1
|
Lin ZY, Luo Z, Li ZF, Fu ZQ, Han FL, Li EC. Combined exposure effects: Multilevel impact analysis of cycloxaprid and microplastics on Penaeus vannamei. Comp Biochem Physiol C Toxicol Pharmacol 2025; 289:110107. [PMID: 39647643 DOI: 10.1016/j.cbpc.2024.110107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
In real environments, multiple pollutants often coexist, so studying the impact of a single pollutant does not fully reflect the actual situation. Cycloxaprid, a new neonicotinoid pesticide, poses significant ecological risks due to its unique mechanism and widespread distribution in aquatic environments. Additionally, the ecological effects of microplastics, another common environmental pollutant, cannot be overlooked. This study explored the ecotoxicological effects of cycloxaprid and microplastics, both alone and in combination, on Penaeus vannamei over 28 days. The results revealed significant physiological impacts, with notable changes in the shrimp immune system and hepatopancreatic energy and lipid metabolism. Key findings include alterations in hemocyanin, nitric oxide, and phenol oxidase levels, along with disturbances in Na+/K+-, Ca2+-, and Mg2+-ATPase activities. Additionally, neural signaling disruptions were evidenced by fluctuations in acetylcholine, dopamine, and acetylcholinesterase levels. Transcriptomic analysis revealed the profound influence of these pollutants on gene expression and metabolic processes in the hepatopancreas and nervous system. This comprehensive assessment underlines the potential growth impacts on shrimp and underscores the ecological risks of cycloxaprid and microplastics, offering insights for future risk assessments and biomarker identification.
Collapse
Affiliation(s)
- Zhi-Yu Lin
- School of Marine Biology and Fisheries, Hainan University, Haikou, Hainan 570228, China
| | - Zhi Luo
- School of Marine Biology and Fisheries, Hainan University, Haikou, Hainan 570228, China; School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Zhen-Fei Li
- School of Marine Biology and Fisheries, Hainan University, Haikou, Hainan 570228, China
| | - Zhen-Qiang Fu
- School of Marine Science, Sun Yat-sen University, Zhuhai, Guangdong 519082, China
| | - Feng-Lu Han
- School of Marine Biology and Fisheries, Hainan University, Haikou, Hainan 570228, China.
| | - Er-Chao Li
- School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China.
| |
Collapse
|
2
|
Martins A, Barboza LG, Vieira LR, Botelho MJ, Vale C, Guilhermino L. Relations between microplastic contamination and stress biomarkers under two seasonal conditions in wild carps, mullets and flounders. MARINE ENVIRONMENTAL RESEARCH 2025; 204:106925. [PMID: 39823942 DOI: 10.1016/j.marenvres.2024.106925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/20/2025]
Abstract
Potential effects of microplastics (MP, plastic particles <5 mm) on the levels of multiple stress biomarkers were investigated in wild fish populations of Cyprinus carpio, Mugil cephalus, Platichthys flesus captured in the Minho River estuary located in the Iberian Peninsula. Specimens were collected in March and September 2018, corresponding to the end of winter and summer, respectively. Based on the concentration of MP determined by FT-IR analysis and morphological inspection, fishes from each species were divided into two groups: ≤0.1 MP g-1 and >0.1 MP g-1. Biomarkers (general condition, neurotoxicity, biotransformation, oxidative stress) and the Integrated Biomarker Response (IBR) indicating fish general stress were determined. Fishes with more than 0.1 MP g-1 showed elevated general stress (1.2- to 1.8-fold) relative to fish with ≤0.1 MP g-1. Founders captured in March were the exception. Mullets were the most susceptible fishes to MP contamination by exhibiting poor physical condition, neurotoxicity, oxidative stress or damage, and carps were the most resilient. Low temperature and less chlorophylls (a proxy of food availability) observed in March appear to enhance the biological effects of MP.
Collapse
Affiliation(s)
- Alexandra Martins
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Departamento de Estudos de Populações, Laboratório de Ecotoxicologia e Ecologia, (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal; CIIMAR / CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Aquatic Ecotoxicology and One Health, and Research Team of Contaminant Pathways in Marine Environment, Terminal de Cruzeiros do Porto de Leixões, 4450-208, Matosinhos, Portugal.
| | - L Gabriel Barboza
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Departamento de Estudos de Populações, Laboratório de Ecotoxicologia e Ecologia, (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal; CIIMAR / CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Aquatic Ecotoxicology and One Health, and Research Team of Contaminant Pathways in Marine Environment, Terminal de Cruzeiros do Porto de Leixões, 4450-208, Matosinhos, Portugal.
| | - Luis R Vieira
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Departamento de Estudos de Populações, Laboratório de Ecotoxicologia e Ecologia, (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal; CIIMAR / CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Aquatic Ecotoxicology and One Health, and Research Team of Contaminant Pathways in Marine Environment, Terminal de Cruzeiros do Porto de Leixões, 4450-208, Matosinhos, Portugal.
| | - Maria João Botelho
- CIIMAR / CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Aquatic Ecotoxicology and One Health, and Research Team of Contaminant Pathways in Marine Environment, Terminal de Cruzeiros do Porto de Leixões, 4450-208, Matosinhos, Portugal; IPMA - Portuguese Institute of Sea and Atmosphere, IP Division of Oceanography and Marine Environment (DIVOA), Av. Doutor Alfredo Magalhães Ramalho, 6, 1495-165, Algés, Portugal.
| | - Carlos Vale
- CIIMAR / CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Aquatic Ecotoxicology and One Health, and Research Team of Contaminant Pathways in Marine Environment, Terminal de Cruzeiros do Porto de Leixões, 4450-208, Matosinhos, Portugal.
| | - Lúcia Guilhermino
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Departamento de Estudos de Populações, Laboratório de Ecotoxicologia e Ecologia, (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal; CIIMAR / CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Aquatic Ecotoxicology and One Health, and Research Team of Contaminant Pathways in Marine Environment, Terminal de Cruzeiros do Porto de Leixões, 4450-208, Matosinhos, Portugal.
| |
Collapse
|
3
|
Li X, Huang Y, Li W, Deng C, Cao W, Yao Y. Effects of Polystyrene Microplastic Exposure on Liver Cell Damage, Oxidative Stress, and Gene Expression in Juvenile Crucian Carp ( Carassius auratus). TOXICS 2025; 13:53. [PMID: 39853051 PMCID: PMC11768632 DOI: 10.3390/toxics13010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/03/2025] [Accepted: 01/08/2025] [Indexed: 01/26/2025]
Abstract
A considerable quantity of microplastic debris exists in the environment and the toxicity of these materials has a notable impact on aquatic ecosystems. In this paper, 50-500 µm polystyrene microplastics (exposure concentrations were 200 µg/L, 800 µg/L, and 3200 µg/L concentrations) were selected to study the effects of polystyrene microplastics (PS-MPs) on cell morphology, detoxification enzyme activity, and mRNA expression in the liver tissues of crucian carp juveniles. The results demonstrated that: (1) Different concentrations of PS-MPs cause varying degrees of pathological and oxidative damage to liver tissue cells of crucian carp. The higher the concentration of microplastics, the lower the antioxidant enzyme (CAT, GST, SOD) activity and the greater the tissue cell damage. These results demonstrate a typical dose-effect relationship. (2) Principal component analysis and Spearman's correlation analysis demonstrated that four components, namely glutathione S-transferase (GST) and its related genes (GSTpi, GSTα), along with catalase (CAT), contributed the most to the observed outcome. These four components demonstrated a relatively high level of responsiveness to PS-MP exposure and can be employed as ecotoxicological indicators of microplastics. (3) This experiment evaluated five genes in three treatments, which found that PS-MPs had different effects on gene expression in the liver and the tested genes were involved in different response pathways associated with virulence. In this study, the toxicity of PS-MPs to crucian carp was determined at the cellular, protein, and mRNA expression levels, and combined with principal component analysis and correlation analysis to identify response sensitivity indicators that provide a scientific basis for ecological risk assessment and the safe use of microplastics.
Collapse
Affiliation(s)
- Xiangtong Li
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541006, China; (X.L.); (Y.H.); (W.L.); (C.D.)
- Engineering Research Center of Watershed Protection and Green Development, Guilin University of Technology, Guilin 541006, China
- Guangxi Engineering Research Center of Comprehensive Treatment for Agricultural Non-Point Source Pollution, Guilin University of Technology, Guilin 541006, China
- Modern Industry College of Ecology and Environmental Protection, Guilin University of Technology, Guilin 541006, China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
| | - Yuequn Huang
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541006, China; (X.L.); (Y.H.); (W.L.); (C.D.)
- Engineering Research Center of Watershed Protection and Green Development, Guilin University of Technology, Guilin 541006, China
- Guangxi Engineering Research Center of Comprehensive Treatment for Agricultural Non-Point Source Pollution, Guilin University of Technology, Guilin 541006, China
- Modern Industry College of Ecology and Environmental Protection, Guilin University of Technology, Guilin 541006, China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
| | - Wenrong Li
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541006, China; (X.L.); (Y.H.); (W.L.); (C.D.)
- Engineering Research Center of Watershed Protection and Green Development, Guilin University of Technology, Guilin 541006, China
- Guangxi Engineering Research Center of Comprehensive Treatment for Agricultural Non-Point Source Pollution, Guilin University of Technology, Guilin 541006, China
- Modern Industry College of Ecology and Environmental Protection, Guilin University of Technology, Guilin 541006, China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
| | - Chaoyang Deng
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541006, China; (X.L.); (Y.H.); (W.L.); (C.D.)
- Engineering Research Center of Watershed Protection and Green Development, Guilin University of Technology, Guilin 541006, China
- Guangxi Engineering Research Center of Comprehensive Treatment for Agricultural Non-Point Source Pollution, Guilin University of Technology, Guilin 541006, China
- Modern Industry College of Ecology and Environmental Protection, Guilin University of Technology, Guilin 541006, China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
| | - Weiyuan Cao
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541006, China; (X.L.); (Y.H.); (W.L.); (C.D.)
- Engineering Research Center of Watershed Protection and Green Development, Guilin University of Technology, Guilin 541006, China
- Guangxi Engineering Research Center of Comprehensive Treatment for Agricultural Non-Point Source Pollution, Guilin University of Technology, Guilin 541006, China
- Modern Industry College of Ecology and Environmental Protection, Guilin University of Technology, Guilin 541006, China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
| | - Yi Yao
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541006, China; (X.L.); (Y.H.); (W.L.); (C.D.)
- Engineering Research Center of Watershed Protection and Green Development, Guilin University of Technology, Guilin 541006, China
- Guangxi Engineering Research Center of Comprehensive Treatment for Agricultural Non-Point Source Pollution, Guilin University of Technology, Guilin 541006, China
- Modern Industry College of Ecology and Environmental Protection, Guilin University of Technology, Guilin 541006, China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
| |
Collapse
|
4
|
Banaee M, Multisanti CR, Impellitteri F, Piccione G, Faggio C. Environmental toxicology of microplastic particles on fish: A review. Comp Biochem Physiol C Toxicol Pharmacol 2025; 287:110042. [PMID: 39306266 DOI: 10.1016/j.cbpc.2024.110042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/30/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024]
Abstract
The increase in plastic debris and its environmental impact has been a major concern for scientists. Physical destruction, chemical reactions, and microbial activity can degrade plastic waste into particles smaller than 5 mm, known as microplastics (MPs). MPs may eventually enter aquatic ecosystems through surface runoff. The accumulation of MPs in aquatic environments poses a potential threat to finfish, shellfish, and the ecological balance. This study investigated the effect of MP exposure on freshwater and marine fish. MPs could cause significant harm to fish, including physical damage, death, inflammation, oxidative stress, disruption of cell signalling and cellular biochemical processes, immune system suppression, genetic damage, and reduction in fish growth and reproduction rates. The activation of the detoxification system of fish exposed to MPs may be associated with the toxicity of MPs and chemical additives to plastic polymers. Furthermore, MPs can enhance the bioavailability of other xenobiotics, allowing these harmful substances to more easily enter and accumulate in fish. Accumulation of MPs and associated chemicals in fish can have adverse effects on the fish and humans who consume them, with these toxic substances magnifying as they move up the food chain. Changes in migration and reproduction patterns and disruptions in predator-prey relationships in fish exposed to MPs can significantly affect ecological dynamics. These interconnected changes can lead to cascading effects throughout aquatic ecosystems. Thus, implementing solutions like reducing plastic production, enhancing recycling efforts, using biodegradable materials, and improving waste management is essential to minimize plastic waste and its environmental impact.
Collapse
Affiliation(s)
- Mahdi Banaee
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran.
| | | | - Federica Impellitteri
- Department of Veterinary Sciences, University of Messina, Viale Giovanni Palatucci snc, 98168 Messina, Italy.
| | - Giuseppe Piccione
- Department of Veterinary Sciences, University of Messina, Viale Giovanni Palatucci snc, 98168 Messina, Italy.
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy; Department of Eco-sustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy.
| |
Collapse
|
5
|
Barboza LGA, Lourenço SC, Aleluia A, Senes GP, Otero XL, Guilhermino L. Are microplastics a new cardiac threat? A pilot study with wild fish from the North East Atlantic Ocean. ENVIRONMENTAL RESEARCH 2024; 261:119694. [PMID: 39068971 DOI: 10.1016/j.envres.2024.119694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/17/2024] [Accepted: 07/26/2024] [Indexed: 07/30/2024]
Abstract
Global environmental contamination by microplastics (MPs) is a growing problem with potential One Health impacts. The presence of MPs in vital organs, such as the heart, is of particular concern, but the knowledge is still limited. The goal of the present pilot study was to investigate the potential presence of MPs in the heart of wild specimens of three commercial fish species (Merluccius merluccius, Sardina pilchardus, and Trisopterus luscus) from the North East Atlantic Ocean. Heart samples from 154 fish were analysed for MP content (one heart sample per fish). A total of 44 MPs were recovered from heart samples from the three species. MPs had varied chemical composition (5 polymers), shapes (4) and colours (5). Differences in the profile of the MPs among species was observed (p ≤ 0.05). Thirty fish (19%) had MPs in their hearts, with a total mean (±SD) concentration of 0.286 ± 0.644 MPs/fish. S. pilchardus had the highest heart contamination (p ≤ 0.05). There were no significant (p > 0.05) differences between M. merluccius and T. luscus. These findings in fish with different biological and ecological traits together with literature data suggest that heart contamination likely is a disseminated phenomenon. Therefore, further research on the presence of MPs in the cardiovascular system and its potential health effects is very much needed.
Collapse
Affiliation(s)
- Luís Gabriel A Barboza
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Aquatic Ecotoxicology and One Health (ECOTOX), Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Departamento de Estudos de Populações, Laboratório de Ecotoxicologia e Ecologia (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Sara Couto Lourenço
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Aquatic Ecotoxicology and One Health (ECOTOX), Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Departamento de Estudos de Populações, Laboratório de Ecotoxicologia e Ecologia (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Alexandre Aleluia
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Aquatic Ecotoxicology and One Health (ECOTOX), Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Departamento de Estudos de Populações, Laboratório de Ecotoxicologia e Ecologia (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Giovanni Paolo Senes
- CRETUS, Department of Edaphology and Agricultural Chemistry - Faculty of Biology, Universidade de Santiago de Compostela, Campus Vida, Santiago de Compostela 15782, Spain
| | - Xosé L Otero
- CRETUS, Department of Edaphology and Agricultural Chemistry - Faculty of Biology, Universidade de Santiago de Compostela, Campus Vida, Santiago de Compostela 15782, Spain; REBUSC, Network of biological stations of the University of Santiago de Compostela, Marine Biology Station A Graña, Ferrol, Spain; RIAIDT, The Network of Infrastructures to Support Research and Technological Development of the University of Santiago de Compostela, Edificio Cactus, Campus Vida, Santiago de Compostela, 15782, Spain.
| | - Lúcia Guilhermino
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Aquatic Ecotoxicology and One Health (ECOTOX), Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Departamento de Estudos de Populações, Laboratório de Ecotoxicologia e Ecologia (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
6
|
Mahu E, Vanderpuye-Orgle TJ, Boateng CM, Edusei MO, Yeboah GA, Chuku EO, Okpei P, Okyere I, Dodoo-Arhin D, Akintoye EA. Quantification and characterization of microplastics ingested by mangrove oysters across West Africa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:50283-50296. [PMID: 39088173 PMCID: PMC11364619 DOI: 10.1007/s11356-024-34470-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 07/20/2024] [Indexed: 08/02/2024]
Abstract
Microplastic ingestion by marine organisms presents a challenge to both ecosystem functioning and human health. We characterized microplastic abundance, shape, size, and polymer types ingested by the West African mangrove oyster, Crassostrea tulipa (Lamarck, 1819) sampled from estuaries and lagoons from the Gambia, Sierra Leone, Ghana, Benin, and Nigeria using optical microscopy and Fourier transform infrared (FTIR) techniques. A total of 780 microplastics were isolated in the whole tissues of the 250 oysters (n = 50 oysters per country). The abundance and distribution of microplastics in the oysters followed the pattern: the Gambia > Ghana > Sierra Leone > Nigeria > Benin. The Tanbi wetlands in the Gambia recorded the highest average of 10.50 ± 6.69 per oyster while the Ouidah lagoon in Benin recorded the lowest average of 1.80 ± 1.90 per oyster. Overall, microplastic numbers varied significantly (p < 0.05) among the five countries. Microfibers, particularly those within 1001-5000 μm size, dominated the total microplastic count with a few fragments and films. No spherical microplastics were isolated in the oysters. In the Sierra Leone and Benin oysters, fragments and films were absent in the samples. Microplastic between the 1001 and 5000 μm size class dominated the counts, followed by 501-1000 μm, 101-500 μm, and 51-100 μm. Five polymer groups namely polyethylene, polyester, nylon, polypropylene, and polyamide were identified across the five countries, with polyethylene occurring in oysters from all five countries and polyester occurring in all but the oysters from Nigeria. This diversity of polymers suggests varied sources of microplastics ingested by the studied oysters. The absence of microspheres across the five supports findings from other studies that they are the least ingested and highly egested by the oysters.
Collapse
Affiliation(s)
- Edem Mahu
- Department of Marine and Fisheries Sciences, University of Ghana, Accra, Ghana.
| | | | | | - Maurice Oti Edusei
- Department of Marine and Fisheries Sciences, University of Ghana, Accra, Ghana
| | | | - Ernest Obeng Chuku
- Institute for Marine and Antarctic Studies, University of Tasmania, Taroona, 7053, Australia
| | - Paulina Okpei
- University of Energy and Natural Resources, Sunyani, Ghana
| | - Isaac Okyere
- Department of Fisheries and Aquatic Sciences, School of Biological Sciences, CANS, University of Cape Coast (UCC), Cape Coast, Ghana
- Centre for Coastal Management, Africa Centre of Excellence in Coastal Resilience - (ACECoR), UCC, Cape Coast, Ghana
| | - David Dodoo-Arhin
- Department of Material Science and Engineering, University of Ghana, Accra, Ghana
| | | |
Collapse
|
7
|
Ali W, Buriro RS, Gandahi JA, Chen Y, Aabdin ZU, Bhutto S, Sun J, Zhu J, Liu Z, Zou H. A critical review on male-female reproductive and developmental toxicity induced by micro-plastics and nano-plastics through different signaling pathways. Chem Biol Interact 2024; 394:110976. [PMID: 38552764 DOI: 10.1016/j.cbi.2024.110976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/16/2024] [Accepted: 03/26/2024] [Indexed: 04/01/2024]
Abstract
It is widely accepted that humans are constantly exposed to micro-plastics and nano-plastics through various routes, including inhalation of airborne particles, exposure to dust, and consumption of food and water. It is estimated that humans may consume thousand to millions of micro-plastic particles, equating to several milligrams per day. Prolonged exposure to micro-plastics and nano-plastics has been linked to negative effects on different living organisms, including neurotoxicity, gastrointestinal toxicity, nephrotoxicity, and hepatotoxicity, and developmental toxicities. The main purpose of this review is to explore the effect of micro-plastics and nano-plastics on the male and female reproductive system, as well as their offspring, and the associated mechanism implicated in the reproductive and developmental toxicities. Micro-plastics and nano-plastics have been shown to exert negative effects on the reproductive system of both male and female mammals and aquatic animals, including developmental impacts on gonads, gametes, embryo, and their subsequent generation. In addition, micro-plastics and nano-plastics impact the hypothalamic-pituitary axes, leading to oxidative stress, reproductive toxicity, neurotoxicity, cytotoxicity, developmental abnormalities, poor sperm quality, diminishes ovarian ovulation and immune toxicity. This study discusses the so many different signaling pathways associated in the male and female reproductive and developmental toxicity induced by micro-plastics and nano-plastics.
Collapse
Affiliation(s)
- Waseem Ali
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China
| | - Rehana Shahnawaz Buriro
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China
| | - Jameel Ahmed Gandahi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China
| | - Yan Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China
| | - Zain Ul Aabdin
- Department of Preventive Veterinary Medicine and Public Health Faculty of Veterinary and Animal Sciences, Ziauddin University, Pakistan
| | - Sahar Bhutto
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China
| | - Jian Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China
| | - Jiaqiao Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China.
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China.
| |
Collapse
|
8
|
Patsiou D, Digka N, Galli M, Baini M, Fossi MC, Tsangaris C. Assessment of the impact of microplastic ingestion in striped red mullets from an Eastern Mediterranean coastal area (Zakynthos Island, Ionian Sea). MARINE ENVIRONMENTAL RESEARCH 2024; 196:106438. [PMID: 38479294 DOI: 10.1016/j.marenvres.2024.106438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/28/2023] [Accepted: 03/06/2024] [Indexed: 03/23/2024]
Abstract
Monitoring microplastics (MPs) in the marine environment is an ongoing process, and our understanding of their impact on marine organisms is limited. The present study evaluates the effects of ingested MPs on the marine MP pollution bioindicator fish species Mullus surmuletus. The study follows a three-fold approach to assess the impact of MPs on marine organisms by investigating: 1) the ingestion of MPs, 2) the bioaccumulation of phthalate compounds as plastic additives, and 3) the evaluation of toxicological biochemical and cellular biomarkers. Striped red mullets were sampled in the marine protected area (MPA) of the National Marine Park of Zakynthos and coastal sites with high touristic pressure in Zakynthos Island in the Ionian Sea, Greece. Fewer ingested MPs and lower phthalate concentrations were found in fish inside the MPA compared to those sampled outside the marine park. However, no relationship was found between either phthalate concentrations or biomarker levels with the ingested MPs in the red striped mullets. Biomarker levels were influenced by season and site, but no effect could be attributed to the ingested MPs. The lack of association of biomarker responses and plasticizer bioaccumulation to MP ingestion can be explained by the low number of ingested MPs in the fish from Zakynthos coastal area as MP abundance ranged from 0.15 to 0.55 items per individual fish.
Collapse
Affiliation(s)
- Danae Patsiou
- Institute of Oceanography, Hellenic Centre for Marine Research, 46.7 km Athens-Sounio Ave, 19013, Anavyssos, Greece.
| | - Nikoletta Digka
- Institute of Oceanography, Hellenic Centre for Marine Research, 46.7 km Athens-Sounio Ave, 19013, Anavyssos, Greece
| | - Matteo Galli
- Department of Environmental, Earth and Physical Sciences, University of Siena, Via P.A. Mattioli, 4, 53100, Siena, Italy
| | - Matteo Baini
- Department of Environmental, Earth and Physical Sciences, University of Siena, Via P.A. Mattioli, 4, 53100, Siena, Italy
| | - Maria Cristina Fossi
- Department of Environmental, Earth and Physical Sciences, University of Siena, Via P.A. Mattioli, 4, 53100, Siena, Italy
| | - Catherine Tsangaris
- Institute of Oceanography, Hellenic Centre for Marine Research, 46.7 km Athens-Sounio Ave, 19013, Anavyssos, Greece
| |
Collapse
|
9
|
Fontes BLM, de Souza E Souza LC, da Silva de Oliveira APS, da Fonseca RN, Neto MPC, Pinheiro CR. The possible impacts of nano and microplastics on human health: lessons from experimental models across multiple organs. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2024:1-35. [PMID: 38517360 DOI: 10.1080/10937404.2024.2330962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
The widespread production and use of plastics have resulted in accumulation of plastic debris in the environment, gradually breaking down into smaller particles over time. Nano-plastics (NPs) and microplastics (MPs), defined as particles smaller than 100 nanometers and 5 millimeters, respectively, raise concerns due to their ability to enter the human body through various pathways including ingestion, inhalation, and skin contact. Various investigators demonstrated that these particles may produce physical and chemical damage to human cells, tissues, and organs, disrupting cellular processes, triggering inflammation and oxidative stress, and impacting hormone and neurotransmitter balance. In addition, micro- and nano-plastics (MNPLs) may carry toxic chemicals and pathogens, exacerbating adverse effects on human health. The magnitude and nature of these effects are not yet fully understood, requiring further research for a comprehensive risk assessment. Nevertheless, evidence available suggests that accumulation of these particles in the environment and potential human uptake are causes for concern. Urgent measures to reduce plastic pollution and limit human exposure to MNPLs are necessary to safeguard human health and the environment. In this review, current knowledge regarding the influence of MNPLs on human health is summarized, including toxicity mechanisms, exposure pathways, and health outcomes across multiple organs. The critical need for additional research is also emphasized to comprehensively assess potential risks posed by degradation of MNPLs on human health and inform strategies for addressing this emerging environmental health challenge. Finally, new research directions are proposed including evaluation of gene regulation associated with MNPLs exposure.
Collapse
Affiliation(s)
- Bernardo Lannes Monteiro Fontes
- Laboratório Integrado de Ciências Morfofuncionais (LICM), Instituto de Sustentabilidade e Biodiversidade (NUPEM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lorena Cristina de Souza E Souza
- Laboratório Integrado de Ciências Morfofuncionais (LICM), Instituto de Sustentabilidade e Biodiversidade (NUPEM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Paula Santos da Silva de Oliveira
- Núcleo Multidisciplinar de Pesquisas em Biologia - NUMPEX-BIO, Campus Duque de Caxias Geraldo Cidade, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Duque de Caxias, Brazil
| | - Rodrigo Nunes da Fonseca
- Laboratório Integrado de Ciências Morfofuncionais (LICM), Instituto de Sustentabilidade e Biodiversidade (NUPEM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marinaldo Pacifico Cavalcanti Neto
- Laboratório Integrado de Ciências Morfofuncionais (LICM), Instituto de Sustentabilidade e Biodiversidade (NUPEM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cintia Rodrigues Pinheiro
- Laboratório Integrado de Ciências Morfofuncionais (LICM), Instituto de Sustentabilidade e Biodiversidade (NUPEM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Chen X, Wang X, Huang Y, Zhu Z, Li T, Cai Z, Li M, Gong H, Yan M. Combined effects of microplastics and antibiotic-resistant bacteria on Daphnia magna growth and expression of functional genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166880. [PMID: 37709097 DOI: 10.1016/j.scitotenv.2023.166880] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/16/2023]
Abstract
Microplastics could act as vectors for the transport of harmful bacteria, such as pathogens and antibiotic resistance bacteria (ARB), but their combined effects have not been reported yet. Here, ARB Shigella flexneri with sulfonamides resistance and micro-polystyrene (micro-PS) were used to investigate their possible combined effects on the growth and expression of functional genes in Daphnia magna. Results showed that micro-PS colonized with S. flexneri were ingested by D. magna and blocked in their intestine after 24 h exposure. Changes were observed in the life history and morphology of D. magna, as well as the expression of functional genes in all treatments, but with no difference in the survival rate. We also determined the expression of six functional genes involved in energy and metabolism (arginine kinase, AK) and oxidative stress response (thioredoxin reductase, TRxR, catalase, CAT, and glutathione S-transferases, GSTs), as well as in growth, development and reproduction (vitellogenin, Vtg1 and ecdysone receptor, EcR). AK and Vtg1 did not show significant differences, however, EcR was down-regulated and the other three genes (TRxR, CAT, GSTs) were up-regulated in the combined-treated group. Antibiotic resistance gene (ARGs) sul1 was detected when exposed to micro-PS colonized with S. flexneri., suggesting that D. magna could acquire resistance genes through microplastic biofilms. These results indicated that MPs could act as a carrier of ARB to transfer ARGs into D. magna, and affect the life history, morphology, and the expression of related functional genes of D. magna, to adapt to the stress caused by MPs and ARB.
Collapse
Affiliation(s)
- Xiaofeng Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Xiaocui Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Yuanyin Huang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Ziying Zhu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Tianmu Li
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Zeming Cai
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Minqian Li
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Han Gong
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China.
| | - Muting Yan
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China.
| |
Collapse
|
11
|
Ferreira O, Barboza LGA, Rudnitskaya A, Moreirinha C, Vieira LR, Botelho MJ, Vale C, Fernandes JO, Cunha S, Guilhermino L. Microplastics in marine mussels, biological effects and human risk of intake: A case study in a multi-stressor environment. MARINE POLLUTION BULLETIN 2023; 197:115704. [PMID: 37944437 DOI: 10.1016/j.marpolbul.2023.115704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/12/2023]
Abstract
This study documented seasonal levels of microplastics (MPs) and biomarkers (condition index, neurotoxicity, energy, oxidative stress) in mussels (Mytilus galloprovincialis), and water physico-chemical parameters in the Douro estuary (NE Atlantic coast), and estimated the human risk of MP intake (HRI) through mussels. Mussel stress was determined through the Integrated Biomarker Response (IBR). HRI was estimated from mussel MP concentrations and consumer habits. MPs were mainly micro-fibres (72 %) with varied chemical composition. Seasonal MP means (±SEM) in mussels ranged from 0.111 ± 0.044 (spring) to 0.312 ± 0.092 MPs/g (summer). Seasonal variations of mussel stress (IBR: 1.4 spring to 9.7 summer) and MP concentrations were not related. MeO-BDEs, PBDEs, temperature, salinity and other factors likely contributed to mussel stress variation. HRI ranged from 2438 to 2650 MPs/year. Compared to the literature, MP contamination in mussels is low, as well as the human risk of MP intake through their consumption.
Collapse
Affiliation(s)
- Orlanda Ferreira
- ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Department of Population Studies, Laboratory of Ecotoxicology and Ecology (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; CIIMAR / CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Ecotoxicology, Stress Ecology and Environmental Health and Research Team of Contaminant Pathways and Interactions with Marine Organisms, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - L Gabriel A Barboza
- ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Department of Population Studies, Laboratory of Ecotoxicology and Ecology (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; CIIMAR / CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Ecotoxicology, Stress Ecology and Environmental Health and Research Team of Contaminant Pathways and Interactions with Marine Organisms, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal.
| | - Alisa Rudnitskaya
- Chemistry Department and CESAM, Centre for Environmental and Marine Studies, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Catarina Moreirinha
- Chemistry Department and CESAM, Centre for Environmental and Marine Studies, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Luís R Vieira
- ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Department of Population Studies, Laboratory of Ecotoxicology and Ecology (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; CIIMAR / CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Ecotoxicology, Stress Ecology and Environmental Health and Research Team of Contaminant Pathways and Interactions with Marine Organisms, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal.
| | - M João Botelho
- CIIMAR / CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Ecotoxicology, Stress Ecology and Environmental Health and Research Team of Contaminant Pathways and Interactions with Marine Organisms, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal; IPMA - IPMA, Portuguese Institute for the Sea and Atmosphere, Av. Alfredo Magalhães Ramalho 6, 1495-165 Algés, Portugal.
| | - Carlos Vale
- CIIMAR / CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Ecotoxicology, Stress Ecology and Environmental Health and Research Team of Contaminant Pathways and Interactions with Marine Organisms, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - José O Fernandes
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - Sara Cunha
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - Lúcia Guilhermino
- ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Department of Population Studies, Laboratory of Ecotoxicology and Ecology (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; CIIMAR / CIMAR-LA - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Ecotoxicology, Stress Ecology and Environmental Health and Research Team of Contaminant Pathways and Interactions with Marine Organisms, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal.
| |
Collapse
|
12
|
Sá S, Torres-Pereira A, Ferreira M, Monteiro SS, Fradoca R, Sequeira M, Vingada J, Eira C. Microplastics in Cetaceans Stranded on the Portuguese Coast. Animals (Basel) 2023; 13:3263. [PMID: 37893986 PMCID: PMC10603649 DOI: 10.3390/ani13203263] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/06/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023] Open
Abstract
This study characterises microplastics in small cetaceans on the coast of Portugal and assesses the relationship between several biological variables and the amount of detected microplastics. The intestines of 38 stranded dead cetaceans were processed in the laboratory, with digestion methods adapted to the amount of organic matter in each sample. The influence of several biological and health variables (e.g., species, sex, body condition) on the amount of microplastics was tested in all analysed species and particularly in common dolphins, due to the larger number of available samples. Most of the analysed individuals had microplastics in the intestine (92.11%), with harbour porpoises revealing a significantly higher median number of microplastics than common dolphins, probably due to their different diets, use of habitat and feeding strategies. None of the other tested variables significantly influenced the number of microplastics. Moreover, the microplastics found should not be enough to cause physical or chemical sublethal effects, although the correlation between microplastic ingestion and plastic additive bioaccumulation in cetacean tissues requires further investigation. Future monitoring in biota should rely on improved and standardised protocols for microplastic analyses in complex samples to allow for accurate analyses of larger samples and spatio-temporal comparisons.
Collapse
Affiliation(s)
- Sara Sá
- Department of Biology & CESAM & ECOMARE/CPRAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal; (A.T.-P.); (S.S.M.); (C.E.)
| | - Andreia Torres-Pereira
- Department of Biology & CESAM & ECOMARE/CPRAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal; (A.T.-P.); (S.S.M.); (C.E.)
| | - Marisa Ferreira
- Portuguese Wildlife Society (SPVS), Estação de Campo de Quiaios, 3081-101 Figueira da Foz, Portugal; (M.F.); (R.F.); (J.V.)
| | - Sílvia S. Monteiro
- Department of Biology & CESAM & ECOMARE/CPRAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal; (A.T.-P.); (S.S.M.); (C.E.)
| | - Raquel Fradoca
- Portuguese Wildlife Society (SPVS), Estação de Campo de Quiaios, 3081-101 Figueira da Foz, Portugal; (M.F.); (R.F.); (J.V.)
| | - Marina Sequeira
- Instituto da Conservação da Natureza e Florestas (ICNF), Av. da República 16, 1050-191 Lisboa, Portugal;
| | - José Vingada
- Portuguese Wildlife Society (SPVS), Estação de Campo de Quiaios, 3081-101 Figueira da Foz, Portugal; (M.F.); (R.F.); (J.V.)
| | - Catarina Eira
- Department of Biology & CESAM & ECOMARE/CPRAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal; (A.T.-P.); (S.S.M.); (C.E.)
| |
Collapse
|
13
|
Emenike EC, Okorie CJ, Ojeyemi T, Egbemhenghe A, Iwuozor KO, Saliu OD, Okoro HK, Adeniyi AG. From oceans to dinner plates: The impact of microplastics on human health. Heliyon 2023; 9:e20440. [PMID: 37790970 PMCID: PMC10543225 DOI: 10.1016/j.heliyon.2023.e20440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/05/2023] Open
Abstract
Microplastics, measuring less than 5 mm in diameter, are now found in various environmental media, including soil, water, and air, and have infiltrated the food chain, ultimately becoming a part of the human diet. This study offers a comprehensive examination of the intricate nexus between microplastics and human health, thereby contributing to the existing knowledge on the subject. Sources of microplastics, including microfibers from textiles, personal care products, and wastewater treatment plants, among others, were assessed. The study meticulously examined the diverse routes of microplastic exposure-ingestion, inhalation, and dermal contact-offering insights into the associated health risks. Notably, ingestion of microplastics has been linked to gastrointestinal disturbances, endocrine disruption, and the potential transmission of pathogenic bacteria. Inhalation of airborne microplastics emerges as a critical concern, with possible implications for respiratory and cardiovascular health. Dermal contact, although less explored, raises the prospect of skin irritation and allergic reactions. The impacts of COVID-19 on microplastic pollution were also highlighted. Throughout the manuscript, the need for a deeper mechanistic understanding of microplastic interactions with human systems is emphasized, underscoring the urgency for further research and public awareness.
Collapse
Affiliation(s)
- Ebuka Chizitere Emenike
- Department of Pure and Industrial Chemistry, Nnamdi Azikiwe University, P. M. B. 5025, Awka, Nigeria
| | - Chika J. Okorie
- Department of Pure and Industrial Chemistry, Nnamdi Azikiwe University, P. M. B. 5025, Awka, Nigeria
| | - Toluwalase Ojeyemi
- Department of Environmental Toxicology, Texas Tech University, USA
- Department of Crop Protection and Environmental Biology, University of Ibadan, Ibadan, Nigeria
| | - Abel Egbemhenghe
- Department of Chemistry and Biochemistry, College of Art and Science, Texas Tech University, USA
- Department of Chemistry, Lagos State University, Ojo, Lagos, Nigeria
| | - Kingsley O. Iwuozor
- Department of Pure and Industrial Chemistry, Nnamdi Azikiwe University, P. M. B. 5025, Awka, Nigeria
| | - Oluwaseyi D. Saliu
- Department of Indutrial Chemistry, University of Ilorin, P. M. B. 1515, Ilorin, Nigeria
| | - Hussein K. Okoro
- Department of Indutrial Chemistry, University of Ilorin, P. M. B. 1515, Ilorin, Nigeria
| | - Adewale George Adeniyi
- Department of Chemical Engineering, University of Ilorin, P. M. B. 1515, Ilorin, Nigeria
- Department of Chemical Engineering, College of Engineering and Technology, Landmark University, Omu-aran, Nigeria
| |
Collapse
|
14
|
Qiu SQ, Huang GY, Li XP, Lei DQ, Wang CS, Ying GG. Endocrine disruptor responses in the embryos of marine medaka (Oryzias melastigma) after exposure to aged plastic leachates. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106635. [PMID: 37478585 DOI: 10.1016/j.aquatox.2023.106635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/19/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023]
Abstract
The issue of the additives leached from plastics has attracted widespread attention. More crucially, endocrine disruptor status for several leached additives has been established. However, little is known about the overall endocrine disrupting effects of aged plastic leachates. Therefore, the transcriptional responses of endocrine-related genes were assessed in the embryos of marine medaka (Oryzias melastigma), which were exposed to the leachates from aged plastics that were immersed into the simulated seawater (SW) or fish digest (FD). The results revealed that there was a great difference between the SW and FD leachates in the transcripts of endocrine-related genes. With the exception of cyp1a, all target genes had their transcripts potentially down-regulated by the FD leachates. Chgl (a biomarker for estrogens), pparβ (related to lipid metabolism), and cyp19a (related to sexual differentiation and reproduction) transcripts tended to be repressed by the SW leachates, while pparα, pparγ and cyp1a (mediating metabolism of xenobiotics) transcripts were stimulated. In addition, a redundancy analysis was carried out to determine the relationship between the leached additives and the transcriptional changes. However, the additives only partially explained the variation in the transcripts of endocrine-related genes (24.8%), indicating that other leached additives may have an impact on target gene transcription. This study provided molecular evidence of the aged plastic leachates' endocrine disrupting effects. Exploring the primary factors that affect the transcriptional alterations would require more research.
Collapse
Affiliation(s)
- Shu-Qing Qiu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, University Town, South China Normal University, Guangzhou 510006, China
| | - Guo-Yong Huang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, University Town, South China Normal University, Guangzhou 510006, China.
| | - Xiao-Pei Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, University Town, South China Normal University, Guangzhou 510006, China
| | - Dong-Qiao Lei
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, University Town, South China Normal University, Guangzhou 510006, China
| | - Chen-Si Wang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, University Town, South China Normal University, Guangzhou 510006, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, University Town, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
15
|
Afreen V, Hashmi K, Nasir R, Saleem A, Khan MI, Akhtar MF. Adverse health effects and mechanisms of microplastics on female reproductive system: a descriptive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:76283-76296. [PMID: 37247153 DOI: 10.1007/s11356-023-27930-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
Microplastics (MPs), with a diameter of less than 5 mm, include polymers such as polystyrene, polypropylene, and polyethylene. The MPs occur in different morphologies including fragments, beads, fibers, and films that are swallowed by fresh water and land-based animals and enter their food chain, where they produce hazardous effects such as uterine toxicity, infertility, and neurotoxicity. The aim of this review is to explore the effects of polystyrene MPs (PS-MPs) on the female reproductive system and understand the mechanisms by which they produce reproductive toxicity. Several studies suggested that the exposure to PS-MPs increased the probability of larger ovaries with fewer follicles, decreased the number of embryos produced, and decreased the number of pregnancies in female mice. It also changed sex hormone levels and caused oxidative stress, which could have an impact on fertility and reproduction. Exposure to PS-MPs caused the death of granulosa cells through apoptosis and pyroptosis via activation of the NLRP3/caspase pathway and disruption of the Wnt-signaling pathway. Activation of TL4/NOX2 caused the uterine fibrosis resulting in endometrium thinning. The PS-MPs had a negative impact on ovarian capacity, oocyte maturation, and oocyte quality. Furthermore, the PS-MPs disrupted the hypothalamus-pituitary-gonadal axis in marine animals, resulting in a decrease in hatching rate and offspring body size, causing trans-generational effects. It also reduced fecundity and produced germ-line apoptosis. The main focus of this review was to explore the different mechanisms and pathways through which PS-MPs adversely impact the female reproductive system.
Collapse
Affiliation(s)
- Vishal Afreen
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Kanza Hashmi
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Rimsha Nasir
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Imran Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan.
| |
Collapse
|
16
|
Giani D, Andolina C, Baini M, Panti C, Sciandra M, Vizzini S, Fossi MC. Trophic niche influences ingestion of micro- and mesoplastics in pelagic and demersal fish from the Western Mediterranean Sea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 328:121632. [PMID: 37059168 DOI: 10.1016/j.envpol.2023.121632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/25/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023]
Abstract
Plastic pollution has been extensively documented in the marine food web, but targeted studies focusing on the relationship between microplastic ingestion and fish trophic niches are still limited. In this study we investigated the frequency of occurrence and the abundance of micro- and mesoplastics (MMPs) in eight fish species with different feeding habits from the western Mediterranean Sea. Stable isotope analysis (δ13C and δ15N) was used to describe the trophic niche and its metrics for each species. A total of 139 plastic items were found in 98 out of the 396 fish analysed (25%). The bogue revealed the highest occurrence with 37% of individuals with MMPs in their gastrointestinal tract, followed by the European sardine (35%). We highlighted how some of the assessed trophic niche metrics seem to influence MMPs occurrence. Fish species with a wider isotopic niche and higher trophic diversity were more probable to ingest plastic particles in pelagic, benthopelagic and demersal habitats. Additionally, fish trophic habits, habitat and body condition influenced the abundance of ingested MMPs. A higher number of MMPs per individual was found in zooplanktivorous than in benthivore and piscivorous species. Similarly, our results show a higher plastic particles ingestion per individual in benthopelagic and pelagic species than in demersal species, which also resulted in lower body condition. Altogether, these results suggest that feeding habits and trophic niche descriptors can play a significant role in the ingestion of plastic particles in fish species.
Collapse
Affiliation(s)
- Dario Giani
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy
| | - Cristina Andolina
- Department of Earth and Marine Sciences, DiSTeM, University of Palermo, Italy; National Interuniversity Consortium for Marine Sciences, CoNISMa, Rome, Italy.
| | - Matteo Baini
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy
| | - Cristina Panti
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy; NBFC, National Biodiversity Future Center, 90133 Italy
| | - Mariangela Sciandra
- Department of Economics, Business and Statistics, University of Palermo, Palermo, Italy
| | - Salvatrice Vizzini
- Department of Earth and Marine Sciences, DiSTeM, University of Palermo, Italy; National Interuniversity Consortium for Marine Sciences, CoNISMa, Rome, Italy
| | - Maria Cristina Fossi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy; NBFC, National Biodiversity Future Center, 90133 Italy
| |
Collapse
|
17
|
Mancia A, Abelli L, Palladino G, Candela M, Lucon-Xiccato T, Bertolucci C, Fossi MC, Baini M, Panti C. Sorbed environmental contaminants increase the harmful effects of microplastics in adult zebrafish, Danio rerio. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 259:106544. [PMID: 37105865 DOI: 10.1016/j.aquatox.2023.106544] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/03/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023]
Abstract
Aquatic animals ingest Microplastics (MPs) which have the potential to affect the uptake and bioavailability of sorbed co-contaminants. However, the effects on living organisms still need to be properly understood. The present study was designed to assess the combined effects of MPs and environmental contaminants on zebrafish (Danio rerio) health and behavior. Adult specimens were fed according to three different protocols: 1) untreated food (Control group); 2) food supplemented with 0.4 mg/L pristine polyethylene-MPs (PE-MPs; 0.1-0.3 mm diameter) (PEv group); 3) food supplemented with 0.4 mg/L PE-MPs previously incubated (PEi group) for 2 months in seawater. Analysis of contaminants in PEi detected trace elements, such as lead and copper. After 15 days of exposure, zebrafish underwent behavioral analysis and were then dissected to sample gills and intestine for histology, and the latter also for microbiome analysis. Occurrence of PEv and PEi in the intestine and contaminants in the fish carcass were analyzed. Both PEv- and PEi-administered fish differed from controls in the assays performed, but PEi produced more harmful effects in most instances. Overall, MPs after environmental exposure revealed higher potential to alter fish health through combined effects (e.g. proportion of microplastics, pollutants and/or microorganisms).
Collapse
Affiliation(s)
- Annalaura Mancia
- Department of Life Sciences and Biotechnology, University of Ferrara, via L. Borsari, 46, Ferrara 44121, Italy.
| | - Luigi Abelli
- Department of Life Sciences and Biotechnology, University of Ferrara, via L. Borsari, 46, Ferrara 44121, Italy
| | - Giorgia Palladino
- Department of Pharmacy and Biotechnology, Unit of Microbiome Science and Biotechnology, University of Bologna, via Belmeloro, 6, Bologna 40126, Italy; Fano Marine Center, the Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, vialeAdriatico 1/N, Fano, Pesaro Urbino 61032, Italy
| | - Marco Candela
- Department of Pharmacy and Biotechnology, Unit of Microbiome Science and Biotechnology, University of Bologna, via Belmeloro, 6, Bologna 40126, Italy; Fano Marine Center, the Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, vialeAdriatico 1/N, Fano, Pesaro Urbino 61032, Italy
| | - Tyrone Lucon-Xiccato
- Department of Life Sciences and Biotechnology, University of Ferrara, via L. Borsari, 46, Ferrara 44121, Italy
| | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology, University of Ferrara, via L. Borsari, 46, Ferrara 44121, Italy
| | - Maria Cristina Fossi
- Department of Environmental, Earth and Physical Sciences, University of Siena, via P.A. Mattioli, 4, Siena 53100, Italy
| | - Matteo Baini
- Department of Environmental, Earth and Physical Sciences, University of Siena, via P.A. Mattioli, 4, Siena 53100, Italy
| | - Cristina Panti
- Department of Environmental, Earth and Physical Sciences, University of Siena, via P.A. Mattioli, 4, Siena 53100, Italy
| |
Collapse
|
18
|
Kim MJ, Kim JA, Song JA, Kho KH, Choi CY. Synthetic microfiber exposure negatively affects reproductive parameters in male medaka (Oryzias latipes). Gen Comp Endocrinol 2023; 334:114216. [PMID: 36681254 DOI: 10.1016/j.ygcen.2023.114216] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023]
Abstract
Microplastics not only accumulate in the bodies of fishes and cause damage to the organs, but also cause many other problems, such as reduced reproductive capacity, by acting directly or indirectly on the hypothalamus-pituitary-gonad axis (HPG axis). In this study, we investigated the changes in HPG axis-related genes in male medaka (Oryzias latipes) exposed to fiber-type microplastics. We confirmed the progression of vitellogenesis, a sign of endocrine disruption, in male fish. In the microfiber-exposed group, microfiber accumulation was confirmed in the gills and intestines. One week after exposure to two different concentrations of microfibers (500 and 1,000 fibers/L), the fish showed increased expression of gonadotropin-releasing hormone (GnRH) and luteinizing hormone receptor (LH-R) mRNA. From day 10 of exposure to the microfibers, there was an increase in the expression of the gonadotropin-inhibitory hormone (GnIH) mRNA and a decrease in the expression of GnRH and LH-R mRNA. There was an increase in the cytochrome P450 aromatase (CYP19a) mRNA expression and plasma estradiol (E2) concentration in the 1,000 fibers/L exposure group. High vitellogenin (VTG) mRNA expression was confirmed seven days after exposure in the 1,000 fibers/L group, which was consistent with the VTG mRNA expression signals detected in the liver using in situ hybridization. These results suggest that microfiber ingestion may cause short-term endocrinal disruption of the HPG axis in male medaka, which in turn may interfere with their normal maturation process.
Collapse
Affiliation(s)
- Min Ju Kim
- Department of Convergence Study on the Ocean Science and Technology, Korea Maritime and Ocean University, Busan 49112, Republic of Korea
| | - Jin A Kim
- Department of Convergence Study on the Ocean Science and Technology, Korea Maritime and Ocean University, Busan 49112, Republic of Korea
| | - Jin Ah Song
- Marine Bio-Resources Research Unit, Korea Institute of Ocean Science and Technology, Busan 49111, Republic of Korea
| | - Kang Hee Kho
- Department of Fisheries Science, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Cheol Young Choi
- Department of Convergence Study on the Ocean Science and Technology, Korea Maritime and Ocean University, Busan 49112, Republic of Korea; Division of Marine BioScience, Korea Maritime and Ocean University, Busan 49112, Republic of Korea.
| |
Collapse
|
19
|
Oliveira AM, Patrício Silva AL, Soares AMVM, Barceló D, Duarte AC, Rocha-Santos T. Current knowledge on the presence, biodegradation, and toxicity of discarded face masks in the environment. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2023; 11:109308. [PMID: 36643396 PMCID: PMC9832688 DOI: 10.1016/j.jece.2023.109308] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
During the first year of the COVID-19 pandemic, facemasks became mandatory, with a great preference for disposable ones. However, the benefits of face masks for health safety are counteracted by the environmental burden related to their improper disposal. An unprecedented influx of disposable face masks entering the environment has been reported in the last two years of the pandemic, along with their implications in natural environments in terms of their biodegradability, released contaminants and ecotoxicological effects. This critical review addresses several aspects of the current literature regarding the (bio)degradation and (eco)toxicity of face masks related contaminants, identifying uncertainties and research needs that should be addressed in future studies. While it is indisputable that face mask contamination contributes to the already alarming plastic pollution, we are still far from determining its real environmental and ecotoxicological contribution to the issue. The paucity of studies on biodegradation and ecotoxicity of face masks and related contaminants, and the uncertainties and uncontrolled variables involved during experimental procedures, are compromising eventual comparison with conventional plastic debris. Studies on the abundance and composition of face mask-released contaminants (microplastics/fibres/ chemical compounds) under pre- and post-pandemic conditions should, therefore, be encouraged, along with (bio)degradation and ecotoxicity tests considering environmentally relevant settings. To achieve this, methodological strategies should be developed to overcome technical difficulties to quantify and characterise the smallest MPs and fibres, adsorbents, and leachates to increase the environmental relevancy of the experimental conditions.
Collapse
Affiliation(s)
- Ana M Oliveira
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana L Patrício Silva
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Amadeu M V M Soares
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Damià Barceló
- Catalan Institute for Water research (ICRA-CERCA), H2O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101,17003 Girona, Spain
- Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Armando C Duarte
- Centre for Environmental and Marine Studies (CESAM) and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Teresa Rocha-Santos
- Centre for Environmental and Marine Studies (CESAM) and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
20
|
Hassoun A, Pasti L, Chenet T, Rusanova P, Smaoui S, Aït-Kaddour A, Bono G. Detection methods of micro and nanoplastics. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 103:175-227. [PMID: 36863835 DOI: 10.1016/bs.afnr.2022.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Plastics and related contaminants (including microplastics; MPs and nanoplastics; NPs) have become a serious global safety issue due to their overuse in many products and applications and their inadequate management, leading to possible leakage into the environment and eventually to the food chain and humans. There is a growing literature reporting on the occurrence of plastics, (MPs and NPs) in both marine and terrestrial organisms, with many indications about the harmful impact of these contaminants on plants and animals, as well as potential human health risks. The presence of MPs and NPs in many foods and beverages including seafood (especially finfish, crustaceans, bivalves, and cephalopods), fruits, vegetables, milk, wine and beer, meat, and table salts, has become popular research areas in recent years. Detection, identification, and quantification of MPs and NPs have been widely investigated using a wide range of traditional methods, such as visual and optical methods, scanning electron microscopy, and gas chromatography-mass spectrometry, but these methods are burdened with a number of limitations. In contrast, spectroscopic techniques, especially Fourier-transform infrared spectroscopy and Raman spectroscopy, and other emerging techniques, such as hyperspectral imaging are increasingly being applied due to their potential to enable rapid, non-destructive, and high-throughput analysis. Despite huge research efforts, there is still an overarching need to develop reliable analytical techniques with low cost and high efficiency. Mitigation of plastic pollution requires establishing standard and harmonized methods, adopting holistic approaches, and raising awareness and engaging the public and policymakers. Therefore, this chapter focuses mainly on identification and quantification techniques of MPs and NPs in different food matrices (mostly seafood).
Collapse
Affiliation(s)
- Abdo Hassoun
- Sustainable AgriFoodtech Innovation & Research (SAFIR), Arras, France; Syrian Academic Expertise (SAE), Gaziantep, Turkey.
| | - Luisa Pasti
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Tatiana Chenet
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Polina Rusanova
- Institute for Biological Resources and Marine Biotechnologies, National Research Council (IRBIM-CNR), Mazara del Vallo, TP, Italy; Department of Biological, Geological and Environmental Sciences (BiGeA) - Marine Biology and Fisheries Laboratory of Fano (PU), University of Bologna (BO), Bologna, Italy
| | - Slim Smaoui
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Sfax, Tunisia
| | | | - Gioacchino Bono
- Institute for Biological Resources and Marine Biotechnologies, National Research Council (IRBIM-CNR), Mazara del Vallo, TP, Italy; Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università Di Palermo, Palermo, Italy
| |
Collapse
|
21
|
Parker B, Britton JR, Green ID, Amat-Trigo F, Andreou D. Parasite infection but not chronic microplastic exposure reduces the feeding rate in a freshwater fish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121120. [PMID: 36682615 DOI: 10.1016/j.envpol.2023.121120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
Microplastics (plastics <5 mm) are an environmental contaminant that can negatively impact the behaviour and physiology of aquatic biota. Although parasite infection can also alter the behaviour and physiology of their hosts, few studies have investigated how microplastic and parasite exposure interact to affect hosts. Accordingly, an interaction experiment tested how exposure to environmentally relevant microplastic concentrations and the trophically transmitted parasite Pomphorhynchus tereticollis affected the parasite load, condition metrics and feeding rate of the freshwater fish final host chub Squalius cephalus. Microplastic exposure was predicted to increase infection susceptibility, resulting in increased parasite loads, whereas parasite and microplastic exposure were expected to synergistically and negatively impact condition indices and feeding rates. Following chronic (≈170 day) dietary microplastic exposure, fish were exposed to a given number of gammarids (4/8/12/16/20), with half of the fish presented with parasite infected individuals, before a comparative functional response experiment tested differences in feeding rates on different live prey densities. Contrary to predictions, dietary microplastic exposure did not affect parasite abundance at different levels of parasite exposure, specific growth rate was the only condition index that was lower for exposed but unexposed fish, with no single or interactive effects of microplastic exposure detected. However, parasite infected fish had significantly lower feeding rates than unexposed fish in the functional response experiment, with exposed but unexposed fish also showing an intermediate decrease in feeding rates. Thus, the effects of parasitism on individuals were considerably stronger than microplastic exposure, with no evidence of interactive effects. Impacts of environmentally relevant microplastic levels might thus be relatively minor versus other stressors, with their interactive effects difficult to predict based on their single effects.
Collapse
Affiliation(s)
- Ben Parker
- Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Poole, Dorset, BH12 5BB, UK.
| | - J Robert Britton
- Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Poole, Dorset, BH12 5BB, UK
| | - Iain D Green
- Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Poole, Dorset, BH12 5BB, UK
| | - Fátima Amat-Trigo
- Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Poole, Dorset, BH12 5BB, UK
| | - Demetra Andreou
- Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Poole, Dorset, BH12 5BB, UK
| |
Collapse
|
22
|
Porcino N, Bottari T, Mancuso M. Is Wild Marine Biota Affected by Microplastics? Animals (Basel) 2022; 13:147. [PMID: 36611755 PMCID: PMC9817524 DOI: 10.3390/ani13010147] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
The present review provides detailed information on the adverse effects of MPs on wild marine organisms, including tissue damage, fish condition, oxidative stress, immune toxicity, and genotoxicity. A bibliometric analysis was carried out on CiteSpace (version 6.1.R3) (Drexel University, Philadelphia, PA, USA) to verify how many papers studied the effects on wild marine species. The results showed a total of 395 articles, but only 22 really presented data on the effects or impacts on marine biota, and of these, only 12 articles highlighted negative effects. This review shows that the observed effects in wild organisms were less severe and milder than those found in the experimental conditions. The knowledge of negative effects caused by direct ingestion of microplastics in wild animals is still limited; more efforts are necessary to fully understand the role of MPs and the adverse effects on wild marine organisms, the ecosystem, and human health.
Collapse
Affiliation(s)
- Nunziatina Porcino
- Institute for Marine Biological Resources and Biotechnology (IRBIM)—CNR, 98122 Messina, Italy
| | - Teresa Bottari
- Institute for Marine Biological Resources and Biotechnology (IRBIM)—CNR, 98122 Messina, Italy
- Department of Integrative Marine Ecology, Stazione Zoologica “Anton Dohrn”, Sicily Marine Centre, 98167 Messina, Italy
| | - Monique Mancuso
- Institute for Marine Biological Resources and Biotechnology (IRBIM)—CNR, 98122 Messina, Italy
- Department of Integrative Marine Ecology, Stazione Zoologica “Anton Dohrn”, Sicily Marine Centre, 98167 Messina, Italy
| |
Collapse
|
23
|
Solomando A, Cohen-Sánchez A, Box A, Montero I, Pinya S, Sureda A. Microplastic presence in the pelagic fish, Seriola dumerili, from Balearic Islands (Western Mediterranean), and assessment of oxidative stress and detoxification biomarkers in liver. ENVIRONMENTAL RESEARCH 2022; 212:113369. [PMID: 35508220 DOI: 10.1016/j.envres.2022.113369] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/01/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Microplastics (MPs) are characterized by their high persistence in marine ecosystems, and due to their small size, they can be easily ingested by very diverse organisms. Although the presence of MPs in wild fish is well documented, there is still limited information on their potential to induce adverse effects. Pelagic fish species, because of their wide distribution, are considered good bioindicators for monitoring environmental pollution of marine ecosystems. This study investigated the presence of MPs in the gastrointestinal tract of the predatory pelagic fish (Seriola dumerili) in the Balearic Islands (Mediterranean Sea), and the possible relationship with oxidative stress through the analysis of biomarkers in liver tissue. The results showed the presence of MPs in 98% of total samples examined (n = 52) with an average of 12.2 ± 1.3 MPs/individual. A greater amount of fibre-like particles was isolated compared to fragments. No correlation between the presence of MPs in the gastrointestinal contents and the size of the fishes was noted. Antioxidant enzymes (superoxide dismutase and catalase) and the phase II detoxification enzyme glutathione-S-transferase showed increased activities in fish with higher MPs load. The activity ethoxyresorufin-O-deethylase and the levels of malondialdehyde were similar in both groups. In conclusion, the present results provide an important database on the assessment of the presence of MP debris in S. dumerili gastrointestinal tract and, the potential capability to cause oxidative stress.
Collapse
Affiliation(s)
- Antònia Solomando
- Research Group in Community Nutrition and Oxidative Stress (NUCOX), University of Balearic Islands-IUNICS, 07122, Palma de Mallorca, Balearic Islands, Spain; Interdisciplinary Ecology Group, Department of Biology, University of the Balearic Islands, E-07122, Palma de Mallorca, Balearic Islands, Spain.
| | - Amanda Cohen-Sánchez
- Research Group in Community Nutrition and Oxidative Stress (NUCOX), University of Balearic Islands-IUNICS, 07122, Palma de Mallorca, Balearic Islands, Spain.
| | - Antonio Box
- Department of Agricultura, Ramaderia, Pesca, Caça i Cooperació Municipal, Consell Insular d'Eivissa, 07800, Balearic Islands, Spain.
| | - Inmaculada Montero
- Grup D'Accio Local Per Al Desenvolupament Rural D'Eivissa i Formentera (GALEF), 07800, Ibiza, Balearic Islands, Spain.
| | - Samuel Pinya
- Interdisciplinary Ecology Group, Department of Biology, University of the Balearic Islands, E-07122, Palma de Mallorca, Balearic Islands, Spain.
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress (NUCOX), University of Balearic Islands-IUNICS, 07122, Palma de Mallorca, Balearic Islands, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain; Health Research Institute of Balearic Islands (IdISBa), 07120, Palma de Mallorca, Spain.
| |
Collapse
|
24
|
Capó X, Alomar C, Compa M, Sole M, Sanahuja I, Soliz Rojas DL, González GP, Garcinuño Martínez RM, Deudero S. Quantification of differential tissue biomarker responses to microplastic ingestion and plasticizer bioaccumulation in aquaculture reared sea bream Sparus aurata. ENVIRONMENTAL RESEARCH 2022; 211:113063. [PMID: 35271834 DOI: 10.1016/j.envres.2022.113063] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/10/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Marine aquaculture is considered a potential source of microplastics (MPs). MPs can induce oxidative stress and damage in marine species. In this study we evaluated the impact of MPs intake in the commercial fish, Sparus aurata, from aquaculture facilities and the antioxidant response associated to this MPs ingestion in caged specimens for 120 days. Sampling was carried out at the beginning of the study (T0), at 60 days (T60) and at 120 days (T120). At each sampling stage, gastrointestinal tract, blood, plasma, liver and muscle samples were obtained to analyse MPs intake (gastrointestinal tract), oxidative stress markers (blood, plasma and liver) and plasticizers bioaccumulation (muscle). Fish sampled at T60 presented the highest MPs intake and plasticizers accumulated in muscle over time, but with a different pattern according to type: bisphenols and phthalates. This indicates MPs ingestion induces a differential tissue response in S. aurata. Similarly, stress biomarkers presented a differential response throughout the study, depending on the analysed tissue. In the case of oxidative damage markers, for malondialdehyde (MDA) an increase throughout the study was observed both in liver and blood cells but with a progressive decrease in plasma. In the case of phase I detoxifying enzyme activities in liver, 7-ethoxyresorufin O-deethylase (EROD), 7-benzyloxy-4-[trifluoromethyl]-coumarin-O-debenzyloxylase (BFCOD) and carboxylesterases (CE), showed a comparable decrease at T60 with a slight recovery at T120. In contrast, glutathione-S-transferase (GST) activity was significantly enhanced at T60 compared to the other sampling stages. In conclusion, MPs ingestion occurs in aquaculture reared seabream where potentially associated plasticizers accumulate in the muscle and both could be responsible for plasma and liver oxidative stress damage and alterations on detoxifying biomarkers responses.
Collapse
Affiliation(s)
- Xavier Capó
- Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente s/n, 07015, Mallorca, Spain.
| | - Carme Alomar
- Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente s/n, 07015, Mallorca, Spain
| | - Monserrat Compa
- Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente s/n, 07015, Mallorca, Spain
| | - Montserrat Sole
- Institut de Ciències del Mar, ICM-CSIC, E-08003, Barcelona, Spain
| | - Ignasi Sanahuja
- Institut de Ciències del Mar, ICM-CSIC, E-08003, Barcelona, Spain
| | - Dulce Lucy Soliz Rojas
- Departamento de Ciencias Analíticas, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, Madrid, Spain
| | - Gema Paniagua González
- Departamento de Ciencias Analíticas, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, Madrid, Spain
| | - Rosa Maria Garcinuño Martínez
- Departamento de Ciencias Analíticas, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, Madrid, Spain
| | - Salud Deudero
- Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente s/n, 07015, Mallorca, Spain
| |
Collapse
|
25
|
Okamoto K, Nomura M, Horie Y, Okamura H. Color preferences and gastrointestinal-tract retention times of microplastics by freshwater and marine fishes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119253. [PMID: 35378197 DOI: 10.1016/j.envpol.2022.119253] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/25/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
We examined ingestion and retention rates of microplastics (MPs) by two freshwater (Japanese medaka and zebrafish) and two marine fish species (Indian medaka and clown anemonefish) to determine their color preferences and gastrointestinal-tract retention times. In our ingestion experiments, clown anemonefish ingested the most MP particles, followed by zebrafish, and then Japanese and Indian medaka. Next, we investigated color preferences among five MP colors. Red, yellow, and green MP were ingested at higher rates than gray and blue MPs for all tested fish species. To test whether these differences truly reflect a recognition of and preference for certain colors based on color vision, we investigated the preferences of clown anemonefish for MP colors under light and dark conditions. Under dark conditions, ingestion of MP particles was reduced, and color preferences were not observed. Finally, we assessed gastrointestinal-tract retention times for all four fish species. Some individuals retained MP particles in their gastrointestinal tracts for over 24 h after ingestion. Our results show that fish rely on color vision to recognize and express preferences for certain MP colors. In addition, MP excretion times varied widely among individuals. Our results provide new insights into accidental MP ingestion by fishes.
Collapse
Affiliation(s)
- Konori Okamoto
- Faculty of Maritime Sciences, Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe, 658-0022, Japan
| | - Miho Nomura
- Graduate School of Maritime Sciences, Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe, 658-0022, Japan
| | - Yoshifumi Horie
- Research Center for Inland Seas (KURCIS), Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe, 658-0022, Japan.
| | - Hideo Okamura
- Research Center for Inland Seas (KURCIS), Kobe University, Fukaeminami-machi, Higashinada-ku, Kobe, 658-0022, Japan
| |
Collapse
|
26
|
Rodríguez-Hernández JA, Araújo RG, López-Pacheco IY, Rodas-Zuluaga LI, González-González RB, Parra-Arroyo L, Sosa-Hernández JE, Melchor-Martínez EM, Martínez-Ruiz M, Barceló D, Pastrana LM, Iqbal HMN, Parra-Saldívar R. Environmental persistence, detection, and mitigation of endocrine disrupting contaminants in wastewater treatment plants – a review with a focus on tertiary treatment technologies. ENVIRONMENTAL SCIENCE: ADVANCES 2022; 1:680-704. [DOI: 10.1039/d2va00179a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Endocrine disrupting chemicals are a group of contaminants that have severe effects on humans and animals when exposed, like cancer and alterations to the nervous and reproductive systems.
Collapse
Affiliation(s)
| | - Rafael G. Araújo
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey, Mexico, 64849
| | - Itzel Y. López-Pacheco
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey, Mexico, 64849
| | | | - Reyna Berenice González-González
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey, Mexico, 64849
| | - Lizeth Parra-Arroyo
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey, Mexico, 64849
| | - Juan Eduardo Sosa-Hernández
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey, Mexico, 64849
| | - Elda M. Melchor-Martínez
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey, Mexico, 64849
| | - Manuel Martínez-Ruiz
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey, Mexico, 64849
| | - Damià Barceló
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Jordi Girona, 18-26, 08034 Barcelona, Spain
- Catalan Institute for Water Research (ICRA-CERCA), Parc Científic i Tecnològic de la Universitat de Girona, c/Emili Grahit, 101, Edifici H2O, 17003 Girona, Spain
- Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun, 248007, Uttarakhand, India
| | - Lorenzo M. Pastrana
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330, Braga, Portugal
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey, Mexico, 64849
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey, Mexico, 64849
| |
Collapse
|