Planifilum. The retention of the thermophilic bacteria and the repopulation of the initial bacteria were the dominant reasons for the increase in ARGs at maturation stage. Additionally, among the MGEs, the relative abundance of transposon gene was substantially removed, while the integron genes remained at high relative abundance. Our results highlighted that the suitability of biochar addition to industrial-scale aerobic composting needs to be further explored and that effective measures are needed to prevent the increase of ARGs content on maturation stage.
Collapse
Affiliation(s)
- Pengcheng Zhu
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, Qingdao, 266237, PR China
| | - Yuxin Wu
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, Qingdao, 266237, PR China
| | - Yuning Ru
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, Qingdao, 266237, PR China
| | - Yihang Hou
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, Qingdao, 266237, PR China
| | - Kim Woon San
- Tounong Organic Fertilizer Co. Ltd., Qingdao, 266733, PR China
| | - Xiaona Yu
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, Qingdao, 266237, PR China
| | - Weihua Guo
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, Qingdao, 266237, PR China.
| |
Collapse
|
26
|
Sun P, Liu B, Ahmed I, Yang J, Zhang B. Composting effect and antibiotic removal under a new temperature control strategy. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 153:89-98. [PMID: 36063581 DOI: 10.1016/j.wasman.2022.08.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/29/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
The main objective of this study was to investigate the feasibility of a new temperature control strategy in the co-composting process to accelerate operation cycle and remove antibiotics from mixed organic wastes. The evaluation of the composting process showed that composting with temperature control (TC) was completed within 14 days. The final compost of TC exhibited a 10% higher degradation of organic matters, more humus formation and 11.25% lower heavy metals concentration than conventional composting (CC), which fully met the Chinese National Agricultural Organic Fertilizer Standard requirements. The degradation extent and kinetic of macrolides, tetracyclines, sulfonamides and fluoroquinolones showed that the removal efficiency of total antibiotics in TC was 23.58% higher than CC, with less half-life, which was significantly correlated with higher temperature. Particularly, the highest removal was observed for sulfonamides (87.45%) in TC, the half-life of which was reduced by 75.95% compared with CC. The higher degradation rate was attributed to enhanced decomposition of unstable antibiotics and degrading activity of microbes at high temperature. The microbiological analysis showed that the external heating led to a distinct composition and succession of bacterial community in TC. Firmicutes, Proteobacteria, Actinobacteriota and Bacteroidota were dominant and the emergence of Patescibacteria and Chloroflexi at cooling period in TC proved that the later composting environment was in an oligotrophic state. Current research provided a promising rapid composting approach for high-quality fertilizer production and antibiotic management in organic waste disposal.
Collapse
Affiliation(s)
- Pengyu Sun
- School of Environmental Science and Engineering, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Botao Liu
- School of Environmental Science and Engineering, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Imtiaz Ahmed
- School of Environmental Science and Engineering, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jun Yang
- School of Environmental Science and Engineering, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Bo Zhang
- School of Environmental Science and Engineering, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai 200240, China.
| |
Collapse
|
27
|
Ma W, Wang L, Xu X, Huo M, Zhou K, Mi K, Tian X, Cheng G, Huang L. Fate and exposure risk of florfenicol, thiamphenicol and antibiotic resistance genes during composting of swine manure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156243. [PMID: 35643147 DOI: 10.1016/j.scitotenv.2022.156243] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/19/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
Livestock manure is an important source of antibiotic resistance genes (ARGs) spreading to the environment, posing a potential threat to human health. Here, we investigated the dissipation of florfenicol (FF) and thiamphenicol (TAP), and their effects on the bacterial community, mobile genetic elements (MGEs), and ARGs during composting. The results indicated that FF and TAP dissipated rapidly in compost, with half-life values of 5.1 and 1.6 d, respectively. However, FF could not be completely removed during composting. The FF and TAP residues in manure could reduce the elimination of ARGs and MGEs during composting, and had a negative effect on the physicochemical factors of the compost. Significant correlations were found between floR and intI1, indicating that floR in manure may more easily diffuse to the soil environment. Meanwhile, the presence of FF in manure could increase the abundance of floR. Network analysis showed that Proteobacteria and Firmicutes were the dominant bacterial communities and important potential pathogen hosts carrying ARGs. The predicted environmental concentration of FF in the soil was over 100 μg kg-1, which indicates that FF poses a potential risk to the natural environment, and we verified this result through field experiments. The results showed that FF dissipated in the soil after it migrated from manure to soil. In contrast, TAP in manure posed lower environmental risk. This study highlights that changed in composting conditions may control the rate of removal of ARGs. Further studies are needed to investigate the best environmental conditions to achieve a faster degradation of FF and a more comprehensive elimination of ARGs during composting.
Collapse
Affiliation(s)
- Wenjin Ma
- National Laboratory for Veterinary Drug Safety Evaluation, Huazhong Agriculture University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China
| | - Lei Wang
- National Laboratory for Veterinary Drug Safety Evaluation, Huazhong Agriculture University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China
| | - Xiangyue Xu
- National Laboratory for Veterinary Drug Safety Evaluation, Huazhong Agriculture University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China
| | - Meixia Huo
- National Laboratory for Veterinary Drug Safety Evaluation, Huazhong Agriculture University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China
| | - Kaixiang Zhou
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agriculture University, Wuhan 430070, China; MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China
| | - Kun Mi
- National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agriculture University, Wuhan 430070, China; MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China
| | - Xiaoyuan Tian
- National Laboratory for Veterinary Drug Safety Evaluation, Huazhong Agriculture University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China
| | - Guyue Cheng
- National Laboratory for Veterinary Drug Safety Evaluation, Huazhong Agriculture University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, China; National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agriculture University, Wuhan 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China
| | - Lingli Huang
- National Laboratory for Veterinary Drug Safety Evaluation, Huazhong Agriculture University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Hubei 430070, China; National Reference Laboratory of Veterinary Drug Residues (HZAU), Huazhong Agriculture University, Wuhan 430070, China; MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China.
| |
Collapse
|
28
|
Xu Z, Li R, Liu T, Zhang G, Wu S, Xu K, Zhang Y, Wang Q, Kang J, Zhang Z, Quan F, Zhang Y. Effect of inoculation with newly isolated thermotolerant ammonia-oxidizing bacteria on nitrogen conversion and microbial community during cattle manure composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115474. [PMID: 35751273 DOI: 10.1016/j.jenvman.2022.115474] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/24/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Nitrogen loss during composting is closely related to NH4+-N conversion, and ammonia-oxidizing bacteria (AOB) are important microorganisms that promote NH4+-N conversion. Since the biological activity of conventional AOB agents used for compost inoculation declines rapidly during the thermophilic phase of composting, new compound inoculants should be developed that are active during that phase. In the current study, the effects of inoculating cattle manure compost with newly isolated AOB (5%, v/w) [thermotolerant AOB X-2 strain (T-AOB-2), mesophilic AOB X-4 strain (M-AOB-4), and AOB X-2 combined with AOB X-4 (MT-AOB-2-4)] on the conversion of nitrogen, compost maturity, and the resident microbial community were studied. During 35 days of composting, compared with the control, AOB inoculation reduced NH3 emissions by 29.98-46.94%, accelerated the conversion of NH4+-N to NO2--N, increased seed germination values by 13.00-25.90%, and increased the abundance of the microbial community at the thermophilic phase (16.38-68.81%). Network analysis revealed that Bacillaceae play a crucial role in the composting process, with the correlation coefficients: 0.83 (p < 0.05) with NH3, 0.64 (p < 0.05) with NH4+-N, and 0.81 (p < 0.05) with NO2--N. In addition, inoculation with MT-AOB-2-4 notably increased the total nitrogen content of compost, prolonged the sanitation stage, and promoted compost maturity. Hence, MT-AOB-2-4 may be used to increase the microbial community abundance and improve the efficiency of cattle manure composting.
Collapse
Affiliation(s)
- Zhiming Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Tao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Guanghui Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Shenghui Wu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Kaili Xu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Yingbing Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Quan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Jian Kang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Fusheng Quan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China.
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China.
| |
Collapse
|
29
|
Shen L, Qiu T, Guo Y, Gao M, Gao H, Zhao G, Wang X. Enhancing control of multidrug-resistant plasmid and its host community with a prolonged thermophilic phase during composting. Front Microbiol 2022; 13:989085. [PMID: 36060751 PMCID: PMC9428157 DOI: 10.3389/fmicb.2022.989085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/05/2022] [Indexed: 12/02/2022] Open
Abstract
The plasmid-mediated horizontal transfer of antibiotic resistance genes (ARGs) among bacteria facilitates the evolution and dissemination of antibiotic resistance. Broad-host-range plasmids can be transferred to different bacterial hosts in soil, plant rhizospheres, and wastewater treatment plants. Although composting is an effective way to convert organic waste into fertilizer and reduce some ARGs, few studies have focused on its effects on the spread of ARG-carrying plasmids and their bacterial host communities during composting. In this study, a fluorescently labeled Pseudomonas putida (P. putida) harboring a broad-host-range plasmid RP4 carrying three ARGs was inoculated into a raw material microcosm and composted with different durations of the thermophilic phase. The fate of the donor and RP4 in composting was investigated. The prolonged thermophilic composting removed 95.1% of dsRed and 98.0% of gfp, and it inhibited the rebound of P. putida and RP4 during the maturation phase. The spread potential of RP4 decreased from 10−4 to 10−6 transconjugants per recipient after composting. In addition, we sorted and analyzed the composition of RP4 recipient bacteria using fluorescence-activated cell sorting combined with 16S rRNA gene amplicon sequencing. The recipient bacteria of RP4 belonged to eight phyla, and Firmicutes, accounting for 75.3%–90.1%, was the dominant phylum in the transconjugants. The diversity and richness of the RP4 recipient community were significantly reduced by prolonged thermophilic periods. Overall, these findings provide new insights for assessing the contribution of composting in mitigating the dissemination of plasmid-mediated ARGs, and the prolonged thermophilic phase of composting can limit the transfer of multidrug-resistant plasmids.
Collapse
Affiliation(s)
- Lei Shen
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- College of Life Sciences, Langfang Normal University, Langfang, China
| | - Tianlei Qiu
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yajie Guo
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Min Gao
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Haoze Gao
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Guozhu Zhao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- *Correspondence: Guozhu Zhao,
| | - Xuming Wang
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Xuming Wang,
| |
Collapse
|
30
|
Qiu T, Huo L, Guo Y, Gao M, Wang G, Hu D, Li C, Wang Z, Liu G, Wang X. Metagenomic assembly reveals hosts and mobility of common antibiotic resistome in animal manure and commercial compost. ENVIRONMENTAL MICROBIOME 2022; 17:42. [PMID: 35953830 PMCID: PMC9367140 DOI: 10.1186/s40793-022-00437-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/29/2022] [Indexed: 05/10/2023]
Abstract
BACKGROUND Antibiotics and antibiotic resistance genes (ARGs) used in intensive animal farming threaten human health worldwide; however, the common resistome, ARG mobility, and ARG host composition in different animal manures and mixed manure composts remain unclear. In the present study, metagenomic assembly and cross-sample mapping were used to comprehensively decipher the common resistome and its potential mobility and hosts in animal manure and composts. RESULTS In total, 201 ARGs were shared among different animal (layer, broiler, swine, beef cow, and dairy cow) manures and accounted for 86-99% of total relative abundance of ARGs. Except for multidrug, sulfonamide, and trimethoprim resistance genes, the relative abundance of most ARGs in composts was significantly lower than that in animal manure. Procrustes analysis indicated that antibiotic residues positively correlated with ARG composition in manure but not in composts. More than 75% ARG subtypes were shared between plasmids and chromosomes in our samples. Transposases could play a pivotal role in mediating the transfer of ARGs between different phyla in animal manure and composting. Cross-sample mapping to contigs carrying ARGs showed that the hosts of common resistome in manure had preference on animal species, and the dominant genus of ARG host shifted from Enterococcus in manure to Pseudomonas in composts. The broad host range and linking with diverse mobile genetic elements (MGEs) were two key factors for ARGs, such as sul1 and aadA, which could survive during composting. The multidrug resistance genes represented the dominant ARGs in pathogenic antibiotic-resistant bacteria in manure but could be effectively controlled by composting. CONCLUSIONS Our experiments revealed the common resistome in animal manure, classified and relative quantified the ARG hosts, and assessed the mobility of ARGs. Composting can mitigate ARGs in animal manure by altering the bacterial hosts; however, persistent ARGs can escape from the removal because of diverse host range and MGEs. Our findings provide an overall background for source tracking, risk assessment, and control of livestock ARGs.
Collapse
Affiliation(s)
- Tianlei Qiu
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China
| | - Linhe Huo
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China
| | - Yajie Guo
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China
| | - Min Gao
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China
| | - Guoliang Wang
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China
| | - Dong Hu
- Institute of Agro-Resources and Environment, Hebei Fertilizer Technology Innovation Center, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Cheng Li
- Institute of Quality Standard and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China
| | - Zhanwu Wang
- Institute of Agro-Resources and Environment, Hebei Fertilizer Technology Innovation Center, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Guiming Liu
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China.
| | - Xuming Wang
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, People's Republic of China.
| |
Collapse
|
31
|
Wang G, Kong Y, Yang Y, Ma R, Li L, Li G, Yuan J. Composting temperature directly affects the removal of antibiotic resistance genes and mobile genetic elements in livestock manure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 303:119174. [PMID: 35306090 DOI: 10.1016/j.envpol.2022.119174] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
The high antibiotic resistance gene (ARGs) contents in livestock manure pose a potential risk to environment and human health. The heap composting with an ambient temperature and thermophilic composting are two methods for converting livestock manure into fertilizer. This study investigated the variations in ARGs and mobile genetic elements (MGEs) and revealed potential mechanisms for ARGs removal using the two composting methods. The ARGs abundance were enriched by 44-fold in heap composting, among them, the macrolide-resistance genes increased significantly. On the contrary, the ARGs were removed by 92% in thermophilic composting, among them, tetracycline-resistance genes decreased by 97%. The bacterial hosts of ARGs were associated with the variations of ARGs and MGEs. The tetO was correlated with the most diverse bacteria in heap composting, and Bacteroidetes was the major host bacteria. While tetT was correlated with the most diverse bacteria in thermophilic composting, and Proteobacteria was the major host bacteria. Structural equation models showed that the enrichment of ARGs in heap composting was mainly correlated with bacterial communities, whereas, the removal of ARGs in thermophilic composting was directly affect by MGEs. Composting temperature directly affected the variations in ARGs. Higher and lower temperatures significantly decreased and increased, respectively, ARGs and MGEs abundance levels.
Collapse
Affiliation(s)
- Guoying Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China
| | - Yilin Kong
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China
| | - Yan Yang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China
| | - Ruonan Ma
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China
| | - Liqiong Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China
| | - Jing Yuan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
32
|
Man Y, Li W, Wang J, Tam NFY, Tai Y, Tao R, Yang Y. Plants inhibit the relative abundance of sulfonamide resistance genes and class 1 integron by influencing bacterial community in rhizosphere of constructed wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153977. [PMID: 35181368 DOI: 10.1016/j.scitotenv.2022.153977] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/27/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Antibiotic resistance genes (ARGs) commonly detected in wastewater can potentially lead to a health crisis. Constructed wetlands (CWs) remove ARGs and sulfonamides (SAs) from wastewater, but the importance of plants in the process is seldom reported. We compared the effect of three wetland plant species (Cyperus alternifolius, Juncus effuses, and Cyperus papyrus), sample distance from the root, and SA presence on the environmental abundance of class 1 integron (intI1) and SA resistance genes (sul) using specially designed CW rhizoboxes. Quantitative polymerase chain reaction revealed that the relative abundance of the target genes in planted CWs, especially in C. alternifolius planted CWs, was significantly lower than that in unplanted CWs (P < 0.05). The substrate in the rhizosphere or near-/moderate-rhizosphere (closest to the root) showed the lowest average relative abundance of the target genes, while the bulk substrate (without the root) showed the highest abundance of these genes, irrespective of the planted species. Further, the influence of plants was more evident after 8 weeks of wastewater treatment. The trend was the same in SA-treated and untreated groups, although the relative abundance of the target genes was significantly higher in the former (P < 0.05). The weaker correlation between the intI1 and sul genes in the rhizosphere and near-/moderate-rhizosphere in comparison to the bulk substrate in the SA group suggested that the risk of horizontal gene transfer was probably higher in the bulk substrate and unplanted CW. A partial least-squares path model revealed that dissolved organic carbon and oxygen content significantly influenced SA concentration, microbial community, and intI1 genes, and then shaping the sul genes together. Finally, redundancy analysis suggested that abundance of sul genes was influenced by bacteria enriched in the bulk substrate and unplanted CWs. The findings provide new insights into the importance for controlling risk of ARGs by wetland plants.
Collapse
Affiliation(s)
- Ying Man
- Institute of Hydrobiology and Department of Ecology, Jinan University, Guangzhou 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou 510632, China
| | - Wanxuan Li
- Institute of Hydrobiology and Department of Ecology, Jinan University, Guangzhou 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou 510632, China
| | - Jiaxi Wang
- Institute of Hydrobiology and Department of Ecology, Jinan University, Guangzhou 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou 510632, China
| | - Nora Fung-Yee Tam
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region, China; Department of Science, School of Science & Technology, The Open University of Hong Kong, Homantin, Kowloon, Hong Kong Special Administrative Region, China
| | - Yiping Tai
- Institute of Hydrobiology and Department of Ecology, Jinan University, Guangzhou 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou 510632, China
| | - Ran Tao
- Institute of Hydrobiology and Department of Ecology, Jinan University, Guangzhou 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou 510632, China.
| | - Yang Yang
- Institute of Hydrobiology and Department of Ecology, Jinan University, Guangzhou 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou 510632, China.
| |
Collapse
|
33
|
Zuo X, Xu Q, Li Y, Zhang K. Antibiotic resistance genes removals in stormwater bioretention cells with three kinds of environmental conditions. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128336. [PMID: 35091189 DOI: 10.1016/j.jhazmat.2022.128336] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/28/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Recently, increasing attention has been paid to antibiotic resistance genes (ARGs) in stormwater runoff. However, there is still no available literature about ARGs removals through stormwater bioretention cells. Batch experiments were conducted to investigate target ARGs (blaTEM, tetR and aphA) removals under three environmental conditions, including substrate (weight ratios of sand to soil), hydraulic loading rate (HLR) and submerged area depth. The target ARGs removals were the largest (more than 5 log in the bottom outlets) in bioretention cells with 8:2 ratio of sand to soil, HLR 0.044 cm3/cm2/min and 150 mm of submerged area depth. The proportion for both iARGs and eARGs had little effect on target ARGs removals (expect extracellular blaTEM), although distributions of target ARGs were different in substrate layers. Adsorption behavior tests indicated that both kinetics and isotherms of target ARGs adsorption by biofilms were more suitable to explain their best removals for bioretention cells with 8:2 ratio of sand to soil than that by substrate. At phylum and genus levels, there were respectively 6 dominant microflora related significantly to target ARGs levels, and their relationships changed obviously under different environmental conditions, suggesting that regulating the dominant microflora (like Verrucomicrobia and Actinobacteria) could be feasible to change ARGs removals.
Collapse
Affiliation(s)
- XiaoJun Zuo
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - QiangQiang Xu
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yang Li
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - KeFeng Zhang
- Water Research Centre, School of Civil and Environmental Engineering, UNSW Sydney, High St, Kensington, NSW 2052, Australia
| |
Collapse
|
34
|
Ejileugha C. Biochar can mitigate co-selection and control antibiotic resistant genes (ARGs) in compost and soil. Heliyon 2022; 8:e09543. [PMID: 35663734 PMCID: PMC9160353 DOI: 10.1016/j.heliyon.2022.e09543] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/31/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022] Open
Abstract
Heavy metals (HMs) contamination raises the expression of antibiotic resistance (AR) in bacteria through co-selection. Biochar application in composting improves the effectiveness of composting and the quality of compost. This improvement includes the elimination and reduction of antibiotic resistant genes (ARGs). The use of biochar in contaminated soils reduces the bioaccessibility and bioavailability of the contaminants hence reducing the biological and environmental toxicity. This decrease in contaminant bioavailability reduces contaminants induced co-selection pressure. Conditions which favour reduction in HMs bioavailable fraction (BF) appear to favour reduction in ARGs in compost and soil. Biochar can prevent horizontal gene transfer (HGT) and can eliminate ARGs carried by mobile genetic elements (MGEs). This effect reduces maintenance and propagation of ARGs. Firmicutes, Proteobacteria, and Actinobacteria are the major bacteria phyla identified to be responsible for dissipation, maintenance, and propagation of ARGs. Biochar application rate at 2-10% is the best for the elimination of ARGs. This review provides insight into the usefulness of biochar in the prevention of co-selection and reduction of AR, including challenges of biochar application and future research prospects.
Collapse
Affiliation(s)
- Chisom Ejileugha
- Lancaster Environment Centre (LEC), Lancaster University, LA1 4YQ, United Kingdom
| |
Collapse
|
35
|
Sha G, Zhang L, Wu X, Chen T, Tao X, Li X, Shen J, Chen G, Wang L. Integrated meta-omics study on rapid tylosin removal mechanism and dynamics of antibiotic resistance genes during aerobic thermophilic fermentation of tylosin mycelial dregs. BIORESOURCE TECHNOLOGY 2022; 351:127010. [PMID: 35307520 DOI: 10.1016/j.biortech.2022.127010] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
For efficient treatment of tylosin mycelial dregs (TMDs), rapid tylosin removal mechanism and dynamics of ARGs during TMDs fermentation were investigated using integrated meta-omics (genomics, metaproteomics and metabolomics) and qPCR approaches. The results showed that over 86% of tylosin was degraded on day 7 regardless of the type of bulking agents. The rapid removal of tylosin was mainly attributed to de-mycarose reaction (GH3) and esterase hydrolysis (C7MYQ7) of Saccharomonospora, and catalase-peroxidase oxidation of Bacillus (A0A077JB13). In addition, the moisture content and mobile genetic elements were vital to control the rebound of ARGs. The removal efficiency of antibiotic resistant bacteria (Streptomyces, Pseudomonas, norank_f__Sphingobacteriaceae, and Paenalcaligenes) and Intl1 (98.8%) in fermentation treatment TC21 with corncob as the bulking agent was significantly higher than that in other three treatments (88.3%). Thus, appropriate bulking agents could constrain the abundance of antibiotic resistant bacteria and Intl1, which is crucial to effectively reduce the resistance.
Collapse
Affiliation(s)
- Guomeng Sha
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Lili Zhang
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xiuyun Wu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Tong Chen
- Neutralization and Environmental Protection of Lukang Industrial Group Company, Jining, Shandong 272000, China
| | - Xiaohong Tao
- Neutralization and Environmental Protection of Lukang Industrial Group Company, Jining, Shandong 272000, China
| | - Xin Li
- Neutralization and Environmental Protection of Lukang Industrial Group Company, Jining, Shandong 272000, China
| | - JianGuo Shen
- Neutralization and Environmental Protection of Lukang Industrial Group Company, Jining, Shandong 272000, China
| | - Guanjun Chen
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
36
|
Wang J, Pan J, Ma X, Li S, Chen X, Liu T, Wang Q, Wang JJ, Wei D, Zhang Z, Li R. Solid digestate biochar amendment on pig manure composting: Nitrogen cycle and balance. BIORESOURCE TECHNOLOGY 2022; 349:126848. [PMID: 35158036 DOI: 10.1016/j.biortech.2022.126848] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Effect of solid digestate biochar (DB) on nitrogen cycle and balance was evaluated during composting by adding DB into mixtures of pig manure and Lycium chinensis branch filings. Results indicated that DB addition improved composting microenvironment and increased the total N content of the final product. Furthermore, N balance calculation indicated that the NH3 and N2O emissions accounted for 72.14%-81.39% and 0.49%-2.37% of the total N loss without DB addition, respectively. After using DB, the N reductions in the form of NH3 and N2O reduced from 10.78% to < 5.73% and from 0.34% to < 0.041% of total N, respectively. Addition of DB affected N fixation with 92.32%-93.67% of total N fixed in the compost than that of the T1 treatment (85.63%). DB amendment enhanced the aerobic bacterial communities and hindered anaerobic bacterial growth, thus benefiting the NH3 and N2O emission mitigation and N conservation.
Collapse
Affiliation(s)
- Jingwen Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Junting Pan
- Key Laboratory of Non-point Source Pollution of Ministry of Agricultural and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xuzhe Ma
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Songling Li
- Qinghai Academy of Agricultural and Forestry Sciences, Qinghai University, Qinghai 810016, China
| | - Xing Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Tao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Quan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China
| | - Jim J Wang
- School of Plant, Environmental and Soil Sciences, Louisiana State University Agricultural Center, 104 Sturgis Hall, Baton Rouge, LA 70803, USA
| | - Dan Wei
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, China.
| |
Collapse
|
37
|
Wu Y, Wen Q, Chen Z, Fu Q, Bao H. Response of antibiotic resistance to the co-exposure of sulfamethoxazole and copper during swine manure composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150086. [PMID: 34537705 DOI: 10.1016/j.scitotenv.2021.150086] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/29/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
Heavy metals driven co-selection of antibiotic resistance in soil and water bodies has been widely concerned, but the response of antibiotic resistance to co-existence of antibiotics and heavy metals in composting system is still unknown. Commonly used sulfamethoxazole and copper were individually and jointly added into four reactors to explore their effects on antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), heavy metal resistance genes (MRGs) and bacterial community structure. The abundance of total ARGs and MGEs were notably decreased by 68.64%-84.95% and 91.27-97.38%, respectively, after the composting. Individual addition of sulfamethoxazole, individual addition of copper, simultaneously addition of sulfamethoxazole and copper increased the abundance of ARGs and MGEs throughout the composting period. Co-exposure of sulfamethoxazole and copper elevated the total abundance of ARGs by 1.17-1.51 times by the end of the composting compared to individual addition of sulfamethoxazole or copper. Network analysis indicated that the shifts in potential host bacteria determined the ARGs variation. Additionally, MGEs and MRGs had significant effects on ARGs, revealing that horizontal gene transfer and heavy metals induced co-resistance could promote ARGs dissemination.
Collapse
Affiliation(s)
- Yiqi Wu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; Research Institute of Standards and Norms, Ministry of Housing and Urban-Rural Development, Beijing 100835, China
| | - Qinxue Wen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhiqiang Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Qiqi Fu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Huanyu Bao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
38
|
Sardar MF, Li H, Zhu C, Dar AA, Zhang B, Waqas MA. Differential effects of sulfamethoxazole concentrations on the enzymatic dynamics of aerobic composting. BIORESOURCE TECHNOLOGY 2021; 336:125330. [PMID: 34087732 DOI: 10.1016/j.biortech.2021.125330] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 06/12/2023]
Abstract
Enzymatic activities play an important role in the biological composting processing of agricultural wastes. This paper explores the effect of sulfamethoxazole (SMX) (Control, 25 mg/kg, 50 mg/kg, and 100 mg/kg) on the enzymatic activities of cellulase, protease, urease, and arylsulfatase. Compost samples were taken at three different intervals for analysis (day 0, day 25, and day 45). The findings revealed that at the start of the composting process, a strongly negative effect on enzymatic behavior was observed, and this response was significantly dependent on SMX concentrations (p < 0.05). The inhibition was consistent across all treatments. According to the results, the negative impact of SMX on community structure can result in selection pressure. Furthermore, all of the treatments had drastically improved enzymatic activity by the end of the composting process (day 45). This effect was presumably caused by the deterioration of SMX and a substantial stress reduction.
Collapse
Affiliation(s)
- Muhammad Fahad Sardar
- Agricultural Clean Watershed Research Group, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| | - Hongna Li
- Agricultural Clean Watershed Research Group, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| | - Changxiong Zhu
- Agricultural Clean Watershed Research Group, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Afzal Ahmed Dar
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xian 710000, PR China
| | - Bo Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Muhammad Ahmed Waqas
- Agricultural Clean Watershed Research Group, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| |
Collapse
|
39
|
Ezugworie FN, Igbokwe VC, Onwosi CO. Proliferation of antibiotic-resistant microorganisms and associated genes during composting: An overview of the potential impacts on public health, management and future. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147191. [PMID: 33905939 DOI: 10.1016/j.scitotenv.2021.147191] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/30/2021] [Accepted: 04/11/2021] [Indexed: 05/28/2023]
Abstract
Antibiotic residues together with non-antibiotic drugs and heavy metals act as a selective pressure for the spread of antibiotic-resistant microorganisms (ARMs), antibiotic-resistant genes (ARGs), and mobile genetic elements (MGEs) during composting of livestock manure. ARMs, ARGs and MGEs have become emerging contaminants since they are regularly implicated in the majority of compost produced from livestock manure. The prevalence of these contaminants in agricultural soil receiving compost has drawn huge attention globally due to the risks they pose to the total environment. Although a large body of literature exists on the application of composting methods in minimizing the relative abundance of these contaminants, there is a paucity of information on the robustness, limitations and opportunities and threats of various composting protocols currently deployed. To address this knowledge gap, the current review compiled literature on the origin and mechanisms of the proliferation of ARMs, ARGs, and MGEs during composting of livestock manure. The effectiveness of current composting protocols in the reduction or removal of emerging contaminants was evaluated. Furthermore, the potential environmental impacts and human health risks of these contaminants following land application of compost were also presented. Finally, we propose some strategic approaches for the reduction of ARGs and MGEs during composting of livestock manure.
Collapse
Affiliation(s)
- Flora N Ezugworie
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria; Bioconversion and Renewable Energy Research Unit, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Victor C Igbokwe
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria; Bioconversion and Renewable Energy Research Unit, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Chukwudi O Onwosi
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria; Bioconversion and Renewable Energy Research Unit, University of Nigeria, Nsukka, Enugu State, Nigeria.
| |
Collapse
|