1
|
Xia S, Yan C, Cai G, Xu Q, Zou H, Gu J, Yuan Y, Liu Z, Bian J. Gut dysbiosis exacerbates inflammatory liver injury induced by environmentally relevant concentrations of nanoplastics via the gut-liver axis. J Environ Sci (China) 2025; 155:250-266. [PMID: 40246463 DOI: 10.1016/j.jes.2024.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 04/19/2025]
Abstract
As an emerging and potentially threatening pollutant, nanoplastics (NPs) have received considerable global attention. Due to their physical properties and diminutive size, NPs ingestion can more easily cross biological barriers and enter the human and animal body. Despite reports of hepatotoxicity associated with NPs, their impact and potential underlying mechanisms remain elusive. In this study, we investigated the impact of NPs at concentrations found in the environment on the gut flora, intestinal barrier function, liver pyroptosis, and inflammation in mice following 12 weeks of exposure. To further validate the involvement of gut flora in inflammatory liver damage caused by NPs, we utilized antibiotics to remove the intestinal flora and performed fecal microbiota transplantation. We confirmed that NPs exposure altered the gut microbiota composition, with a notable rise in the proportions of Alloprevotella and Ileibacterium while causing a decrease in the relative proportions of Dubosiella. This disruption also affected the gut barrier, increasing lipopolysaccharides in circulation and promoting liver pyroptosis. Importantly, mice receiving fecal transplants from NPs-treated mice showed intestinal barrier damage, liver pyroptosis, and inflammation. However, NPs effects on the intestinal barrier and liver pyroptosis were attenuated by antibiotics depletion of the commensal microbiota. In summary, our current research revealed that extended exposure to environmentally relevant concentrations of NPs resulted in inflammatory damage to the liver. Additionally, we have identified for the first time that imbalances in intestinal flora are crucial in liver pyroptosis induced by NPs.
Collapse
Affiliation(s)
- Sugan Xia
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Chaoyue Yan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Guodong Cai
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Qingyu Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
2
|
Kharaghani D, DeLoid GM, He P, Swenor B, Bui TH, Zuverza-Mena N, Tamez C, Musante C, Verzi M, White JC, Demokritou P. Toxicity and absorption of polystyrene micro-nanoplastics in healthy and Crohn's disease human duodenum-chip models. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137714. [PMID: 40022921 DOI: 10.1016/j.jhazmat.2025.137714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/03/2025] [Accepted: 02/21/2025] [Indexed: 03/04/2025]
Abstract
Micro and nanoplastics (MNPs) are widespread environmental and food web contaminants that are absorbed by the intestine and distributed systemically, but the mechanisms of uptake are not well understood. In a triculture small intestinal epithelial model, we previously found that uptake of 26 nm polystyrene MNPs (PS26) occurred by both passive diffusion and active actin- and dynamin-dependent mechanisms. However, studies in a more physiologically relevant model are required to validate those results. Here, a microfluidic intestine-on-a-chip model was developed using primary human intestinal epithelial organoids from healthy and Crohn's disease donors, and used to evaluate the toxicity and mechanisms effectuating uptake of 25 nm polystyrene shell-gold core tracer MNPs (AuPS25). AuPS25 caused minimal toxicity after 24 h exposure in either healthy or Crohn's IOC models. RNAseq analysis of epithelial cells identified 9 genes dysregulated by AuPS25, including downregulation of IFI6 (interferon alpha-induced protein 6). Because IFI6 has important antiviral and immunosuppressive functions in the intestine, its downregulation suggests impairment of innate immune function, which could have important negative health consequences. Inhibitor studies revealed that AuPS25 uptake in the IOC occurred by both passive diffusion and active actin- and dynamin-dependent mechanisms, consistent with our previous findings in the triculture model.
Collapse
Affiliation(s)
- Davood Kharaghani
- Nanoscience and Advanced Materials Center, Environmental and Occupational Health Sciences Institute (EOHSI) and School of Public Health, Rutgers University, Piscataway, NJ 08854, USA
| | - Glen M DeLoid
- Nanoscience and Advanced Materials Center, Environmental and Occupational Health Sciences Institute (EOHSI) and School of Public Health, Rutgers University, Piscataway, NJ 08854, USA.
| | - Ping He
- Department of Genetics, Rutgers University, Piscataway, NJ 08854, USA
| | - Ben Swenor
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Trung Huu Bui
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA
| | - Nubia Zuverza-Mena
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA
| | - Carlos Tamez
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA
| | - Craig Musante
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA
| | - Michael Verzi
- Department of Genetics, Rutgers University, Piscataway, NJ 08854, USA
| | - Jason C White
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA
| | - Philip Demokritou
- Nanoscience and Advanced Materials Center, Environmental and Occupational Health Sciences Institute (EOHSI) and School of Public Health, Rutgers University, Piscataway, NJ 08854, USA; School of Public Health, Rutgers University, Piscataway, NJ 08901, USA.
| |
Collapse
|
3
|
Wang C, Ji X, Wang X, Song Y, Pan C, Qian M, Jin Y. The endoplasmic reticulum-mitochondrial crosstalk involved in nanoplastics and di(2-ethylhexyl) phthalate co-exposure induced the damage to mouse mammary epithelial cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 372:126014. [PMID: 40057162 DOI: 10.1016/j.envpol.2025.126014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/24/2025] [Accepted: 03/05/2025] [Indexed: 04/01/2025]
Abstract
With the extensive use of plastic products, significant amounts of microplastics, nanoplastic particles (NPs), and plasticizers such as Di(2-ethylhexyl) phthalate (DEHP) are continuously released into the environment. However, the toxic effects of NPs alone or in combination with DEHP on mammary glands remain unreported. This study investigates the impacts of NPs and DEHP on the structure and function of mouse mammary epithelial cells and elucidates the underlying molecular mechanisms. We found that co-exposure to NPs and DEHP induced severe pyroptosis, inflammation and oxidative stress in HC11 cells. Co-exposure also caused mitochondrial damage, as evidenced by changes in mitochondrial membrane potential, increase in mitochondrial ROS and inhibition of ATP production. Moreover, NPs and DEHP co-exposure increased the transcriptional levels of endoplasmic reticulum (ER) stress-related genes, activated the inflammation-related NLRP3 signaling pathway, and damaged the cell membrane integrity. Notably, Co-exposure enhanced the ER-mitochondria crosstalk in HC11 cells, as evidenced by the upregulated transcriptional levels of ER Ca2+ channel proteins (Ip3r1, Grp75 and Vdac1), increased mitochondrial Ca2+ levels, and expanded mitochondrial-ER contact areas. In summary, this study revealed that NPs and DEHP co-exposure had the potential to induce pyroptosis and inflammation by enhancing the ER-mitochondria crosstalk, ultimately resulting in injury to mammary glands. These findings would provide some new insights into the molecular mechanisms underlying the toxic effects of NPs and DEHP to mammary glands.
Collapse
Affiliation(s)
- Caihong Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Xiang Ji
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Xiaoya Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Yunmeng Song
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Chunqiang Pan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Mingrong Qian
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China.
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| |
Collapse
|
4
|
Vanetti C, Broggiato M, Pezzana S, Clerici M, Fenizia C. Effects of microplastics on the immune system: How much should we worry? Immunol Lett 2025; 272:106976. [PMID: 39900298 DOI: 10.1016/j.imlet.2025.106976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/22/2025] [Accepted: 01/31/2025] [Indexed: 02/05/2025]
Abstract
Plastics are everywhere. It is widely recognized that they represent a global problem, the extent of which is yet to be defined. Humans are broadly exposed to plastics, whose effects and consequences are poorly characterized so far. The main route of exposure is via alimentary and respiratory intake. Plastics pollutions may come from both: water and food contamination itself, and their packaging. The smaller sizes (i.e. microplastics <150 µm - MPs) are considered to be the most pervasive of living organisms and, therefore, potentially the most harmful. As humans occupy one of the apex positions of the food chain, we are exposed to bioaccumulation and biomagnification effects of MPs. In fact, MPs are commonly found in human stools and blood. However, there are no data available yet on their ability to accumulate and to produce detrimental consequences on biological systems. Even though the effects of plastics pollution are poorly studied in mammals, including humans, they appear to have inflammatory effects, which is rather concerning as many etiologies of disease are based on a pro-inflammatory status.
Collapse
Affiliation(s)
- Claudia Vanetti
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Martina Broggiato
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Stefania Pezzana
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Mario Clerici
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; Fondazione Don Carlo Gnocchi, IRCCS Milan Italy
| | - Claudio Fenizia
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
5
|
Zhou L, Ran L, He Y, Huang Y. Mechanisms of microplastics on gastrointestinal injury and liver metabolism disorder (Review). Mol Med Rep 2025; 31:98. [PMID: 39981917 PMCID: PMC11865701 DOI: 10.3892/mmr.2025.13463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/09/2025] [Indexed: 02/22/2025] Open
Abstract
With the high production and use of plastic products, a large amount of microplastics (MPs) is generated by degradation, which causes environmental pollution. MPs are particles with a diameter <5 mm; further degradation of MPs produces nano‑plastics (NPs), which could further increase the damage to cells when entering the human body. Therefore, the present review summarizes the effect of MP and NP deposition on the human gastrointestinal tract and the underlying injury mechanism of oxidative stress, inflammation and apoptosis, as well as the potential mechanism of glucose and liver lipid metabolism disorder. The present review provides a theoretical basis for research on the mechanisms of MPs in gastrointestinal injury and liver metabolism disorder. Further studies are needed for prevention and treatment of gastrointestinal diseases caused by MPs and NPs.
Collapse
Affiliation(s)
- Li Zhou
- Department of Gastroenterology and Hepatology, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing 400014, P.R. China
| | - Lidan Ran
- Department of Critical Care Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing 400014, P.R. China
| | - Yufen He
- Department of Gastroenterology and Hepatology, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing 400014, P.R. China
| | - Yaxi Huang
- Department of Gastroenterology and Hepatology, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing 400014, P.R. China
| |
Collapse
|
6
|
Huang H, Hou J, Liao Y, Yu J, Xi B. Exposure to nanoplastics exacerbates light pollution hazards to mammalian. ENVIRONMENT INTERNATIONAL 2025; 197:109338. [PMID: 39983414 DOI: 10.1016/j.envint.2025.109338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 01/13/2025] [Accepted: 02/15/2025] [Indexed: 02/23/2025]
Abstract
Environmental light pollution adversely affects brain function, disturbing circadian rhythms and negatively impacting human health. Nanoplastics (NPs) pollution is pervasive in the human environment, and their minuscule size facilitates entry into the body, particularly invading brain and compromising its functionality. However, whether NPs infiltrate rhythm-regulated brain regions and disrupt circadian rhythms in organisms remains unclear. Our study demonstrates that exposure to NPs in mice perturbs normal circadian rhythms. Specifically, NPs invade the suprachiasmatic nucleus (SCN), affecting the circadian clock genes network and altering the regular oscillations of core clock genes. Exposure to NPs renders the intrinsic rhythms more susceptible to disruption by light pollution, resulting in more pronounced disorder to metabolism, immune regulation, and brain function. This work is the first to investigate the combined effects of ambient light pollution and NPs pollution on mammalian health, and our findings suggest that NPs amplify the health impacts of light pollution. These findings also highlight that efforts to mitigate human health risks from environmental pollutants should begin to consider the synergistic effects of various classes of pollutants.
Collapse
Affiliation(s)
- Haipeng Huang
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China; Research Unit of Mitochondria in Brain Diseases, Chinese Academy of Medical Sciences, PKU-Nanjing Institute of Translational Medicine, Nanjing 210061, China
| | - Jiaqi Hou
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Yilie Liao
- Duke-NUS Medical School, National University of Singapore, Singapore 169857, Republic of Singapore
| | - Jing Yu
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China; Research Unit of Mitochondria in Brain Diseases, Chinese Academy of Medical Sciences, PKU-Nanjing Institute of Translational Medicine, Nanjing 210061, China
| | - Beidou Xi
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
7
|
Zhang X, Ye X, Xie Y, Yang Z, Spanos M, Guo Z, Jin Y, Li G, Lei Z, Schiffelers RM, Sluijter JPG, Wang H, Chen H, Xiao J. GEV Sod2 Powder: A Modified Product Based on Biovesicles Functioned in Air Pollution PM2.5-Induced Cardiopulmonary Injury. RESEARCH (WASHINGTON, D.C.) 2025; 8:0609. [PMID: 39949511 PMCID: PMC11822167 DOI: 10.34133/research.0609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/16/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025]
Abstract
The prevention of air pollution-related cardiopulmonary disorders has been largely overlooked despite its important burden. Extracellular vesicles (EVs) have shown great potential as carriers for drug delivery. However, the efficiency and effect of EVs derived from different sources on ambient fine particulate matter (PM2.5)-induced cardiopulmonary injury remain unknown. Using PM2.5-exposed cellular and mouse models, we investigated the prevention of air pollution-related cardiopulmonary injury via an innovative strategy based on EV delivery. By using a "2-step" method that combines bibliometric and bioinformatic analysis, we identified superoxide dismutase 2 (Sod2) as a potential target for PM2.5-induced injury. Sod2-overexpressing plasmid was constructed and loaded into human plasma-, bovine milk-, and fresh grape-derived EVs, ultimately obtaining modified nanoparticles including PEV Sod2 , MEV Sod2 , and GEV Sod2 , respectively. GEV Sod2 , especially its lyophilized GEV Sod2 powder, exhibited superior protection against PM2.5-induced cardiopulmonary injury as compared to PEV Sod2 and MEV Sod2 . High-sensitivity structured illumination microscopy imaging and immunoblotting showed that GEV Sod2 powder treatment altered lysosome positioning by reducing Rab-7 expression. Our findings support the use of fruit-derived EVs as a preferred candidate for nucleic acid delivery and disease treatment, which may facilitate the translation of treatments for cardiopulmonary injuries.
Collapse
Affiliation(s)
- Xiao Zhang
- />School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Science,
Shanghai University, Shanghai 200444, China
- Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine,
Shanghai University, Shanghai 200444, China
| | - Xuan Ye
- />School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuling Xie
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Science,
Shanghai University, Shanghai 200444, China
- Department of Cardiovascular Surgery,
Fujian Medical University Union Hospital, Fuzhou 350001, China
- Fujian Provincial Center for Cardiovascular Medicine, Fuzhou 350001, China
| | - Zijiang Yang
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Science,
Shanghai University, Shanghai 200444, China
- Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine,
Shanghai University, Shanghai 200444, China
| | - Michail Spanos
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Zilin Guo
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Science,
Shanghai University, Shanghai 200444, China
- Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine,
Shanghai University, Shanghai 200444, China
| | - YuXin Jin
- QianWeiChang College,
Shanghai University, Shanghai 200444, China
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Zhiyong Lei
- CDL Research,
University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Cardiology, Laboratory of Experimental Cardiology,
University Medical Center Utrecht, Utrecht, The Netherlands
- UMC Utrecht Regenerative Medicine Center, Circulatory Health Research Center, University Medical Center,
Utrecht University, Utrecht, The Netherlands
| | | | - Joost P. G. Sluijter
- Department of Cardiology, Laboratory of Experimental Cardiology,
University Medical Center Utrecht, Utrecht, The Netherlands
- UMC Utrecht Regenerative Medicine Center, Circulatory Health Research Center, University Medical Center,
Utrecht University, Utrecht, The Netherlands
| | - Hongyun Wang
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Science,
Shanghai University, Shanghai 200444, China
- Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine,
Shanghai University, Shanghai 200444, China
| | - Huihua Chen
- />School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Junjie Xiao
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Science,
Shanghai University, Shanghai 200444, China
- Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine,
Shanghai University, Shanghai 200444, China
| |
Collapse
|
8
|
Marcellus KA, Prescott D, Scur M, Ross N, Gill SS. Exposure of Polystyrene Nano- and Microplastics in Increasingly Complex In Vitro Intestinal Cell Models. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:267. [PMID: 39997830 PMCID: PMC11858616 DOI: 10.3390/nano15040267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 02/26/2025]
Abstract
With the rise in global plastic production and the presence of plastic waste in the environment, microplastics are considered an emerging environmental contaminant. Human exposure and the impact of microplastics on human health are not well studied. Recent studies have observed the presence of microplastics in human tissues and several studies have noted toxicity in in vitro and in vivo mammalian models. We examined the impact of polystyrene nano- and microplastics in increasingly complex intestinal cell models. Using an undifferentiated Caco-2 mono-culture model, we assessed particle association, cytotoxicity, and particle clearance/retention, whereas in differentiated mono- and tri-culture transwell models, we assessed membrane integrity and particle translocation. Only 50 nm and 500 nm particles were internalized in the undifferentiated cells; however, no signs of cellular toxicity were observed at any concentrations tested. Additionally, polystyrene particles had no impact on barrier integrity, but the 50 nm particles were able to cross to the basolateral side, albeit attenuated in the tri-culture model that had a mucus layer. This study reduced some of the variability common to MNPL testing across various in vitro models, but further testing is needed to fully understand the potential effects of human MNPL exposure.
Collapse
Affiliation(s)
| | | | | | | | - Santokh S. Gill
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Health Products and Food Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
| |
Collapse
|
9
|
Xu Y, Liu L, Ma Y, Wang C, Duan F, Feng J, Yin H, Sun L, Cao Z, Jung J, Li P, Li ZH. Biotransport and toxic effects of micro- and nanoplastics in fish model and their potential risk to humans: A review. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 279:107215. [PMID: 39706134 DOI: 10.1016/j.aquatox.2024.107215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/09/2024] [Accepted: 12/14/2024] [Indexed: 12/23/2024]
Abstract
The growing body of scientific evidence suggests that micro- and nanoplastics (MPs/NPs) pose a significant threat to aquatic ecosystems and human health. These particles can enter organisms through ingestion, inhalation, dermal contact, and trophic transfer. Exposure can directly affect multiple organs and systems (respiratory, digestive, neurological, reproductive, urinary, cardiovascular) and activate extensive intracellular signaling, inducing cytotoxicity involving mechanisms such as membrane disruption, extracellular polymer degradation, reactive oxygen species (ROS) production, DNA damage, cellular pore blockage, lysosomal instability, and mitochondrial depolarization. This review focuses on current research examining the in vivo and in vitro toxic effects of MPs/NPs on aquatic organisms, particularly fish, in relation to particulate toxicity aspects (such as particle transport mechanisms and structural modifications). Meanwhile, from the perspectives of the food chain and environmental factors, it emphasizes the comprehensive threats of MPs/NPs to human health in terms of both direct and indirect toxicity. Additionally, future research needs and strategies are discussed to aid in mitigating the potential risks of particulate plastics as carriers of toxic trace elements to human health.
Collapse
Affiliation(s)
- Yanan Xu
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Ling Liu
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Yuqing Ma
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Cunlong Wang
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Fengshang Duan
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Jianxue Feng
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Haiyang Yin
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Le Sun
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Zhihan Cao
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jinho Jung
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| |
Collapse
|
10
|
Zhang X, Wang Y, Tong X, Li B, Liu S, Cui Y, Wang W, Li Z, Ma C, Zhang Y. Synergistic toxicity of nanoplastics and Helicobacter pylori on digestive system in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117757. [PMID: 39826410 DOI: 10.1016/j.ecoenv.2025.117757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Nanoplastics, in combination with pathogenic microorganisms or toxic substances, have been shown to induce oxidative stress and disrupt energy and lipid metabolism, posing significant health risks. This study evaluated the toxic effects of co-exposure to nanoplastics and Helicobacter pylori on the digestive system of mice. Transmission electron microscopy confirmed the accumulation of AuPS-NPs (Au-core polystyrene nanoplastics) in the stomach, colon, and liver, while hematoxylin and eosin staining revealed dose-dependent pathological damage in these tissues. Enzyme-linked immunosorbent assays quantified interleukin-6 (IL-6), malondialdehyde (MDA), triglyceride (TG), and lactate dehydrogenase (LDH) levels, which significantly increased in co-exposure groups compared to single-exposure groups (P < 0.05). After 28 days, the 100 mg/L H. pylori-AuPS-NPs group showed the highest levels of IL-6 (172.91 ± 1.51 pg/mL in the stomach, 188.31 ± 1.49 pg/mL in the colon, and 174.85 ± 0.26 pg/mL in the liver) and MDA (13.49 ± 0.16 nmol/mg in the stomach, 14.39 ± 0.20 nmol/mg in the colon, and 15.61 ± 0.63 nmol/mg in the liver). These increases, accompanied by elevated TG and LDH levels, suggest aggravated inflammation, oxidative stress, and metabolic disruption. Accumulation analysis showed that while AuPS-NPs content significantly increased over time and with higher concentrations, co-exposure with H. pylori reduced nanoparticle accumulation in gastric and intestinal tissues. These results indicate that co-exposure exacerbates tissue damage, inflammation, oxidative stress, and metabolic disruptions while modulating nanoparticle accumulation. These findings highlight the synergistic toxic effects of nanoplastics and H. pylori, underscoring the importance of understanding combined exposure risks for public health.
Collapse
Affiliation(s)
- Xiaolin Zhang
- School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Yunqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Xiaohan Tong
- School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Boqing Li
- School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, China.
| | - Sisi Liu
- School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Yingzi Cui
- School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Wenke Wang
- School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Zhiqin Li
- School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Chunlei Ma
- School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Ying Zhang
- School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, China.
| |
Collapse
|
11
|
Feola A, Madheswaran M, Romano G, Tewelde AG, Maina EW, D'Abrosca G, Valle MD, Cocca M, Errico ME, Isernia C, Fattorusso R, Gentile M, Malgieri G. Polystyrene nanoparticles induce DNA damage and apoptosis in HeLa cells. Heliyon 2025; 11:e41298. [PMID: 39802018 PMCID: PMC11720905 DOI: 10.1016/j.heliyon.2024.e41298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
Nanoplastics (NPs) are plastic particles, typically less than 100 nm in size, that result from daily life products as well as the degradation of larger plastic debris. Due to their small size and chemical composition, they can interact with biological systems in ways that larger plastic particles cannot. Humans are continuously exposed to NPs and several studies showed the potentially toxic effects of these latter on health. Polystyrene nanoplastics (PS-NPs) are the prevalent form of nanoparticles found in the environment and their cellular uptake can cause cytotoxicity and structural alteration of biomolecules. Thus, there is an urgent need for evaluation of the genotoxic effects of PS-NPs on human cell models. Through different and complementary experimental approaches, we investigated the potential genotoxic and cytotoxic effects of PS-NPs exposure on HeLa cell lines. We highlighted the genotoxic effects of polystyrene nanoplastics by showing the formation of multinuclei and micronuclei in all the studied concentrations and time points, also at short incubation time (6 h) and low concentration. At higher concentrations, we demonstrate the presence of apoptotic and necrotic cells outlining the acute cytotoxic effects of nanoplastics. The genotoxic potential is further highlighted by the presence of low molecular weight DNA fragments in PS-NPs treated cells, and by the relationship between polystyrene nanoplastics and γ-H2AX. Thus, our data provide important insights at a cellular level into the possible risks produced by these nanoparticles and recommend further deeper research studies to address the impacts of nanoplastics on human health.
Collapse
Affiliation(s)
- Antonia Feola
- Department of Biology, University of Naples “Federico II” Naples, Italy
| | - Manoj Madheswaran
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100, Caserta, Italy
| | - Grazia Romano
- Department of Biology, University of Naples “Federico II” Naples, Italy
| | - Awet Ghebretinsae Tewelde
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100, Caserta, Italy
| | - Eunice Wairimu Maina
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100, Caserta, Italy
| | - Gianluca D'Abrosca
- Department of Clinical and Experimental Medicine, University of Foggia, 71122, Foggia, Italy
| | - Maria della Valle
- Institute of Crystallography–CNR, Via Vivaldi, 43, 81100, Caserta, Italy
| | - Mariacristina Cocca
- Institute for Polymers, Composites and Biomaterials—CNR, Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy
| | - Maria Emanuela Errico
- Institute for Polymers, Composites and Biomaterials—CNR, Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy
| | - Carla Isernia
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100, Caserta, Italy
| | - Roberto Fattorusso
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100, Caserta, Italy
| | - MariaTeresa Gentile
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100, Caserta, Italy
| | - Gaetano Malgieri
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100, Caserta, Italy
| |
Collapse
|
12
|
Zhu Y, Zhang R, Gao W, Li F, Yang M, Feng J, Ji Y, Si J, Wang X, Dong Y. An environment-responsive platform based on acid-resistant metal organic framework for efficient oral insulin delivery. J Control Release 2025; 377:540-552. [PMID: 39592023 DOI: 10.1016/j.jconrel.2024.11.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024]
Abstract
Oral insulin delivery is considered a revolutionary alternative to daily subcutaneous injections in terms of compliance and convenience. However, significant challenges remain in terms of inactivation in gastrointestinal environment and limited permeation across the intestinal epithelium. Herein, we used acid-resistant metal-organic framework (PCN-222) to load insulin and modified the exterior with sodium dodecyl sulfate (SDS) to achieve efficient oral insulin delivery. The PCN-222 nanocarrier with ordered mesoporous cage structure and suitable pore size achieved a high insulin loading of 75 %. The SDS on the surface of nanocarrier reduces its hydrophilicity while reversibly altering cell morphology and increasing epithelial cell permeability, thereby promoting intestinal epithelial absorption. The constructed particle (I@P@S) was encapsulated in sodium alginate (SA) microspheres to protect it from gastric acid degradation and releases it upon entry into the intestinal tract. Through an uptake pathway dominated by clathrin-mediated endocytosis, the released I@P@S realized efficient intestinal permeability and controlled insulin release under physiological conditions due to the phosphate sensitivity of PCN-222, leading to an in vivo bioavailability of 12.9 %. This work provides a valuable reference for the design of oral insulin delivery systems.
Collapse
Affiliation(s)
- Yingnan Zhu
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Center for Drug Safety Evaluation and Research, Zhengzhou University, Zhengzhou 450001, China
| | - Ruikang Zhang
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Center for Drug Safety Evaluation and Research, Zhengzhou University, Zhengzhou 450001, China
| | - Wenwen Gao
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Center for Drug Safety Evaluation and Research, Zhengzhou University, Zhengzhou 450001, China
| | - Fei Li
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Center for Drug Safety Evaluation and Research, Zhengzhou University, Zhengzhou 450001, China
| | - Mei Yang
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Center for Drug Safety Evaluation and Research, Zhengzhou University, Zhengzhou 450001, China
| | - Jie Feng
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Center for Drug Safety Evaluation and Research, Zhengzhou University, Zhengzhou 450001, China
| | - Yalan Ji
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Center for Drug Safety Evaluation and Research, Zhengzhou University, Zhengzhou 450001, China
| | - Jiahang Si
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Center for Drug Safety Evaluation and Research, Zhengzhou University, Zhengzhou 450001, China
| | - Xiangrong Wang
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Center for Drug Safety Evaluation and Research, Zhengzhou University, Zhengzhou 450001, China
| | - Yuze Dong
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Center for Drug Safety Evaluation and Research, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
13
|
Kim JE, Sonar NS, Thakuri LS, Park JW, Kim KT, Rhyu DY. Mixtures of polystyrene micro and nanoplastics affects fat and glucose metabolism in 3T3-L1 adipocytes and zebrafish larvae. NANOIMPACT 2025; 37:100549. [PMID: 39965748 DOI: 10.1016/j.impact.2025.100549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/14/2024] [Accepted: 02/09/2025] [Indexed: 02/20/2025]
Abstract
Microplastics (MPs) and nanoplastics (NPs) are pervasive pollutants that pose a hazard to human health. Although most previous studies have investigated the effects of MPs and NPs on digestion, oxidative stress, and inflammation in diverse models, the combined effect of plastic mixtures (PM) containing MPs and NPs on obesity and type 2 diabetes mellitus (T2DM) remains unknown. The hypothesis of our study is to verify the association between PM exposure and clinical features of metabolic diseases such as lipogenesis and insulin resistance. Therefore, we investigated the effects of PM on fat and glucose metabolism in 3T3-L1 cells and high-fat diet (HFD)-induced zebrafish larvae. PM exposure increased cell viability, differentiation, adipogenesis (PPARγ and C/EBPα), and lipogenesis (FAS and SREBP-1c), while it decreased glucose uptake and inhibited insulin signal (IRS1, PI3K, AKT, and GLUT4) expression 3T3-L1 cells. In zebrafish larvae, PM mainly bioaccumulated in the intestine and pancreatic tissue, reducing glucose uptake and increasing body weight and blood glucose compared to controls. Moreover, PM significantly increased adipogenic differentiation (PPARγ) and synthesis (FASN and FABP), proinflammatory cytokines (TNF-α and IL-6), and gluconeogenesis (PCK1 and G6Pase). Conversely, energy and fat metabolism (AMPKα and adiponectin), insulin production (INSα), signaling pathway (IRS1, AKT, and GLUT2), and anti-inflammatory cytokines (IL-10 and IL-4) were suppressed. Overall, this study sheds light on the mechanisms responsible for the detrimental effects of PM exposure on fat and glucose metabolism, providing insights into metabolic disorders, like type 2 diabetes, in both in vitro and in vivo models.
Collapse
Affiliation(s)
- Jung Eun Kim
- Department of Nutraceutical Resources, Mokpo National University, Jeonnam 58554, Republic of Korea; ROK-Biotech, Hwasun-gun, Jeonnam 58112, Republic of Korea
| | - Narayan Sah Sonar
- Department of Nutraceutical Resources, Mokpo National University, Jeonnam 58554, Republic of Korea; Department of Biomedicine, Health & Life Convergence Sciences, BK21 FOUR, Mokpo National University, Jeonnam 58554, Republic of Korea
| | - Laxmi Sen Thakuri
- Department of Nutraceutical Resources, Mokpo National University, Jeonnam 58554, Republic of Korea; Department of Biomedicine, Health & Life Convergence Sciences, BK21 FOUR, Mokpo National University, Jeonnam 58554, Republic of Korea
| | - Jin Woo Park
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 FOUR, Mokpo National University, Jeonnam 58554, Republic of Korea; Department of Pharmacy, Mokpo National University, Jeonnam 58554, Republic of Korea
| | - Ki-Tae Kim
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea.
| | - Dong Young Rhyu
- Department of Nutraceutical Resources, Mokpo National University, Jeonnam 58554, Republic of Korea; Department of Biomedicine, Health & Life Convergence Sciences, BK21 FOUR, Mokpo National University, Jeonnam 58554, Republic of Korea.
| |
Collapse
|
14
|
Zhu J, He Y, Zheng Q, Yang Q, Zhou W, Sun Y, Zhan X. Accumulation of nanoplastics by wheat seedling roots: Both passive and energy-consuming processes. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136052. [PMID: 39368354 DOI: 10.1016/j.jhazmat.2024.136052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
Nanoplastics can transfer from the environment to plants and potentially harm organisms. However, the mechanisms on how crop root systems absorb and transport nanoplastics are still unclear. Here, original and fluorescent labeled polystyrene and polyvinyl chloride nanoparticles (PS-NPs, PVC-NPs; 30 nm; 10 mg L-1) were employed to study the distribution and internalization pathways in wheat seedling roots. In the study, nanoplastics accumulated more in the root tip and surface, with PVC-NPs more prevalent than PS-NPs. After being treated with inhibitors (Na3VO4, chlorpromazine and amiloride), the nanoplastics mean fluorescence intensities were reduced by 4.0-51.1 %. During the uptake, both passive and energy-consuming pathways occurred. For the energy-consuming uptake pathway, macropinocytosis contributed more to cytoplasm than clathrin-mediated endocytosis. H+ influx was observed during nanoplastic transport into the cytoplasm, and the reduction in plasma membrane ATPase activity led to a decrease in nanoplastic internalization. These results elucidate the pathways of nanoplastics absorption and transport in wheat roots, provide crucial evidence for assessing nanoplastics' ecological risks and support the development of technologies to block nanoplastics absorption by crop roots, ensuring agricultural and ecosystem safety.
Collapse
Affiliation(s)
- Jiahui Zhu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, PR China
| | - Yuan He
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, PR China
| | - Qiuping Zheng
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, PR China
| | - Qian Yang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, PR China
| | - Wenhui Zhou
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, PR China
| | - Yilei Sun
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, PR China
| | - Xinhua Zhan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, PR China.
| |
Collapse
|
15
|
Santhanam SD, Ramamurthy K, Priya PS, Sudhakaran G, Guru A, Arockiaraj J. A combinational threat of micro- and nano-plastics (MNPs) as potential emerging vectors for per- and polyfluoroalkyl substances (PFAS) to human health. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1182. [PMID: 39514026 DOI: 10.1007/s10661-024-13292-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Micro- and nano-plastics (MNPs) and per- and polyfluoroalkyl substances (PFAS) are prevalent in ecosystems due to their exceptional properties and widespread use, profoundly affecting both human health and ecosystem. Upon entering the environment, MNPs and PFAS undergo various transformations, such as weathering, transport, and accumulation, potentially altering their characteristics and structural dynamics. Their interactions, governed by factors like hydrogen bonding, hydrophobic interactions, Van der Waals forces, electrostatic attractions, and environmental conditions, can amplify or mitigate their toxicity toward human health within ecological conditions. Several studies demonstrate the in vivo effects of PFAS and MNPs, encompassing growth and reproductive impairments, oxidative stress, neurotoxicity, apoptosis, DNA damage, genotoxicity, immunological responses, behavioral changes, modifications in gut microbiota, and histopathological alterations. Moreover, in vitro investigations highlight impacts on cellular uptake, affecting survival, proliferation, membrane integrity, reactive oxygen species (ROS) generation, and antioxidant responses. This review combines knowledge on the co-existence and adsorption of PFAS and MNPs in the environment, defining their combined in vivo and in vitro impacts. It provides evidence of potential human health implications. While significant research originates from China, Europe, and the USA, studies from other regions are limited. Only freshwater and marine organisms and their impacts are extensively studied in comparison to terrestrial organisms and humans. Nonetheless, detailed investigations are lacking regarding their fate, combined environmental exposure, mode of action, and implications in human health studies. Ongoing research is imperative to comprehensively understand environmental exposures and interaction mechanisms, addressing the need to elucidate these aspects thoroughly.
Collapse
Affiliation(s)
- Sanjai Dharshan Santhanam
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Karthikeyan Ramamurthy
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur, 603203, Chengalpattu District, Tamil Nadu, India
| | - P Snega Priya
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Gokul Sudhakaran
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, SIMATS, Chennai, 600077, Tamil Nadu, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur, 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
16
|
Adamiak K, Sidoryk-Węgrzynowicz M, Dąbrowska-Bouta B, Sulkowski G, Strużyńska L. Plastic nanoparticles interfere with extracellular vesicle pathway in primary astrocytes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117180. [PMID: 39437516 DOI: 10.1016/j.ecoenv.2024.117180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
The extensive production and use of plastics in recent decades has led to environmental pollution. It has been discovered that plastic microparticles (MPs) and nanoparticles (NPs), formed under the influence of physical forces, can pose a significant health risk. Increasing evidence indicates that NPs can have various toxic effects, including oxidative stress and cell death. However, the mechanisms underlying their toxicity are still under investigation. In this study, we examined whether polystyrene nanoparticles (PS-NPs) are internalized in primary astrocytes. We tracked their intracellular fate and search for potential interference with the intercellular communication pathway mediated by extracellular vesicles (EVs). Primary astrocyte cultures were exposed to fluorescent PS-NPs at concentrations of 0.5, 1, 25 and 50 µg/mL for 24, 48 and 72 hours. Based on electron microscopic analysis and confocal imaging, we determined that PS-NPs are internalized in astrocytes and accumulate in the cytoplasm in a concentration-dependent manner, localizing to endosomal-lysosomal system. Astrocytes exposed to PS-NPs form EVs containing encapsulated PS-NPs, which are released into the culture medium after 72 h of exposure and can be transferred via this route to other cells. As shown by proteomic analysis, PS-NPs affects the composition of the protein cargo of released EVs by decreasing the representation of proteins such as CD47, CSTB and CNDP2. Intercellular transport of PS-NPs in primary astrocytes is mediated by EVs system. EV-mediated release of PS-NPs may alleviate their toxicity in a single astrocyte but may also contribute to the spread of their toxic effect to neighbouring astrocytes. Exposure to PS-NPs interferes with the mechanism of protein sorting, thereby potentially influencing the EV-mediated cell-cell communication pathway.
Collapse
Affiliation(s)
- Kamil Adamiak
- Laboratory of Pathoneurochemistry, Department of Neurochemistry, Mossakowski Medical Research Institute Polish Academy of Sciences, 5 Pawińskiego str., Warsaw 02-106, Poland
| | - Marta Sidoryk-Węgrzynowicz
- Laboratory of Pathoneurochemistry, Department of Neurochemistry, Mossakowski Medical Research Institute Polish Academy of Sciences, 5 Pawińskiego str., Warsaw 02-106, Poland
| | - Beata Dąbrowska-Bouta
- Laboratory of Pathoneurochemistry, Department of Neurochemistry, Mossakowski Medical Research Institute Polish Academy of Sciences, 5 Pawińskiego str., Warsaw 02-106, Poland
| | - Grzegorz Sulkowski
- Laboratory of Pathoneurochemistry, Department of Neurochemistry, Mossakowski Medical Research Institute Polish Academy of Sciences, 5 Pawińskiego str., Warsaw 02-106, Poland
| | - Lidia Strużyńska
- Laboratory of Pathoneurochemistry, Department of Neurochemistry, Mossakowski Medical Research Institute Polish Academy of Sciences, 5 Pawińskiego str., Warsaw 02-106, Poland.
| |
Collapse
|
17
|
Lee SH, Lin TA, Yan YH, Chien CC, Cheng TJ. Hepatic and metabolic outcomes induced by sub-chronic exposure to polystyrene microplastics in mice. Arch Toxicol 2024; 98:3811-3823. [PMID: 39183192 DOI: 10.1007/s00204-024-03847-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
Microplastics (MPs) have attracted significant attention due to their global distribution in living environments. Although some studies have reported MP-induced hepatotoxicity in mouse models, a systematic approach to MP-mediated liver toxicity was still lacking. Therefore, we used a mouse model to study the sub-chronic effects of MP exposure on the liver. Female C57BL/6 mice, aged 6 weeks, received an oral administration of 0.3 mg of Nile Red-labeled polystyrene (PS) microplastics, with particle sizes of 0.5 µm (submicron) and 5 µm (micron), via gavage, while control mice received vehicle only. Each mouse was exposed to MPs twice a week for 12 weeks. After sacrifice, the levels of MP accumulation, oxidative stress, inflammation, and pathological changes were measured in the mouse liver, and blood samples were collected for serum biochemistry analysis. Our results demonstrated that 0.5 µm PS-MPs were accumulated in mouse livers post-MP exposure, but not in the 5 µm MP exposure group. Simultaneously, increased levels of glucose, triglyceride, alanine transaminase (ALT), aspartate transaminase (AST), superoxide dismutase, 4-hydroxy-2-nonenal-mercapturic acid (HNE-MA), interleukin-6, and lipid droplets were found in the 0.5 µm MP exposure group, while the fewer responses, including elevated liver weight index, glucose, high-density lipoprotein, AST, and decreased HNE-MA were observed in 5 µm MP exposure group. These results indicate that sub-chronic exposure to submicron MPs causes MP deposition in mouse livers, which further induces oxidative stress, increases inflammatory cytokines and perturbs glucose and lipid homeostasis, which might trigger more severe metabolic dysfunction or non-alcoholic steatohepatitis-like hepatotoxicity.
Collapse
Affiliation(s)
- Sheng-Han Lee
- School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Ting-An Lin
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd, Taipei, 100, Taiwan
| | - Yuan-Horng Yan
- Department of Endocrinology and Metabolism, Kuang Tien General Hospital, Taichung, Taiwan
- Department of Nutrition and Institute of Biomedical Nutrition, Hung Kuang University, Taichung, Taiwan
| | - Chu-Chun Chien
- Department of Pathology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tsun-Jen Cheng
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, No. 17, Xuzhou Rd, Taipei, 100, Taiwan.
| |
Collapse
|
18
|
Han H, Zhang Z, Xu B, Ding L, Yang H, He T, Du X, Pei X, Fu X. Integrated transcriptomic and metabolomic analysis reveals the underlying mechanisms for male reproductive toxicity of polystyrene nanoplastics in mouse spermatocyte-derived GC-2spd(ts) cells. Toxicol In Vitro 2024; 100:105893. [PMID: 39002813 DOI: 10.1016/j.tiv.2024.105893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/07/2024] [Accepted: 07/06/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND Polystyrene nanoplastics (PS-NPs), are ubiquitous pollution sources in human environments, posing significant biosafety and health risks. While recent studies, including our own, have illustrated that PS-NPs can breach the blood-testis barrier and impact germ cells, there remains a gap in understanding their effects on specific spermatogenic cells such as spermatocytes. METHODS AND RESULTS Herein, we employed an integrated approach encompassing phenotype, metabolomics, and transcriptomics analyses to assess the molecular impact of PS-NPs on mouse spermatocyte-derived GC-2spd(ts) cells. Optimal exposure conditions were determined as 24 h with 50 nm PS-NPs at 12.5 μg/mL and 90 nm PS-NPs at 50 μg/mL for subsequent multi-omics analysis. Our findings revealed that PS-NPs significantly influenced proliferation and viability, causing alterations in transcriptome and metabolome profiles. Transcriptomics analysis of GC-2spd(ts) cells exposed to PS-NPs indicated the pivotal involvement of cell proliferation and cycle, autophagy, ferroptosis, and redox reaction pathways in PS-NP-induced effects on the proliferation and viability of GC-2spd(ts) cells. Furthermore, metabolomics analysis identified major changes in amino acid metabolism, cyanoamino acid metabolism, and purine and pyrimidine metabolism following PS-NP exposure. CONCLUSION Our integrated approach, combining metabolomics and transcriptomics profiles with phenotype data, enhances our understanding of the adverse effects of PS-NPs on germ cells.
Collapse
Affiliation(s)
- Hang Han
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China; College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Zhen Zhang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Bo Xu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Liyang Ding
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Hong Yang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Tiantian He
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Xing Du
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Xiuying Pei
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China.
| | - Xufeng Fu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China.
| |
Collapse
|
19
|
Huang H, Shi J, Chen W, Liu L. Rutin suppresses the malignant biological behavior of gastric cancer cells through the Wnt/β-catenin pathway. Discov Oncol 2024; 15:407. [PMID: 39231903 PMCID: PMC11374940 DOI: 10.1007/s12672-024-01281-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/27/2024] [Indexed: 09/06/2024] Open
Abstract
Rutin is a natural flavonoid compound that is widely found in a variety of plants and has a variety of biological effects, including anti-inflammatory, antioxidant, and anti-tumor effects. Rutin has been shown to have anti-tumor effects in a variety of cancers, but its effects on gastric cancer need to be further explored. The aim of this study was to explore the effects of Rutin on gastric cancer cells and the potential molecular regulatory mechanisms. Gastric cancer cells (AGS and MGC803) were treated with different concentrations of Rutin. Cell proliferation, apoptosis, migration, and invasion were determined by MTT, flow cytometry, scratch assay, and Transwell analysis, respectively. Cell epithelial mesenchymal transition (EMT) markers and Wnt/β-catenin pathway were analyzed by RT-qPCR and western blot assay. The results showed that Rutin significantly inhibited the proliferation, migration and invasion ability of gastric cancer cells, induced apoptosis, and suppressed the EMT process. Further experiments revealed that Rutin achieved the effect of inhibiting the biological behavior of gastric cancer cells by suppressing the activation of the Wnt/β-catenin pathway. Therefore, Rutin may become a potential therapeutic candidate for gastric cancer.
Collapse
Affiliation(s)
- Hui Huang
- Department of Gastrointestinal Surgery, Tongji Medical College, The Central Hospital of Wuhan, Huazhong University of Science and Technology, No. 16 Gusaoshu Road, Jianghan District, Wuhan, 430014, China
| | - Jianguo Shi
- Department of Gastrointestinal Surgery, Tongji Medical College, The Central Hospital of Wuhan, Huazhong University of Science and Technology, No. 16 Gusaoshu Road, Jianghan District, Wuhan, 430014, China
| | - Wei Chen
- Department of Gastrointestinal Surgery, Tongji Medical College, The Central Hospital of Wuhan, Huazhong University of Science and Technology, No. 16 Gusaoshu Road, Jianghan District, Wuhan, 430014, China
| | - Lei Liu
- Department of Gastrointestinal Surgery, Tongji Medical College, The Central Hospital of Wuhan, Huazhong University of Science and Technology, No. 16 Gusaoshu Road, Jianghan District, Wuhan, 430014, China.
| |
Collapse
|
20
|
He Y, Yu T, Li H, Sun Q, Chen M, Lin Y, Dai J, Wang W, Li Q, Ju S. Polystyrene nanoplastic exposure actives ferroptosis by oxidative stress-induced lipid peroxidation in porcine oocytes during maturation. J Anim Sci Biotechnol 2024; 15:117. [PMID: 39223579 PMCID: PMC11370062 DOI: 10.1186/s40104-024-01077-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/14/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Polystyrene nanoplastics (PS-NPs) are becoming increasingly prevalent in the environment with great advancements in plastic products, and their potential health hazard to animals has received much attention. Several studies have reported the toxicity of PS-NPs to various tissues and cells; however, there is a paucity of information about whether PS-NPs exposure can have toxic effects on mammalian oocytes, especially livestock. Herein, porcine oocytes were used as the model to investigate the potential effects of PS-NPs on mammalian oocytes. RESULTS The findings showed that different concentrations of PS-NPs (0, 25, 50 and 100 μg/mL) entering into porcine oocytes could induce mitochondrial stress, including a significant decrease in mitochondrial membrane potential (MMP), and the destruction of the balance of mitochondrial dynamic and micromorphology. Furthermore, there was a marked increase in reactive oxygen species (ROS), which led to oocyte lipid peroxidation (LPO). PS-NPs exposure induced abnormal intracellular iron overload, and subsequently increased the expression of transferrin receptor (TfRC), solute carrier family 7 member 11 (SLC7a11), and acyl-CoA synthetase long-chain family member 4 (ACSL4), which resulted in ferroptosis in oocytes. PS-NPs also induced oocyte maturation failure, cytoskeletal dysfunction and DNA damage. Cotreatment with 5 μmol/L ferrostatin-1 (Fer-1, an inhibitor of ferroptosis) alleviated the cellular toxicity associated with PS-NPs exposure during porcine oocyte maturation. CONCLUSIONS In conclusion, PS-NPs caused ferroptosis in porcine oocytes by increasing oxidative stress and altering lipid metabolism, leading to the failure of oocyte maturation.
Collapse
Affiliation(s)
- Yijing He
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tianhang Yu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Heran Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Qinfeng Sun
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Miaoyu Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yiyi Lin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianjun Dai
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Weihan Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qiao Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shiqiang Ju
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
21
|
Hu Y, Jiang S, Zhang Q, Zhou W, Liang J, Xu Y, Su W. Protective effect of Cordycepin on blood-testis barrier against pre-puberty polystyrene nanoplastics exposure in male rats. Part Fibre Toxicol 2024; 21:30. [PMID: 39118174 PMCID: PMC11312894 DOI: 10.1186/s12989-024-00590-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
Plastic pollution is an emerging environmental issue, with microplastics and nanoplastics raising health concerns due to bioaccumulation. This work explored the impact of polystyrene nanoparticle (PS-NPs) exposure during prepuberty on male reproductive function post maturation in rats. Rats were gavaged with PS-NPs (80 nm) at 0, 3, 6, 12 mg/kg/day from postnatal day 21 to 95. PS-NPs accumulated in the testes and reduced sperm quality, serum reproductive hormones, and testicular coefficients. HE staining showed impaired spermatogenesis. PS-NPs disrupted the blood-testis barrier (BTB) by decreasing junction proteins, inducing inflammation and apoptosis. Transcriptomics identified differentially expressed genes related to metabolism, lysosome, apoptosis, and TLR4 signaling. Molecular docking revealed Cordycepin could compete with polystyrene for binding to TLR4. Cordycepin alleviated oxidative stress and improved barrier function in PS-NPs treated Sertoli cells. In conclusion, prepubertal PS-NPs exposure induces long-term reproductive toxicity in male rats, likely by disrupting spermatogenesis through oxidative stress and BTB damage. Cordycepin could potentially antagonize this effect by targeting TLR4 and warrants further study as a protective agent. This study elucidates the mechanisms underlying reproductive toxicity of PS-NPs and explores therapeutic strategies.
Collapse
Affiliation(s)
- Ying Hu
- Department of Biochemistry and Molecular Biology, College of Life Science, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, China
- National Clinical Research Center for Laboratory Medicine, Department of Laboratory Medicine, Units of Medical Laboratory, The First Hospital of China Medical University, Chinese Academy of Medical Sciences, Shenyang, 110001, China
| | - Shuyi Jiang
- Department of Biochemistry and Molecular Biology, College of Life Science, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, China
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qiang Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, China
| | - Wenjie Zhou
- Department of Biochemistry and Molecular Biology, College of Life Science, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, China
| | - Jinhong Liang
- Department of Biochemistry and Molecular Biology, College of Life Science, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, China
| | - Ying Xu
- Department of Biochemistry and Molecular Biology, College of Life Science, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, China.
| | - Wenhui Su
- Department of Biochemistry and Molecular Biology, College of Life Science, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, China.
| |
Collapse
|
22
|
Gao N, Ju X, Jiao X, Qi Y, Tian Y, Jiang S, Niu Z, Zhao S, Yang R. Breaking Down the Barriers of Drug Resistance and Corneal Permeability with Chitosan-Poly(ethylene glycol)-LK 13 Peptide Conjugate to Combat Fungal Keratitis. ACS Infect Dis 2024; 10:2950-2960. [PMID: 38990785 DOI: 10.1021/acsinfecdis.4c00288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Fungal keratitis (FK) is a leading cause of preventable blindness and eye loss. The poor antifungal activity, increased drug resistance, limited corneal permeability, and unsatisfactory biosafety of conventional antifungal eye drops are among the majority of the challenges that need to be addressed for currently available antifungal drugs. Herein, this study proposes an effective strategy that employs chitosan-poly(ethylene glycol)-LK13 peptide conjugate (CPL) in the treatment of FK. Nanoassembly CPL can permeate the lipophilic corneal epithelium in the transcellular route, and its hydrophilicity surface is a feature to drive its permeability through hydrophilic stroma. When encountering fungal cell membrane, CPL dissembles and exposes the antimicrobial peptide (LK13) to destroy fungal cell membranes, the minimum inhibitory concentration values of CPL against Fusarium solani (F. solani) are always not to exceed 8 μg peptide/mL before and after drug resistance induction. In a rat model of Fusarium keratitis, CPL demonstrates superior therapeutic efficacy than commercially available natamycin ophthalmic suspension. This study provides more theoretical and experimental supports for the application of CPL in the treatment of FK.
Collapse
Affiliation(s)
- Ning Gao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Xiaoyan Ju
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiting Jiao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Yuanyuan Qi
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Ye Tian
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Shidong Jiang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhongwei Niu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaozhen Zhao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Ruibo Yang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| |
Collapse
|
23
|
He J, Xiong S, Zhou W, Qiu H, Rao Y, Liu Y, Shen G, Zhao P, Chen G, Li J. Long-term polystyrene nanoparticles exposure reduces electroretinal responses and exacerbates retinal degeneration induced by light exposure. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134586. [PMID: 38776811 DOI: 10.1016/j.jhazmat.2024.134586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
The impact of plastic pollution on living organisms have gained significant research attention. However, the effects of nanoplastics (NPs) on retina remain unclear. This study aimed to investigate the effect of long-term polystyrene nanoparticles (PS-NPs) exposure on mouse retina. Eight weeks old C57BL/6 J mice were exposed to PS-NPs at the diameter of 100 nm and concentration of 10 mg/L in drinking water for 3 months. PS-NPs were able to penetrate the blood-retina barrier, accumulated at retinal tissue, caused increased oxidative stress level and reduced scotopic electroretinal responses without remarkable structural damage. PS-NPs exposure caused cytotoxicity and reactive oxygen species accumulation in cultured photoreceptor cell. PS-NPs exposure increased oxidative stress level in retinal pigment epithelial (RPE) cells, leading to changes of gene and protein expression indicative of compromised phagocytic activity and cell junction formation. Long-term PS-NPs exposure also aggravated light-induced photoreceptor cell degeneration and retinal inflammation. The transcriptomic profile of PS-NPs-exposed, light-challenged retinal tissue shared similar features with those of age-related macular degeneration (AMD) patients in the activation of complement-mediated phagocytic and proinflammatory responses. Collectively, these findings demonstrated the oxidative stress- and inflammation-mediated detrimental effect of PS-NPs on retinal function, suggested that long-term PS-NPs exposure could be an environmental risk factor contributing to retinal degeneration.
Collapse
Affiliation(s)
- Jincan He
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092 China
| | - Shiyi Xiong
- Shanghai Key Laboratory of Maternal Fetal Medicine, Department of Fetal Medicine and Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, China
| | - Wenchuan Zhou
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092 China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuqing Rao
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092 China
| | - Ya Liu
- Institute of Traditional Chinese Medicine and Stem Cell Research, College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Guiyan Shen
- Institute of Traditional Chinese Medicine and Stem Cell Research, College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Peiquan Zhao
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092 China
| | - Guangquan Chen
- Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 201204, China.
| | - Jing Li
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092 China.
| |
Collapse
|
24
|
Zou L, Xu X, Wang Y, Lin F, Zhang C, Liu R, Hou X, Wang J, Jiang X, Zhang Q, Li L. Neonatal Exposure to Polystyrene Nanoplastics Impairs Microglia-Mediated Synaptic Pruning and Causes Social Behavioral Defects in Adulthood. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11945-11957. [PMID: 38917348 DOI: 10.1021/acs.est.4c03231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The increasing prevalence and persistence of nanoplastics (NPs) have become critical environmental concerns. These particles have the potential to enter the food chain and accumulate in living organisms, which exerts their adverse effects on human health. The release of nanoparticles from feeding bottles raises concerns about potential health issues, especially for newborns exposed to NPs at the neonatal stage. In this study, we examined the impacts of neonatal exposure to polystyrene nanoplastics (PS-NPs) on neurodevelopment. Our study demonstrates that exposure to PS-NPs in newborn mice impairs microglial autophagic function and energy metabolism, leading to the disruption of microglia-mediated synaptic pruning during early neurodevelopment. These mice subsequently develop social behavioral defects in adulthood, suggesting the long-lasting effects of neonatal PS-NP exposure on brain development and behavior. Together, these data provide insights into the mechanism by which PS-NPs affect early neurodevelopment, thus emphasizing the crucial need to address plastic pollution globally.
Collapse
Affiliation(s)
- Le Zou
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xin Xu
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yuelan Wang
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University, Nanjing, Jiangsu 210023, China
| | - FeiFan Lin
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Chenyu Zhang
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University, Nanjing, Jiangsu 210023, China
- Research Unit of Extracellular RNA, Chinese Academy of Medical Sciences, Nanjing, Jiangsu 210023, China
| | - Rui Liu
- Department of Gastrointestinal Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Xiaoyu Hou
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Jin Wang
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, Jiangsu 210008, China
| | - Xiaohong Jiang
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University, Nanjing, Jiangsu 210023, China
- Research Unit of Extracellular RNA, Chinese Academy of Medical Sciences, Nanjing, Jiangsu 210023, China
| | - Qipeng Zhang
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University, Nanjing, Jiangsu 210023, China
- Institute for Brain Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Liang Li
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Nanjing University, Nanjing, Jiangsu 210023, China
- Institute for Brain Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
- Research Unit of Extracellular RNA, Chinese Academy of Medical Sciences, Nanjing, Jiangsu 210023, China
| |
Collapse
|
25
|
Liu H, Li H, Chen T, Yu F, Lin Q, Zhao H, Jin L, Peng R. Research Progress on Micro(nano)plastic-Induced Programmed Cell Death Associated with Disease Risks. TOXICS 2024; 12:493. [PMID: 39058145 PMCID: PMC11281249 DOI: 10.3390/toxics12070493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024]
Abstract
Due to their robust migration capabilities, slow degradation, and propensity for adsorbing environmental pollutants, micro(nano)plastics (MNPs) are pervasive across diverse ecosystems. They infiltrate various organisms within different food chains through multiple pathways including inhalation and dermal contact, and pose a significant environmental challenge in the 21st century. Research indicates that MNPs pose health threats to a broad range of organisms, including humans. Currently, extensive detection data and studies using experimental animals and in vitro cell culture indicate that MNPs can trigger various forms of programmed cell death (PCD) and can induce various diseases. This review provides a comprehensive and systematic analysis of different MNP-induced PCD processes, including pyroptosis, ferroptosis, autophagy, necroptosis, and apoptosis, based on recent research findings and focuses on elucidating the links between PCD and diseases. Additionally, targeted therapeutic interventions for these diseases are described. This review provides original insights into the opportunities and challenges posed by current research findings. This review evaluates ways to mitigate various diseases resulting from cell death patterns. Moreover, this paper enhances the understanding of the biohazards associated with MNPs by providing a systematic reference for subsequent toxicological research and health risk mitigation efforts.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Renyi Peng
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (H.L.); (H.L.); (T.C.); (F.Y.); (Q.L.); (H.Z.); (L.J.)
| |
Collapse
|
26
|
Ji Y, Chen L, Wang Y, Zhang J, Yu Y, Wang M, Wang X, Liu W, Yan B, Xiao L, Song X, Lv C, Chen L. Realistic Nanoplastics Induced Pulmonary Damage via the Crosstalk of Ferritinophagy and Mitochondrial Dysfunction. ACS NANO 2024; 18:16790-16807. [PMID: 38869479 DOI: 10.1021/acsnano.4c02335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
The smaller size fraction of plastics may be more substantially existing and detrimental than larger-sized particles. However, reports on nanoplastics (NPs), especially their airborne occurrences and potential health hazards to the respiratory system, are scarce. Previous studies limit the understanding of their real respiratory effects, since sphere-type polystyrene (PS) nanoparticles differ from NPs occurring in nature with respect to their physicochemical properties. Here, we employ a mechanical breakdown method, producing NPs directly from bulk plastic, preserving NP properties in nature. We report that among four relatively high abundance NP materials PS, polyethylene terephthalate (PET), polyvinyl chloride (PVC), and polyethylene (PE) with a size of 100 nm, PVC induced slightly more severe lung toxicity profiles compared to the other plastics. The lung cytotoxicity of NPs is higher than that of commercial PS NPs and comparable to natural particles silicon dioxide (SiO2) and anatase titanium dioxide (TiO2). Mechanistically, BH3-interacting domain death agonist (Bid) transactivation-mediated mitochondrial dysfunction and nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy or ferroptosis are likely common mechanisms of NPs regardless of their chemical composition. This study provides relatively comprehensive data for evaluating the risk of atmospheric NPs to lung health.
Collapse
Affiliation(s)
- Yunxia Ji
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Libang Chen
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Yunqing Wang
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Jinjin Zhang
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Yue Yu
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Meirong Wang
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Xiaoyan Wang
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Weili Liu
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Bing Yan
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Liang Xiao
- Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Xiaodong Song
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Changjun Lv
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Lingxin Chen
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
27
|
Wen Y, Deng S, Wang B, Zhang F, Luo T, Kuang H, Kuang X, Yuan Y, Huang J, Zhang D. Exposure to polystyrene nanoplastics induces hepatotoxicity involving NRF2-NLRP3 signaling pathway in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116439. [PMID: 38728945 DOI: 10.1016/j.ecoenv.2024.116439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/09/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
Nanoplastic contamination has been of intense concern by virtue of the potential threat to human and ecosystem health. Animal experiments have indicated that exposure to nanoplastics (NPs) can deposit in the liver and contribute to hepatic injury. To explore the mechanisms of hepatotoxicity induced by polystyrene-NPs (PS-NPs), mice and AML-12 hepatocytes were exposed to different dosages of 20 nm PS-NPs in this study. The results illustrated that in vitro and in vivo exposure to PS-NPs triggered excessive production of reactive oxygen species and repressed nuclear factor erythroid-derived 2-like 2 (NRF2) antioxidant pathway and its downstream antioxidase expression, thus leading to hepatic oxidative stress. Moreover, PS-NPs elevated the levels of NLRP3, IL-1β and caspase-1 expression, along with an activation of NF-κB, suggesting that PS-NPs induced hepatocellular inflammatory injury. Nevertheless, the activaton of NRF2 signaling by tert-butylhydroquinone mitigated PS-NPs-caused oxidative stress and inflammation, and inbihited NLRP3 and caspase-1 expression. Conversely, the rescuing effect of NRF2 signal activation was dramatically supressed by treatment with NRF2 inhibitor brusatol. In summary, our results demonstrated that NRF2-NLRP3 pathway is involved in PS-NPs-aroused hepatotoxicity, and the activation of NRF2 signaling can protect against PS-NPs-evoked liver injury. These results provide novel insights into the hepatotoxicity elicited by NPs exposure.
Collapse
Affiliation(s)
- Yiqian Wen
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Shiyi Deng
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Binhui Wang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Fan Zhang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Tao Luo
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang 330031, China
| | - Haibin Kuang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Xiaodong Kuang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Yangyang Yuan
- Clinical Medical Experimental Center of Nanchang University, Nanchang 330031, China
| | - Jian Huang
- Clinical Medical Experimental Center of Nanchang University, Nanchang 330031, China
| | - Dalei Zhang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang 330006, China.
| |
Collapse
|
28
|
Tsochatzis ED, Gika H, Theodoridis G, Maragou N, Thomaidis N, Corredig M. Microplastics and nanoplastics: Exposure and toxicological effects require important analysis considerations. Heliyon 2024; 10:e32261. [PMID: 38882323 PMCID: PMC11180319 DOI: 10.1016/j.heliyon.2024.e32261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/18/2024] Open
Abstract
Microplastics (MPs) and nanoplastics (NPs) pervade both the environment and the food chain, originating from the degradation of plastic materials from various sources. Their ubiquitous presence raises concerns for ecosystem safety, as well as the health of animals and humans. While evidence suggests their infiltration into mammalian and human tissues and their association with several diseases, the precise toxicological effects remain elusive and require further investigation. MPs and NPs sample preparation and analytical methods are quite scattered without harmonized strategies to exist at the moment. A significant challenge lies in the limited availability of methods for the chemical characterization and quantification of these contaminants. MPs and NPs can undergo further degradation, driven by abiotic or biotic factors, resulting in the formation of cyclic or linear oligomers. These oligomers can serve as indicative markers for the presence or exposure to MPs and NPs. Moreover, recent finding concerning the aggregation of oligomers to form NPs, makes their analysis as markers very important. Recent advancements have led to the development of sensitive and robust analytical methods for identifying and (semi)quantifying these oligomers in environmental, food, and biological samples. These methods offer a valuable complementary approach for determining the presence of MPs and NPs and assessing their risk to human health and the environment.
Collapse
Affiliation(s)
- Emmanouil D Tsochatzis
- Department of Food Science, CiFOOD, Centre for Innovative Foods, Agro Food Park 48, Aarhus N, 8200, Denmark
- FoodOmicsGR Research Infrastructure, AUTh Node, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, GR 57001, Thessaloniki, Greece
| | - Helen Gika
- FoodOmicsGR Research Infrastructure, AUTh Node, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, GR 57001, Thessaloniki, Greece
- Biomic AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, GR 57001, Thessaloniki, Greece
- School of Medicine, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Georgios Theodoridis
- FoodOmicsGR Research Infrastructure, AUTh Node, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, GR 57001, Thessaloniki, Greece
- Biomic AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, GR 57001, Thessaloniki, Greece
- Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Niki Maragou
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771, Athens, Greece
| | - Nikolaos Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771, Athens, Greece
| | - Milena Corredig
- Department of Food Science, CiFOOD, Centre for Innovative Foods, Agro Food Park 48, Aarhus N, 8200, Denmark
| |
Collapse
|
29
|
Bauri S, Shekhar H, Sahoo H, Mishra M. Investigation of the effects of nanoplastic polyethylene terephthalate on environmental toxicology using model Drosophila melanogaster. Nanotoxicology 2024; 18:354-372. [PMID: 38958196 DOI: 10.1080/17435390.2024.2368004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 07/04/2024]
Abstract
Plastic pollution has become a major environmental concern, and various plastic polymers are used daily. A study was conducted to examine the toxic effects of polyethylene terephthalate (PET) nanoplastics (NPLs) on Drosophila melanogaster. We have successfully synthesized PET NPLs and characterized using DLS, Zeta potential, TEM, HRTEM, SAED, XRD, FTIR, and Raman spectroscopy to gain crucial insights into the structure and properties. We fed PET NPLs to Drosophila to assess toxicity. ROS was quantified using DCFH-DA and NBT, and the nuclear degradation was checked by DAPI staining. Quantification of protein and activity of antioxidant enzymes like SOD, catalase depicted the adverse consequences of PET NPLs exposure. The dorsal side of the abdomens, eyes, and wings were also defective when phenotypically analyzed. These results substantiate the genotoxic and cytotoxic impact of nanoplastics. Notably, behavioral observations encompassing larval crawling and climbing of adults exhibit normal patterns, excluding the presence of neurotoxicity. Adult Drosophila showed decreased survivability, and fat accumulation enhanced body weight. These findings contribute to unraveling the intricate mechanisms underlying nanoplastic toxicity and emphasize its potential repercussions for organismal health and ecological equilibrium.
Collapse
Affiliation(s)
- Samir Bauri
- Department of Life Science, Neural Developmental Biology Lab, National Institute of Technology, Rourkela, India
| | - Himanshu Shekhar
- Department of Chemistry, Biophysical and Protein Chemistry Lab, National Institute of Technology, Rourkela, India
| | - Harekrushna Sahoo
- Department of Chemistry, Biophysical and Protein Chemistry Lab, National Institute of Technology, Rourkela, India
| | - Monalisa Mishra
- Department of Life Science, Neural Developmental Biology Lab, National Institute of Technology, Rourkela, India
| |
Collapse
|
30
|
Kaur M, Sharma A, Bhatnagar P. Vertebrate response to microplastics, nanoplastics and co-exposed contaminants: Assessing accumulation, toxicity, behaviour, physiology, and molecular changes. Toxicol Lett 2024; 396:48-69. [PMID: 38677566 DOI: 10.1016/j.toxlet.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/16/2024] [Accepted: 04/12/2024] [Indexed: 04/29/2024]
Abstract
Pollution from microplastics (MPs) and nanoplastics (NPs) has gained significant public attention and has become a serious environmental problem worldwide. This review critically investigates MPs/NPs' ability to pass through biological barriers in vertebrate models and accumulate in various organs, including the brain. After accumulation, these particles can alter individuals' behaviour and exhibit toxic effects by inducing oxidative stress or eliciting an inflammatory response. One major concern is the possibility of transgenerational harm, in which toxic consequences are displayed in offspring who are not directly exposed to MPs/NPs. Due to their large and marked surface hydrophobicity, these particles can easily absorb and concentrate various environmental pollutants, which may increase their toxicity to individuals and subsequent generations. This review systematically provides an analysis of recent studies related to the toxic effects of MPs/NPs, highlighting the intricate interplay between co-contaminants in vitro and in vivo. We further delve into mechanisms of MPs/NPs-induced toxicity and provide an overview of potential therapeutic approaches to lessen the negative effects of these MPs/NPs. The review also emphasizes the urgency of future studies to examine the long-term effects of chronic exposure to MPs/NPs and their size- and type-specific hazardous dynamics, and devising approaches to safeguard the affected organisms.
Collapse
Affiliation(s)
- Manjyot Kaur
- Department of Zoology, IIS (deemed to be University), Jaipur, Rajasthan, India
| | - Anju Sharma
- Department of Zoology, IIS (deemed to be University), Jaipur, Rajasthan, India.
| | - Pradeep Bhatnagar
- Department of Zoology, IIS (deemed to be University), Jaipur, Rajasthan, India
| |
Collapse
|
31
|
Alijagic A, Suljević D, Fočak M, Sulejmanović J, Šehović E, Särndahl E, Engwall M. The triple exposure nexus of microplastic particles, plastic-associated chemicals, and environmental pollutants from a human health perspective. ENVIRONMENT INTERNATIONAL 2024; 188:108736. [PMID: 38759545 DOI: 10.1016/j.envint.2024.108736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024]
Abstract
The presence of microplastics (MPs) is increasing at a dramatic rate globally, posing risks for exposure and subsequent potential adverse effects on human health. Apart from being physical objects, MP particles contain thousands of plastic-associated chemicals (i.e., monomers, chemical additives, and non-intentionally added substances) captured within the polymer matrix. These chemicals are often migrating from MPs and can be found in various environmental matrices and human food chains; increasing the risks for exposure and health effects. In addition to the physical and chemical attributes of MPs, plastic surfaces effectively bind exogenous chemicals, including environmental pollutants (e.g., heavy metals, persistent organic pollutants). Therefore, MPs can act as vectors of environmental pollution across air, drinking water, and food, further amplifying health risks posed by MP exposure. Critically, fragmentation of plastics in the environment increases the risk for interactions with cells, increases the presence of available surfaces to leach plastic-associated chemicals, and adsorb and transfer environmental pollutants. Hence, this review proposes the so-called triple exposure nexus approach to comprehensively map existing knowledge on interconnected health effects of MP particles, plastic-associated chemicals, and environmental pollutants. Based on the available data, there is a large knowledge gap in regard to the interactions and cumulative health effects of the triple exposure nexus. Each component of the triple nexus is known to induce genotoxicity, inflammation, and endocrine disruption, but knowledge about long-term and inter-individual health effects is lacking. Furthermore, MPs are not readily excreted from organisms after ingestion and they have been found accumulated in human blood, cardiac tissue, placenta, etc. Even though the number of studies on MPs-associated health impacts is increasing rapidly, this review underscores that there is a pressing necessity to achieve an integrated assessment of MPs' effects on human health in order to address existing and future knowledge gaps.
Collapse
Affiliation(s)
- Andi Alijagic
- Man-Technology-Environment Research Center (MTM), Örebro University, SE-701 82 Örebro, Sweden; Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, SE-701 82 Örebro, Sweden; School of Medical Sciences, Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden.
| | - Damir Suljević
- Department of Biology, Faculty of Science, University of Sarajevo, 71 000, Sarajevo, Bosnia and Herzegovina
| | - Muhamed Fočak
- Department of Biology, Faculty of Science, University of Sarajevo, 71 000, Sarajevo, Bosnia and Herzegovina
| | - Jasmina Sulejmanović
- Department of Chemistry, Faculty of Science, University of Sarajevo, 71 000, Sarajevo, Bosnia and Herzegovina
| | - Elma Šehović
- Department of Chemistry, Faculty of Science, University of Sarajevo, 71 000, Sarajevo, Bosnia and Herzegovina
| | - Eva Särndahl
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, SE-701 82 Örebro, Sweden; School of Medical Sciences, Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden
| | - Magnus Engwall
- Man-Technology-Environment Research Center (MTM), Örebro University, SE-701 82 Örebro, Sweden
| |
Collapse
|
32
|
Latwal M, Arora S, Murthy KSR. Data driven AI (artificial intelligence) detection furnish economic pathways for microplastics. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 264:104365. [PMID: 38776560 DOI: 10.1016/j.jconhyd.2024.104365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/18/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024]
Abstract
Microplastics pollution is killing human life, contaminating our oceans, and lasting for longer in the environment than it is used. Microplastics have contaminated the geochemistry and turned the water system into trash barrel. Its detection in water is easy in comparison to soil and air so the attention of researchers is focused on it for now. Being very small in size, microplastics can easily cross the water filtration system and end up in the ocean or lakes and become the prospective challenge to aquatic life. This review piece provides the hot research theme and current advances in the field of microplastics and their eradication through the virtual world of artificial intelligence (AI) because Microplastics have confrontation with clean water tactics.
Collapse
Affiliation(s)
- Mamta Latwal
- Department of Chemistry, University of Petroleum and Energy Studies, Dehradun, UK, India
| | - Shefali Arora
- Department of Chemistry, University of Petroleum and Energy Studies, Dehradun, UK, India.
| | - K S R Murthy
- Department of Chemistry, University of Petroleum and Energy Studies, Dehradun, UK, India
| |
Collapse
|
33
|
Sheng S, Han N, Wei Y, Wang J, Han W, Xing B, Xing M, Zhang W. Liver Injury Induced by Exposure to Polystyrene Microplastics Alone or in Combination with Cadmium in Mice Is Mediated by Oxidative Stress and Apoptosis. Biol Trace Elem Res 2024; 202:2170-2183. [PMID: 37736782 DOI: 10.1007/s12011-023-03835-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/28/2023] [Indexed: 09/23/2023]
Abstract
Microplastics (MPs) have been considered an emerging environmental pollutant which, when combined with toxic metals, enter the circulatory system of mammals and eventually cause damage. Therefore, it is important to study the toxicity of the mixture of MPs and heavy metals for evaluating risk assessment of mammals. In the present study, the toxicological effects of different concentrations of polystyrene (PS)-MPs alone or in combination with cadmium chloride (CdCl2) during chronic exposure (8 weeks) were evaluated using intragastric administration in mice. Using comparative analysis, it was revealed that PS-MPs alone or in combination with Cd could destroy the normal structural morphology of liver tissue and increase the levels of two biochemical indicators of liver damage, thereby inducing changes in antioxidant and hyperoxide capacities. In addition, PS-MPs and/or Cd activated the antioxidant signaling pathway Nrf2-Keap1 and affected the endogenous apoptosis signaling pathway p53-Bcl-2/Bax, thus promoting apoptosis. These findings suggested that exposure to MPs alone or in combination with Cd led to adverse effects on the liver. Furthermore, it was revealed that co-exposure to MPs and Cd reduced Cd toxicity, thereby highlighting the possibility MPs may act as carriers of other toxic substances and coordinate with them. Therefore, evaluating the synergistic or anti-agonistic effects of MPs on the toxicity and bioavailability of xenobiotics is in the future critical in environmental toxicological studies.
Collapse
Affiliation(s)
- Shuai Sheng
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Ningxin Han
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Yufeng Wei
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Jinghan Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Wei Han
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Boyu Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China.
| | - Wen Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China.
- Key Laboratory of Wildlife Diseases and Biosecurity Management, Harbin, 150040, Heilongjiang, People's Republic of China.
| |
Collapse
|
34
|
Ye J, Ren Y, Dong Y, Fan D. Understanding the impact of nanoplastics on reproductive health: Exposure pathways, mechanisms, and implications. Toxicology 2024; 504:153792. [PMID: 38554767 DOI: 10.1016/j.tox.2024.153792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/28/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
Microplastic pollution is a pressing global environmental concern with particular urgency surrounding the issue of nanoplastic particles. Plastic products exhibit a remarkable persistence in natural ecosystems, resisting easy degradation. Nanoplastics, characterized by their diminutive size, possess distinct properties when compared to their larger counterparts, which could potentially render them more ecologically detrimental. Microplastics themselves serve as carriers for toxic and hazardous substances, such as plastic additives, that enter and persist in the environmental cycle. Importantly, nanoplastics exhibit enhanced bioavailability upon entering the food chain. Notably, studies have demonstrated the adverse effects of nanoplastics on the reproductive function of aquatic organisms, and evidence of micro- and nanoplastics have emerged within human reproductive organs, including the placenta. However, a knowledge gap persists regarding the impacts of nanoplastics on the reproductive systems of mammals and, indeed, humans. This paper aims to elucidate the less frequently discussed sources and distribution of nanoplastics in the environment, along with the pathways of human exposure. We also emphasize the extent to which nanoplastics accumulate within the reproductive systems of organisms. Subsequently, we present an in-depth analysis of the effects of nanoplastics and their associated contaminants on mammalian and human reproductive health. The mechanisms through which nanoplastics contribute to reproductive disorders are comprehensively explored, highlighting their potential to disrupt endocrine levels in mammals and humans. Additionally, we scrutinize and discuss studies on biotoxicity of nanoplastics, offering insights into potential areas for future research.
Collapse
Affiliation(s)
- Jingfan Ye
- Key Laboratory of Shale Gas and Geological Engineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China; Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yun Ren
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Yanhui Dong
- Key Laboratory of Shale Gas and Geological Engineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China; Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Dongwei Fan
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China; Beijing Key Laboratory of Spinal Disease Research, Beijing, China; Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China.
| |
Collapse
|
35
|
Cary CM, Fournier SB, Adams S, Wang X, Yurkow EJ, Stapleton PA. Single pulmonary nanopolystyrene exposure in late-stage pregnancy dysregulates maternal and fetal cardiovascular function. Toxicol Sci 2024; 199:149-159. [PMID: 38366927 PMCID: PMC11057520 DOI: 10.1093/toxsci/kfae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2024] Open
Abstract
Large-scale production and waste of plastic materials have resulted in widespread environmental contamination by the breakdown product of bulk plastic materials to micro- and nanoplastics (MNPs). The small size of these particles enables their suspension in the air, making pulmonary exposure inevitable. Previous work has demonstrated that xenobiotic pulmonary exposure to nanoparticles during gestation leads to maternal vascular impairments, as well as cardiovascular dysfunction within the fetus. Few studies have assessed the toxicological consequences of maternal nanoplastic (NP) exposure; therefore, the objective of this study was to assess maternal and fetal health after a single maternal pulmonary exposure to polystyrene NP in late gestation. We hypothesized that this acute exposure would impair maternal and fetal cardiovascular function. Pregnant rats were exposed to nanopolystyrene on gestational day 19 via intratracheal instillation. 24 h later, maternal and fetal health outcomes were evaluated. Cardiovascular function was assessed in dams using vascular myography ex vivo and in fetuses in vivo function was measured via ultrasound. Both fetal and placental weight were reduced after maternal exposure to nanopolystyrene. Increased heart weight and vascular dysfunction in the aorta were evident in exposed dams. Maternal exposure led to vascular dysfunction in the radial artery of the uterus, a resistance vessel that controls blood flow to the fetoplacental compartment. Function of the fetal heart, fetal aorta, and umbilical artery after gestational exposure was dysregulated. Taken together, these data suggest that exposure to NPs negatively impacts maternal and fetal health, highlighting the concern of MNPs exposure on pregnancy and fetal development.
Collapse
Affiliation(s)
- C M Cary
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| | - S B Fournier
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey 08854, USA
| | - S Adams
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
| | - X Wang
- Molecular Imaging Core, Rutgers University, Piscataway, New Jersey 08854, USA
| | - E J Yurkow
- Molecular Imaging Core, Rutgers University, Piscataway, New Jersey 08854, USA
| | - P A Stapleton
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854, USA
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey 08854, USA
| |
Collapse
|
36
|
Ye J, Qiu W, Pang X, Su Y, Zhang X, Huang J, Xie H, Liao J, Tang Z, Chen Z, Li F, Xiong Z, Su R. Polystyrene nanoplastics and cadmium co-exposure aggravated cardiomyocyte damage in mice by regulating PANoptosis pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123713. [PMID: 38462200 DOI: 10.1016/j.envpol.2024.123713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/30/2023] [Accepted: 03/03/2024] [Indexed: 03/12/2024]
Abstract
Micro/nanoplastics (M/NPs) are the novel contaminants ubiquitous in the environment. Cadmium (Cd), a kind of heavy metal pollutant widely distributed, could potentially co-exist with PS-NPs in the environment. However, their combined effects on cardiomyocyte and its molecular mechanism in mammals remained ambiguous. Here, we examined whether PANoptosis, an emerging and complicated kind of programmed cell death, was involved in PS-NPs and Cd co-exposure-elicited cardiac injury. In this study, 60 male mice were orally subjected to environmentally relevant concentrations of PS-NPs (1 mg/kg) and/or CdCl2 (1.5 mg/kg) for 35 days. As we speculated, PS-NPs and Cd co-exposure affected the expression of pyroptosis(Caspase-1, Cleaved-Caspase-1, GSDMD, N-GSDMD, AIM2, Pyrin, NLRP3, IL-18, IL-1β)-, apoptosis(Caspase-3, Cleaved-Caspase-3, Caspase-8, Cleaved-Caspase-8, Caspase-7, BAX)- and necroptosis (t-RIPK3, p-RIPK3, t-RIPK1, p-RIPK1, t-MLKL, p-MLKL, ZBP1)-related genes and protein, resulting in growth restriction and damaged myocardial microstructure in mice. Notably, the combined effects on Cd and PS-NPs even predominantly aggravated the toxic damage. Intriguingly, we fortuitously discovered PS-NPs and/or Cd exposure facilitated linear ubiquitination of certain proteins in mice myocardium. In summation, this study shed light toward the effects of Cd and PS-NPs on cardiotoxicity, advanced the understanding of myocardial PANoptosis and provided a scientific foundation for further exploration of the combined toxicological effects of PS-NPs and heavy metals.
Collapse
Affiliation(s)
- Jiali Ye
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Wenyue Qiu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiaoyue Pang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yiman Su
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xinting Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jianjia Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Haoming Xie
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zefeng Chen
- Department of Cardiovascular Medicine, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou City, Guangdong Province, China
| | - Fei Li
- Department of Cardiovascular Medicine, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou City, Guangdong Province, China
| | - Zhaojun Xiong
- Department of Cardiovascular Medicine, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou City, Guangdong Province, China
| | - Rongsheng Su
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
37
|
Fan J, Liu L, Lu Y, Chen Q, Fan S, Yang Y, Long Y, Liu X. Acute exposure to polystyrene nanoparticles promotes liver injury by inducing mitochondrial ROS-dependent necroptosis and augmenting macrophage-hepatocyte crosstalk. Part Fibre Toxicol 2024; 21:20. [PMID: 38610056 PMCID: PMC11010371 DOI: 10.1186/s12989-024-00578-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 03/14/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND The global use of plastic materials has undergone rapid expansion, resulting in the substantial generation of degraded and synthetic microplastics and nanoplastics (MNPs), which have the potential to impose significant environmental burdens and cause harmful effects on living organisms. Despite this, the detrimental impacts of MNPs exposure towards host cells and tissues have not been thoroughly characterized. RESULTS In the present study, we have elucidated a previously unidentified hepatotoxic effect of 20 nm synthetic polystyrene nanoparticles (PSNPs), rather than larger PS beads, by selectively inducing necroptosis in macrophages. Mechanistically, 20 nm PSNPs were rapidly internalized by macrophages and accumulated in the mitochondria, where they disrupted mitochondrial integrity, leading to heightened production of mitochondrial reactive oxygen species (mtROS). This elevated mtROS generation essentially triggered necroptosis in macrophages, resulting in enhanced crosstalk with hepatocytes, ultimately leading to hepatocyte damage. Additionally, it was demonstrated that PSNPs induced necroptosis and promoted acute liver injury in mice. This harmful effect was significantly mitigated by the administration of a necroptosis inhibitor or systemic depletion of macrophages prior to PSNPs injection. CONCLUSION Collectively, our study suggests a profound toxicity of environmental PSNP exposure by triggering macrophage necroptosis, which in turn induces hepatotoxicity via intercellular crosstalk between macrophages and hepatocytes in the hepatic microenvironment.
Collapse
Affiliation(s)
- Junjie Fan
- Department of Laboratory and Blood Transfusion of Jiangbei Campus, The First Affiliated Hospital of Army Medical University (The 958th hospital of Chinese People's Liberation Army), 400000, Chongqing, China
| | - Li Liu
- Department of Laboratory and Blood Transfusion of Jiangbei Campus, The First Affiliated Hospital of Army Medical University (The 958th hospital of Chinese People's Liberation Army), 400000, Chongqing, China
| | - Yongling Lu
- Medical Research Center, Southwest Hospital, Army Military Medical University, 400038, Chongqing, China
| | - Qian Chen
- Medical Research Center, Southwest Hospital, Army Military Medical University, 400038, Chongqing, China
| | - Shijun Fan
- Medical Research Center, Southwest Hospital, Army Military Medical University, 400038, Chongqing, China
| | - Yongjun Yang
- Medical Research Center, Southwest Hospital, Army Military Medical University, 400038, Chongqing, China
| | - Yupeng Long
- Department of Laboratory and Blood Transfusion of Jiangbei Campus, The First Affiliated Hospital of Army Medical University (The 958th hospital of Chinese People's Liberation Army), 400000, Chongqing, China.
| | - Xin Liu
- Medical Research Center, Southwest Hospital, Army Military Medical University, 400038, Chongqing, China.
| |
Collapse
|
38
|
Fontes BLM, de Souza E Souza LC, da Silva de Oliveira APS, da Fonseca RN, Neto MPC, Pinheiro CR. The possible impacts of nano and microplastics on human health: lessons from experimental models across multiple organs. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2024:1-35. [PMID: 38517360 DOI: 10.1080/10937404.2024.2330962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
The widespread production and use of plastics have resulted in accumulation of plastic debris in the environment, gradually breaking down into smaller particles over time. Nano-plastics (NPs) and microplastics (MPs), defined as particles smaller than 100 nanometers and 5 millimeters, respectively, raise concerns due to their ability to enter the human body through various pathways including ingestion, inhalation, and skin contact. Various investigators demonstrated that these particles may produce physical and chemical damage to human cells, tissues, and organs, disrupting cellular processes, triggering inflammation and oxidative stress, and impacting hormone and neurotransmitter balance. In addition, micro- and nano-plastics (MNPLs) may carry toxic chemicals and pathogens, exacerbating adverse effects on human health. The magnitude and nature of these effects are not yet fully understood, requiring further research for a comprehensive risk assessment. Nevertheless, evidence available suggests that accumulation of these particles in the environment and potential human uptake are causes for concern. Urgent measures to reduce plastic pollution and limit human exposure to MNPLs are necessary to safeguard human health and the environment. In this review, current knowledge regarding the influence of MNPLs on human health is summarized, including toxicity mechanisms, exposure pathways, and health outcomes across multiple organs. The critical need for additional research is also emphasized to comprehensively assess potential risks posed by degradation of MNPLs on human health and inform strategies for addressing this emerging environmental health challenge. Finally, new research directions are proposed including evaluation of gene regulation associated with MNPLs exposure.
Collapse
Affiliation(s)
- Bernardo Lannes Monteiro Fontes
- Laboratório Integrado de Ciências Morfofuncionais (LICM), Instituto de Sustentabilidade e Biodiversidade (NUPEM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lorena Cristina de Souza E Souza
- Laboratório Integrado de Ciências Morfofuncionais (LICM), Instituto de Sustentabilidade e Biodiversidade (NUPEM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Paula Santos da Silva de Oliveira
- Núcleo Multidisciplinar de Pesquisas em Biologia - NUMPEX-BIO, Campus Duque de Caxias Geraldo Cidade, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Duque de Caxias, Brazil
| | - Rodrigo Nunes da Fonseca
- Laboratório Integrado de Ciências Morfofuncionais (LICM), Instituto de Sustentabilidade e Biodiversidade (NUPEM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marinaldo Pacifico Cavalcanti Neto
- Laboratório Integrado de Ciências Morfofuncionais (LICM), Instituto de Sustentabilidade e Biodiversidade (NUPEM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cintia Rodrigues Pinheiro
- Laboratório Integrado de Ciências Morfofuncionais (LICM), Instituto de Sustentabilidade e Biodiversidade (NUPEM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
39
|
Zeng G, Li J, Wang Y, Su J, Lu Z, Zhang F, Ding W. Polystyrene microplastic-induced oxidative stress triggers intestinal barrier dysfunction via the NF-κB/NLRP3/IL-1β/MCLK pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123473. [PMID: 38301820 DOI: 10.1016/j.envpol.2024.123473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/17/2024] [Accepted: 01/30/2024] [Indexed: 02/03/2024]
Abstract
Emerging evidence has demonstrated the association between microplastics (MPs) with a diameter of <5 mm and the risk of intestinal diseases. However, the molecular mechanisms contributing to MP-induced intestinal barrier dysfunction have not been fully appreciated. In this study, C57BL/6 J mice were exposed to polystyrene microplastics (PS-MPs, 0.2, 1 or 5 μm) at 1 mg/kg body weight daily by oral gavage for 28 days. We found that PS-MPs exposure induced oxidative stress and inflammatory cell infiltration in mice colon, leading to an increased expression of pro-inflammatory cytokine. Moreover, there were an increase in intestinal permeability and decrease in mucus secretion, accompanied by downregulation of tight junction (TJ)-related zonula occluden-1 (ZO-1), occluding (OCLN) and claudin-1 (CLDN-1) in mice colon. Especially, 5 μm PS-MPs (PS5)-induced intestinal epithelial TJ barrier damage was more severe than 0.2 μm PS-MPs (PS0.2) and 1 μm PS-MPs (PS1). In vitro experiments indicated that PS5-induced oxidative stress upregulated the expression of nuclear factor kappa B (NF-κB), nucleotide-binding domain and leucine-rich repeat protein 3 (NLRP3) inflammasome, and myosin light chain kinase (MLCK). Meanwhile, pre-treatment with the antioxidant NAC, NLRP3 inhibitor MCC950 and MLCK inhibitor ML-7 considerably reduced PS5-triggered reactive oxygen species (ROS) production and inflammatory response, inhibited the activation of the NF-κB/NLRP3/MLCK pathway, and upregulated ZO-1, OCLN and CLDN-1 expression in Caco-2 cells. Taken together, our study demonstrated that PS-MPs cause intestinal barrier dysfunction through the ROS-dependent NF-κB/NLRP3/IL-1β/MLCK pathway.
Collapse
Affiliation(s)
- Guodong Zeng
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingyi Li
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuanli Wang
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingran Su
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhongbing Lu
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fang Zhang
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenjun Ding
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
40
|
Sabnis N, Raut S, Nagarajan B, Kapic A, Dossou AS, Lothstein L, Fudala R, Bunnell BA, Lacko AG. A Spontaneous Assembling Lipopeptide Nanoconjugate Transporting the Anthracycline Drug N-Benzyladriamycin-14-valerate for Personalized Therapy of Ewing Sarcoma. Bioconjug Chem 2024; 35:187-202. [PMID: 38318778 DOI: 10.1021/acs.bioconjchem.3c00429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
To meet the current need for a tumor-selective, targeted therapy regimen associated with reduced toxicity, our laboratory has developed a spontaneously assembled nanostructure that resembles high-density lipoproteins (HDLs). These myristoyl-5A (MYR-5A) nanotransporters are designed to safely transport lipophilic pharmaceuticals, including a novel anthracycline drug (N-benzyladriamycin-14-valerate (AD198)). This formulation has been found to enhance the therapeutic efficacy and reduced toxicity of drugs in preclinical studies of 2D and 3D models of Ewing sarcoma (EWS) and cardiomyocytes. Our findings indicate that the MYR-5A/AD198 nanocomplex delivers its payload selectively to cancer cells via the scavenger receptor type B1 (SR-B1), thus providing a solid proof of concept for the development of an improved and highly effective, potentially personalized therapy for EWS while protecting against treatment-associated cardiotoxicity.
Collapse
Affiliation(s)
- Nirupama Sabnis
- Lipoprotein Drug Delivery Research Laboratory, Department of Microbiology, Immunology & Genetics, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | - Sangram Raut
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | - Bhavani Nagarajan
- North Texas Research Eye Institute, Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | - Ammar Kapic
- Lipoprotein Drug Delivery Research Laboratory, Department of Microbiology, Immunology & Genetics, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | - Akpedje Serena Dossou
- Lipoprotein Drug Delivery Research Laboratory, Department of Microbiology, Immunology & Genetics, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | - Leonard Lothstein
- Department of Pathology and Laboratory Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee 38103, United States
| | - Rafal Fudala
- Lipoprotein Drug Delivery Research Laboratory, Department of Microbiology, Immunology & Genetics, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | - Bruce A Bunnell
- Lipoprotein Drug Delivery Research Laboratory, Department of Microbiology, Immunology & Genetics, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | - Andras G Lacko
- Lipoprotein Drug Delivery Research Laboratory, Department of Microbiology, Immunology & Genetics, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| |
Collapse
|
41
|
Sun R, Liu M, Xiong F, Xu K, Huang J, Liu J, Wang D, Pu Y. Polystyrene micro- and nanoplastics induce gastric toxicity through ROS mediated oxidative stress and P62/Keap1/Nrf2 pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169228. [PMID: 38101634 DOI: 10.1016/j.scitotenv.2023.169228] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
Microplastics (MPs) exist widely in the environment and can enter the human body indirectly through the food chain or directly through inhalation or ingestion. The primary organ that MPs contaminated food or water enters the human body through the digestive tract is the stomach. However, at present, the effects of MPs on the stomach and the related mechanism remain unclear. In this study, our results indicated that 50 nm and 250 nm polystyrene MPs (PS-MPs) at environmental related dose significantly decreased stomach organ coefficient, inhibited gastric juice secretion and mucus secretion, disrupted gastric barrier function and suppressed antioxidant ability in mice. In vitro experiments showed that PS-MPs inhibited cell viability, increased ROS generation, and induced apoptosis through mitochondria-dependent pathway. Simultaneously, PS-MPs also decreased mitochondrial membrane potential, ATP level, disrupted mitochondrial kinetic homeostasis, and activated P62 / Nrf2 / Keap1 pathway. Furthermore, blocking ROS (NAC) partially alleviated ROS and apoptosis caused by PS-MPs. Based on above findings, the potential adverse outcome pathway (AOP) of PS-MPs-caused gastric toxicity was proposed which provides a new insight into the risk assessment of MP related gastric damage. Our study unveils the gastric injury induced by PS MPs is dependent on ROS - mediated P62 / Nrf2 / Keap1 signaling pathway, and provides scientific basis for further exploration the mechanism of gastric toxicity of PS MPs.
Collapse
Affiliation(s)
- Rongli Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China.
| | - Manman Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Fei Xiong
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Kai Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Jiawei Huang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Jinyan Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Daqin Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| |
Collapse
|
42
|
Ding R, Chen Y, Shi X, Li Y, Yu Y, Sun Z, Duan J. Size-dependent toxicity of polystyrene microplastics on the gastrointestinal tract: Oxidative stress related-DNA damage and potential carcinogenicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169514. [PMID: 38135073 DOI: 10.1016/j.scitotenv.2023.169514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/16/2023] [Accepted: 12/17/2023] [Indexed: 12/24/2023]
Abstract
Microplastics (MPs) and nanoplastics (NPs) have been generally regarded as emerging pollutants and received worldwide attention in recent years. Water and food consumption are the primary pathways for human exposure to MPs/NPs, thus gastrointestinal tracts may be susceptible to their toxicity. Although the recent report has indicated the presence of MPs/NPs in multiple human organs, little is known about their gastric effects. Therefore, this study focused on the adverse effects of polystyrene microplastics (PS-MPs) on gastric epithelium in vivo and in vitro. Surface-enhanced Raman spectroscopy (SERS) revealed the distribution of PS-MPs was associated with their particle sizes, and predominantly concentrated in gastric tissues. Gastric barrier injury and mitochondrial damage were observed in rats after exposure to PS-MPs. Compared with the larger ones, polystyrene nanoplastics (PS-NPs) more significantly reduced the activity of antioxidant enzymes while enhancing the level of MDA, 8-OhdG and γ-H2AX. Meanwhile, PS-MPs caused upregulation of β-catenin/YAP through redox-dependent regulation of nucleoredoxin (NXN) and dishevelled (Dvl). These findings supported the size-dependent effects of PS-MPs on oxidative stress and DNA damage. Moreover, the redox-dependent activation of the β-catenin/YAP cascade suggested a novel toxic mechanism for PS-MPs and implied the potential carcinogenic effects.
Collapse
Affiliation(s)
- Ruiyang Ding
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Yueyue Chen
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Xuemin Shi
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Yang Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Yang Yu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
43
|
Wu Y, Li L, Tang L, Peijnenburg W, Zhang H, Xie D, Geng R, Zheng T, Bi L, Wei X, Chae HJ, Wang L, Zhao L, Li B, Zheng Q. Ototoxicity of polystyrene nanoplastics in mice, HEI-OC1 cells and zebrafish. Front Mol Neurosci 2024; 17:1345536. [PMID: 38440220 PMCID: PMC10909942 DOI: 10.3389/fnmol.2024.1345536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/17/2024] [Indexed: 03/06/2024] Open
Abstract
Polystyrene nanoplastics are a novel class of pollutants. They are easily absorbed by living organisms, and their potential toxicity has raised concerns. However, the impact of polystyrene nanoplastics on auditory organs remains unknown. Here, our results showed that polystyrene nanoplastics entered the cochlea of mice, HEI-OC1 cells, and lateral line hair cells of zebrafish, causing cellular injury and increasing apoptosis. Additionally, we found that exposure to polystyrene nanoplastics resulted in a significant elevation in the auditory brainstem response thresholds, a loss of auditory sensory hair cells, stereocilia degeneration and a decrease in expression of Claudin-5 and Occludin proteins at the blood-lymphatic barrier in mice. We also observed a significant decrease in the acoustic alarm response of zebrafish after exposure to polystyrene nanoplastics. Mechanistic analysis revealed that polystyrene nanoplastics induced up-regulation of the Nrf2/HO-1 pathway, increased levels of malondialdehyde, and decreased superoxide dismutase and catalase levels in cochlea and HEI-OC1 cells. Furthermore, we observed that the expression of ferroptosis-related indicators GPX4 and SLC7A11 decreased as well as increased expression of ACLS4 in cochlea and HEI-OC1 cells. This study also revealed that polystyrene nanoplastics exposure led to increased expression of the inflammatory factors TNF-α, IL-1β and COX2 in cochlea and HEI-OC1 cells. Further research found that the cell apoptosis, ferroptosis and inflammatory reactions induced by polystyrene nanoplastics in HEI-OC1 cells was reversed through the pretreatment with N-acetylcysteine, a reactive oxygen species inhibitor. Overall, our study first discovered and systematically revealed the ototoxicity of polystyrene nanoplastics and its underlying mechanism.
Collapse
Affiliation(s)
- Yuancheng Wu
- Hearing and Speech Rehabilitation Institute, Binzhou Medical University, Yantai, China
| | - Lianzhen Li
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao, China
| | - Lihuan Tang
- Hearing and Speech Rehabilitation Institute, Binzhou Medical University, Yantai, China
| | - Willie Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, Leiden, Netherlands
- National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, Bilthoven, Netherlands
| | - Huangruici Zhang
- Hearing and Speech Rehabilitation Institute, Binzhou Medical University, Yantai, China
| | - Daoli Xie
- Hearing and Speech Rehabilitation Institute, Binzhou Medical University, Yantai, China
| | - Ruishuang Geng
- Hearing and Speech Rehabilitation Institute, Binzhou Medical University, Yantai, China
| | - Tihua Zheng
- Hearing and Speech Rehabilitation Institute, Binzhou Medical University, Yantai, China
| | - Liyan Bi
- Hearing and Speech Rehabilitation Institute, Binzhou Medical University, Yantai, China
| | - Xiaodan Wei
- Department of Pathology, School of Basic Medicine, Binzhou Medical University, Yantai, China
| | - Han-jung Chae
- School of Pharmacy, Jeonbuk National University, Jeonju, Republic of Korea
| | - Lan Wang
- Hearing and Speech Rehabilitation Institute, Binzhou Medical University, Yantai, China
| | - Li Zhao
- Hearing and Speech Rehabilitation Institute, Binzhou Medical University, Yantai, China
| | - Bo Li
- Hearing and Speech Rehabilitation Institute, Binzhou Medical University, Yantai, China
| | - Qingyin Zheng
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
44
|
Wan S, Wang X, Chen W, Xu Z, Zhao J, Huang W, Wang M, Zhang H. Polystyrene Nanoplastics Activate Autophagy and Suppress Trophoblast Cell Migration/Invasion and Migrasome Formation to Induce Miscarriage. ACS NANO 2024; 18:3733-3751. [PMID: 38252510 DOI: 10.1021/acsnano.3c11734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Nanoplastics (NPs), as emerging pollutants, have attracted global attention. Nevertheless, the adverse effects of NPs on female reproductive health, especially unexplained miscarriage, are poorly understood. Defects of trophoblast cell migration and invasion are associated with miscarriage. Migrasomes were identified as cellular organelles with largely unidentified functions. Whether NPs might affect migration, invasion, and migrasome formation and induce miscarriage has been completely unexplored. In this study, we selected polystyrene nanoplastics (PS-NPs, 50 nm) as a model of plastic particles and treated human trophoblast cells and pregnant mice with PS-NPs at doses near the actual environmental exposure doses of plastic particles in humans. We found that exposure to PS-NPs induced a pregnant mouse miscarriage. PS-NPs suppressed ROCK1-mediated migration/invasion and migrasome formation. SOX2 was identified as the transcription factor of ROCK1. PS-NPs activated autophagy and promoted the autophagy degradation of SOX2, thus suppressing SOX2-mediated ROCK1 transcription. Supplementing with murine SOX2 or ROCK1 could efficiently rescue migration/invasion and migrasome formation and alleviate miscarriage. Analysis of the protein levels of SOX2, ROCK1, TSPAN4, NDST1, P62, and LC-3BII/I in PS-NP-exposed trophoblast cells, villous tissues of unexplained miscarriage patients, and placental tissues of PS-NP-exposed mice gave consistent results. Collectively, this study revealed the reproductive toxicity of nanoplastics and their potential regulatory mechanism, indicating that NP exposure is a risk factor for female reproductive health.
Collapse
Affiliation(s)
- Shukun Wan
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoqing Wang
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Weina Chen
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Zhongyan Xu
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Jingsong Zhao
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Wenxin Huang
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Manli Wang
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Huidong Zhang
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| |
Collapse
|
45
|
Zhang Y, Jia Z, Gao X, Zhao J, Zhang H. Polystyrene nanoparticles induced mammalian intestine damage caused by blockage of BNIP3/NIX-mediated mitophagy and gut microbiota alteration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168064. [PMID: 37884137 DOI: 10.1016/j.scitotenv.2023.168064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 10/01/2023] [Accepted: 10/21/2023] [Indexed: 10/28/2023]
Abstract
Nanoplastics possess the capacity for cellular internalization, and consequentially disrupt mitochondrial functionality, precipitating aberrations in energy metabolism. Given this, the potential accumulation of nanoplastics in alimentary sources presents a considerable hazard to the mammalian gastrointestinal system. While mitophagy serves as a cytoprotective mechanism that sustains redox homeostasis through the targeted removal of compromised mitochondria, the regulatory implications of mitophagy in nanoplastic-induced toxicity remain an underexplored domain. In the present investigation, polystyrene (PS) nanoparticles, with a diameter of 80 nm employed as a representative model to assess their toxicological impact and propensity to instigate mitophagy in intestinal cells both in vitro and in vivo. Data indicated that PS nanoparticles elicited BNIP3/NIX-mediated mitophagy within the intestinal milieu. Strikingly, the impediment of this degradation process at elevated concentrations was correlated with exacerbated pathological ramifications. In vitro assays corroborated that high-dosage cellular uptake of PS nanoparticles obstructed the mitophagy pathway. Furthermore, treatment with PS nanoparticles engendered alterations in gut microbiota composition and manifested a proclivity to modulate nutritional metabolism. Collectively, these findings elucidate that oral exposure to PS nanoparticles culminates in the inhibition of mitophagy and induces perturbations in the intestinal microbiota. This contributes valuable insights into the toxicological repercussions of nanoplastics on mammalian gastrointestinal health.
Collapse
Affiliation(s)
- Yilun Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan, Shandong 250014, China
| | - Zhenzhen Jia
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan, Shandong 250014, China
| | - Xianlei Gao
- Department of Orthopedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Juan Zhao
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan, Shandong 250014, China
| | - Hongyan Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan, Shandong 250014, China.
| |
Collapse
|
46
|
Dehghanian Z, Asgari Lajayer B, Biglari Quchan Atigh Z, Nayeri S, Ahmadabadi M, Taghipour L, Senapathi V, Astatkie T, Price GW. Micro (nano) plastics uptake, toxicity and detoxification in plants: Challenges and prospects. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115676. [PMID: 37979355 DOI: 10.1016/j.ecoenv.2023.115676] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/05/2023] [Accepted: 11/09/2023] [Indexed: 11/20/2023]
Abstract
Plastic pollution has emerged as a global challenge affecting ecosystem health and biodiversity conservation. Terrestrial environments exhibit significantly higher plastic concentrations compared to aquatic systems. Micro/nano plastics (MNPs) have the potential to disrupt soil biology, alter soil properties, and influence soil-borne pathogens and roundworms. However, limited research has explored the presence and impact of MNPs on aquaculture systems. MNPs have been found to inhibit plant and seedling growth and affect gene expression, leading to cytogenotoxicity through increased oxygen radical production. The article discusses the potential phytotoxicity process caused by large-scale microplastics, particularly those unable to penetrate cell pores. It also examines the available data, albeit limited, to assess the potential risks to human health through plant uptake.
Collapse
Affiliation(s)
- Zahra Dehghanian
- Department of Biotechnology, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz, Iran.
| | | | - Zahra Biglari Quchan Atigh
- Department of Civil Engineering and Smart Cities, College of Engineering, Shantou University, Shantou, Guangdong 515063, China.
| | - Shahnoush Nayeri
- SP-Lab., ASEPE Company, Industrial Park of Advanced Technologies, Tabriz, Iran.
| | - Mohammad Ahmadabadi
- Department of Biotechnology, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz, Iran.
| | - Leila Taghipour
- Department of Horticultural Science, College of Agriculture, Jahrom University, PO Box: 74135-111, Jahrom, Iran.
| | | | - Tess Astatkie
- Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada.
| | - G W Price
- Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada.
| |
Collapse
|
47
|
Qiao D, Zhang T, Tang M. Autophagy regulation by inorganic, organic, and organic/inorganic hybrid nanoparticles: Organelle damage, regulation factors, and potential pathways. J Biochem Mol Toxicol 2023; 37:e23429. [PMID: 37409715 DOI: 10.1002/jbt.23429] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 03/30/2023] [Accepted: 06/12/2023] [Indexed: 07/07/2023]
Abstract
The rapid development of nanotechnology requires a more thorough understanding of the potential health effects caused by nanoparticles (NPs). As a programmed cell death, autophagy is one of the biological effects induced by NPs, which maintain intracellular homeostasis by degrading damaged organelles and removing aggregates of defective proteins through lysosomes. Currently, autophagy has been shown to be associated with the development of several diseases. A significant number of research have demonstrated that most NPs can regulate autophagy, and their regulation of autophagy is divided into induction and blockade. Studying the autophagy regulation by NPs will facilitate a more comprehensive understanding of the toxicity of NPs. In this review, we will illustrate the effects of different types of NPs on autophagy, including inorganic NPs, organic NPs, and organic/inorganic hybrid NPs. The potential mechanisms by which NPs regulate autophagy are highlighted, including organelle damage, oxidative stress, inducible factors, and multiple signaling pathways. In addition, we list the factors influencing NPs-regulated autophagy. This review may provide basic information for the safety assessment of NPs.
Collapse
Affiliation(s)
- Dong Qiao
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
48
|
Huang J, Sun X, Wang Y, Su J, Li G, Wang X, Yang Y, Zhang Y, Li B, Zhang G, Li J, Du J, Nanjundappa RH, Umeshappa CS, Shao K. Biological interactions of polystyrene nanoplastics: Their cytotoxic and immunotoxic effects on the hepatic and enteric systems. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115447. [PMID: 37690176 DOI: 10.1016/j.ecoenv.2023.115447] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
As emerging pollutants in the environment, nanoplastics (NPs) can cross biological barriers and be enriched in organisms, posing a greatest threat to the health of livestock and humans. However, the size-dependent toxic effects of NPs in higher mammals remain largely unknown. To determine the size-dependent potential toxicities of NPs, we exposed mouse (AML-12) and human (L02) liver cell lines in vitro, and 6-week-old C57BL/6 mice (well-known preclinical model) in vivo to five different sizes of polystyrene NPs (PS-NPs) (20, 50, 100, 200 and 500 nm). We found that ultra-small NPs (20 nm) induced the highest cytotoxicity in mouse and human liver cell lines, causing oxidative stress and mitochondrial membrane potential loss on AML-12 cells. Unexpectedly in vivo, after long-term oral exposure to PS-NPs (75 mg/kg), medium NPs (200 nm) and large NPs (500 nm) induced significant hepatotoxicity, evidenced by increased oxidative stress, liver dysfunction, and lipid metabolism disorders. Most importantly, medium or large NPs generated local immunotoxic effects via recruiting and activating more numbers of neutrophils and monocytes in the liver or intestine, which potentially resulted in increased proinflammatory cytokine secretion and the tissue damage. The discrepancy in in vitro-in vivo toxic results might be attributed to the different properties of biodistribution and tissue accumulation of different sized NPs in vivo. Our study provides new insights regarding the hepatotoxicity and immunotoxicity of NPs on human and livestock health, warranting us to take immense measures to prevent these NPs-associated health damage.
Collapse
Affiliation(s)
- Jiahao Huang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xinbo Sun
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yang Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jianlong Su
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Guangzhe Li
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xu Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yuning Yang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yuxuan Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Bangjian Li
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Guanyi Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jinrong Li
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jing Du
- Liaoning Ocean and Fisheries Science Research Institute, 50# Heishijiao Road, Shahekou District, Dalian 116023, China
| | | | - Channakeshava Sokke Umeshappa
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada; Department of Pediatrics, IWK Research Center, Halifax, NS, Canada.
| | - Kun Shao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
49
|
Ma T, Liu X, Xiong T, Li H, Zhou Y, Liang J. Polystyrene nanoplastics aggravated dibutyl phthalate-induced blood-testis barrier dysfunction via suppressing autophagy in male mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115403. [PMID: 37659273 DOI: 10.1016/j.ecoenv.2023.115403] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/18/2023] [Accepted: 08/20/2023] [Indexed: 09/04/2023]
Abstract
Nanoplastics (NPs) frequently cause adverse health effects by transporting organic pollutants such as dibutyl phthalate (DBP) into organisms by utilizing their large specific surface area, large surface charge, and increased hydrophobicity. However, the effects of NPs combined with DBP on the reproductive systems of mammals are still unclear. The present investigation involved the administration of polystyrene NPs (PS-NPs) to BALB/c mice via gavage, with a size of 100 nm and at doses of 5 mg/kg/day or 50 mg/kg/day, along with DBP at a dose of 0.5 mg/kg/day, or a combination of PS-NPs and DBP, for 30 days, to assess their potential for reproductive toxicity. The co-exposure of mice to PS-NPs and DBP resulted in a significant increase in reproductive toxicities compared to exposure to PS-NPs or DBP alone. This was demonstrated by a marked decrease in sperm quality, significant impairment of spermatogenesis, and increased disruption of the blood-testis barrier (BTB). Furthermore, a combination of in vivo and in vitro investigations were conducted to determine that the co-exposure of DBP and PS-NPs resulted in a noteworthy reduction in the expressions of tight junction proteins (ZO-1 and occludin). Moreover, the in vitro findings revealed that monobutyl phthalate (MBP, the active metabolite of DBP, 0.5 μg/mL) and PS-NPs (30 μg/mL or 300 μg/mL) inhibited autophagy in Sertoli cells, thereby increasing the expression of matrix metalloproteinases (MMPs). The study found that PS-NPs and DBP co-exposure caused harmful effects in male reproductive organs by disrupting BTB, which may be alleviated by reactivating autophagy. The paper's conclusions provided innovative perspectives on the collective toxicities of PS-NPs and other emerging pollutants.
Collapse
Affiliation(s)
- Tan Ma
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, Jiangsu, China; Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, Yangzhou 225001, Jiangsu, China
| | - Xing Liu
- School of Nursing & School of Public Health, Yangzhou University, Yangzhou 225000, China
| | - Tianqing Xiong
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, Jiangsu, China; Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, Yangzhou 225001, Jiangsu, China
| | - Hongliang Li
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, Jiangsu, China; Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, Yangzhou 225001, Jiangsu, China
| | - Yue Zhou
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, Jiangsu, China; Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, Yangzhou 225001, Jiangsu, China
| | - Jingyan Liang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, Jiangsu, China; Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, Yangzhou 225001, Jiangsu, China.
| |
Collapse
|
50
|
Yang Z, DeLoid GM, Zarbl H, Baw J, Demokritou P. Micro- and nanoplastics (MNPs) and their potential toxicological outcomes: State of science, knowledge gaps and research needs. NANOIMPACT 2023; 32:100481. [PMID: 37717636 PMCID: PMC10841092 DOI: 10.1016/j.impact.2023.100481] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/11/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023]
Abstract
Plastic waste has been produced at a rapidly growing rate over the past several decades. The environmental impacts of plastic waste on marine and terrestrial ecosystems have been recognized for years. Recently, researchers found that micro- and nanoplastics (MNPs), micron (100 nm - 5 mm) and nanometer (1 - 100 nm) scale particles and fibers produced by degradation and fragmentation of plastic waste in the environment, have become an important emerging environmental and food chain contaminant with uncertain consequences for human health. This review provides a comprehensive summary of recent findings from studies of potential toxicity and adverse health impacts of MNPs in terrestrial mammals, including studies in both in vitro cellular and in vivo mammalian models. Also reviewed here are recently released biomonitoring studies that have characterized the bioaccumulation, biodistribution, and excretion of MNPs in humans. The majority MNPs in the environment to which humans are most likely to be exposed, are of irregular shapes, varied sizes, and mixed compositions, and are defined as secondary MNPs. However, the MNPs used in most toxicity studies to date were commercially available primary MNPs of polystyrene (PS), polyethylene (PE), polyvinyl chloride (PVC), polyethylene terephthalate (PET), and other polymers. The emerging in vitro and in vivo evidence reviewed here suggests that MNP toxicity and bioactivity are largely determined by MNP particle physico-chemical characteristics, including size, shape, polymer type, and surface properties. For human exposure, MNPs have been identified in human blood, urine, feces, and placenta, which pose potential health risks. The evidence to date suggests that the mechanisms underlying MNP toxicity at the cellular level are primarily driven by oxidative stress. Nonetheless, large knowledge gaps in our understanding of MNP toxicity and the potential health impacts of MNP exposures still exist and much further study is needed to bridge those gaps. This includes human population exposure studies to determine the environmentally relevant MNP polymers and exposure concentrations and durations for toxicity studies, as well as toxicity studies employing environmentally relevant MNPs, with surface chemistries and other physico-chemical properties consistent with MNP particles in the environment. It is especially important to obtain comprehensive toxicological data for these MNPs to understand the range and extent of potential adverse impacts of microplastic pollutants on humans and other organisms.
Collapse
Affiliation(s)
- Zhenning Yang
- Nanoscience and Advanced Materials Center, Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Glen M DeLoid
- Nanoscience and Advanced Materials Center, Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Helmut Zarbl
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; School of Public Health, Rutgers University, Piscataway, NJ 08854, USA
| | - Joshua Baw
- Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Philip Demokritou
- Nanoscience and Advanced Materials Center, Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA; School of Public Health, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|