1
|
Widmer JA, Stocker M, Smith JE, Coffin A, Pisani O, Strickland T, Sharma M, Pachepsky Y, Dunn LL. Spatiotemporal trends of Escherichia coli levels and their influences vary among ponds in the coastal plain of Georgia. JOURNAL OF ENVIRONMENTAL QUALITY 2025; 54:647-661. [PMID: 40164960 PMCID: PMC12065067 DOI: 10.1002/jeq2.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/18/2025] [Indexed: 04/02/2025]
Abstract
Quantification of Escherichia coli in water is commonly used to understand a surface source's suitability for produce irrigation. Location, season, and physicochemical water quality impact the levels of E. coli in irrigation ponds. Water samples were collected periodically at three ponds in Southeast Georgia along a sampling grid from July 2021 through September 2023 and quantified for E. coli with simultaneous collection of relevant water physicochemical parameters. Mean relative differences (MRDs) were calculated for each collection point to determine differences in E. coli levels across sampling locations. E. coli levels varied significantly across sampling area (perimeter, surface, and subsurface) at each pond. The log most probable number E. coli 100 mL-1 (EC MRD) values ranged from -0.25 to 0.33 in Pond 1, -1.5 to 0.65 in Pond 2, and -1.25 to 0.65 in Pond 3. In Pond 1, EC MRD correlated positively with chlorophyll and turbidity, and negatively with dissolved organic matter, dissolved oxygen (DO), specific conductance, and pH MRDs. In Pond 2, the MRD of E. coli correlated with the MRDs of chlorophyll, DO, phycocyanin, pH, and temperature. In Pond 3, E. coli MRD correlated positively with nitrate MRD. This work showed MRD analysis may reveal stable patterns of E. coli and the physicochemical factors that impact these levels in ponds, though no universal covariates were identified that could estimate E. coli levels. These findings may provide context for water quality managers wishing to augment measurements of E. coli with other factors, or better represent variable E. coli levels with MRD.
Collapse
Affiliation(s)
- J. Andrew Widmer
- Department of Food Science and TechnologyUniversity of GeorgiaAthensGeorgiaUSA
| | - Matthew Stocker
- USDA‐ARSEnvironmental Microbial and Food Safety LaboratoryBeltsvilleMarylandUSA
| | - Jaclyn E. Smith
- USDA‐ARSEnvironmental Microbial and Food Safety LaboratoryBeltsvilleMarylandUSA
| | - Alisa Coffin
- USDA‐ARSSoutheast Watershed Research LaboratoryTiftonGeorgiaUSA
| | - Oliva Pisani
- USDA‐ARSSoutheast Watershed Research LaboratoryTiftonGeorgiaUSA
| | | | - Manan Sharma
- USDA‐ARSEnvironmental Microbial and Food Safety LaboratoryBeltsvilleMarylandUSA
| | - Yakov Pachepsky
- USDA‐ARSEnvironmental Microbial and Food Safety LaboratoryBeltsvilleMarylandUSA
| | - Laurel L. Dunn
- Department of Food Science and TechnologyUniversity of GeorgiaAthensGeorgiaUSA
| |
Collapse
|
2
|
Wu Y, Yang W, Kou J, Li Q, Liu J, Chi L, Zhang Y, Liu Q, Yu Y. Impacts of phosphate-solubilizing bacterium strain MWP-1 on vegetation growth, soil characteristics, and microbial communities in the Muli coal mining area, China. Front Microbiol 2024; 15:1500070. [PMID: 39703706 PMCID: PMC11655473 DOI: 10.3389/fmicb.2024.1500070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 11/22/2024] [Indexed: 12/21/2024] Open
Abstract
Due to the cold climate and low soil nutrient content, high-altitude mining areas are challenging to restore ecologically. Their poor nutrient content may be ameliorated by introducing specific microorganisms into the soil. This study aims to evaluate the effects of a highly efficient phosphate solubilizing bacterium MWP-1, Pseudomonas poae, on plant growth, soil nutrients in remedying the soil of the high-altitude Muli mining area in Qinghai Province, and analyze its impact on microbial communities through high-throughput sequencing soil microbial communities. The results showed that MWP-1 significantly increased the content of soil available phosphorus by >50%, soil organic matter and total nitrogen by >10%, and significantly increased the height, coverage, and aboveground biomass of vegetation by >40% in comparison with the control (p < 0.05). MWP-1 mainly affected the composition of the soil bacterial communities at the taxonomic level below the phylum. Its impact on soil fungal communities occurred at the phylum and below taxonomic levels. In addition, MWP-1 also significantly improved the diversity of soil bacterial and fungal communities (p < 0.05), and changed their functions. It also significantly altered the relative abundance of genes regulating phosphorus absorption and transport, inorganic phosphorus dissolution and organic phosphorus mineralization in the bacterial community (p < 0.05). It caused a significant increase in the relative abundance of the genes regulating nitrogen fixation and nitrification in nitrogen cycling (p < 0.05), but a significant decrease in the genes regulating phospholipase (p < 0.05). Although sequencing results indicated that Pseudomonas poae did not become the dominant species, its dissolved phosphorus elements can promote plant growth and development, enrich soil nutrient content, and affect the succession of microbial communities, enhance ecosystem stability, with an overall positive effect on soil remediation in the mining area.
Collapse
Affiliation(s)
- Yanru Wu
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
- Key Laboratory of the Alpine Grassland Ecology in the Three Rivers Region (Qinghai University), Ministry of Education, Xining, China
| | - Wenquan Yang
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Jiancun Kou
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
- Key Laboratory of the Alpine Grassland Ecology in the Three Rivers Region (Qinghai University), Ministry of Education, Xining, China
| | - Qinyao Li
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Jiaqing Liu
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Lu Chi
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Yangcan Zhang
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Qian Liu
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Yanghua Yu
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| |
Collapse
|
3
|
Wang S, Hu X, Yu F, Qin S. Microbe Regulates the Mineral Photochemical Activity and Organic Matter Compositions in Water. WATER RESEARCH 2022; 225:119164. [PMID: 36179428 DOI: 10.1016/j.watres.2022.119164] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/04/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Photochemical reactions that widely occur in aquatic environments play important roles in carbon fate (e.g., carbon conversion and storage from organic matter) in ecosystems. Aquatic microbes and natural minerals further regulate carbon fate, but the processes and mechanisms remain largely unknown. Herein, the interaction between Escherichia coli and pyrite and its influence on the fate of carbon in water were investigated at the microscopic scale and molecular level. The results showed that saccharides and phenolic compounds in microbial extracellular polymeric substances helped remove pyrite surface oxides via electron transfer. After the removal of surface oxides on pyrite, the photochemical properties under visible-light irradiation were significantly decreased, such as reactive oxygen species and electron transfer capacity. Unlike the well-accepted theory of minerals protecting organic matter in the soil, the organic matter adsorbed on minerals preferred degradation due to the enhanced photochemical reactions in water. In contrast, the minerals transformed by microbes suppressed the decomposition of organic matter due to the passivation of the chemical structure and activity. These results highlight the significance of mineral chemical activity on organic matter regulated by microbes and provide insights into organic matter conversion in water.
Collapse
Affiliation(s)
- Shuting Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 30080, Tianjin, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 30080, Tianjin, China.
| | - Fubo Yu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 30080, Tianjin, China
| | - Songyan Qin
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, 300384, Tianjin, China
| |
Collapse
|
4
|
Wu JY, Hua ZL, Gu L. Per-, poly-fluoroalkyl substances (PFASs) and planktonic microbiomes: Identification of biotic and abiotic regulations in community coalescence and food webs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 302:119078. [PMID: 35245616 DOI: 10.1016/j.envpol.2022.119078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/21/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
The importance of per-, poly-fluoroalkyl substances (PFASs) effects on riverine microbiomes is receiving increased recognition in the environmental sciences. However, few studies have explored how PFASs affect microbiomes across trophic levels, specifically through predator-prey interactions. This study examined the community profiles of planktonic archaea, bacteria, fungi, algae, protozoa, and metazoa in a semi-industrial and agricultural river alongside their interactions with 15 detected PFASs. As abiotic factors, PFASs affected community coalescence more than biogenic substances (p < 0.05). For biotic regulations, sub-communities in rare biospheres (including always rare taxa-ART and critically rare taxa-CRT) contributed to spatial community coalescence more than sub-communities in abundant biospheres (always abundant taxa-AAT and critically abundant taxa-CAT) (p < 0.05). Metazoa-bacteria (Modularity = 1.971) and protozoa-fungi (1.723) were determined to be the most stable predator-prey networks. Based on pathway models, short-chain PFBA (C4) was shown to weaken the trophic transfer efficiencies from heterotrophic bacteria (HB) to heterotrophic flagellates (HF) (p < 0.05). Long-chain PFTeDA (C14) promoted HB to amoeba (p < 0.05), which we postulate is the pathway for PFTeDA to enter the microbial food chain. Our preliminary results elucidated the influence of PFASs on planktonic microbial food webs and highlighted the need to consider protecting and remediating riverine ecosystems containing PFASs.
Collapse
Affiliation(s)
- Jian-Yi Wu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, China
| | - Zu-Lin Hua
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, China
| | - Li Gu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; Yangtze Institute for Conservation and Development, Hohai University, Jiangsu, 210098, China.
| |
Collapse
|
5
|
Song W, Zhang L, Li Y, Zhang W, Wang L, Niu L, Zhang H, Ji Y, Liao Z. Hydrodynamic zones and the influence of microorganisms on nitrogen transformation in the diverging area of branched rivers. ENVIRONMENTAL RESEARCH 2022; 208:112778. [PMID: 35065067 DOI: 10.1016/j.envres.2022.112778] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/20/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Diverging area is widespread in river networks, and understanding its biogeochemical process characteristics is of great significance to river ecological restoration and environmental quality improvement. Microbial communities affected by hydrodynamics play an important role in biogeochemical processes, but their relationship in diverging area is little known. Here, the composition of microbial community and its feedback to hydrodynamics and nitrogen conversion in the diverging area of river networks were first studied by coupling ecological theory, biogeochemical theory, microbial DNA sequencing and mathematical model of water environment. The results showed that there were five hydrodynamic zones with significant velocity differences in the diverging area, namely low velocity zone, maximum velocity zone, stagnant zone, separation zone, and deflection zone. According to the flow velocity grouping, there were significant differences in the microbial diversity and abundance among low velocity group, maximum velocity group and stagnant group had significant differences (p < 0.05, stress = 0.1207). In the low velocity group, Firmicutes was the dominant phylum which had a highest abundance and may promot the conversion of organic nitrogen into ammonia nitrogen. In the maximum velocity group, Bdellovibrionota was the dominant phylum which had a highest abundance and may promot the conversion of nitrate and nitric oxide to nitrogen. In the stagnant zone, Methylomirabilota was the dominant phylum which had a highest abundance and may promot the conversion of nitrogen into nitrate and ammonium. In addition, dissolved oxygen was the most sensitive environmental factor for shaping microorganisms and nitrogen conversion in the diverging area of the river networks by canonical correlation analysis. The denitrifying bacteria Rhodocyclaceae, was shown to negatively correlated with the flow velocity. This research improves the scientific basis for the study of the ecosystem in river networks, which will guide the construction of river ecological projects.
Collapse
Affiliation(s)
- Weiwei Song
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Liyan Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Longfei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Huanjun Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Yuang Ji
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Ziying Liao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| |
Collapse
|
6
|
Bi W, Weng B, Yan D, Wang H, Wang M, Yan S, Jing L, Liu T, Chang W. Responses of Phosphate-Solubilizing Microorganisms Mediated Phosphorus Cycling to Drought-Flood Abrupt Alternation in Summer Maize Field Soil. Front Microbiol 2022; 12:768921. [PMID: 35111138 PMCID: PMC8802831 DOI: 10.3389/fmicb.2021.768921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/02/2021] [Indexed: 11/13/2022] Open
Abstract
Soil microbial communities are essential to phosphorus (P) cycling, especially in the process of insoluble phosphorus solubilization for plant P uptake. Phosphate-solubilizing microorganisms (PSM) are the dominant driving forces. The PSM mediated soil P cycling is easily affected by water condition changes due to extreme hydrological events. Previous studies basically focused on the effects of droughts, floods, or drying-rewetting on P cycling, while few focused on drought-flood abrupt alternation (DFAA), especially through microbial activities. This study explored the DFAA effects on P cycling mediated by PSM and P metabolism-related genes in summer maize field soil. Field control experiments were conducted to simulate two levels of DFAA (light drought-moderate flood, moderate drought-moderate flood) during two summer maize growing periods (seeding-jointing stage, tasseling-grain filling stage). Results showed that the relative abundance of phosphate-solubilizing bacteria (PSB) and phosphate-solubilizing fungi (PSF) increased after DFAA compared to the control system (CS), and PSF has lower resistance but higher resilience to DFAA than PSB. Significant differences can be found on the genera Pseudomonas, Arthrobacter, and Penicillium, and the P metabolism-related gene K21195 under DFAA. The DFAA also led to unstable and dispersed structure of the farmland ecosystem network related to P cycling, with persistent influences until the mature stage of summer maize. This study provides references for understanding the micro process on P cycling under DFAA in topsoil, which could further guide the DFAA regulations.
Collapse
Affiliation(s)
- Wuxia Bi
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, China
| | - Baisha Weng
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, China
- Yinshanbeilu Grassland Eco-Hydrology National Observation and Research Station, China Institute of Water Resources and Hydropower Research, Beijing, China
- *Correspondence: Baisha Weng, ,
| | - Denghua Yan
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, China
- Yinshanbeilu Grassland Eco-Hydrology National Observation and Research Station, China Institute of Water Resources and Hydropower Research, Beijing, China
| | - Hao Wang
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, China
| | - Mengke Wang
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, China
| | - Siying Yan
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, China
- College of Resource Environment and Tourism, Capital Normal University, Beijing, China
| | - Lanshu Jing
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, China
- College of Hydrology and Water Resources, Hohai University, Nanjing, China
| | - Tiejun Liu
- Yinshanbeilu Grassland Eco-Hydrology National Observation and Research Station, China Institute of Water Resources and Hydropower Research, Beijing, China
- Collaborative Innovation Center for Grassland Ecological Security (Jointly Supported by the Ministry of Education of China and Inner Mongolia Autonomous Region), Hohhot, China
| | - Wenjuan Chang
- College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang, China
| |
Collapse
|