1
|
Huang H, Chen Q, Ding Y, Zhao B, Wang Z, Li D. New insights into odor release from sediments in Lake Chaohu and the potential role of sediment microbial communities. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:138007. [PMID: 40132271 DOI: 10.1016/j.jhazmat.2025.138007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 03/02/2025] [Accepted: 03/18/2025] [Indexed: 03/27/2025]
Abstract
Odor events often occur along with algal blooms, posing potential threats to water quality and human health. However, studies on the role of sediments and microbial communities in the production and release of odor compounds remain limited. Seasonal monitoring of Lake Chaohu revealed that pore-terpenoids significantly contributed to terpenoid concentrations in water, explaining 37.1 % of their variability. Environmental factors like temperature primarily influenced terpenoid concentrations by regulating the diffusion of pore-terpenoids. Conversely, pore-nor-carotenoids explained only 11.2 % of nor-carotenoid variability, with phytoplankton communities explaining 59.4 %. Abiotic factors like nutrients influenced nor-carotenoid levels by impacting phytoplankton growth. Microbial communities with a greater proportion of cyanobacteria exhibited more fragile microbial networks, increased competition, and enhanced metabolic activity. We hypothesized that microbial community composition may influence odor production. Laboratory experiments further supported this: sediments with added cyanobacteria showed a 48.1 % reduction in 2-methylisoborneol contents after 30-day incubation, whereas the control group exhibited a 66.38 % increase. Conversely, the experimental group showed significant increases in β-cyclocitral (99.19 %) and β-ionone (48.55 %), while the control group experienced reductions of 54.01 % and 43.53 %, respectively. These findings underscore the importance of considering microbial interactions and sediment dynamics in future odor research, offering insights for water quality management in eutrophic lakes.
Collapse
Affiliation(s)
- Haining Huang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qinyi Chen
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yuang Ding
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Bingjie Zhao
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zhicong Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Dunhai Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
2
|
Xu X, Ma X, Dou J, Chen W, Chen J, Zhou M, Shen A, Liu X. β-ionone inhibits the grazing of Daphnia sinensis by reducing the activity of acetylcholinesterase. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135690. [PMID: 39255669 DOI: 10.1016/j.jhazmat.2024.135690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/12/2024]
Abstract
β-ionone is a volatile metabolite of Microcystis aeruginosa that is toxic to aquatic organisms. Using Daphnia sinensis as model, our present study found that β-ionone could significantly reduce heart rate and feeding rate, and induce intestinal emptying. Transcriptomic analysis showed that β-ionone could significantly inhibit the expression of acetylcholinesterase (AchE) mRNA, while metabolomics further revealed that β-ionone could significantly increase the level of acetylcholine (Ach) in D. sinensis. These results indicated that β-ionone might act as an AchE inhibitor, resulting in an increase in Ach levels. To test this hypothesis, both in vivo and in vitro experiments demonstrated that β-ionone could significantly reduce AchE activity. Furthermore, the inhibitory effects of β-ionone on heart rate and feeding rate could be blocked by the M-type Ach receptor (mAchR) blocker. These findings confirm that β-ionone is a novel AchE inhibitor. β-ionone could inhibit the activity of AchE, which in turn resulted in an increase of Ach in D. sinensis. Consequently, elevated levels of Ach could suppress the heart rate and feeding rate of D. sinensis by activating the mAchR, while concurrently accelerating the rate of intestinal emptying by stimulating intestinal peristalsis, thereby obstructing the digestion of algae within the intestinal tract.
Collapse
Affiliation(s)
- Xueying Xu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Ximeng Ma
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Jun Dou
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenkai Chen
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiying Chen
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Mingsen Zhou
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Anfu Shen
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiangjiang Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
3
|
Shang L, Ke F, Xu X, Feng M, Li W. Temporal Dynamics and Influential Factors of Taste and Odor Compounds in the Eastern Drinking Water Source of Chaohu Lake, China: A Comparative Analysis of Global Freshwaters. Toxins (Basel) 2024; 16:264. [PMID: 38922158 PMCID: PMC11209420 DOI: 10.3390/toxins16060264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/27/2024] Open
Abstract
The escalating proliferation of cyanobacteria poses significant taste and odor (T/O) challenges, impacting freshwater ecosystems, public health, and water treatment costs. We examined monthly variations in four T/O compounds from September 2011 to August 2012 in Chaohu Lake's eastern drinking water source (DECL). More importantly, we compared the reported T/O occurrence and the related factors in freshwater bodies worldwide. The assessment of T/O issues indicated a severe and widespread problem, with many cases surpassing odor threshold values. Remarkably, China reported the highest frequency and severity of odor-related problems. A temporal analysis revealed variations in odor occurrences within the same water body across different years, emphasizing the need to consider high values in all seasons for water safety. Globally, T/O issues were widespread, demanding attention to variations within the same water body and across different layers. Algae were crucial contributors to odor compounds, necessitating targeted interventions due to diverse odorant sources and properties. A correlation analysis alone lacked definitive answers, emphasizing the essential role of further validation, such as algae isolation. Nutrients are likely to have influenced the T/O, as GSM and MIB correlated positively with nitrate and ammonia nitrogen in DECL, resulting in proposed control recommendations. This study offers recommendations for freshwater ecosystem management and serves as a foundation for future research and management strategies to address T/O challenges.
Collapse
Affiliation(s)
- Lixia Shang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; (F.K.); (W.L.)
| | - Fan Ke
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; (F.K.); (W.L.)
| | - Xiangen Xu
- Changzhou Academy of Environmental Science, Changzhou 213022, China;
| | - Muhua Feng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; (F.K.); (W.L.)
| | - Wenchao Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; (F.K.); (W.L.)
| |
Collapse
|
4
|
Pan N, Xu H, Chen W, Liu Z, Liu Y, Huang T, Du S, Xu S, Zheng T, Zuo Z. Cyanobacterial VOCs β-ionone and β-cyclocitral poisoning Lemna turionifera by triggering programmed cell death. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123059. [PMID: 38042469 DOI: 10.1016/j.envpol.2023.123059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/07/2023] [Accepted: 11/26/2023] [Indexed: 12/04/2023]
Abstract
β-Ionone and β-cyclocitral are two typical components in cyanobacterial volatiles, which can poison aquatic plants and even cause death. To reveal the toxic mechanisms of the two compounds on aquatic plants through programmed cell death (PCD), the photosynthetic capacities, caspase-3-like activity, DNA fragmentation and ladders, as well as expression of the genes associated with PCD in Lemna turionifera were investigated in exposure to β-ionone (0.2 mM) and β-cyclocitral (0.4 mM) at lethal concentration. With prolonging the treatment time, L. turionifera fronds gradually died, and photosynthetic capacities gradually reduced and even disappeared at the 96th h. This demonstrated that the death process might be a PCD rather than a necrosis, due to the gradual loss of physiological activities. When L. turionifera underwent the death, caspase-3-like was activated after 3 h, and reached to the strongest activity at the 24th h. TUNEL-positive nuclei were detected after 12 h, and appeared in large numbers at the 48th h. The DNA was cleaved by Ca2+-dependent endonucleases and showed obviously ladders. In addition, the expression of 5 genes (TSPO, ERN1, CTSB, CYC, and ATR) positively related with PCD initiation was up-regulated, while the expression of 2 genes (RRM2 and TUBA) negatively related with PCD initiation was down-regulated. Therefore, β-ionone and β-cyclocitral can poison L. turionifera by adjusting related gene expression to trigger PCD.
Collapse
Affiliation(s)
- Ning Pan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Haozhe Xu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Wangbo Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Zijian Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Yichi Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Tianyu Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Siyi Du
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Sun Xu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Tiefeng Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Zhaojiang Zuo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
5
|
Huang T, Lai M, Lin Z, Luo R, Xiang X, Xu H, Pan N, Zuo Z. Identification of algicidal monoterpenoids from four chemotypes of Cinnamomum camphora and their algicidal mechanisms on Microcystis aeruginosa. ENVIRONMENTAL RESEARCH 2024; 241:117714. [PMID: 37989462 DOI: 10.1016/j.envres.2023.117714] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/27/2023] [Accepted: 11/15/2023] [Indexed: 11/23/2023]
Abstract
Cyanobacterial blooms cause serious environmental issues, and plant secondary metabolites are considered as new algaecide for controlling them. Cinnamomum camphora produces a wide spectrum of terpenoids and has 4 main chemotypes, including linalool, camphor, eucalyptol and borneol chemotype. To develop the new cyanobacterial algaecide by using suitable chemotype of Cinnamomum camphora and the main terpenoids, we analyzed the terpenoid composition in the 4 chemotype extracts, evaluated the algicidal effects of the extracts and their typical monoterpenoids on Microcystis aeruginosa, and investigated the algicidal mechanism of the stronger algicidal agents. Among the 4 chemotypes, eucalyptol and borneol chemotype extracts exhibited stronger algicidal effects. In the 4 chemotype extracts, monoterpenoids were the main compounds, of which linalool, camphor, eucalyptol and borneol were the typical components. Among the 4 typical monoterpenoids, eucalyptol and borneol showed stronger algicidal effects, which killed 78.8% and 100% M. aeruginosa cells, respectively, at 1.2 mM after 48 h. In 1.2 mM eucalyptol and borneol treatments, the reactive oxygen species levels markedly increased, and the caspase-3-like activity also raised. With prolonging the treatment time, M. aeruginosa cells gradually shrank and wrinkled, and the cell TUNEL fluorescence intensity and DNA degradation gradually enhanced, indicating that the lethal mechanism is causing apoptosis-like programmed cell death (PCD). Therefore, eucalyptol and borneol chemotype extracts and their typical monoterpenoids have the potential for developing as algaecides to control cyanobacteria through triggering apoptosis-like PCD.
Collapse
Affiliation(s)
- Tianyu Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Meng Lai
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Zhenwei Lin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Ruiqi Luo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Xuezheng Xiang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Haozhe Xu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Ning Pan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China
| | - Zhaojiang Zuo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
6
|
Zhang X, Zhang Y, Chen Z, Gu P, Li X, Wang G. Exploring cell aggregation as a defense strategy against perchlorate stress in Chlamydomonas reinhardtii through multi-omics analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167045. [PMID: 37709088 DOI: 10.1016/j.scitotenv.2023.167045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Perchlorate (ClO4-) is a type of novel, widely distributed, and persistent inorganic pollutant. However, the impacts of perchlorate on freshwater algae remain unclear. In this study, the response and defense mechanisms of microalgae (Chlamydomonas reinhardtii) under perchlorate stress were investigated by integrating physiological and biochemical monitoring, transcriptomics, and metabolomics. Weighted gene co-expression network analysis (WGCNA) of transcriptome data was used to analyze the relationship between genes and phenotype and screen the key pathways. C. reinhardtii exhibited aggregate behavior when exposed to 100- and 200-mM perchlorate but was restored to its unicellular lifestyle when transferred to fresh medium. WGCNA results found that the "carbohydrate metabolism" and "lipid metabolism" pathways were closely related to cell aggregation phenotype. The differential expression genes (DEGs) and differentially accumulated metabolites (DAMs) of these pathways were upregulated, indicating that the lipid and carbohydrate metabolisms were enhanced in aggregated cells. Additionally, most genes and metabolites related to phytohormone abscisic acid (ABA) biosynthesis and the mitogen-activated protein kinase (MAPK) signaling pathway were significantly upregulated, indicating their crucial roles in the signal transmission of aggregated cells. Meanwhile, in aggregated cells, extracellular polymeric substances (EPS) and lipid contents increased, photosynthesis activity decreased, and the antioxidant system was activated. These characteristics contributed to C. reinhardtii's improved resistance to perchlorate stress. Above results demonstrated that cell aggregation behavior was the principal defense strategy of C. reinhardtii against perchlorate. Overall, this study sheds new light on the impact mechanisms of perchlorate to aquatic microalgae and provides multi-omics insights into the research of multicellular-like aggregation as an adaptation strategy to abiotic stress. These results are beneficial for assessing the risk of perchlorate in aquatic environments.
Collapse
Affiliation(s)
- Xianyuan Zhang
- Key Laboratory for Algae Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yixiao Zhang
- Key Laboratory for Algae Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; School of Science, Tibet University, Lasha 850000, China
| | - Zixu Chen
- Key Laboratory for Algae Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peifan Gu
- Key Laboratory for Algae Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyan Li
- Key Laboratory for Algae Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Gaohong Wang
- Key Laboratory for Algae Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
7
|
Ren R, Xuwei D, Wenze L, Xiao R, Ping X, Jun C. Sediments are important in regulating the algae-derived off-flavor (β-cyclocitral) in eutrophic lakes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162536. [PMID: 36870503 DOI: 10.1016/j.scitotenv.2023.162536] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/01/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
In recent years, due to global warming and water eutrophication, cyanobacterial blooms have occurred frequently worldwide, resulting in a series of water quality problems, among which the odor problem in lakes is one of the focuses of attention. In the late stage of the bloom, a large amount of algae accumulated on the surface sediment, which will be a great hidden danger to cause odor pollution in lakes. β-Cyclocitral is one of the typical algae-derived odor compounds that cause odor in lakes. In this study, an annual survey of 13 eutrophic lakes in the Taihu Lake basin was investigated to assess the effects of abiotic and biotic factors on β-cyclocitral in water. Our results showed that high concentrations of β-cyclocitral in the pore water (pore-β-cyclocitral) were detected in the sediment and far exceeded that in the water column, with an average of about 100.37 times. Structural equation modeling indicated that algal biomass and pore-β-cyclocitral can directly regulate the concentrations of β-cyclocitral in the water column, and total phosphorus (TP) and temperature (Temp) promoted the algal biomass which further enhanced the production of β-cyclocitral both in the water column and pore water. It was worth noting that when Chla ≥30 μg/L, the effects of algae on pore-β-cyclocitral were significantly enhanced, and pore-β-cyclocitral played a major role in the regulation of β-cyclocitral concentrations in water column. Overall, our study facilitated a comprehensive and systematic understanding of the effects of algae on odorants and the dynamic regulatory processes in complex aquatic ecosystems, and revealed a long-neglected process, that was, the important contribution of sediments to β-cyclocitral in the water column in eutrophic lakes, which would conduce to a more accurate understanding of the evolution of off flavors in lakes and also useful for the management of odors in lakes in the future.
Collapse
Affiliation(s)
- Ren Ren
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 10049, China
| | - Deng Xuwei
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 10049, China.
| | - Lu Wenze
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 10049, China
| | - Rao Xiao
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 10049, China
| | - Xie Ping
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 10049, China; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China.
| | - Chen Jun
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 10049, China
| |
Collapse
|
8
|
Manganelli M, Testai E, Tazart Z, Scardala S, Codd GA. Co-Occurrence of Taste and Odor Compounds and Cyanotoxins in Cyanobacterial Blooms: Emerging Risks to Human Health? Microorganisms 2023; 11:microorganisms11040872. [PMID: 37110295 PMCID: PMC10146173 DOI: 10.3390/microorganisms11040872] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
Cyanobacteria commonly form large blooms in waterbodies; they can produce cyanotoxins, with toxic effects on humans and animals, and volatile compounds, causing bad tastes and odors (T&O) at naturally occurring low concentrations. Notwithstanding the large amount of literature on either cyanotoxins or T&O, no review has focused on them at the same time. The present review critically evaluates the recent literature on cyanotoxins and T&O compounds (geosmin, 2-methylisoborneol, β-ionone and β-cyclocitral) to identify research gaps on harmful exposure of humans and animals to both metabolite classes. T&O and cyanotoxins production can be due to the same or common to different cyanobacterial species/strains, with the additional possibility of T&O production by non-cyanobacterial species. The few environmental studies on the co-occurrence of these two groups of metabolites are not sufficient to understand if and how they can co-vary, or influence each other, perhaps stimulating cyanotoxin production. Therefore, T&Os cannot reliably serve as early warning surrogates for cyanotoxins. The scarce data on T&O toxicity seem to indicate a low health risk (but the inhalation of β-cyclocitral deserves more study). However, no data are available on the effects of combined exposure to mixtures of cyanotoxins and T&O compounds and to combinations of T&O compounds; therefore, whether the co-occurrence of cyanotoxins and T&O compounds is a health issue remains an open question.
Collapse
Affiliation(s)
- Maura Manganelli
- Istituto Superiore di Sanità, Department of Environment and Health, viale Regina Elena, 299, 00162 Rome, Italy; (E.T.); (S.S.)
- Correspondence:
| | - Emanuela Testai
- Istituto Superiore di Sanità, Department of Environment and Health, viale Regina Elena, 299, 00162 Rome, Italy; (E.T.); (S.S.)
| | - Zakaria Tazart
- Department of Food Sciences and Nutrition, University of Malta, 2080 Msida, Malta;
| | - Simona Scardala
- Istituto Superiore di Sanità, Department of Environment and Health, viale Regina Elena, 299, 00162 Rome, Italy; (E.T.); (S.S.)
| | - Geoffrey A. Codd
- School of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK;
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
9
|
Zuo Z. Emission of cyanobacterial volatile organic compounds and their roles in blooms. Front Microbiol 2023; 14:1097712. [PMID: 36891397 PMCID: PMC9987517 DOI: 10.3389/fmicb.2023.1097712] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/06/2023] [Indexed: 02/22/2023] Open
Abstract
Cyanobacteria are photosynthetic prokaryotes and one of dominant species in eutrophicated waters, which easily burst blooms in summer with high irradiance and temperature conditions. In response to high irradiance, high temperature, and nutrient conditions, cyanobacteria release abundant of volatile organic compounds (VOCs) by up-regulating related gene expression and oxidatively degrading β-carotene. These VOCs not only increase offensive odor in waters, but also transfer allelopathic signals to algae and aquatic plants, resulting in cyanobacteria dominating eutrophicated waters. Among these VOCs, β-cyclocitral, α-ionone, β-ionone, limonene, longifolene, and eucalyptol have been identified as the main allelopathic agents, which even directly kill algae by inducing programmed cell death (PCD). The VOCs released from cyanobacteria, especially the ruptured cells, exhibit repelling effects on the herbivores, which is beneficial to survival of the population. Cyanobacterial VOCs might transfer aggregating information among homogeneous species, so the acceptors initiate aggregation to resist the coming stresses. It can be speculated that the adverse conditions can promote VOC emission from cyanobacteria, which play important roles in cyanobacteria dominating eutrophicated waters and even bursting blooms.
Collapse
Affiliation(s)
- Zhaojiang Zuo
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-Based Healthcare Functions, Zhejiang A&F University, Hangzhou, China.,State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|