1
|
Schreyers LJ, Erismann R, Erismann S, Ludwig C, Patel B, Filella M, van Emmerik THM. Revealing the role of land-use features on macrolitter distribution in Swiss freshwaters. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124911. [PMID: 39265772 DOI: 10.1016/j.envpol.2024.124911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 07/30/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024]
Abstract
Macrolitter, especially macroplastics, (> 0.5 cm) negatively impact freshwater ecosystems, where they can be retained along lake shores, riverbanks, floodplains or bed sediments. Long-term and large-scale assessments of macrolitter on riverbanks and lake shores provide an understanding of litter abundance, composition, and origin in freshwater systems. Combining macrolitter quantification with hydrometeorological variables allows further study of leakage, transport, and accumulation characteristics. Several studies have explored the role of hydrometeorological factors in influencing macrolitter distribution and found that river discharge, runoff, and wind only partially explains its distribution. Other factors, such as land-use features, have not yet been thoroughly investigated. In this study, we provide a country-scale assessment of land-use influence on macrolitter abundance in freshwater systems. We analyzed the composition of the most commonly found macrolitter items (referred to as 'top items', n = 42,565) sampled across lake shores and riverbanks in Switzerland between April 2020 and May 2021. We explored the relationship between eleven land-use features and macrolitter abundance at survey locations (n = 143). The land-use features included buildings, city centers, public infrastructure, recreational areas, forests, marshlands, vineyards, orchards, other land, and rivers and canals. The majority of top items are significantly and positively correlated with land-use features related to urban coverage, notably roads and buildings. Over 60% of top items were found to be correlated with either roads or buildings. Notably, tobacco, food and beverage-related products, as well as packaging and sanitary products, showed strong associations with these urban land-use features. Other types of items, however, did not exhibit a relationship with land-use features, such as industry and construction-related items. Ultimately, this highlights the need to combine measures at the local and regional/national scales for effective litter reduction.
Collapse
Affiliation(s)
- L J Schreyers
- Wageningen University and Research, Hydrology and Environmental Hydraulics, Wageningen, The Netherlands.
| | | | | | - C Ludwig
- Paul Scherrer Institute (PSI), Energy and Environment Division (ENE), Bioenergy and Catalysis Laboratory (LBK), Chemical Processes and Materials Group (CPM), Villigen, Switzerland; École Polytechnique Fédérale de Lausanne (EPFL), School of Architecture, Civil and Environmental Engineering (ENAC), Environmental Engineering Institute (IIE), Ludwig Group (GR-LUD), Station 6, Lausanne, Switzerland
| | - B Patel
- Paul Scherrer Institute (PSI), Energy and Environment Division (ENE), Bioenergy and Catalysis Laboratory (LBK), Chemical Processes and Materials Group (CPM), Villigen, Switzerland
| | - M Filella
- University of Geneva, Department F.-A. Forel for Environmental and Aquatic Sciences, Geneva, Switzerland
| | - T H M van Emmerik
- Wageningen University and Research, Hydrology and Environmental Hydraulics, Wageningen, The Netherlands
| |
Collapse
|
2
|
Liro M, Zielonka A, Mikuś P. First attempt to measure macroplastic fragmentation in rivers. ENVIRONMENT INTERNATIONAL 2024; 191:108935. [PMID: 39173237 DOI: 10.1016/j.envint.2024.108935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/09/2024] [Accepted: 08/01/2024] [Indexed: 08/24/2024]
Abstract
Direct field measurements of macroplastic fragmentation during its transport in rivers are currently unavailable, and there is no established method to perform them. Previous studies have showed that macroplastic fragmentation results in the production of harmful microplastics, and river channels can be hotspots for this process. Therefore, obtaining information about this process is crucial for quantifying the production of secondary microplastics in rivers and assessing the related risks for riverine biota and human health. Here, we propose a simple low-cost methodology for quantifying riverine macroplastic fragmentation by conducting repeated measurements of the mass of tagged macroplastic items before and after their transport in the river. As a proof-of-concept for this method, we conducted a 52-65 day experiment that allowed us to measure a median fragmentation rate of 0.044 ± 0.012 g for 1-liter PET bottles during their transport at low to medium flow in the middle mountain Skawa River in the Polish Carpathians. Using the obtained data (n = 42), we extrapolated that during low to medium flows, the median yearly mass loss of PET bottles in the study section is 0.26 ± 0.012 g/year (0.78 ± 0.036 % of bottle mass), and the median rate of bottle surface degradation is 3.13 ± 0.14 μm/year. These estimates suggest a relatively high fragmentation rate for a PET bottle in a mountain river even under low to medium flow conditions without high-energy transport. We discuss how our simple and relatively low-cost methodology can be flexibly adapted and future optimized to quantify macroplastic fragmentation in various types of rivers and their compartments, informing future mitigation efforts about the rates of formation and dispersion of secondary microplastics.
Collapse
Affiliation(s)
- Maciej Liro
- Institute of Nature Conservation, Polish Academy of Sciences, al. Adama Mickiewicza 33, Kraków 31-120, Poland.
| | - Anna Zielonka
- Institute of Nature Conservation, Polish Academy of Sciences, al. Adama Mickiewicza 33, Kraków 31-120, Poland
| | - Paweł Mikuś
- Institute of Nature Conservation, Polish Academy of Sciences, al. Adama Mickiewicza 33, Kraków 31-120, Poland
| |
Collapse
|
3
|
Hoemann C, Bauer CA, Fissore C. Assessing meso-, micro-, and nanoplastic pollution in Los Angeles County estuaries. MARINE POLLUTION BULLETIN 2024; 206:116822. [PMID: 39116758 DOI: 10.1016/j.marpolbul.2024.116822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/03/2024] [Accepted: 08/03/2024] [Indexed: 08/10/2024]
Abstract
Estuaries can behave as plastic pollution hotspots, although the dynamics of accumulation in these unique habitats are not understood. We quantified the current levels of meso-, micro-, and nanoplastic pollution in four Los Angeles County estuaries for the first time, as a function of distance from the water outlet and local population density. Fourier-transform infrared spectroscopy (FTIR) and microscope imaging revealed the presence of six types of plastic; polyethylene or polypropylene dominated the meso- and microplastic, and nanoplastics were identified as mainly polyolefin fibers. The distribution was heterogeneous throughout, although the sand between the river mouth and ocean generally contained more plastic than inland control samples. Population density did not appear to affect the abundance of plastic estuarine pollution. Other factors, such as waste treatment effluent, recreation, and river geography, may contribute to plastic deposition. A positive correlation between meso- and microplastic abundance provides insight into such mechanisms for accumulation.
Collapse
Affiliation(s)
- Connor Hoemann
- Department of Environmental Science, Whittier College, Whittier, CA, United States of America
| | - Christina A Bauer
- Department of Environmental Science, Whittier College, Whittier, CA, United States of America.
| | - Cinzia Fissore
- Department of Environmental Science, Whittier College, Whittier, CA, United States of America
| |
Collapse
|
4
|
Schreyers LJ, van Emmerik THM, Huthoff F, Collas FPL, Wegman C, Vriend P, Boon A, de Winter W, Oswald SB, Schoor MM, Wallerstein N, van der Ploeg M, Uijlenhoet R. River plastic transport and storage budget. WATER RESEARCH 2024; 259:121786. [PMID: 38875862 DOI: 10.1016/j.watres.2024.121786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/29/2024] [Accepted: 05/13/2024] [Indexed: 06/16/2024]
Abstract
Rivers are one of the main conduits that deliver plastic from land into the sea, and also act as reservoirs for plastic retention. Yet, our understanding of the extent of river exposure to plastic pollution remains limited. In particular, there has been no comprehensive quantification of the contributions from different river compartments, such as the water surface, water column, riverbank and floodplain to the overall river plastic transport and storage. This study aims to provide an initial quantification of these contributions. We first identified the main relevant transport processes for each river compartment considered. We then estimated the transport and storage terms, by harmonizing available observations on surface, suspended and floodplain plastic. We applied our approach to two river sections in The Netherlands, with a focus on macroplastics (≥2.5 cm). Our analysis revealed that for the studied river sections, suspended plastics account for over 96% of item transport within the river channel, while their relative contribution to mass transport is only 30%-37% (depending on the river section considered). Surface plastics predominantly consisted of heavier items (mean mass: 7.1 g/#), whereas suspended plastics were dominated by lighter fragments (mean mass: 0.1 g/#). Additionally, the majority (98%) of plastic mass was stored within the floodplains, with the river channel accounting for only 2% of the total storage. Our study developed a harmonized approach for quantifying plastic transport and storage across different river compartments, providing a replicable methodology applicable to different regions. Our findings emphasize the importance of systematic monitoring programs across river compartments for comprehensive insights into riverine plastic pollution.
Collapse
Affiliation(s)
- Louise J Schreyers
- Hydrology and Environmental Hydraulics, Wageningen University and Research, Wageningen, The Netherlands.
| | - Tim H M van Emmerik
- Hydrology and Environmental Hydraulics, Wageningen University and Research, Wageningen, The Netherlands
| | - Fredrik Huthoff
- Marine and Fluvial Systems, University of Twente, Twente, The Netherlands; HKV, Delft, The Netherlands; Department of Water Resources and Ecosystems, IHE Delft Institute for Water Education, Delft, The Netherlands
| | - Frank P L Collas
- Rijkswaterstaat, Ministry of Infrastructure and Water Management, The Hague, The Netherlands; Department of Environmental Science, Radboud Institute for Biological and Environmental Science, Radboud University, Nijmegen, The Netherlands
| | | | - Paul Vriend
- Rijkswaterstaat, Ministry of Infrastructure and Water Management, The Hague, The Netherlands
| | - Anouk Boon
- Department of Physical Geography, Utrecht University, Utrecht, The Netherlands
| | | | - Stephanie B Oswald
- Department of Environmental Science, Radboud Institute for Biological and Environmental Science, Radboud University, Nijmegen, The Netherlands
| | - Margriet M Schoor
- Rijkswaterstaat, Ministry of Infrastructure and Water Management, The Hague, The Netherlands
| | - Nicholas Wallerstein
- Hydrology and Environmental Hydraulics, Wageningen University and Research, Wageningen, The Netherlands
| | - Martine van der Ploeg
- Hydrology and Environmental Hydraulics, Wageningen University and Research, Wageningen, The Netherlands
| | - Remko Uijlenhoet
- Hydrology and Environmental Hydraulics, Wageningen University and Research, Wageningen, The Netherlands; Department of Water Management, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
5
|
Papini G, Petrella G, Cicero DO, Boglione C, Rakaj A. Identification and quantification of polystyrene microplastics in marine sediments facing a river mouth through NMR spectroscopy. MARINE POLLUTION BULLETIN 2024; 198:115784. [PMID: 38016207 DOI: 10.1016/j.marpolbul.2023.115784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 08/13/2023] [Accepted: 11/11/2023] [Indexed: 11/30/2023]
Abstract
Accurate identification and quantification of microplastic pollution in marine sediments are crucial for assessing their ecological impact. In this study, we explored the potential of Nuclear Magnetic Resonance (NMR) spectroscopy as an analytical tool for the analysis of microplastics in complex environmental matrices such as marine sediments. Two common plastic polymers, polystyrene (PS) and acrylonitrile butadiene styrene (ABS), were investigated. The marine sediments facing the Tiber River mouth (Italy) were collected according to a bathymetric gradient. Results demonstrated the successful detection and quantification of PS in all sediment samples (within a range of 12.3-64.6 μg/L), while no ABS significant signals were found. An increment trend with depth was observed in the PS signal, relatable to its physicochemical properties and the Tiber River plume hydrodynamic characteristics. The NMR's non-destructive nature and minimal sample preparation represent a promising avenue for standardizing protocols to assess the microplastic distribution and impact in marine sediments.
Collapse
Affiliation(s)
- Giulia Papini
- PhD Program in Evolutionary Biology and Ecology, Dept. of Biology, University of Rome "Tor Vergata", Italy; Laboratory of Experimental Ecology and Aquaculture, Dept. of Biology, University of Rome "Tor Vergata", Italy.
| | - Greta Petrella
- Department of Chemical Sciences and Technologies, University of Rome "Tor Vergata", Italy.
| | - Daniel Oscar Cicero
- Department of Chemical Sciences and Technologies, University of Rome "Tor Vergata", Italy
| | - Clara Boglione
- Laboratory of Experimental Ecology and Aquaculture, Dept. of Biology, University of Rome "Tor Vergata", Italy
| | - Arnold Rakaj
- Laboratory of Experimental Ecology and Aquaculture, Dept. of Biology, University of Rome "Tor Vergata", Italy; National Inter-University Consortium for Marine Sciences, CoNISMa, Rome, Italy
| |
Collapse
|
6
|
Krishna ABS, Madhu M, Jayadev A. Investigation of microplastics and microplastic communities in selected river and lake basin soils of Thiruvananthapuram District, Kerala, India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 196:66. [PMID: 38117399 DOI: 10.1007/s10661-023-12219-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023]
Abstract
Riparian areas are highly dynamic bio-geophysical settings with a surge of waste deposition predominantly including land-based plastic discards. These polymer discards are destined to be the prime constitution of marine "plastisphere." The polymer fate is determined by waterbodies, where the chances of plastic retention are higher, eventually mediating the formation of microplastics (MPs) in years or decades. Such formed MPs are a potential threat to the aqua bio-regime. A systematic investigation of three waterbody basin soils (Karamana River, Killiyar, and Akkulam-Veli Lake) showed the presence of MPs in all the samples analyzed with varying sizes, shapes, colors, and compositions. MPs of the shapes flakes, fragments, filaments, sheets, foams, and fibers were observed with dimensions 0.3-4.7 mm. Most of the particles were white in hue (WT), followed by colorless (CL), light yellow (L.Y), light brown (L.B), orange (OR), red (RD), and blue (BL), respectively. The polymer communities were identified as high-density polyethylene (HDPE), low-density polyethylene (LDPE), polypropylene (PP), polyethylene terephthalate (PET), polystyrene (PS), and nylon. The highest average MP density was identified in the basin of Killiyar (799 ± 0.09 pieces/kg) followed by Karamana River (671 ± 3.45 pieces/kg), indicating the closeness of the sampling station to the city center compared to Akkulam-Veli Lake (486 ± 58.55 pieces/kg). The majority of the sampling sites belonged to the slopy areas and came under the highly urbanized land category. A close association was observed between particle abundance and urban activity. The study foresees possible threats inflicted by MP abundance upon the area-wide hydro-biological system.
Collapse
Affiliation(s)
- Anjana B S Krishna
- Research Center and Post Graduate Department of Environmental Sciences, All Saints' College, Thiruvananthapuram, Kerala, India
| | - Maha Madhu
- Research Center and Post Graduate Department of Environmental Sciences, All Saints' College, Thiruvananthapuram, Kerala, India
| | - Ayona Jayadev
- Research Center and Post Graduate Department of Environmental Sciences, All Saints' College, Thiruvananthapuram, Kerala, India.
| |
Collapse
|
7
|
Vriend P, Schoor M, Rus M, Oswald SB, Collas FPL. Macroplastic concentrations in the water column of the river Rhine increase with higher discharge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165716. [PMID: 37482357 DOI: 10.1016/j.scitotenv.2023.165716] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
Riverine macroplastic pollution (>0.5 cm) negatively impacts ecosystems and human livelihoods. Monitoring data are crucial for understanding this issue and for the design of effective interventions strategies. Macroplastic pollution floating on the river surface and plastic deposited on riverbanks are studied relatively often. Data on riverine plastics in the water column remain scarce. In this study, we utilized trawl nets at different depths to sample plastic pollution in the water column at the entry point of the river Rhine to the Netherlands. We show that plastic concentrations in the water column increased during higher discharge. Moreover, the results indicate that the vertical distribution of macroplastic pollution changes during different flow conditions. Significantly higher concentrations of macroplastic can be seen near the riverbed during low discharge conditions, while no significant differences in concentration are observed between the bottom, middle, and surface samples during high discharge conditions. Taking into account the recurrence time of low discharge conditions the transport of plastic during low discharge conditions is substantial. These findings provide first insights into the key role of hydrology in explaining macroplastic transport in the water column. These insights can be used to improve future monitoring and intervention strategies.
Collapse
Affiliation(s)
- Paul Vriend
- Rijkswaterstaat, ministry of Infrastructure and Water Management, The Hague, Netherlands
| | - Margriet Schoor
- Rijkswaterstaat, ministry of Infrastructure and Water Management, The Hague, Netherlands
| | - Mandy Rus
- Rijkswaterstaat, ministry of Infrastructure and Water Management, The Hague, Netherlands
| | - Stephanie B Oswald
- Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, the Netherlands
| | - Frank P L Collas
- Rijkswaterstaat, ministry of Infrastructure and Water Management, The Hague, Netherlands; Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, the Netherlands.
| |
Collapse
|
8
|
Liro M, Zielonka A, van Emmerik THM. Macroplastic fragmentation in rivers. ENVIRONMENT INTERNATIONAL 2023; 180:108186. [PMID: 37716340 DOI: 10.1016/j.envint.2023.108186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/09/2023] [Accepted: 09/03/2023] [Indexed: 09/18/2023]
Abstract
The process of macroplastic (>0.5 cm) fragmentation results in the production of smaller plastic particles, which threaten biota and human health and are difficult to remove from the environment. The global coverage and long retention times of macroplastic waste in fluvial systems (ranging from years to centuries) create long-lasting and widespread potential for its fragmentation and the production of secondary micro- and nanoplastics. However, the pathways and rates of this process are mostly unknown and existing experimental data not fully informative, which constitutes a fundamental knowledge gap in our understanding of macroplastic fate in rivers and the transfer of produced microparticles throughout the environment. Here we present a conceptual framework which identifies two types of riverine macroplastic fragmentation controls: intrinsic (resulting from plastic item properties) and extrinsic (resulting from river characteristics and climate). First, based on the existing literature, we identify the intrinsic properties of macroplastic items that make them particularly prone to fragmentation (e.g., film shape, low polymer resistance, previous weathering). Second, we formulate a conceptual model showing how extrinsic controls can modulate the intensity of macroplastic fragmentation in perennial and intermittent rivers. Using this model, we hypothesize that the inundated parts of perennial river channels-as specific zones exposed to the constant transfer of water and sediments-provide particular conditions that accelerate the physical fragmentation of macroplastics resulting from their mechanical interactions with water, sediments, and riverbeds. The unvegetated areas in the non-inundated parts of perennial river channels provide conditions for biochemical fragmentation via photo-oxidation. In intermittent rivers, the whole channel zone is hypothesized to favor both the physical and biochemical fragmentation of macroplastics, with the dominance of the mechanical type during the periods with water flow. Our conceptualization aims to support future experimental and modelling works quantifying plastic footprint of different macroplastic waste in different types of rivers.
Collapse
Affiliation(s)
- Maciej Liro
- Institute of Nature Conservation, Polish Academy of Sciences, al. Adama Mickiewicza 33, 31-120 Kraków, Poland.
| | - Anna Zielonka
- Faculty of Geography and Geology, Institute of Geography and Spatial Management, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Tim H M van Emmerik
- Hydrology and Environmental Hydraulics Group, Wageningen University, Droevendaalsesteeg 3, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
9
|
Soccalingame L, Palazot M, Kedzierski M, Bruzaud S. Sunlight and marine weathering of poly(oxymethylene): Evolution of the physico-chemical properties. MARINE POLLUTION BULLETIN 2023; 193:115070. [PMID: 37302204 DOI: 10.1016/j.marpolbul.2023.115070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 06/13/2023]
Abstract
Plastic pollution is now an environmental problem that affects all environmental compartments. The study of plastic degradation in terrestrial, marine and other freshwater environments is emerging. Research is mainly focused on plastic fragmentation into microplastics. In this contribution, an engineering polymer, poly(oxymethylene) (POM), was studied under different weathering conditions using physico-chemical characterization techniques. A POM homopolymer and a POM copolymer were characterized by electron microscopy, tensile tests, DSC, infrared spectroscopy and rheometry tests after climatic and marine weathering or artificial UV/water spray cycles. Natural climatic conditions were the most favorable for POM degradation, especially under solar UV, as evidenced by the strong fragmentation into microplastics when subjected to artificial UV cycles. The evolution of properties with exposure time was found to be non-linear under natural conditions, in contrast to artificial conditions. Two main stages of degradation were evidenced by the correlation between strain at break and carbonyl indices.
Collapse
Affiliation(s)
- Lata Soccalingame
- Université Bretagne Sud, UMR CNRS 6027, IRDL, F-56100 Lorient, France.
| | - Maialen Palazot
- Université Bretagne Sud, UMR CNRS 6027, IRDL, F-56100 Lorient, France
| | - Mikäel Kedzierski
- Université Bretagne Sud, UMR CNRS 6027, IRDL, F-56100 Lorient, France
| | - Stéphane Bruzaud
- Université Bretagne Sud, UMR CNRS 6027, IRDL, F-56100 Lorient, France
| |
Collapse
|
10
|
Kalman J, Muñiz-González AB, García MÁ, Martínez-Guitarte JL. Chironomus riparius molecular response to polystyrene primary microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161540. [PMID: 36642273 DOI: 10.1016/j.scitotenv.2023.161540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 12/24/2022] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Affiliation(s)
- Judit Kalman
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Spain; Grupo de Riesgos Ambientales para la Salud y el Medio Ambiente (RiSAMA), Facultad de Ciencias de la Salud, Universidad de Rey Juan Carlos, Spain
| | - Ana-Belén Muñiz-González
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Spain
| | | | - José-Luis Martínez-Guitarte
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Spain.
| |
Collapse
|
11
|
Liro M, van Emmerik THM, Zielonka A, Gallitelli L, Mihai FC. The unknown fate of macroplastic in mountain rivers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161224. [PMID: 36584957 DOI: 10.1016/j.scitotenv.2022.161224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Mountain rivers are typically seen as relatively pristine ecosystems, supporting numerous goods (e.g., water resources) for human populations living not only in the mountain regions but also downstream from them. However recent evidence suggests that mountain river valleys in populated areas can be substantially polluted by macroplastic (plastic item >25 mm). It is unknown how distinct characteristics of mountain rivers modulate macroplastic routes through them, which makes planning effective mitigation strategies difficult. To stimulate future works on this gap, we present a conceptual model of macroplastic transport pathways through mountain river. Based on this model, we formulate four hypotheses on macroplastic input, transport and mechanical degradation in mountain rivers. Then, we propose designs of field experiments that allow each hypothesis to be tested. We hypothesize that some natural characteristics of mountain river catchments can accelerate the input of improperly disposed macroplastic waste from the slope to the river. Further, we hypothesize that specific hydromorphological characteristics of mountain rivers (e.g., high flow velocity) accelerate the downstream transport rate of macroplastic and together with the presence of shallow water and coarse bed sediments it can accelerate mechanical degradation of macroplastic in river channels, accelerating secondary microplastic production. The above suggests that mountain rivers in populated areas can act as microplastic factories, which are able to produce more microplastic from the same amount of macroplastic waste inputted into them (in comparison to lowland rivers that have a different hydromorphology). The produced risks can not only affect mountain rivers but can also be transported downstream. The challenge for the future is how to manage the hypothesized risks, especially in mountain areas particularly exposed to plastic pollution due to waste management deficiencies, high tourism pressure, poor ecological awareness of the population and lack of uniform regional and global regulations for the problem.
Collapse
Affiliation(s)
- Maciej Liro
- Institute of Nature Conservation, Polish Academy of Sciences, al. Adama Mickiewicza 33, 31-120 Kraków, Poland.
| | - Tim H M van Emmerik
- Hydrology and Quantitative Water Management Group, Wageningen University, Droevendaalsesteeg 3, 6708 PB Wageningen, the Netherlands
| | - Anna Zielonka
- Faculty of Geography and Geology, Institute of Geography and Spatial Management, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; Department of Forest Resources Management, Faculty of Forestry, University of Agriculture in Krakow, al. 29 Listopada 46, 31-425 Krakow, Poland
| | - Luca Gallitelli
- University Roma Tre, Viale Guglielmo Marconi, 446 00146 Rome, Italy
| | - Florin-Constantin Mihai
- CERNESIM Center, Department of Exact Sciences and Natural Sciences, Institute of Interdisciplinary Research, "Alexandru Ioan Cuza" University of Iasi, 700506, Iasi, Romania
| |
Collapse
|
12
|
de Carvalho AR, Riem-Galliano L, Ter Halle A, Cucherousset J. Interactive effect of urbanization and flood in modulating microplastic pollution in rivers. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119760. [PMID: 35850317 DOI: 10.1016/j.envpol.2022.119760] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 06/17/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Freshwater ecosystems play an important role in transporting and accumulating microplastics. Spatial and temporal variability in microplastic pollution can create critical spots and moments of elevated pollution, however, the consequences of their interaction are still poorly understood. This study aimed to assess the interaction between urbanization and flood episodes on river microplastic pollution. The water surface was sampled in two sites of the Garonne River, upstream and downstream a large urban area, during two flood episodes. Samples were chemically digested to facilitate particles isolation, and microplastics (700 μm-5 mm) were characterized through infrared spectroscopy (ATR-FTIR). Microplastic concentration increased by 5-8 fold during flood episodes, driven by river discharge. This increase was more significant in the downstream site. During the flood, there was an overall increase of larger particles on water surface, but only in the downstream site microplastic colours and polymeric compositions significantly varied. Principal component analysis of infrared spectra from polyethylene microplastics revealed that the main variance in the spectral region corresponded to hydroxyl and carbonyl groups. The carbonyl content in microplastics was significantly higher for particles collected during the flood, likely indicating a higher level of degradation. Urbanization modulates freshwater microplastic pollution during floods, and changes in microplastic physicochemical profile should be further integrated within toxicity studies to evaluate risks potentially elevated to animal and human health.
Collapse
Affiliation(s)
- Aline Reis de Carvalho
- UMR 5174 EDB (Laboratoire Évolution and Diversité Biologique), CNRS, Université Toulouse III Paul Sabatier, IRD, 118 Route de Narbonne, 31062, Toulouse, France; UMR 5623 IMRCP (Laboratoire des Interactions Moléculaires et Réactivité Chimique et Photochimique), CNRS, Université Toulouse III Paul Sabatier, 118 Route de Narbonne, 31062, Toulouse, France.
| | - Louna Riem-Galliano
- UMR 5174 EDB (Laboratoire Évolution and Diversité Biologique), CNRS, Université Toulouse III Paul Sabatier, IRD, 118 Route de Narbonne, 31062, Toulouse, France
| | - Alexandra Ter Halle
- UMR 5623 IMRCP (Laboratoire des Interactions Moléculaires et Réactivité Chimique et Photochimique), CNRS, Université Toulouse III Paul Sabatier, 118 Route de Narbonne, 31062, Toulouse, France
| | - Julien Cucherousset
- UMR 5174 EDB (Laboratoire Évolution and Diversité Biologique), CNRS, Université Toulouse III Paul Sabatier, IRD, 118 Route de Narbonne, 31062, Toulouse, France
| |
Collapse
|
13
|
Liro M, Mikuś P, Wyżga B. First insight into the macroplastic storage in a mountain river: The role of in-river vegetation cover, wood jams and channel morphology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156354. [PMID: 35640751 DOI: 10.1016/j.scitotenv.2022.156354] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/09/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Macroplastic storage in mountain rivers remains unexplored and it is unknown how river morphology and different surface types of river areas modulate this process. Therefore, we sampled macroplastic debris stored on the surface of emergent river areas with different vegetation cover and on wood jams in a channelized, single-thread reach and an unmanaged, multi-thread reach of the Dunajec River in the Polish Carpathians. Total amounts of macroplastic debris retained in these reaches were then estimated on the basis of mean mass of macroplastic deposited on unit area of each surface type and the area of this surface type in a given reach. Exposed river sediments and areas covered with herbaceous vegetation stored significantly lower amounts of macroplastic debris (0.6 and 0.9 g per 1 m2 on average) than wooded islands and wood jams (respectively 6 g and 113 g per 1 m2). The amounts of macroplastic debris stored on wood jams exceeded 19, 129 and 180 times those found on wooded islands, areas covered with herbaceous vegetation and exposed river sediments. Wooded islands and wood jams covering 16.7% and 1.5% of the multi-thread reach stored 43.8% and 41.1%, respectively, of the total amount of macroplastic stored in that reach, whereas these surface types were practically absent in the channelized reach. Consequently, the unmanaged, multi-thread reach, 2.4 times wider than the neighbouring channelized reach, stored 36 times greater amount of macroplastic per 1 km of river length. Our study demonstrated that the storage of macroplastic debris in a mountain river is controlled by channel management style and resultant river morphology, which modulate river hydrodynamics and a longitudinal pattern of the zones of transport and retention of macroplastic conveyed by river flow.
Collapse
Affiliation(s)
- Maciej Liro
- Institute of Nature Conservation, Polish Academy of Sciences, al. Mickiewicza 33, 31-120 Kraków, Poland.
| | - Paweł Mikuś
- Institute of Nature Conservation, Polish Academy of Sciences, al. Mickiewicza 33, 31-120 Kraków, Poland
| | - Bartłomiej Wyżga
- Institute of Nature Conservation, Polish Academy of Sciences, al. Mickiewicza 33, 31-120 Kraków, Poland
| |
Collapse
|
14
|
Huber M, Archodoulaki VM, Pomakhina E, Pukánszky B, Zinöcker E, Gahleitner M. Environmental degradation and formation of secondary microplastics from packaging material: A polypropylene film case study. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2021.109794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|