1
|
Kaneko K, Ito Y, Ebara T, Yatsuya H, Sugiura-Ogasawara M, Saitoh S, Sekiyama M, Isobe T, Kamijima M. Associations of maternal urinary nitrophenol concentrations with adverse birth outcomes and neurodevelopment delay at 4 years of age: The Japan environment and children's study. ENVIRONMENTAL RESEARCH 2025; 264:120290. [PMID: 39510238 DOI: 10.1016/j.envres.2024.120290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/01/2024] [Accepted: 11/03/2024] [Indexed: 11/15/2024]
Abstract
Maternal urinary nitrophenol concentrations are reportedly associated with preterm birth and foetal/offspring development delay, but the evidence is still inconclusive. We investigated the association between maternal urinary concentrations of 4-nitrophenol (4NP) and 3-methyl-4-nitrophenol (3M4NP) and adverse birth outcomes, as well as offspring neurodevelopment delay, defined using the Ages and Stages Questionnaires at 4 years of age, stratified by offspring sex. A total of 3650 non-hypertensive mothers with singleton births were enrolled from the Japan Environment and Children's Study. High 4NP (≥0.41 μg/L) and 3M4NP (≥0.29 μg/L) were defined as ≥ lowest concentration minimum reporting level. Four groups were created using these dichotomized 4NP and 3M4NP concentrations: 'both low', 'either high/low', and 'both high'. Multivariable logistic regression models were used to estimate the adjusted odds ratios (aOR) and population attributable fraction (PAF). For 4NP and 3M4NP, 68.4% and 19.0% of participants had 'high' urinary concentrations, respectively. Compared to 'both low', the overall analysis showed no significant associations between 'both high' and any of the outcomes. However, the stratified analysis showed that the aOR (95% confidence interval [CI]) and PAF (95% CI) for 'both high' regarding preterm birth (<37 weeks' gestation) were 2.7 (1.3, 5.7) and 16.3% (2.5%, 28.1%), respectively, in male offspring. Among female offspring, the aOR and PAF for the 'both high' regarding small-for-gestational-age (SGA)-defined as weight-for-gestational age <10 percentile based on the Japanese neonatal anthropometric charts-were 1.7 (1.0, 2.8) and 10.6% (-0.2%, 20.2%), respectively. Urinary 4NP and 3M4NP concentrations showed no association with low birth weight (<2500 g) and neurodevelopment delay. In conclusion, offspring sex-specific associations of maternal urinary nitrophenols with preterm birth and SGA were observed. Even slight elevations in their levels may explain a certain proportion of preterm birth and SGA. The exposure source, expressed by urinary nitrophenols, should be identified.
Collapse
Affiliation(s)
- Kayo Kaneko
- Department of Occupational and Environmental Health, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan.
| | - Yuki Ito
- Department of Occupational and Environmental Health, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan.
| | - Takeshi Ebara
- Department of Occupational and Environmental Health, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan; Department of Ergonomics, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1, Yahatanishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan.
| | - Hiroshi Yatsuya
- Department of Public Health and Health Systems, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| | - Mayumi Sugiura-Ogasawara
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan.
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan.
| | - Makiko Sekiyama
- Japan Environment and Children's Study Programme Office, Health and Environmental Risk Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan.
| | - Tomohiko Isobe
- Japan Environment and Children's Study Programme Office, Health and Environmental Risk Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan.
| | - Michihiro Kamijima
- Department of Occupational and Environmental Health, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan.
| |
Collapse
|
2
|
Chaleckis R, Ito Y, Wasada H, Wheelock CE, Oishi H, Tomizawa M, Kamijima M. Fungicide Metabolite MS2 Spectral Libraries for Comprehensive Human Biomonitoring. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18247-18256. [PMID: 39101478 DOI: 10.1021/acs.jafc.4c02339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Fungicides undergo rapid metabolism and are excreted in the urine. There are few methods for screening these ubiquitous compounds, which have a high potential for human exposure. High-resolution mass spectrometry (HRMS) is a suitable technique to assess fungicide exposures; however, there is a lack of spectral libraries for fungicide annotation and in particular for downstream metabolites. We created spectral libraries for 32 fungicides for suspect screening. Fungicide standards were administered to mice, and 24-h urine was analyzed using hydrophilic interaction and reversed-phase chromatography coupled to hybrid quadrupole-orbitrap mass spectrometry. Suspect metabolite MS2 spectra for library creation were selected based on the ratio of exposed-to-control mouse urine. MS2 libraries were applied to urine collected from female university students (n = 73). Several tetraconazole and tebuconazole metabolites were detected in 3% (2/73) of the samples. The creation of comprehensive suspect screening MS2 libraries is a useful tool to detect fungicide exposure for human biomonitoring.
Collapse
Affiliation(s)
- Romanas Chaleckis
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Yuki Ito
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Hitomi Wasada
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Craig E Wheelock
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm 171 77, Sweden
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm 171 77, Sweden
| | - Hisashi Oishi
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Motohiro Tomizawa
- Department of Chemistry, Faculty of Life Sciences, Tokyo University of Agriculture, Setagaya, Tokyo 156-8502, Japan
| | - Michihiro Kamijima
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| |
Collapse
|
3
|
Hakme E, Poulsen ME, Lassen AD. A Comprehensive Review on Pesticide Residues in Human Urine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17706-17729. [PMID: 39090814 DOI: 10.1021/acs.jafc.4c02705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Numerous studies worldwide have evaluated pesticide residues detected in urine. This review serves as a contribution to this field by presenting an overview of scientific research studies published from 2001 to 2023, including details of study characteristics and research scope. Encompassing 72 papers, the review further delves into addressing key challenges in study design and method used such as sampling and analytical approaches, results adjustments, risk assessment, estimations, and results evaluation. The review explores urinary concentrations and detection frequency of metabolites of organophosphates and pyrethroids, as well as herbicides such as 2,4-D and glyphosate and their metabolites, across various studies. The association of the results with demographic and lifestyle variables were explored. While farmers generally have higher pesticide exposure, adopting organic farming practices can reduce the levels of pesticides detected in their urine. Residence close to agricultural areas has shown high exposure in some cases. Dietary exposure is especially high among people adopting a conventionally grown plant-rich dietary pattern. A higher detection level and frequency of detection are generally found in females and children compared to males. The implications of transitioning to organic and sustainable plant-rich diets for reducing pesticide exposure and potential health benefits for both adults and children require further investigation.
Collapse
Affiliation(s)
- Elena Hakme
- Technical University of Denmark, National Food Institute, 2800 Lyngby, Denmark
| | | | - Anne Dahl Lassen
- Technical University of Denmark, National Food Institute, 2800 Lyngby, Denmark
| |
Collapse
|
4
|
Matsumoto M, Murakami K, Yuan X, Oono F, Adachi R, Tajima R, Okada E, Nakade M, Sasaki S, Takimoto H. A scoping review of dietary assessment questionnaires potentially suitable for assessing habitual dietary intake in the National Health and Nutrition Survey, Japan. J Nutr Sci 2024; 13:e8. [PMID: 38379590 PMCID: PMC10877143 DOI: 10.1017/jns.2024.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 12/27/2023] [Accepted: 01/12/2024] [Indexed: 02/22/2024] Open
Abstract
This scoping review aimed to identify questionnaire-based dietary assessment methods for use in the National Health and Nutrition Survey (NHNS) in Japan. The search was conducted in three databases (PubMed, Web of Science, and Ichushi) to identify questionnaire such as food frequency questionnaire and dietary history questionnaire validated against dietary recalls or food records for the intakes of both food groups and nutrients among Japanese adults. Study quality was assessed based on previously developed criteria. We extracted the questionnaire characteristics and the design and results of the validation studies. We identified 11 questionnaires, with the number of food items ranging from 40 to 196, from 32 articles of good quality. In the validation studies, participants were aged 30-76 years and 90% of the articles used ≥3 d dietary records as reference. The number of nutrients and food groups with a group-level intake difference within 20% against the reference method ranged from 1 to 30 and 1 to 11, respectively. The range of mean correlation coefficients between questionnaire and reference methods were 0.35-0.57 for nutrients and 0.28-0.52 for food groups. When selecting a survey instrument in the NHNS from the 11 existing questionnaires identified in this study, it is important to select one with high group-level comparison and correlation coefficient values on the intended assessment items after scrutinizing the design and results of the validation study. This review may serve as a reference for future studies that explore dietary assessment tools used for assessing dietary intake in specific representative populations.
Collapse
Affiliation(s)
- Mai Matsumoto
- Department of Nutritional Epidemiology and Shokuiku, National Institutes of Biomedical Innovation, Health, and Nutrition, Settsu-shi, Osaka, Japan
| | - Kentaro Murakami
- Department of Social and Preventive Epidemiology, School of Public Health, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Xiaoyi Yuan
- Department of Nutritional Epidemiology and Shokuiku, National Institutes of Biomedical Innovation, Health, and Nutrition, Settsu-shi, Osaka, Japan
| | - Fumi Oono
- Department of Social and Preventive Epidemiology, Division of Health Sciences and Nursing, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Riho Adachi
- Department of Social and Preventive Epidemiology, School of Public Health, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Ryoko Tajima
- Department of Nutritional Epidemiology and Shokuiku, National Institutes of Biomedical Innovation, Health, and Nutrition, Settsu-shi, Osaka, Japan
| | - Emiko Okada
- Department of Nutritional Epidemiology and Shokuiku, National Institutes of Biomedical Innovation, Health, and Nutrition, Settsu-shi, Osaka, Japan
- The Health Care Science Institute, Minato-ku, Tokyo, Japan
| | - Makiko Nakade
- Department of Food Science and Nutrition, University of Hyogo, Himeji, Hyogo, Japan
- Research Institute for Food and Nutritional Sciences, Himeji, Hyogo, Japan
| | - Satoshi Sasaki
- Department of Social and Preventive Epidemiology, School of Public Health, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hidemi Takimoto
- Department of Nutritional Epidemiology and Shokuiku, National Institutes of Biomedical Innovation, Health, and Nutrition, Settsu-shi, Osaka, Japan
| |
Collapse
|
5
|
Sagiv SK, Baker JM, Rauch S, Gao Y, Gunier RB, Mora AM, Kogut K, Bradman A, Eskenazi B, Reiss AL. Prenatal and childhood exposure to organophosphate pesticides and functional brain imaging in young adults. ENVIRONMENTAL RESEARCH 2024; 242:117756. [PMID: 38016496 PMCID: PMC11298288 DOI: 10.1016/j.envres.2023.117756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND Early life exposure to organophosphate (OP) pesticides has been linked with poorer neurodevelopment from infancy to adolescence. In our Center for the Health Assessment of Mothers and Children of Salinas (CHAMACOS) birth cohort, we previously reported that residential proximity to OP use during pregnancy was associated with altered cortical activation using functional near infrared spectroscopy (fNIRS) in a small subset (n = 95) of participants at age 16 years. METHODS We administered fNIRS to 291 CHAMACOS young adults at the 18-year visit. Using covariate-adjusted regression models, we estimated associations of prenatal and childhood urinary dialkylphosphates (DAPs), non-specific OP metabolites, with cortical activation in the frontal, temporal, and parietal regions of the brain during tasks of executive function and semantic language. RESULTS There were some suggestive associations for prenatal DAPs with altered activation patterns in both the inferior frontal and inferior parietal lobes of the left hemisphere during a task of cognitive flexibility (β per ten-fold increase in DAPs = 3.37; 95% CI: -0.02, 6.77 and β = 3.43; 95% CI: 0.64, 6.22, respectively) and the inferior and superior frontal pole/dorsolateral prefrontal cortex of the right hemisphere during the letter retrieval working memory task (β = -3.10; 95% CI: -6.43, 0.22 and β = -3.67; 95% CI: -7.94, 0.59, respectively). We did not observe alterations in cortical activation with prenatal DAPs during a semantic language task or with childhood DAPs during any task. DISCUSSION We observed associations of prenatal OP concentrations with mild alterations in cortical activation during tasks of executive function. Associations with childhood exposure were null. This is reasonably consistent with studies of prenatal OPs and neuropsychological measures of attention and executive function found in CHAMACOS and other birth cohorts.
Collapse
Affiliation(s)
- Sharon K Sagiv
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California at Berkeley, Berkeley, CA, USA.
| | - Joseph M Baker
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA, USA
| | - Stephen Rauch
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California at Berkeley, Berkeley, CA, USA
| | - Yuanyuan Gao
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA, USA
| | - Robert B Gunier
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California at Berkeley, Berkeley, CA, USA
| | - Ana M Mora
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California at Berkeley, Berkeley, CA, USA
| | - Katherine Kogut
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California at Berkeley, Berkeley, CA, USA
| | - Asa Bradman
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California at Berkeley, Berkeley, CA, USA; Department of Public Health, University of California, Merced, CA, USA
| | - Brenda Eskenazi
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California at Berkeley, Berkeley, CA, USA.
| | - Allan L Reiss
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA, USA; Department of Radiology, School of Medicine, Stanford University, Stanford, CA, USA; Department of Pediatrics, School of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
6
|
González N, Pàmies C, Martinez P, Martí L, Domingo JL, Nadal M, Marquès M. Effects of an organic diet intervention on the levels of organophosphorus metabolites in an adult cohort. Food Res Int 2023; 173:113354. [PMID: 37803657 DOI: 10.1016/j.foodres.2023.113354] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/30/2023] [Accepted: 08/03/2023] [Indexed: 10/08/2023]
Abstract
Pesticides are a group of organic compounds used to control weeds or insect infestations in agriculture. Diet is the major route of human exposure to these compounds, which can cause serious health problems, even when the intake occurs at low concentrations. Hence, the consumption of organic food is an appropriate strategy to minimize the exposure to pesticides. A prospective, randomized study was conducted to assess the impact of an organic dietary intervention on the levels of urinary dialkyl phosphates (DAP). A screening of 204 pesticides was also carried out in order to confirm the absence of these compounds in organic food. The analytical results showed that only 20 of the 204 pesticides (9.8 %) had concentrations above the limit of quantification in one or more samples of the organic food consumed by the participants. It is substantially lower than the levels of pesticides found in other studies analysing conventional food, confirming the diet as suitable for the organic dietary intervention. A general reduction of most DAP metabolites in urine was found, being significant (p < 0.05) the decrease of dimethyl phosphate (DMP) (0.49 µg/g creatinine in Day 1 vs. 0.062 µg/g creatinine in Day 6), dimethyl thiophosphate (DMTP) (0.49 µg/g creatinine in Day 1 vs. 0.093 µg/g creatinine in Day 6) and diethyl phosphate (DEP) (0.28 µg/g creatinine in Day 1 vs. 0.12 µg/g creatinine in Day 6). In addition, the molar score for the total dimethyl DAP (ΣMP) and total dialkyl phosphate (ΣDAP) also showed significant differences after changing a conventional diet by an organic diet, being reduced from 0.008 µmol/g to 0.002 µmol/g for ΣMP and from 0.012 µmol/g to 0.003 µmol/g for ΣDAP. To the best of our knowledge, this is the first study that evaluates both the impact of an organic diet in the exposure to DAP and the levels of 204 pesticides in the organic food provided to the participants. In summary, the consumption of organic products decreases the dietary intake of pesticides, thus reducing also the potential adverse effects on human health.
Collapse
Affiliation(s)
- Neus González
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia, Spain
| | - Carla Pàmies
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia, Spain
| | - Paula Martinez
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia, Spain
| | - Laura Martí
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia, Spain
| | - José L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia, Spain
| | - Martí Nadal
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia, Spain
| | - Montse Marquès
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia, Spain.
| |
Collapse
|
7
|
Tsuchiyama T, Ito Y, Taniguchi M, Katsuhara M, Miyazaki H, Kamijima M. Residue levels of organophosphate pesticides and dialkylphosphates in agricultural products in Japan. ENVIRONMENTAL RESEARCH 2023; 234:116518. [PMID: 37394165 DOI: 10.1016/j.envres.2023.116518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/06/2023] [Accepted: 06/27/2023] [Indexed: 07/04/2023]
Abstract
High urinary levels of dialkylphosphates (DAPs), which are common structures of organophosphate pesticides (OPs), have been associated with several adverse health outcomes in human biomonitoring studies. Previous studies have indicated that dietary OP exposure and ingestion of environmentally degraded DAP, which is inactive with acetylcholinesterase, can lead to an increase in urinary DAP levels in the general population. However, the specific food sources contributing to the intake of OPs and DAPs have not been identified. In this study, we analyzed the levels of OPs and preformed DAPs in various food items. DAP levels were markedly high in certain fruits, such as persimmon, apple juice, kiwi, and mandarin. In contrast, only moderate levels of OPs were detected in these foods. Furthermore, the levels of OPs and DAPs were positively associated with vegetables, whereas no such association was observed in fruits. Increased consumption of certain fruits presumably leads to a marked increase in urinary DAP levels in individuals despite limited exposure to OPs, resulting in reduced reliability of urinary DAPs as a marker of OP exposure. Therefore, the possible effects of dietary habits and the resulting intake of preformed DAPs should be considered when interpreting biomonitoring data of urinary DAPs. Additionally, DAP levels in most organic foods were much lower than those in conventional foods, suggesting that the reduction in urinary DAPs by organic diet intervention may be mainly attributed to the reduced intake of preformed DAPs rather than reduced exposure to OPs. Therefore, urinary DAP levels may not be suitable indicators for evaluating ingested OP exposure.
Collapse
Affiliation(s)
- Tomoyuki Tsuchiyama
- Department of Food, Nagoya City Public Health Research Institute, Nagoya, 463-8585, Japan; Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan.
| | - Yuki Ito
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan.
| | - Masaru Taniguchi
- Department of Food, Nagoya City Public Health Research Institute, Nagoya, 463-8585, Japan; Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan.
| | - Miki Katsuhara
- Department of Food, Nagoya City Public Health Research Institute, Nagoya, 463-8585, Japan.
| | - Hitoshi Miyazaki
- Department of Food, Nagoya City Public Health Research Institute, Nagoya, 463-8585, Japan.
| | - Michihiro Kamijima
- Department of Occupational and Environmental Health, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan.
| |
Collapse
|
8
|
Hernández-Toledano DS, Vega L. Methylated dialkylphosphate metabolites of the organophosphate pesticide malathion modify actin cytoskeleton arrangement and cell migration via activation of Rho GTPases Rac1 and Cdc42. Chem Biol Interact 2023; 382:110593. [PMID: 37270087 DOI: 10.1016/j.cbi.2023.110593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/08/2023] [Accepted: 06/01/2023] [Indexed: 06/05/2023]
Abstract
The non-cholinergic molecular targets of organophosphate (OP) compounds have recently been investigated to explain their role in the generation of non-neurological diseases, such as immunotoxicity and cancer. Here, we evaluated the effects of malathion and its dialkylphosphate (DAP) metabolites on the cytoskeleton components and organization of RAW264.7 murine macrophages as non-cholinergic targets of OP and DAPs toxicity. All OP compounds affected actin and tubulin polymerization. Malathion, dimethyldithiophosphate (DMDTP) dimethylthiophosphate (DMTP), and dimethylphosphate (DMP) induced elongated morphologies and the formation of pseudopods rich in microtubule structures, and increased filopodia formation and general actin disorganization in RAW264.7 cells and slightly reduced stress fibers in the human fibroblasts GM03440, without significantly disrupting the tubulin or vimentin cytoskeleton. Exposure to DMTP and DMP increased cell migration in the wound healing assay but did not affect phagocytosis, indicating a very specific modification in the organization of the cytoskeleton. The induction of actin cytoskeleton rearrangement and cell migration suggested the activation of cytoskeletal regulators such as small GTPases. We found that DMP slightly reduced Ras homolog family member A activity but increased the activities of Ras-related C3 botulinum toxin substrate 1 (Rac1) and cell division control protein 42 (Cdc42) from 5 min to 2 h of exposure. Chemical inhibition of Rac1 with NSC23766 reduced cell polarization and treatment with DMP enhanced cell migration, but Cdc42 inhibition by ML-141 completely inhibited the effects of DMP. These results suggest that methylated OP compounds, especially DMP, can modify macrophage cytoskeleton function and configuration via activation of Cdc42, which may represent a potential non-cholinergic molecular target for OP compounds.
Collapse
Affiliation(s)
- David Sebastián Hernández-Toledano
- Department of Toxicology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico. Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco, C.P. 07360, Gustavo A. Madero, Ciudad de México, Mexico
| | - Libia Vega
- Department of Toxicology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico. Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco, C.P. 07360, Gustavo A. Madero, Ciudad de México, Mexico.
| |
Collapse
|
9
|
Kuiper G, Young BN, WeMott S, Erlandson G, Martinez N, Mendoza J, Dooley G, Quinn C, Benka-Coker W, Magzamen S. Factors affecting urinary organophosphate pesticide metabolite levels among Californian agricultural community members. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163362. [PMID: 37059148 PMCID: PMC10247412 DOI: 10.1016/j.scitotenv.2023.163362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 06/01/2023]
Abstract
Organophosphate (OP) pesticides are widely used in California for agricultural pest and weed control despite their well-documented adverse health effects among infants, children, and adults. We sought to identify factors affecting urinary OP metabolites among families living in high-exposure communities. Our study included 80 children and adults who lived within 61 m (200 ft) of agricultural fields in the Central Valley of California in January and June 2019, which are pesticide non-spraying and spraying seasons, respectively. We collected one urine sample per participant during each visit to measure dialkyl phosphate (DAP) metabolites; these were coupled with in-person surveys to identify health, household, sociodemographic, pesticide exposure, and occupational risk factors. We used a data-driven, best subsets regression approach to identify key factors that influenced urinary DAPs. Participants were mostly Hispanic/Latino(a) (97.5 %), over half were female (57.5 %), and most households reported having a member who worked in agriculture (70.6 %). Among the 149 urine samples suitable for analysis, DAP metabolites were detected in 48.0 % and 40.5 % of samples during January and June, respectively. Total diethyl alkylphosphates (EDE) were only detected in 4.7 % (n = 7) of samples, but total dimethyl alkylphosphates (EDM) were detected in 41.6 % (n = 62) of samples. No differences were observed in urinary DAP levels by visit month or by occupational exposure to pesticides. Best subsets regression identified several individual- and household-level variables that influenced both urinary EDM and total DAPs: the number of years spent living at the current address, household use of chemical products to control mice/rodents, and seasonal employment status. Among adults only, we identified educational attainment (for total DAPs) and age category (for EDM) as significant factors. Our study found consistent urinary DAP metabolites among participants, regardless of spraying season, and identified potential mitigating factors that members of vulnerable populations can implement to protect their health against OP exposure.
Collapse
Affiliation(s)
- Grace Kuiper
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Bonnie N Young
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Sherry WeMott
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Grant Erlandson
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Nayamin Martinez
- Central California Environmental Justice Network, Fresno, CA, USA
| | - Jesus Mendoza
- Central California Environmental Justice Network, Fresno, CA, USA
| | - Gregory Dooley
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Casey Quinn
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Wande Benka-Coker
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA; Department of Environmental Studies, Dickinson College, Carlisle, PA, USA
| | - Sheryl Magzamen
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
10
|
Hernandez-Toledano DS, Salazar-Osorio AI, Medina-Buelvas DM, Romero-Martínez J, Estrada-Muñiz E, Vega L. Methylated and ethylated dialkylphosphate metabolites of organophosphate pesticides: DNA damage in bone marrow cells of Balb/c mice. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 889:503641. [PMID: 37491117 DOI: 10.1016/j.mrgentox.2023.503641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 07/27/2023]
Abstract
Dialkylphosphates (DAPs), metabolites of organophosphate (OP) pesticides, are widely distributed in the environment and are often used as biomarkers of OP exposure. Recent reports indicate that DAPs may be genotoxic, both in vitro and in vivo. We have examined the genotoxicity of the methylated DAPs dimethyldithiophosphate (DMDTP) and dimethylphosphate (DMTP) and the ethylated DAPs diethyldithiophosphate (DEDTP) and diethylphosphate (DETP), in comparison with their parental compounds, malathion and terbufos, respectively, in bone marrow polychromatic erythrocytes (PCE) of male and female Balb/c mice. We also compared DNA damage (comet assay) induced by DMDTP and dimethyl phosphate (DMP) in human cell lines. Both DMDTP and DMP caused DNA damage in peripheral blood mononuclear cells, HeLa cells, and the hepatic cell lines HepG2 and WRL-68. In the in vivo micronucleus assay, methylated and ethylated DAPs increased micronucleated PCE cells in both male and female mice. Female mice were more susceptible to DNA damage. In comparison to their parental compounds, methylated DAPs, particularly DMTP, were more genotoxic than malathion; DEDTP, DETP, and terbufos were similar in potency. These results suggest that DAPs may contribute to DNA damage associated with OP pesticide exposure.
Collapse
Affiliation(s)
- David Sebastián Hernandez-Toledano
- Department of Toxicology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, C.P. 07360 Ciudad de México, Mexico
| | - Andrea Ixtchel Salazar-Osorio
- Department of Toxicology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, C.P. 07360 Ciudad de México, Mexico
| | - Dunia Margarita Medina-Buelvas
- Department of Toxicology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, C.P. 07360 Ciudad de México, Mexico
| | - Jessica Romero-Martínez
- Department of Toxicology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, C.P. 07360 Ciudad de México, Mexico
| | - Elizabet Estrada-Muñiz
- Department of Toxicology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, C.P. 07360 Ciudad de México, Mexico
| | - Libia Vega
- Department of Toxicology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, C.P. 07360 Ciudad de México, Mexico.
| |
Collapse
|
11
|
Ghanbari N, Ghafuri H. Preparation of novel Zn-Al layered double hydroxide composite as adsorbent for removal of organophosphorus insecticides from water. Sci Rep 2023; 13:10215. [PMID: 37353547 DOI: 10.1038/s41598-023-37070-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/15/2023] [Indexed: 06/25/2023] Open
Abstract
In this work, a new and efficient composite LDH with high adsorption power using layered double hydroxide (LDH), 2,4-toluene diisocyanate (TDI), and tris (hydroxymethyl) aminomethane (THAM) was designed and prepared, which was used as an adsorbent to adsorb diazinon from contaminated water. The chemical composition and morphology of the adsorbent were evaluated using Fourier transform infrared (FTIR), X-ray diffraction (XRD), thermal gravimetric analysis (TGA), Energy dispersive X-ray (EDX) and Field emission scanning electron microscopy (FESEM) techniques. Also, the optimal conditions for adsorption of diazinon from water were determined by LDH@TDI@THAM composite. Various parameters like the effect of adsorbent dosage, pH, concentration and contact time of diazinon were studied to determine the optimal adsorption conditions. Then, different isotherm models and kinetic adsorption were used to describe the equilibrium data and kinetic. Also, the maximum adsorption capacity is obtained when the pH of the solution is 7. The maximum adsorption capacity for LDH@TDI@THAM composite was 1000 mg/g at 65 °C and the negative values of ΔG indicate that the adsorption process is spontaneous. After that, studying the reusability of LDH@TDI@THAM composite showed that the removal of diazinon by LDH@TDI@THAM was possible for up to four periods without a significant decrease in performance.
Collapse
Affiliation(s)
- Nastaran Ghanbari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846‑13114, Iran
| | - Hossein Ghafuri
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846‑13114, Iran.
| |
Collapse
|
12
|
Sagiv SK, Mora AM, Rauch S, Kogut KR, Hyland C, Gunier RB, Bradman A, Deardorff J, Eskenazi B. Prenatal and Childhood Exposure to Organophosphate Pesticides and Behavior Problems in Adolescents and Young Adults in the CHAMACOS Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:67008. [PMID: 37307167 PMCID: PMC10259762 DOI: 10.1289/ehp11380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 02/08/2023] [Accepted: 05/19/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND We previously reported associations of prenatal exposure to organophosphate (OP) pesticides with poorer neurodevelopment in early childhood and at school age, including poorer cognitive function and more behavioral problems, in the Center for the Health Assessment of Mothers and Children of Salinas (CHAMACOS), a birth cohort study in an agriculture community. OBJECTIVE We investigated the extent to which early-life exposure to OP pesticides is associated with behavioral problems, including mental health, in youth during adolescence and early adulthood. METHODS We measured urinary dialkylphosphates (DAPs), nonspecific OP metabolites, in urine samples collected from mothers twice during pregnancy (13 and 26 wk) and at five different times in their children (ages 6 months to 5 y). We assessed maternal report and youth report of externalizing and internalizing behavior problems using the Behavior Assessment System for Children, 2nd edition (BASC-2), when the youth were ages 14, 16, and 18 y. Because there was evidence of nonlinearity, we estimated associations across quartiles of DAPs and modeled repeated outcome measures using generalized estimating equations. RESULTS There were 335 youths with prenatal maternal DAP measures and 14-. 16-, or 18-y BASC-2 scores. Prenatal maternal DAP concentrations (specific gravity-adjusted median, Q 1 - Q 3 = 159.4 , 78.7 - 350.4 nmol / L ) were associated with higher T-scores (more behavior problems) from maternal report, including more hyperactivity [fourth vs. first quartile of exposure β = 2.32 ; 95% confidence interval (CI): 0.18, 4.45], aggression (β = 1.90 ; 95% CI: 0.15, 3.66), attention problems (β = 2.78 ; 95% CI: 0.26, 5.30), and depression (β = 2.66 ; 95% CI: 0.08, 5.24). Associations with youth report of externalizing problems were null, and associations with depression were suggestive (fourth vs. first quartile of exposure β = 2.15 ; 95% CI: - 0.36 , 4.67). Childhood DAP metabolites were not associated with behavioral problems. DISCUSSION We found associations of prenatal, but not childhood, urinary DAP concentrations with adolescent/young adult externalizing and internalizing behavior problems. These findings are consistent with prior associations we have reported with neurodevelopmental outcomes measured earlier in childhood in CHAMACOS participants and suggests that prenatal exposure to OP pesticides may have lasting effects on the behavioral health of youth as they mature into adulthood, including their mental health. https://doi.org/10.1289/EHP11380.
Collapse
Affiliation(s)
- Sharon K. Sagiv
- Center for Environmental Research and Community Health, School of Public Health, University of California at Berkeley, Berkeley, California, USA
| | - Ana M. Mora
- Center for Environmental Research and Community Health, School of Public Health, University of California at Berkeley, Berkeley, California, USA
| | - Stephen Rauch
- Center for Environmental Research and Community Health, School of Public Health, University of California at Berkeley, Berkeley, California, USA
| | - Katherine R. Kogut
- Center for Environmental Research and Community Health, School of Public Health, University of California at Berkeley, Berkeley, California, USA
| | - Carly Hyland
- Center for Environmental Research and Community Health, School of Public Health, University of California at Berkeley, Berkeley, California, USA
- Department of Public Health and Population Science, Boise State University, Boise, Idaho, USA
| | - Robert B. Gunier
- Center for Environmental Research and Community Health, School of Public Health, University of California at Berkeley, Berkeley, California, USA
| | - Asa Bradman
- Center for Environmental Research and Community Health, School of Public Health, University of California at Berkeley, Berkeley, California, USA
- Department of Public Health, University of California, Merced, California, USA
| | - Julianna Deardorff
- Center for Environmental Research and Community Health, School of Public Health, University of California at Berkeley, Berkeley, California, USA
| | - Brenda Eskenazi
- Center for Environmental Research and Community Health, School of Public Health, University of California at Berkeley, Berkeley, California, USA
| |
Collapse
|
13
|
Maher A, Nowak A. Chemical Contamination in Bread from Food Processing and Its Environmental Origin. Molecules 2022; 27:5406. [PMID: 36080171 PMCID: PMC9457569 DOI: 10.3390/molecules27175406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/14/2022] [Accepted: 08/21/2022] [Indexed: 12/03/2022] Open
Abstract
Acrylamide (AA), furan and furan derivatives, polycyclic aromatic amines (PAHs), monochloropropanediols (MCPDs), glycidol, and their esters are carcinogens that are being formed in starchy and high-protein foodstuffs, including bread, through baking, roasting, steaming, and frying due to the Maillard reaction. The Maillard reaction mechanism has also been described as the source of food processing contaminants. The above-mentioned carcinogens, especially AA and furan compounds, are crucial substances responsible for the aroma of bread. The other groups of bread contaminants are mycotoxins (MTs), toxic metals (TMs), and pesticides. All these contaminants can be differentiated depending on many factors such as source, the concentration of toxicant in the different wheat types, formation mechanism, metabolism in the human body, and hazardous exposure effects to humans. The following paper characterizes the most often occurring contaminants in the bread from each group. The human exposure to bread contaminants and their safe ranges, along with the International Agency for Research on Cancer (IARC) classification (if available), also have been analyzed.
Collapse
Affiliation(s)
- Agnieszka Maher
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland
| | - Adriana Nowak
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland
| |
Collapse
|
14
|
Mixed Contaminants: Occurrence, Interactions, Toxicity, Detection, and Remediation. Molecules 2022; 27:molecules27082577. [PMID: 35458775 PMCID: PMC9029723 DOI: 10.3390/molecules27082577] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 12/18/2022] Open
Abstract
The ever-increasing rate of pollution has attracted considerable interest in research. Several anthropogenic activities have diminished soil, air, and water quality and have led to complex chemical pollutants. This review aims to provide a clear idea about the latest and most prevalent pollutants such as heavy metals, PAHs, pesticides, hydrocarbons, and pharmaceuticals—their occurrence in various complex mixtures and how several environmental factors influence their interaction. The mechanism adopted by these contaminants to form the complex mixtures leading to the rise of a new class of contaminants, and thus resulting in severe threats to human health and the environment, has also been exhibited. Additionally, this review provides an in-depth idea of various in vivo, in vitro, and trending biomarkers used for risk assessment and identifies the occurrence of mixed contaminants even at very minute concentrations. Much importance has been given to remediation technologies to understand our current position in handling these contaminants and how the technologies can be improved. This paper aims to create awareness among readers about the most ubiquitous contaminants and how simple ways can be adopted to tackle the same.
Collapse
|