1
|
Li L, Xiao T, He Z, Chen Q. Concentration-dependent effects of polystyrene microplastics on methanogenic activity and microbial community shifts in sewer sediment. BIORESOURCE TECHNOLOGY 2025; 428:132464. [PMID: 40158865 DOI: 10.1016/j.biortech.2025.132464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/27/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
Microplastics (MPs) are emerging environmental contaminants that interfere with microbial processes, yet their effects on methanogenesis in anaerobic systems remain insufficiently understood. This study investigates the impact of polystyrene microplastics (PS-MPs) on methanogenesis, microbial community structure, and metabolic pathways in simulated sewer sediment systems, with exposure concentrations of 5, 50, and 250 mg·L-1. The results revealed a concentration-dependent effect of PS-MPs on methanogenesis: a 222.2 % increase at 5 mg·L-1, and 72.2 % and 88.9 % increases at 50 mg·L-1 and 250 mg·L-1, respectively, indicating a non-linear response. PS-MPs exposure enhanced coenzyme F420 (F420) activity, a key indicator of methanogenic activity, but also inhibited methyl coenzyme M reductase (Mcr), disrupting critical methanogenic pathways. At lower concentrations, PS-MPs promoted the abundance of hydrogenotrophic methanogens, whereas higher concentrations suppressed overall methanogenic activity. Furthermore, PS-MPs had a dose-dependent effect on CH4 oxidation, influencing the structure of methanotrophic communities. These findings establish a clear dose-response relationship between PS-MPs concentration and CH4 dynamics in anaerobic systems, highlighting the complex role of microplastics in methanogenesis and microbial interactions. This research provides valuable insights into the environmental implications of microplastics in wastewater systems and their potential impacts on biogas production and CH4 mitigation, aligning with the objectives of environmental bioengineering and sustainable waste management.
Collapse
Affiliation(s)
- Lucheng Li
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Ting Xiao
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Zanji He
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Qijin Chen
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, Nanjing 210044, China
| |
Collapse
|
2
|
Arif SM, Khan I, Saeed M, Chaudhari SK, Ghorbanpour M, Hasan M, Mustafa G. Exploring omics solutions to reduce micro/nanoplastic toxicity in plants: A comprehensive overview. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 974:179220. [PMID: 40147233 DOI: 10.1016/j.scitotenv.2025.179220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
The proliferation of plastic waste, particularly in the form of microplastics (MPs) and nanoplastics (NPs), has emerged as a significant environmental challenge with profound implications for agricultural ecosystems. These pervasive pollutants accumulate in soil, altering its physicochemical properties and disrupting microbial communities. MPs/NPs can infiltrate plant systems, leading to oxidative stress and cytotoxic effects, which in turn compromise essential physiological functions such as water uptake, nutrient absorption, and photosynthesis. This situation threatens crop yield and health, while also posing risks to human health and food security through potential accumulation in the food chain. Despite increasing awareness of this issue, substantial gaps still remain in our understanding of the physiological and molecular mechanisms that govern plant responses to MP/NP stress. This review employs integrative omics techniques including genomics, transcriptomics, proteomics, metabolomics, and epigenomics to elucidate these responses. High-throughput methodologies have revealed significant genetic and metabolic alterations that enable plants to mitigate the toxicity associated with MPs/NPs. The findings indicate a reconfiguration of metabolic pathways aimed at maintaining cellular homeostasis, activation of antioxidant mechanisms, and modulation of gene expression related to stress responses. Additionally, epigenetic modifications suggest that plants adapt to prolonged plastics exposure, highlighting unexplored avenues for targeted research. By integrating various omics approaches, a comprehensive understanding of molecular interactions and their effects on plant systems can be achieved. This review underscores potential targets for biotechnological and agronomic interventions aimed at enhancing plant resilience by identifying key stress-responsive genes, proteins, and metabolites. Ultimately, this work addresses critical knowledge gaps and highlights the importance of multi-omics strategies in developing sustainable solutions to mitigate the adverse effects of MP/NP pollution in agriculture, thereby ensuring the integrity of food systems and ecosystems.
Collapse
Affiliation(s)
- Samia Muhammad Arif
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Ilham Khan
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Saeed
- Environmental Biology and Ecotoxicology Laboratory, Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Sunbal Khalil Chaudhari
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Sargodha Campus, Sargodha 42100, Pakistan
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak 38156-8-8349, Iran.
| | - Murtaza Hasan
- Department of Biotechnology, Faculty of Chemical and Biological Sciences, The Islamia University of Bahawalpur, 63100, Pakistan.
| | - Ghazala Mustafa
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| |
Collapse
|
3
|
Yang B, Wu L, Feng W, Lin Q. Global perspective of ecological risk of plastic pollution on soil microbial communities. Front Microbiol 2024; 15:1468592. [PMID: 39444686 PMCID: PMC11496196 DOI: 10.3389/fmicb.2024.1468592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/10/2024] [Indexed: 10/25/2024] Open
Abstract
Introduction The impacts of plastic pollution on soil ecosystems have emerged as a significant global environmental concern. The progress in understanding how plastic pollution affects soil microbial communities and ecological functions is essential for addressing this issue effectively. Methods A bibliometric analysis was conducted on the literature from the Web of Science Core Collection database to offer valuable insights into the dynamics and trends in this field. Results To date, the effects of plastic residues on soil enzymatic activities, microbial biomass, respiration rate, community diversity and functions have been examined, whereas the effects of plastic pollution on soil microbes are still controversial. Discussion To include a comprehensive examination of the combined effects of plastic residue properties (Type, element composition, size and age), soil properties (soil texture, pH) at environmentally relevant concentrations with various exposure durations under field conditions in future studies is crucial for a holistic understanding of the impact of plastic pollution on soil ecosystems. Risk assessment of plastic pollution, particularly for nanoplasctics, from the perspective of soil food web and ecosystem multifunctioning is also needed. By addressing critical knowledge gaps, scholars can play a pivotal role in developing strategies to mitigate the ecological risks posed by plastic pollution on soil microorganisms.
Collapse
Affiliation(s)
- Bing Yang
- Sichuan Academy of Giant Panda, Chengdu, China
| | | | | | | |
Collapse
|
4
|
Xu M, Ren M, Yao Y, Liu Q, Che J, Wang X, Xu Q. Biochar decreases cadmium uptake in indica and japonica rice (Oryza sativa L.): Roles of soil properties, iron plaque, cadmium transporter genes and rhizobacteria. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135402. [PMID: 39096632 DOI: 10.1016/j.jhazmat.2024.135402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/19/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Biochar is an effective and economical strategy for in situ soil cadmium (Cd) remediation. It is essential to comprehensively investigate how biochar mitigates Cd uptake of the main rice subspecies. A pot experiment was established via adding corn stalk biochar into Cd-contaminated soil growing indica Yangdao 6 (YD) and japonica Nangeng 9108 (9108). 9108 had lower shoot biomass (-17.9%) but higher root biomass (+14.4%) and shoot Cd concentration (+29.4%) than YD. Biochar decreased soil available Cd by 25.2% and shoot Cd concentration by 13.6% through the liming and passivation effects. Biochar also favored Cd mitigation by recruiting Fe reducer, Cd remover and plant growth-promoting rhizobacteria (e.g. Bacteroides, Deferrisomatota, Bacillus and Allorhizobium). Besides, biochar reduced Cd uptake by stimulating iron plaques formation for 9108. Moreover, biochar did not reduce Cd uptake by inhibiting Cd transporter genes' expressions and it increased OsHMA2 expression in YD. In conclusion, biochar had great capacity in mitigating Cd pollution and rice subspecies responded differently to biochar in iron plaque formation and Cd transporter genes. The research established a comprehensive understanding of the mechanisms underlying Cd mitigation by biochar and helped to breed low Cd-accumulated rice cultivars to safeguard rice production.
Collapse
Affiliation(s)
- Meiling Xu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Meiling Ren
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Yu Yao
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Qi Liu
- College of Forestry, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Jing Che
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xiaozhi Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China
| | - Qiao Xu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China; Department of Animal, Plant and Soil Sciences, Centre for AgriBioscience, La Trobe University, Melbourne, VIC 3086, Australia.
| |
Collapse
|
5
|
Zhao S, Rillig MC, Bing H, Cui Q, Qiu T, Cui Y, Penuelas J, Liu B, Bian S, Monikh FA, Chen J, Fang L. Microplastic pollution promotes soil respiration: A global-scale meta-analysis. GLOBAL CHANGE BIOLOGY 2024; 30:e17415. [PMID: 39005227 DOI: 10.1111/gcb.17415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024]
Abstract
Microplastic (MP) pollution likely affects global soil carbon (C) dynamics, yet it remains uncertain how and to what extent MP influences soil respiration. Here, we report on a global meta-analysis to determine the effects of MP pollution on the soil microbiome and CO2 emission. We found that MP pollution significantly increased the contents of soil organic C (SOC) (21%) and dissolved organic C (DOC) (12%), the activity of fluorescein diacetate hydrolase (FDAse) (10%), and microbial biomass (17%), but led to a decrease in microbial diversity (3%). In particular, increases in soil C components and microbial biomass further promote CO2 emission (25%) from soil, but with a much higher effect of MPs on these emissions than on soil C components and microbial biomass. The effect could be attributed to the opposite effects of MPs on microbial biomass vs. diversity, as soil MP accumulation recruited some functionally important bacteria and provided additional C substrates for specific heterotrophic microorganisms, while inhibiting the growth of autotrophic taxa (e.g., Chloroflexi, Cyanobacteria). This study reveals that MP pollution can increase soil CO2 emission by causing shifts in the soil microbiome. These results underscore the potential importance of plastic pollution for terrestrial C fluxes, and thus climate feedbacks.
Collapse
Affiliation(s)
- Shuling Zhao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, Shaanxi, China
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, China
- University of Chinese Academy of Sciences, Beijing, China
| | | | - Haijian Bing
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, China
| | - Qingliang Cui
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, Shaanxi, China
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tianyi Qiu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| | - Yongxing Cui
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Josep Penuelas
- CSIC, Global Ecology Unit CREAF- CSIC- UAB, Bellaterra, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, Caalonia, Spain
| | - Baiyan Liu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, Shaanxi, China
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shiqi Bian
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| | - Fazel Abdolahpur Monikh
- Department of Chemical Sciences, University of Padua, Padua, Italy
- Institute for Nanomaterials, Advanced Technologies, and Innovation, Technical University of Liberec Bendlova 1409/7, Liberec, Czech Republic
| | - Jing Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Linchuan Fang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, Shaanxi, China
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, China
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan, China
| |
Collapse
|
6
|
Hu M, Huang Y, Liu L, Ren L, Li C, Yang R, Zhang Y. The effects of Micro/Nano-plastics exposure on plants and their toxic mechanisms: A review from multi-omics perspectives. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133279. [PMID: 38141304 DOI: 10.1016/j.jhazmat.2023.133279] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 12/25/2023]
Abstract
In recent years, plastic pollution has become a global environmental problem, posing a potential threat to agricultural ecosystems and human health, and may further exacerbate global food security problems. Studies have revealed that exposure to micro/nano-plastics (MPs/NPs) might cause various aspects of physiological toxicities, including plant biomass reduction, intracellular oxidative stress burst, photosynthesis inhibition, water and nutrient absorption reduction, cellular and genotoxicity, seed germination retardation, and that the effects were closely related to MP/NP properties (type, particle size, functional groups), exposure concentration, exposure duration and plant characteristics (species, tissue, growth stage). Based on a brief review of the physiological toxicity of MPs/NPs to plant growth, this paper comprehensively reviews the potential molecular mechanism of MPs/NPs on plant growth from perspectives of multi-omics, including transcriptome, metabolome, proteome and microbiome, thus to reveal the role of MPs/NPs in plant transcriptional regulation, metabolic pathway reprogramming, protein translational and post-translational modification, as well as rhizosphere microbial remodeling at multiple levels. Meanwhile, this paper also provides prospects for future research, and clarifies the future research directions and the technologies adopted.
Collapse
Affiliation(s)
- Mangu Hu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yongxiang Huang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Lin Liu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China
| | - Lei Ren
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Chengyong Li
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
| | - Rongchao Yang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Yueqin Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
7
|
Akil Prasath RV, Mohanraj R, Balaramdas KR, Jhony Kumar Tagore A, Raja P, Rajasekaran A. Characterization of carbon fluxes, stock and nutrients in the sacred forest groves and invasive vegetation stands within the human dominated landscapes of a tropical semi-arid region. Sci Rep 2024; 14:4513. [PMID: 38402350 PMCID: PMC10894248 DOI: 10.1038/s41598-024-55294-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/22/2024] [Indexed: 02/26/2024] Open
Abstract
In the semi-arid plains of Southern India, outside the protected area network, sacred groves forests and the barren lands invaded by Prosopis juliflora are reckoned to be the major greenery, but have homogenous and heterogeneous vegetation respectively. This study attempted to compare 50 Sacred Groves Stands (SGS) and 50 monodominant Prosopis juliflora Stands (PJS) for the functional diversity, evenness, floral diversity, carbon stock and dynamics, carbon-fixing traits, dendrochronology of trees, soil nutrient profiles, and soil erosion. Quadrat sample survey was adopted to record stand density, species richness, abundance, basal area and leaf area index; composite soil samples were collected at depths 0-30 cm for nutrient profiling (N, P, K, and OC). Photosynthesis rate (µmole co2 m2/sec), air temperature (°c), leaf intracellular co2 concentration (ppm), ambient photosynthetic active radiation (µmole m2/sec), transpiration rate (m. mole H2O m2/sec) were determined for the 51 tree species existed in SGS and PJS using Plant Photosynthesis system. Structural Equation Model (SEM) was applied to derive the carbon sequestering potential and photosynthetic efficiency of eight dominant tree species using vital input parameters, including eco-physiological, morphological, and biochemical characterization. The Revised Universal Soil Loss Equation (RUSLE) model, in conjunction with ArcGIS Pro and ArcGIS 10.3, was adopted to map soil loss. Carbon source/sink determinations inferred through Net Ecosystem Productivity (NEP) assessments showed that mature SGS potentially acted as a carbon sink (0.06 ± 0.01 g C/m2/day), while matured PJS acted as a carbon source (-0.34 ± 0.12 g C/m2/day). Soil erosion rates were significantly greater (29.5 ± 13.4 ton/ha/year) in SGS compared to PJS (7.52 ± 2.55 ton/ha/year). Of the eight selected tree species, SEM revealed that trees belonging to the family Fabaceae [Wrightia tinctoria (estimated coefficient: 1.28, p = 0.02) > Prosopis juliflora (1.22, p = 0.01) > Acacia nilotica (1.21, p = 0.03) > Albizia lebbeck (0.97, p = 0.01)] showed comparatively high carbon sequestering ability.
Collapse
Affiliation(s)
- R V Akil Prasath
- Department of Environmental Science and Management, Bharathidasan University, Tiruchirappalli, 620024, India
| | - R Mohanraj
- Department of Environmental Science and Management, Bharathidasan University, Tiruchirappalli, 620024, India.
| | - K R Balaramdas
- Department of Environmental Science and Management, Bharathidasan University, Tiruchirappalli, 620024, India
| | | | - P Raja
- St. Joseph's College, Tiruchirappalli, India
| | - A Rajasekaran
- Institute of Forest Genetics and Tree Breeding, Coimbatore, 641002, India
| |
Collapse
|
8
|
Zhao W, Hu T, Ma H, He S, Zhao Q, Jiang J, Wei L. Deciphering the role of polystyrene microplastics in waste activated sludge anaerobic digestion: Changes of organics transformation, microbial community and metabolic pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:166551. [PMID: 37633377 DOI: 10.1016/j.scitotenv.2023.166551] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/18/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Microplastics are ubiquitous in the natural environment, which inevitably affect the relevant biochemical process. Nevertheless, the knowledge about the impacts of microplastics on organics transformation and corresponding microbial metabolism response in anaerobic environment is limited. Here, polystyrene (PS) microplastics were selected as model microplastics to explore their potential impacts on organics transformation, microbial community and metabolic pathway during sludge anaerobic digestion system operation. The results indicated that the PS microplastics exhibited the dose-dependent effects on methane production, i.e., the additive of 20-40 particles/g TS of PS microplastics improved the maximum methane yield by 3.38 %-8.22 %, whereas 80-160 particles/g TS additive led to a 4.78 %-11.04 % declining. Overall, PS microplastics facilitated the solubilization and hydrolysis of sludge, but inhibited the acidogenesis process. Key functional enzyme activities were stimulated under low PS microplastics exposure, whereas were almost severely inhibited due to the increased oxidative stress induced from excess PS microplastics. Microbial community and further metabolic analysis indicated that low PS microplastics improved the acetotrophic and hydrogenotrophic methanogenesis, while a high level of PS microplastics shifted methanogenesis from acetotrophic to hydrogenotrophic pathway. Further analysis showed that the reacted PS microplastics exhibited greater toxicity and ecological than the raw PS microplastics due to that they are more likely to adsorb contaminants. These findings revealed the dosage-dependent relationships between microplastics and organics transformation process in anaerobic environments, providing new insights for assessing the impact of PS microplastics on sludge anaerobic digestion.
Collapse
Affiliation(s)
- Weixin Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Tianyi Hu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hao Ma
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shufei He
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Junqiu Jiang
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
9
|
Xu M, Xiang Q, Xu F, Guo L, Carter LJ, Du W, Zhu C, Yin Y, Ji R, Wang X, Guo H. Elevated CO 2 alleviated the dissemination of antibiotic resistance genes in sulfadiazine-contaminated soil: A free-air CO 2 enrichment study. JOURNAL OF HAZARDOUS MATERIALS 2023; 450:131079. [PMID: 36857828 DOI: 10.1016/j.jhazmat.2023.131079] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/13/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Climate change affects soil microbial communities and their genetic exchange, and subsequently modifies the transfer of antibiotic resistance genes (ARGs) among bacteria. However, how elevated CO2 impacts soil antibiotic resistome remains poorly characterized. Here, a free-air CO2 enrichment system was used in the field to investigate the responses of ARGs profiles and bacterial communities to elevated CO2 (+200 ppm) in soils amended with sulfadiazine (SDZ) at 0, 0.5 and 5 mg kg-1. Results showed that SDZ exposure induced the co-occurrence of beta-lactamase and tetracycline resistance genes, and SDZ at 5 mg kg-1 enhanced the abundance of aminoglycoside, sulfonamide and multidrug resistance genes. However, elevated CO2 weakened the effects of SDZ at 0.5 mg kg-1 following an observed reduction in the total abundance of ARGs and mobile genetic elements. Additionally, elevated CO2 significantly decreased the abundance of vancomycin resistance genes and alleviated the stimulation of SDZ on the dissemination of aminoglycoside resistance genes. Correlation analysis and structural equation models revealed that elevated CO2 could directly influence the spread of ARGs or impose indirect effects on ARGs by affecting soil properties and bacterial communities. Overall, our results furthered the knowledge of the dissemination risks of ARGs under future climate scenarios.
Collapse
Affiliation(s)
- Meiling Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Qian Xiang
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Fen Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Lei Guo
- Department of Cadre Ward, Eastern Theater General Hospital of Chinese People's Liberation Army, Nanjing 210002, China
| | - Laura J Carter
- School of Geography, Faculty of Environment, University of Leeds, Leeds LS2 9JT, UK
| | - Wenchao Du
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Chunwu Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China
| | - Ying Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xiaozhi Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Joint International Research Centre for Critical Zone Science-University of Leeds and Nanjing University, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
10
|
Pang R, Shao B, Chen Q, Shi H, Xie B, Soliman M, Tai J, Su Y. The co-occurrent microplastics and nano-CuO showed antagonistic inhibitory effects on bacterial denitrification: Interaction of pollutants and regulations on functional genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160892. [PMID: 36521594 DOI: 10.1016/j.scitotenv.2022.160892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
The wide occurrence of microplastics (MPs) and nanoparticles resulted in their inevitable coexistence in environment. However, the joint effects of these two types of particulate emerging contaminants on denitrification have seldomly been investigated. Herein, non-biodegradable polyvinyl chloride, polypropylene, polyethylene and biodegradable polyhydroxyalkanoate (PHA) MPs were chosen to perform the co-occurrent effects with nano copper oxide (nano-CuO). Both the nano-CuO and MPs inhibited the denitrification process, and biodegradable PHA-MPs showed severer inhibition than non-biodegradable MPs. However, the presence of MPs significantly alleviated the inhibition of nano-CuO, suggesting an antagonistic effect. Other than MPs decreasing copper ion release from nano-CuO, MPs and nano-CuO formed agglomerations and induced lower levels of oxidative stress compared to individual exposure. Transcriptome analysis indicated that the co-occurrent MPs and nano-CuO induced different regulation on denitrifying genes (e. g. nar and nor) compared to individual ones. Also, the expressions of genes involved in denitrification-associated metabolic pathways, including glycolysis and NADH electron transfer, were down-regulated by nano-CuO or MPs, but exhibiting recovery under the co-occurrent conditions. This study firstly discloses the antagonistic effect of nano-CuO and MPs on environmental process, and these findings will benefit the systematic evaluation of MPs environmental behavior and co-occurrent risk with other pollutants.
Collapse
Affiliation(s)
- Ruirui Pang
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Boqun Shao
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Qiqing Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Huahong Shi
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Bing Xie
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Mostafa Soliman
- Ministry of Agriculture and Land Reclamation, Agricultural Research Center, Central Laboratory of Residue Analysis of Pesticides and Heavy Metals in Foods (QCAP Egypt), Giza 12311, Egypt
| | - Jun Tai
- Shanghai Environmental Sanitation Engineering Design Institute Co., Ltd., Shanghai 200232, China
| | - Yinglong Su
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|