1
|
Hao Q, Zhang L, Zhang X, Wang Y, Zhang C, Meng S, Xu J, Hao L, Zhang X. Years of life lost attributable to air pollution, a health risk-based air quality index approach in Ningbo, China. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2025; 69:739-751. [PMID: 39808326 DOI: 10.1007/s00484-025-02851-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/03/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025]
Abstract
Air pollution remains a significant threat to human health and economic development. Most previous studies have examined the health effects of individual pollutants, which often overlook the combined impacts of multiple pollutants. The traditional composite indicator air quality index (AQI) only focuses on the major pollutants, whereas the health risk-based air quality index (HAQI) could offer a more comprehensive evaluation of the health effects of various pollutants on populations. Currently, research on HAQI to evaluate the influence of multiple air pollutants on life expectancy losses is limited. In this study, we employed HAQIto estimate years of life lost (YLL) caused by exposure to air pollution for total deaths and sub-groups by sex, age, and cause-specific disease in Ningbo from 2014 to 2018. Results reveal that significant improvement in air quality during the study period. Based on the AQI-classified air quality risk category, the HAQI estimated a more severe level, which suggests that the commonly used AQI significantly underestimates the hazards of multiple air pollutants. The YLL attributable to exposure above threshold concentrations of the Chinese Ambient Air Quality Standards (CAAQS) 24-hour Grade II standards was 1.375 years (95% CI, 1.044-1.707) per death based on the HAQI, while the YLL estimated using AQI was 1.047 years (95% CI, 0.809-1.286) per death. Females and elderly people over 65 years were vulnerable subgroups, with YLL of 1.232 and 1.480 years per death, respectively. Among deaths of cause-specific disease, the YLL attributed to polluted air was highest for patients with respiratory diseases (0.866 years, 95% CI: 0.668-1.064), followed by patients with circulatory diseases (0.490 years) and endocrine diseases (0.478 years), respectively. Improving the standards of air quality could promote the management of air quality and reduce the disease burden and economic losses caused by polluted air to populations, especially for vulnerable populations. Our study provides a basis for the formulation of policies and upgrade of air quality standards.
Collapse
Affiliation(s)
- Qiang Hao
- Department of Preventive Health, Shanxi Cardiovascular Hospital, No. 18 Yifen Street, Wanbailin District, Taiyuan, 030024, Shanxi Province, China.
| | - Lin Zhang
- Department of Preventive Health, Shanxi Cardiovascular Hospital, No. 18 Yifen Street, Wanbailin District, Taiyuan, 030024, Shanxi Province, China
| | - Xiaodong Zhang
- Department of Preventive Health, Shanxi Cardiovascular Hospital, No. 18 Yifen Street, Wanbailin District, Taiyuan, 030024, Shanxi Province, China
| | - Yanjun Wang
- Health Commission of Shanxi Province, No. 99 North of Jianshe Street, Xinghualing District, Taiyuan, 030000, Shanxi Province, China
| | - Cuixian Zhang
- Department of Preventive Health, Shanxi Cardiovascular Hospital, No. 18 Yifen Street, Wanbailin District, Taiyuan, 030024, Shanxi Province, China
| | - Suyan Meng
- Department of Preventive Health, Shanxi Cardiovascular Hospital, No. 18 Yifen Street, Wanbailin District, Taiyuan, 030024, Shanxi Province, China
| | - Jinhua Xu
- Department of Preventive Health, Shanxi Cardiovascular Hospital, No. 18 Yifen Street, Wanbailin District, Taiyuan, 030024, Shanxi Province, China
| | - Lina Hao
- Department of Preventive Health, Shanxi Cardiovascular Hospital, No. 18 Yifen Street, Wanbailin District, Taiyuan, 030024, Shanxi Province, China
| | - Xia Zhang
- Department of Preventive Health, Shanxi Cardiovascular Hospital, No. 18 Yifen Street, Wanbailin District, Taiyuan, 030024, Shanxi Province, China
| |
Collapse
|
2
|
Yu X, Fan Y, Kim JS, Chung H, Lord A, Dunning R. Is ignorance bliss? Evaluating information awareness and life satisfaction through the lens of perceived air pollution: The case of Beijing, China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123087. [PMID: 39471602 DOI: 10.1016/j.jenvman.2024.123087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/01/2024]
Abstract
Our study presents fresh insight into the impacts of air-related information accessibility and policy awareness on citizen's life satisfaction, through the lens of perceived air pollution sources. It is widely accepted that disclosing information about air pollution adversely affects an individual's life satisfaction. However, the impact of information accessibility and public policy awareness on life satisfaction remains poorly understood in real-life contexts and their interrelationship warrants exploration. Earlier studies suggested that public scrutiny via information disclosure is a means to lower air pollution levels, potentially enhancing life satisfaction through improved air quality perception and reduced health risks. However, much of that research was based on the flawed presumption that all individuals can access and understand this officially disclosed information. They overlooked the actual availability of information and public reflections on relevant policies that were influenced by their perception of air pollution. This research gap highlights the need for in-depth evidence of the impacts of information accessibility and policy awareness on life satisfaction. Employing a covariance-based Structural Equation Modelling, our study analyses the views of 1867 Beijing residents in 2022. We assessed information accessibility, policy awareness, perceived air pollution sources, life satisfaction, and socio-demographic characteristics covering two time periods: a) before the COVID-19 pandemic and b) during its normalisation phase. Our findings reveal that both information accessibility and policy awareness significantly and positively affect life satisfaction in both periods. Moreover, the indirect parameter analysis underscores the presence of significant heterogeneity when considering the mediating role of impacts of perceived air pollutants. The results of this study offer a novel contribution regarding the relationship between air pollution information accessibility, policy awareness, and life satisfaction.
Collapse
Affiliation(s)
- Xiaohan Yu
- Urban Planning and Design, Xi'an Jiaotong-Liverpool University, 111 Ren'ai Road, Suzhou Industrial Park, Suzhou, 215123, China; Geography and Planning University of Liverpool Roxby Building, Liverpool, L69 7Zt, United Kingdom.
| | - Yanting Fan
- Urban Planning and Design, Xi'an Jiaotong-Liverpool University, 111 Ren'ai Road, Suzhou Industrial Park, Suzhou, 215123, China; Geography and Planning University of Liverpool Roxby Building, Liverpool, L69 7Zt, United Kingdom.
| | - Joon Sik Kim
- Urban Planning and Design, Xi'an Jiaotong-Liverpool University, 111 Ren'ai Road, Suzhou Industrial Park, Suzhou, 215123, China.
| | - Hyungchul Chung
- Urban Planning and Design, Xi'an Jiaotong-Liverpool University, 111 Ren'ai Road, Suzhou Industrial Park, Suzhou, 215123, China.
| | - Alex Lord
- Lever Chair of Town and Regional Planning Geography and Planning University of Liverpool Roxby Building, Liverpool, L69 7Zt, United Kingdom.
| | - Richard Dunning
- Geography and Planning University of Liverpool Roxby Building, Liverpool, L69 7Zt, United Kingdom.
| |
Collapse
|
3
|
Cheng B, Ma Y, Zhao Y, Qin P, Feng F, Liu Z, Wang W, Zhang Y. Influence of topography and synoptic weather patterns on air quality in a valley basin city of Northwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173362. [PMID: 38772485 DOI: 10.1016/j.scitotenv.2024.173362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 05/23/2024]
Abstract
To clarify the mechanism underlying the effects of weather patterns and topography on air pollution, this study conducted the obliquely rotated principal component analysis in the T-mode to analyze ERA5 reanalysis data and categorize typical weather patterns at a 700-hPa geopotential height from 2015 to 2022. The probability of worsened air pollution attributable to weather patterns was quantitatively assessed using a generalized additive model. The results indicated that due to the influence of topography, Lanzhou was affected by an extended period of downdraft (with weak convective intensity) and the delayed formation of a convective boundary layer during the daytime by 1-2 h relative to other areas. Under the combined effect of low trough patterns (south low pressure type [SL] and south low weak pressure type [SL-]) and topography, the formation of a stable layer above the planetary boundary layer (PBL) would weaken the vertical exchange of the local airflow and inhibit the development of the PBL. The type of SL led to the most severe pollution, causing a 61.9 % (95 % confidence interval [CI]: 46.3 %-79.3 %) increase in PM2.5 concentration. For southwest high pressure patterns (south high [SH], southwest weak high [SWH-], southwest high [SWH], and southwest strong high [SWH+] pressure types), the prevailing northwest wind was the main transport path for pollutants. For the high pressure patterns (north high [NH] and northwest high [NWH] pressure types) and south wind patterns (southeast weak high [SEH-], southeast high [SEH], and northeast high [NEH] pressure types), the enhancement of vertical convection, deepening of the PBL, and reduction of pollution transport led to improved air quality. The NH, NWH, and NEH pressure types caused PM2.5 concentration to decrease by 18.4 % (95 % CI: 8.8 %-27.1 %), 14.9 % (95 % CI: 4.7 %-24.0 %), and 35.9 % (95 % CI: 9.7 %-54.6 %), respectively.
Collapse
Affiliation(s)
- Bowen Cheng
- College of Atmospheric Sciences, Key Laboratory of Semi-Arid Climate Change, Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Yuxia Ma
- College of Atmospheric Sciences, Key Laboratory of Semi-Arid Climate Change, Ministry of Education, Lanzhou University, Lanzhou 730000, China.
| | - Yuhan Zhao
- College of Atmospheric Sciences, Key Laboratory of Semi-Arid Climate Change, Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Pengpeng Qin
- College of Atmospheric Sciences, Key Laboratory of Semi-Arid Climate Change, Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Fengliu Feng
- College of Atmospheric Sciences, Key Laboratory of Semi-Arid Climate Change, Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Zongrui Liu
- College of Atmospheric Sciences, Key Laboratory of Semi-Arid Climate Change, Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Wanci Wang
- College of Atmospheric Sciences, Key Laboratory of Semi-Arid Climate Change, Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Yifan Zhang
- College of Atmospheric Sciences, Key Laboratory of Semi-Arid Climate Change, Ministry of Education, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
4
|
Cheng B, Ma Y, Qin P, Wang W, Zhao Y, Liu Z, Zhang Y, Wei L. Characterization of air pollution and associated health risks in Gansu Province, China from 2015 to 2022. Sci Rep 2024; 14:14751. [PMID: 38926518 PMCID: PMC11208435 DOI: 10.1038/s41598-024-65584-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024] Open
Abstract
Air pollution poses a major threat to both the environment and public health. The air quality index (AQI), aggregate AQI, new health risk-based air quality index (NHAQI), and NHAQI-WHO were employed to quantitatively evaluate the characterization of air pollution and the associated health risk in Gansu Province before (P-I) and after (P-II) COVID-19 pandemic. The results indicated that AQI system undervalued the comprehensive health risk impact of the six criteria pollutants compared with the other three indices. The stringent lockdown measures contributed to a considerable reduction in SO2, CO, PM2.5, NO2 and PM10; these concentrations were 43.4%, 34.6%, 21.4%, 17.4%, and 14.2% lower in P-II than P-I, respectively. But the concentration of O3 had no obvious improvement. The higher sandstorm frequency in P-II led to no significant decrease in the ERtotal and even resulted in an increase in the average ERtotal in cities located in northwestern Gansu from 0.78% in P-I to 1.0% in P-II. The cumulative distribution of NHAQI-based population-weighted exposure revealed that 24% of the total population was still exposed to light pollution in spring during P-II, while the air quality in other three seasons had significant improvements and all people were under healthy air quality level.
Collapse
Affiliation(s)
- Bowen Cheng
- College of Atmospheric Sciences, Key Laboratory of Semi-Arid Climate Change, Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| | - Yuxia Ma
- College of Atmospheric Sciences, Key Laboratory of Semi-Arid Climate Change, Ministry of Education, Lanzhou University, Lanzhou, 730000, China.
| | - Pengpeng Qin
- College of Atmospheric Sciences, Key Laboratory of Semi-Arid Climate Change, Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| | - Wanci Wang
- College of Atmospheric Sciences, Key Laboratory of Semi-Arid Climate Change, Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| | - Yuhan Zhao
- College of Atmospheric Sciences, Key Laboratory of Semi-Arid Climate Change, Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| | - Zongrui Liu
- College of Atmospheric Sciences, Key Laboratory of Semi-Arid Climate Change, Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| | - Yifan Zhang
- College of Atmospheric Sciences, Key Laboratory of Semi-Arid Climate Change, Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| | - Linbo Wei
- College of Atmospheric Sciences, Key Laboratory of Semi-Arid Climate Change, Ministry of Education, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
5
|
Mahmood H, Furqan M, Meraj G, Shahid Hassan M. The effects of COVID-19 on agriculture supply chain, food security, and environment: a review. PeerJ 2024; 12:e17281. [PMID: 38680897 PMCID: PMC11048076 DOI: 10.7717/peerj.17281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/01/2024] [Indexed: 05/01/2024] Open
Abstract
COVID-19 has a deep impact on the economic, environmental, and social life of the global population. Particularly, it disturbed the entire agriculture supply chain due to a shortage of labor, travel restrictions, and changes in demand during lockdowns. Consequently, the world population faced food insecurity due to a reduction in food production and booming food prices. Low-income households face food security challenges because of limited income generation during the pandemic. Thus, there is a need to understand comprehensive strategies to meet the complex challenges faced by the food industry and marginalized people in developing countries. This research is intended to review the agricultural supply chain, global food security, and environmental dynamics of COVID-19 by exploring the most significant literature in this domain. Due to lockdowns and reduced industrial production, positive environmental effects are achieved through improved air and water quality and reduced noise pollution globally. However, negative environmental effects emerged due to increasing medical waste, packaging waste, and plastic pollution due to disruptions in recycling operations. There is extensive literature on the effects of COVID-19 on the environment and food security. This study is an effort to review the existing literature to understand the net effects of the pandemic on the environment and food security. The literature suggested adopting innovative policies and strategies to protect the global food supply chain and achieve economic recovery with environmental sustainability. For instance, food productivity should be increased by using modern agriculture technologies to ensure food security. The government should provide food to vulnerable populations during the pandemic. Trade restrictions should be removed for food trade to improve international collaboration for food security. On the environmental side, the government should increase recycling plants during the pandemic to control waste and plastic pollution.
Collapse
Affiliation(s)
- Haider Mahmood
- Department of Finance, College of Business Administration, Prince Sattam bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Maham Furqan
- College of Agricultural Sciences, Oregon State University, Corvallis, OR, United States of America
| | - Gowhar Meraj
- Department of Ecosystem Studies, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo City, Tokyo, Japan
| | - Muhammad Shahid Hassan
- Department of Economics and Statistics, Dr. Hassan Murad School of Management, University of Management and Technology, Lahore, Pakistan
| |
Collapse
|
6
|
Su H, Lin P, Li D, Chen Y. Reduced Graphene Oxide/Cellulose Sodium Aerogel-Supported Eutectic Phase Change Material Gel Demonstrating Superior Energy Conversion and Storage Capacity toward High-Performance Personal Thermal Management. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3334-3347. [PMID: 38193700 DOI: 10.1021/acsami.3c15470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
By virtue of their capacity to absorb and release energy during the phase change process, phase change materials (PCMs) are ideal for personal thermal management (PTM). The combination of reduced graphene oxide/cellulose sodium aerogel (rGCA) and lauric acid/myristic acid binary eutectic phase change gel (LMG) creates a composite phase change material that possesses outstanding photothermal conversion capabilities, electro-thermal conversion capabilities, energy storage capabilities, and shape-stable performance. The results showed that rGCA had a maximum adsorption efficiency of 99.7% with a melting latent heat of 124.6 J g-1. The high absorption rate of rGCA to LMG is a result of the capillary force, pore characteristics, hydrogen bonding, and the π-π interaction. Notably, rGCA and LMG composite material (rGCG) exhibited an excellent photothermal conversion efficiency of 96.5% and electro-thermal conversion of 82.3%. Results indicate that binary eutectic phase change materials are more suitable for temperature regulation than single phase change materials, making them more suitable for PTM. It is anticipated that the innovative thermal comfort solution, which provides thermal shielding, thermal energy storage, self-supporting characteristics, and wearability, will offer new possibilities for the next generation of wearable PTMs.
Collapse
Affiliation(s)
- Hua Su
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Pengcheng Lin
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Donghai Li
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
7
|
Zoran M, Savastru R, Savastru D, Tautan M, Tenciu D. Linkage between Airborne Particulate Matter and Viral Pandemic COVID-19 in Bucharest. Microorganisms 2023; 11:2531. [PMID: 37894189 PMCID: PMC10609195 DOI: 10.3390/microorganisms11102531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
The long-distance spreading and transport of airborne particulate matter (PM) of biogenic or chemical compounds, which are thought to be possible carriers of SARS-CoV-2 virions, can have a negative impact on the incidence and severity of COVID-19 viral disease. Considering the total Aerosol Optical Depth at 550 nm (AOD) as an atmospheric aerosol loading variable, inhalable fine PM with a diameter ≤2.5 µm (PM2.5) or coarse PM with a diameter ≤10 µm (PM10) during 26 February 2020-31 March 2022, and COVID-19's five waves in Romania, the current study investigates the impact of outdoor PM on the COVID-19 pandemic in Bucharest city. Through descriptive statistics analysis applied to average daily time series in situ and satellite data of PM2.5, PM10, and climate parameters, this study found decreased trends of PM2.5 and PM10 concentrations of 24.58% and 18.9%, respectively compared to the pre-pandemic period (2015-2019). Exposure to high levels of PM2.5 and PM10 particles was positively correlated with COVID-19 incidence and mortality. The derived average PM2.5/PM10 ratios during the entire pandemic period are relatively low (<0.44), indicating a dominance of coarse traffic-related particles' fraction. Significant reductions of the averaged AOD levels over Bucharest were recorded during the first and third waves of COVID-19 pandemic and their associated lockdowns (~28.2% and ~16.4%, respectively) compared to pre-pandemic period (2015-2019) average AOD levels. The findings of this research are important for decision-makers implementing COVID-19 safety controls and health measures during viral infections.
Collapse
Affiliation(s)
- Maria Zoran
- C Department, National Institute of R&D for Optoelectronics, 409 Atomistilor Street, MG5, 077125 Magurele, Romania; (R.S.); (D.S.); (M.T.); (D.T.)
| | | | | | | | | |
Collapse
|
8
|
Li X, Abdullah LC, Sobri S, Syazarudin Md Said M, Aslina Hussain S, Poh Aun T, Hu J. Long-term spatiotemporal evolution and coordinated control of air pollutants in a typical mega-mountain city of Cheng-Yu region under the "dual carbon" goal. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2023; 73:649-678. [PMID: 37449903 DOI: 10.1080/10962247.2023.2232744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/31/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023]
Abstract
Clarifying the spatiotemporal distribution and impact mechanism of pollution is the prerequisite for megacities to formulate relevant air pollution prevention and control measures and achieve carbon neutrality goals. Chongqing is one of the dual-core key megacities in Cheng-Yu region and as a typical mountain-city in China, environmental problems are complex and sensitive. This research aims to investigate the exceeding standard levels and spatio-temporal evolution of criteria pollutants between 2014 and 2020. The results indicated that PM10, PM2.5, CO and SO2 were decreased significantly by 45.91%, 52.86%, 38.89% and 66.67%, respectively. Conversely, the concentration of pollutant O3 present a fluctuating growth and found a "seesaw" phenomenon between it and PM. Furthermore, PM and O3 are highest in winter and summer, respectively. SO2, NO2, CO, and PM showed a "U-shaped", and O3 showed an inverted "U-shaped" seasonal variation. PM and O3 concentrations are still far behind the WHO, 2021AQGs standards. Significant spatial heterogeneity was observed in air pollution distribution. These results are of great significance for Chongqing to achieve "double control and double reduction" of PM2.5 and O3 pollution, and formulate a regional carbon peaking roadmap under climate coordination. Besides, it can provide an important platform for exploring air pollution in typical terrain around the world and provide references for related epidemiological research.Implications: Chongqing is one of the dual-core key megacities in Cheng-Yu region and as a typical mountain city, environmental problems are complex and sensitive. Under the background of the "14th Five-Year Plan", the construction of the "Cheng-Yu Dual-City Economic Circle" and the "Dual-Carbon" goal, this article comprehensively discussed the annual and seasonal excess levels and spatiotemporal evolution of pollutants under the multiple policy and the newest international standards (WHO,2021AQG) backgrounds from 2014 to 2020 in Chongqing. Furthermore, suggestions and measures related to the collaborative management of pollutants were discussed. Finally, limitations and recommendations were also put forward.Clarifying the spatiotemporal distribution and impact mechanism of pollution is the prerequisite for cities to formulate relevant air pollution control measures and achieve carbon neutrality goals. This study is of great significance for Chongqing to achieve "double control and double reduction" of PM2.5 and O3 pollution, study and formulate a regional carbon peaking roadmap under climate coordination and an action plan for sustained improvement of air quality.In addition, this research can advanced our understanding of air pollution in complex terrain. Furthermore, it also promote the construction of the China national strategic Cheng-Yu economic circle and build a beautiful west. Moreover, it provides scientific insights for local policymakers to guide smart urban planning, industrial layout, energy structure, and transportation planning to improve air quality throughout the Cheng-Yu region. Finally, this is also conducive to future scientific research in other regions of China, and even megacities with complex terrain in the world.
Collapse
Affiliation(s)
- Xiaoju Li
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University Putra Malaysia, Serdang, Malaysia
- Department of Resource and Environment, Xichang University, Xichang City, Sichuan Province, China
| | - Luqman Chuah Abdullah
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University Putra Malaysia, Serdang, Malaysia
| | - Shafreeza Sobri
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University Putra Malaysia, Serdang, Malaysia
| | - Mohamad Syazarudin Md Said
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University Putra Malaysia, Serdang, Malaysia
| | - Siti Aslina Hussain
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University Putra Malaysia, Serdang, Malaysia
| | - Tan Poh Aun
- SOx NOx Asia Sdn Bhd, Subang Jaya, Selangor, Malaysia
| | - Jinzhao Hu
- Department of Resource and Environment, Xichang University, Xichang City, Sichuan Province, China
| |
Collapse
|
9
|
Zoran MA, Savastru RS, Savastru DM, Tautan MN. Peculiar weather patterns effects on air pollution and COVID-19 spread in Tokyo metropolis. ENVIRONMENTAL RESEARCH 2023; 228:115907. [PMID: 37080275 PMCID: PMC10111861 DOI: 10.1016/j.envres.2023.115907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
As a pandemic hotspot in Japan, between March 1, 2020-October 1, 2022, Tokyo metropolis experienced seven COVID-19 waves. Motivated by the high rate of COVID-19 incidence and mortality during the seventh wave, and environmental/health challenges we conducted a time-series analysis to investigate the long-term interaction of air quality and climate variability with viral pandemic in Tokyo. Through daily time series geospatial and observational air pollution/climate data, and COVID-19 incidence and death cases, this study compared the environmental conditions during COVID-19 multiwaves. In spite of five State of Emergency (SOEs) restrictions associated with COVID-19 pandemic, during (2020-2022) period air quality recorded low improvements relative to (2015-2019) average annual values, namely: Aerosol Optical Depth increased by 9.13% in 2020 year, and declined by 6.64% in 2021, and 12.03% in 2022; particulate matter PM2.5 and PM10 decreased during 2020, 2021, and 2022 years by 10.22%, 62.26%, 0.39%, and respectively by 4.42%, 3.95%, 5.76%. For (2021-2022) period the average ratio of PM2.5/PM10 was (0.319 ± 0.1640), showing a higher contribution to aerosol loading of traffic-related coarse particles in comparison with fine particles. The highest rates of the daily recorded COVID-19 incidence and death cases in Tokyo during the seventh COVID-19 wave (1 July 2022-1 October 2022) may be attributed to accumulation near the ground of high levels of air pollutants and viral pathogens due to: 1) peculiar persistent atmospheric anticyclonic circulation with strong positive anomalies of geopotential height at 500 hPa; 2) lower levels of Planetary Boundary Layer (PBL) heights; 3) high daily maximum air temperature and land surface temperature due to the prolonged heat waves (HWs) in summer 2022; 4) no imposed restrictions. Such findings can guide public decision-makers to design proper strategies to curb pandemics under persistent stable anticyclonic weather conditions and summer HWs in large metropolitan areas.
Collapse
Affiliation(s)
- Maria A Zoran
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest, 077125, Romania.
| | - Roxana S Savastru
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest, 077125, Romania
| | - Dan M Savastru
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest, 077125, Romania
| | - Marina N Tautan
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest, 077125, Romania
| |
Collapse
|
10
|
He C, Wu Q, Li B, Liu J, Gong X, Zhang L. Surface ozone pollution in China: Trends, exposure risks, and drivers. Front Public Health 2023; 11:1131753. [PMID: 37026118 PMCID: PMC10071862 DOI: 10.3389/fpubh.2023.1131753] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/03/2023] [Indexed: 04/08/2023] Open
Abstract
Introduction Within the context of the yearly improvement of particulate matter (PM) pollution in Chinese cities, Surface ozone (O3) concentrations are increasing instead of decreasing and are becoming the second most important air pollutant after PM. Long-term exposure to high concentrations of O3 can have adverse effects on human health. In-depth investigation of the spatiotemporal patterns, exposure risks, and drivers of O3 is relevant for assessing the future health burden of O3 pollution and implementing air pollution control policies in China. Methods Based on high-resolution O3 concentration reanalysis data, we investigated the spatial and temporal patterns, population exposure risks, and dominant drivers of O3 pollution in China from 2013 to 2018 utilizing trend analysis methods, spatial clustering models, exposure-response functions, and multi-scale geographically weighted regression models (MGWR). Results The results show that the annual average O3 concentration in China increased significantly at a rate of 1.84 μg/m3/year from 2013 to 2018 (160 μg/m3) in China increased from 1.2% in 2013 to 28.9% in 2018, and over 20,000 people suffered premature death from respiratory diseases attributed to O3 exposure each year. Thus, the sustained increase in O3 concentrations in China is an important factor contributing to the increasing threat to human health. Furthermore, the results of spatial regression models indicate that population, the share of secondary industry in GDP, NOx emissions, temperature, average wind speed, and relative humidity are important determinants of O3 concentration variation and significant spatial differences are observed. Discussion The spatial differences of drivers result in the spatial heterogeneity of O3 concentration and exposure risks in China. Therefore, the O3 control policies adapted to various regions should be formulated in the future O3 regulation process in China.
Collapse
Affiliation(s)
- Chao He
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Qian Wu
- School of Resource and Environmental Sciences, Wuhan University, Wuhan, China
| | - Bin Li
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Jianhua Liu
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Xi Gong
- School of Low Carbon Economics, Hubei University of Economics, Wuhan, China
- Collaborative Innovation Center for Emissions Trading System Co-constructed by the Province and Ministry, Wuhan, China
- *Correspondence: Xi Gong
| | - Lu Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- Lu Zhang
| |
Collapse
|