1
|
Leng Z, Liu J, He C, Wang Z, He S, Du D, Li J. Deposition of sulfur by Spartina alterniflora promoted its ecological adaptability in cadmium-polluted coastal wetlands. BIORESOURCE TECHNOLOGY 2025; 419:132069. [PMID: 39809387 DOI: 10.1016/j.biortech.2025.132069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/14/2024] [Accepted: 01/11/2025] [Indexed: 01/16/2025]
Abstract
Invasive Spartina alterniflora poses a significant threat to coastal wetland ecosystems. This study investigated the role of sulfur (S) in facilitating the invasion of S. alterniflora in cadmium (Cd)-contaminated coastal wetlands by greenhouse-control-experiment. Results demonstrate that increased S deposition significantly enhanced the formation of acid-volatile sulfur in sediments, thereby reducing the bioavailability of Cd to plants by 41%. Additionally, S supplementation improved plant nutrient uptake and stress tolerance by increasing the C/N ratio and the concentrations of essential mineral elements. These physiological and biochemical changes, including enhanced photosynthesis, increased carbohydrate storage, and improved antioxidant capacity, ultimately contributed to increased shoot and root biomass production by 15% and 31% respectively, and the competitive ability of S. alterniflora. The findings of this study highlight the critical role of S in promoting the invasion of S. alterniflora. Effective strategies can be developed to control the spread of S. alterniflora and protect coastal ecosystems.
Collapse
Affiliation(s)
- Zhanrui Leng
- Jingjiang College, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013 China
| | - Jing Liu
- Jingjiang College, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013 China
| | - Chunjiang He
- Jingjiang College, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013 China
| | - Zhiquan Wang
- School of Life and Environmental Science, Wenzhou University, Wenzhou 325035 China
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 China
| | - Daolin Du
- Jingjiang College, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013 China
| | - Jian Li
- Jingjiang College, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013 China; Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102 China.
| |
Collapse
|
2
|
Tennakoon A, Galahitigama H, Samarakoon SMABK, Perera IJJUN, Thakshila GPGI, Thiruketheeswaranathan S, Roshana MR, Sandamal S, Sewwandi GPGSM, Bellanthudawa BKA. Remediating contaminated environmental systems: the role of plants in cadmium removal. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2025; 27:896-915. [PMID: 39912381 DOI: 10.1080/15226514.2025.2456095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Cadmium (Cd) is one of the most harmful heavy metals in the environment, negatively impacting plant growth and development. However, phytoremediation which is an environmentally friendly and cost-effective technique can be used to treat Cd contaminated environments. It effectively removes Cd from polluted soil and water through processes, such as phytoextraction, phytostabilization, phytostimulation, phytofiltration, and phytotransformation. Numerous research has shown evidences that biological, physical, chemical, agronomic, and genetic methods are being utilized to improve phytoremediation. A special group of plants known as hyperaccumulator plants further enhance Cd removal, turning polluted areas into productive land. These plants accumulate Cd in root cell vacuoles and aerial parts. Despite the morphological and genetic variations, different plant species remediate Cd at different rates using either one or multiple mechanisms. To improve the effectiveness of phytoremediation, it is essential to thoroughly understand the mechanisms that control the accumulation and persistence of Cd in plants, including absorption, translocation, and elimination processes. However, what missing in understanding is in depth of idea on how the limitations of phytoremediation can be overcome. The limitations of phytoremediation can be addressed through various strategies, including natural and chemical amendments, genetic engineering, and natural microbial stimulation, broadly categorized into soil amelioration and plant capacity enhancement approaches. This review presents a concise overview of the latest research on various plants utilized in Cd phytoremediation and the different methods employed to enhance this process. Moreover, this review also underscores the creditability of phytoremediation technique to remediate Cd pollution as it offers a promising approach for eliminating Cd from contaminated sites and restoring their productivity. Additionally, we recommend directing future research toward enhancing the biochemical capabilities of plants for remediation purposes, elucidating the molecular mechanisms underlying the damage caused by Cd in plants, and understanding the fundamental principles regulating the enrichment of Cd in plants.
Collapse
Affiliation(s)
- Asanka Tennakoon
- Department of Agricultural Biology, Faculty of Agriculture, Eastern University, Chenkalady, Sri Lanka
| | - Harshana Galahitigama
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
- Department of Export Agriculture, Faculty of Agricultural Sciences, Sabaragamuwa University of Sri Lanka, Belihuloya, Sri Lanka
| | - S M A B K Samarakoon
- Department of Agricultural Engineering and Environmental Technology, Faculty of Agriculture, University of Ruhuna, Matara, Sri Lanka
| | - I J J U N Perera
- Department of Agricultural Engineering and Environmental Technology, Faculty of Agriculture, University of Ruhuna, Matara, Sri Lanka
| | - G P G I Thakshila
- Department of Applied Sciences, Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, Malabe, Sri Lanka
- University of Chinese Academy of Sciences, Beijing, China
| | - Suthajini Thiruketheeswaranathan
- School of Environment, Tsinghua University, Beijing, China
- Department of Biosystems Technology, Faculty of Technology, Eastern University, Chenkalady, Sri Lanka
| | - M R Roshana
- Department of Biosystems Technology, Faculty of Technology, Eastern University, Chenkalady, Sri Lanka
| | - Salinda Sandamal
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | | | - B K A Bellanthudawa
- Department of Agricultural Engineering and Environmental Technology, Faculty of Agriculture, University of Ruhuna, Matara, Sri Lanka
- University of Chinese Academy of Sciences, Beijing, China
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Menhas S, Chen M, Jin H, Xu J, Zhu S, Lin D. Plant growth stage and melatonin concentration dependency together drive the metal-nutrient dynamics of rice in paddy soil. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2025; 27:958-971. [PMID: 39907292 DOI: 10.1080/15226514.2025.2460504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Foliar application of melatonin shows promise in alleviating oxidative stress in rice, though its influence on metal-nutrient dynamics remains unclear. This study investigated the optimal dosage, timing, and concentration of melatonin for regulating elemental uptake, maintaining redox homeostasis, and managing nutrient dynamics in rice cultivated in cadmium (Cd) and selenium (Se)-enriched soils. Melatonin (50, 200 µM) was applied at vegetative stages: jointing (J) and tillering (T). At the J stage, melatonin improved biomass and photosynthetic pigments but inadequately regulated metal-nutrient dynamics due to incomplete redox homeostasis. However, applying 200 µM melatonin during the T stage significantly (p < 0.05) enhanced Se and iron (Fe) root uptake by 48% and 11%, respectively, while also improving shoot translocation. Notably, M200 reduced chromium (Cr) translocation to shoots by 82% (p < 0.05), thereby increasing root retention capacity. Additionally, 50 µM melatonin reduced root Cd uptake by 54% and increased its translocation to shoots by 53% (p < 0.05), alleviating root toxicity and enhancing the detoxification response in aerial tissues. Melatonin application reduced oxidative stress markers, increased proline levels, and enhanced antioxidative enzyme activities, with M200 at the T stage showing pronounced effects. This strategy represents a promising technological approach for managing elemental homeostasis in rice cultivation.
Collapse
Affiliation(s)
- Saiqa Menhas
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, China
- Zhejiang Ecological Civilization Academy, Anji, China
| | - Minjie Chen
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, China
| | - Hui Jin
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, China
| | - Jiang Xu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, China
| | - Saiyong Zhu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, China
- Zhejiang Ecological Civilization Academy, Anji, China
| | - Daohui Lin
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou, China
- Zhejiang Ecological Civilization Academy, Anji, China
| |
Collapse
|
4
|
Zhang H, Li A. Exogenous melatonin and grafting improved the growth and physiological characteristics of Citrullus lanatus seedlings under cadmium stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:3698-3717. [PMID: 39825979 DOI: 10.1007/s11356-024-35830-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 12/18/2024] [Indexed: 01/20/2025]
Abstract
Citrullus lanatus is an important vegetable crop, but it is heavily polluted by cadmium. In this study, we used C. Lanatus as experimental material to investigate effects of different concentrations (0, 50, 100, 200, 400 µmol.L-1) of exogenous melatonin, and grafting on the physiological growth index and anatomical structure of seedlings were studied by simulating Cd2+ (180 mg L-1) stress environment. The results showed that exogenous melatonin could reduce the injury degree of C. Lanatus seedlings under cadmium stress, and the best effect was obtained when the concentration is 100 µmol.L-1. Compared with the control treatment (0 µmol.L-1 melatonin), the number of leaves treated with 100 µmol.L-1 melatonin increased by 32.61%, the density of mesophyll tissue decreased by 16.47%, the relative content of chlorophyll in seedling leaves increased by 42.90%, and the activity of superoxide dismutase (SOD) and the content of soluble protein increased by 28.64% and 60.11%, respectively. In addition, grafting could effectively alleviate the damage of cadmium stress to C. lanatus seedlings, and the effect of 100 µmol.L-1 melatonin and grafting interaction on seedlings was higher than that of single melatonin or grafting treatment. Under cadmium stress, compared with the self-rooted seedlings of melatonin (0 µmol.L-1), the stem diameter and the diameter of main vein increased by 55.56% and 34.12%, and the water content of leaf tissue increased by 93.55%. In addition, the relative conductivity and MDA content decreased by 54.45% and 53.07%, respectively. Therefore, there was a significant interaction between exogenous melatonin and grafting in alleviating the injury of C. lanatus seedlings under cadmium stress. Our research explored the optimal concentration of exogenous melatonin to alleviate the injury of C. lanatus seedlings under cadmium stress that provided theoretical basis for revealing the mechanism of exogenous melatonin to improve the resistance of C. lanatus to cadmium stress.
Collapse
Affiliation(s)
- Hanyang Zhang
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin, 300392, China
| | - Ai Li
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin, 300392, China.
| |
Collapse
|
5
|
Chmur M, Bajguz A. Comparative Efficacy of Melatonin and Brassinolide in Mitigating the Adverse Effects of Cadmium on Wolffia arrhiza. Int J Mol Sci 2025; 26:692. [PMID: 39859406 PMCID: PMC11765764 DOI: 10.3390/ijms26020692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 12/30/2024] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Melatonin (MT) and brassinolide (BL) are phytohormones that regulate various physiological processes in plants. This study investigates their effects on Wolffia arrhiza when exposed to cadmium (Cd). Plant hormones were quantified using liquid chromatography-mass spectrometry, while photosynthetic pigments and phytochelatins (PCs) were analyzed through high-performance liquid chromatography. Protein, monosaccharide levels, and antioxidant activities were also spectrophotometrically measured. The findings reveal that MT and BL treatment decreased Cd accumulation in W. arrhiza compared to plants only exposed to Cd. MT was particularly effective in reversing Cd-induced growth inhibition and reducing stress markers more significantly than BL. It also enhanced antioxidant activity and maintained higher levels of photosynthetic pigments, proteins, and sugars. Although BL was less effective in these aspects, it promoted greater synthesis of glutathione and PCs in Cd-exposed duckweed. Overall, both MT and BL alleviate the negative impact of Cd on W. arrhiza, confirming their crucial role in supporting plant health under metal stress conditions.
Collapse
Affiliation(s)
| | - Andrzej Bajguz
- Department of Biology and Plant Ecology, Faculty of Biology, University of Bialystok, Ciolkowskiego 1J, 15-245 Bialystok, Poland;
| |
Collapse
|
6
|
Sun C, Xu L, Gao Q, Sun S, Liu X, Zhang Z, Tian Z, Dai T, Sun J. Foliar spraying melatonin reduces the threat of chromium-contaminated water to wheat production by improving photosynthesis, limiting Cr translocation and reducing oxidative stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117485. [PMID: 39671761 DOI: 10.1016/j.ecoenv.2024.117485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/15/2024]
Abstract
Chromium (Cr)-contaminated in irrigation water poses a significant threat to the safety of wheat (Triticum aestivum L.) production safety. Recent studies suggest that melatonin (MT) could enhance crop tolerance to Cr pollution. This study aimed to investigate the effects of foliar spraying MT on alleviating Cr toxicity and accumulation in wheat irrigated with K2Cr2O7 solution at concentrations of 5, 10, and 20 mg/kg Cr in the soil. Our results showed that Cr-contaminated water irrigation significantly reduced dry weight, grain numbers, grain weight, yield, harvest index, net photosynthetic rate (Pn), maximum and actual photochemical efficiency of photosystem II (Fv/Fm and ΦPSII), chlorophyll contents, and the a/b ratio. It also increased PSII photodamage and oxidative stress in wheat leaves, resulting in high Cr accumulation in roots, leaves, and grains. Foliar spraying of MT alleviated Cr toxicity by improving Pn, Fv/Fm, and ΦPSII, enhancing chlorophyll content, promoting dry matter accumulation and yield, and reducing oxidative stress and Cr translocation. Furthermore, MT application enhanced transcriptional regulation, alleviated oxidative stress by boosting antioxidant enzyme activities, and restricted Cr translocation from roots to leaves and grains by increasing the accumulation of secondary metabolites, such as lignin and metallothionein. These findings suggest that MT application could serve as a viable strategy for reducing Cr contamination in cereals and supporting phytoremediation efforts.
Collapse
Affiliation(s)
- Chuanjiao Sun
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, PR China
| | - Libing Xu
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, PR China
| | - Qiang Gao
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, PR China
| | - Shuzhen Sun
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, PR China
| | - Xiaoxue Liu
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, PR China
| | - Zigang Zhang
- College of Life Sciences Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, PR China
| | - Zhongwei Tian
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, PR China
| | - Tingbo Dai
- Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, PR China
| | - Jianyun Sun
- College of Life Sciences Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, PR China.
| |
Collapse
|
7
|
Shehzadi K, Maqsood MF, Kanwal R, Shahbaz M, Naqve M, Zulfiqar U, Jamil M, Khalid N, Ali MF, Soufan W. Enhancing cadmium stress resilience in chickpea ( Cicer arietinum L.) via exogenous melatonin application. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2025; 27:794-809. [PMID: 39760256 DOI: 10.1080/15226514.2024.2448464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Chickpea (Cicer arietinum L.) productivity is hindered by biotic and abiotic stresses, particularly heavy metal toxicity. The pot experiment was carried out at the botanical garden of The Islamia University of Bahawalpur, Bahawalpur-Pakistan. The experimental treatments comprised of following details: T0 = Control + 0 µM MT, T1 = Control + 15 µM MT, T2= Control + 30 µM MT, T3 = 100 µM Cd + 0 µM MT, T4 = 100 µM Cd + 15 µM MT and T5 = 100 µM Cd + 30 µM MT. A completely randomized design (CRD) with three replicates was used. Cd stress significantly reduced shoot fresh (51.3%) and dry weight (50.4%), total chlorophyll (53.6%), and shoot Ca2+ (56.6%). However, it increased proline (38.3%), total phenolics (74.2%), glycine betaine (46.4%), TSS (67.7%), TSP (50%), SOD (49.5%), POD (107%), and CAT (74.2%). Conversely, 30 µM MT improved shoot fresh (78.5%) and dry weight (76%), total chlorophyll (47%), SOD (26.5%), POD (35.8%), CAT (27.8%), proline (19%), TSS (24.5%), TSP (25.8%), and shoot Ca2+ (56.6%). Results indicated that MT enhanced photosynthetic pigments and antioxidant activities, maintained ion homeostasis, and reduces reactive oxygen species. Desi variety performed better than Kabuli, and 30 µM MT application effectively mitigated Cd toxicity.
Collapse
Affiliation(s)
- Kiran Shehzadi
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Rehana Kanwal
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Shahbaz
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
| | - Maria Naqve
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
| | - Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Jamil
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Noreen Khalid
- Department of Botany, Government College Women University, Sialkot, Pakistan
| | | | - Walid Soufan
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
8
|
Zulfiqar F, Moosa A, Ali HM, Hancock JT, Yong JWH. Synergistic interplay between melatonin and hydrogen sulfide enhances cadmium-induced oxidative stress resistance in stock ( Matthiola incana L.). PLANT SIGNALING & BEHAVIOR 2024; 19:2331357. [PMID: 38564424 PMCID: PMC10989696 DOI: 10.1080/15592324.2024.2331357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/14/2024] [Indexed: 04/04/2024]
Abstract
Ornamental crops particularly cut flowers are considered sensitive to heavy metals (HMs) induced oxidative stress condition. Melatonin (MLT) is a versatile phytohormone with the ability to mitigate abiotic stresses induced oxidative stress in plants. Similarly, signaling molecules such as hydrogen sulfide (H2S) have emerged as potential options for resolving HMs related problems in plants. The mechanisms underlying the combined application of MLT and H2S are not yet explored. Therefore, we evaluated the ability of individual and combined applications of MLT (100 μM) and H2S in the form of sodium hydrosulfide (NaHS), a donor of H2S, (1.5 mM) to alleviate cadmium (Cd) stress (50 mg L-1) in stock (Matthiola incana L.) plants by measuring various morpho-physiological and biochemical characteristics. The results depicted that Cd-stress inhibited growth, photosynthesis and induced Cd-associated oxidative stress as depicted by excessive ROS accumulation. Combined application of MLT and H2S efficiently recovered all these attributes. Furthermore, Cd stress-induced oxidative stress markers including electrolyte leakage, malondialdehyde, and hydrogen peroxide are partially reversed in Cd-stressed plants by MLT and H2S application. This might be attributed to MLT or H2S induced antioxidant plant defense activities, which effectively reduce the severity of oxidative stress indicators. Overall, MLT and H2S supplementation, favorably regulated Cd tolerance in stock; yet, the combined use had a greater effect on Cd tolerance than the independent application.
Collapse
Affiliation(s)
- Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Anam Moosa
- Department of Plant Pathology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Hayssam M. Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - John T. Hancock
- School of Applied Sciences, University of the West of England, Bristol, UK
| | - Jean Wan Hong Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
9
|
Yin J, Li A, Wang Y, Li X, Ning W, Zhou X, Liu J, Sun Z. Melatonin improves cadmium tolerance in Salix viminalis by enhancing amino acid and saccharide metabolism, and increasing polyphenols. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117393. [PMID: 39581114 DOI: 10.1016/j.ecoenv.2024.117393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/06/2024] [Accepted: 11/20/2024] [Indexed: 11/26/2024]
Abstract
As a short-rotation woody plant, Salix viminalis has the potential for phytoremediation of cadmium (Cd), but it has poor tolerance to high Cd concentrations. Melatonin (MEL), a candidate bio-promoter, was considered to play an active role in plant responses to Cd. However, the molecular mechanism by which MEL regulates metabolic processes in plants to defend against Cd stress remain unclear. Transcriptomics and global untargeted metabolomic sequencing were used to investigate the rapid response of S. viminalis to high Cd concentrations during initial growth stage after foliar application of MEL. Four treatments were set up in a pot experiment involving foliar application of MEL on the first day, followed by irrigation with a Cd solution the next day. Significant variations in the relevant defence genes and metabolites in leaves exposed to Cd were observed between willows treated with and without MEL. Foliar application of MEL upregulated sulphur metabolism-related genes such as methionine and S-adenosylmethionine synthases in leaves exposed to Cd; glutamine content, which is the key point of nitrogen assimilation, also increased. Additionally, glycolysis and sucrose metabolic genes, including hexokinase, sucrose synthase, invertase, and the inositol phosphate metabolic gene myo-inositol-1-phosphate synthase were also upregulated in leaves. Moreover, MEL also upregulated genes related to the synthesis of flavonoids, anthocyanins, and proanthocyanins in the leaves. These results demonstrated that MEL improved amino acid and saccharide metabolism in the leaves of S. viminalis in response to Cd. It also improved the antioxidant capacity and Cd tolerance in S. viminalis leaves by enhancing synthetic capacity of polyphenol compounds. MEL may be involved in processes of photorespiration, ethylene metabolism, GABA shunt, nitric oxide metabolism, osmotic adjustment, and the synthesis of glutathione and ascorbate in S. viminalis under Cd stress. This series of metabolic changes in S. viminalis occurred within 24 h of the foliar application of MEL, which provided a sufficient substrate for subsequent defence reactions to cope with Cd stress. Our findings will help elucidate the molecular mechanism by which MEL regulates metabolic processes in plants in response to Cd challenges and guide the application of MEL to improve Cd phytoremediation efficiency.
Collapse
Affiliation(s)
- Jiahui Yin
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding,College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| | - Ao Li
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Yuancheng Wang
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Xia Li
- College of Agriculture and Bioengineering, Heze University, Heze, Shandong 274000, China
| | - Wei Ning
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding,College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| | - Xinglu Zhou
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Junxiang Liu
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China.
| | - Zhenyuan Sun
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China.
| |
Collapse
|
10
|
Chandra T, Jaiswal S, Tomar RS, Iquebal MA, Kumar D. Realizing visionary goals for the International Year of Millet (IYoM): accelerating interventions through advances in molecular breeding and multiomics resources. PLANTA 2024; 260:103. [PMID: 39304579 DOI: 10.1007/s00425-024-04520-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/30/2024] [Indexed: 09/22/2024]
Abstract
MAIN CONCLUSION Leveraging advanced breeding and multi-omics resources is vital to position millet as an essential "nutricereal resource," aligning with IYoM goals, alleviating strain on global cereal production, boosting resilience to climate change, and advancing sustainable crop improvement and biodiversity. The global challenges of food security, nutrition, climate change, and agrarian sustainability demand the adoption of climate-resilient, nutrient-rich crops to support a growing population amidst shifting environmental conditions. Millets, also referred to as "Shree Anna," emerge as a promising solution to address these issues by bolstering food production, improving nutrient security, and fostering biodiversity conservation. Their resilience to harsh environments, nutritional density, cultural significance, and potential to enhance dietary quality index made them valuable assets in global agriculture. Recognizing their pivotal role, the United Nations designated 2023 as the "International Year of Millets (IYoM 2023)," emphasizing their contribution to climate-resilient agriculture and nutritional enhancement. Scientific progress has invigorated efforts to enhance millet production through genetic and genomic interventions, yielding a wealth of advanced molecular breeding technologies and multi-omics resources. These advancements offer opportunities to tackle prevailing challenges in millet, such as anti-nutritional factors, sensory acceptability issues, toxin contamination, and ancillary crop improvements. This review provides a comprehensive overview of molecular breeding and multi-omics resources for nine major millet species, focusing on their potential impact within the framework of IYoM. These resources include whole and pan-genome, elucidating adaptive responses to abiotic stressors, organelle-based studies revealing evolutionary resilience, markers linked to desirable traits for efficient breeding, QTL analysis facilitating trait selection, functional gene discovery for biotechnological interventions, regulatory ncRNAs for trait modulation, web-based platforms for stakeholder communication, tissue culture techniques for genetic modification, and integrated omics approaches enabled by precise application of CRISPR/Cas9 technology. Aligning these resources with the seven thematic areas outlined by IYoM catalyzes transformative changes in millet production and utilization, thereby contributing to global food security, sustainable agriculture, and enhanced nutritional consequences.
Collapse
Affiliation(s)
- Tilak Chandra
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Sarika Jaiswal
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Rukam Singh Tomar
- Department of Biotechnology, Junagadh Agricultural University, Junagadh, Gujarat, 110012, India
| | - Mir Asif Iquebal
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India.
| | - Dinesh Kumar
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| |
Collapse
|
11
|
Banerjee A, Samanta S, Roychoudhury A. Melatonin differentially refines the metabolome to improve seed formation during grain developmental stages and enhances yield in two contrasting rice cultivars, grown in arsenic-contaminated soil. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108849. [PMID: 38991592 DOI: 10.1016/j.plaphy.2024.108849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/26/2024] [Accepted: 06/15/2024] [Indexed: 07/13/2024]
Abstract
The manuscript revealed the ameliorative effects of exogenous melatonin in two distinct reproductive stages, i.e., developing grains (20 days after pollination) and matured grains (40 days after pollination) in two contrasting indica rice genotypes, viz., Khitish (arsenic-susceptible) and Muktashri (arsenic-tolerant), irrigated with arsenic-contaminated water throughout their life-cycle. Melatonin administration improved yield-related parameters like rachis length, primary and secondary branch length, number of grains per panicle, number of filled and empty grains per panicle, grain length and breadth and 1000-grain per weight. Expression of GW2, which negatively regulates grain development, was suppressed, along with concomitant induction of positive regulators like GIF1, DEP1 and SPL14 in both Khitish and Muktashri. Melatonin lowered arsenic bioaccumulation in grains and tissue biomass, more effectively in Khitish. Unregulated production of reactive oxygen species, leading to cellular necrosis caused by arsenic, was reversed in presence of melatonin. Endogenous melatonin level was stimulated due to up-regulation of the key biosynthetic genes, SNAT and ASMT. Melatonin enhanced the production of diverse antioxidants like anthocyanins, flavonoids, total phenolics and ascorbic acid and also heightened the production of thiol-metabolites (cysteine, reduced glutathione, non-protein thiols and phytochelatin), ensuring effective chelation and arsenic detoxification. Altogether, our observation, supported by principal component analysis, proved that melatonin re-programs the antioxidative metabolome to enhance plant resilience against arsenic stress to mitigate oxidative damages and reduce arsenic translocation from the soil to tissue biomass and edible grains.
Collapse
Affiliation(s)
- Aditya Banerjee
- Post Graduate Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, 700016, West Bengal, India
| | - Santanu Samanta
- Post Graduate Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, 700016, West Bengal, India
| | - Aryadeep Roychoudhury
- Discipline of Life Sciences, School of Sciences, Indira Gandhi National Open University, Maidan Garhi, New Delhi, 110068, India.
| |
Collapse
|
12
|
Koohi A, Rahdari P, Babakhani B, Asadi M. Foliar-applied melatonin and titanium nanoparticles modulate cadmium (Cd) toxicity through minimizing Cd accumulation and optimizing physiological and biochemical properties in sage (Salvia officinalis L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:45370-45382. [PMID: 38965106 DOI: 10.1007/s11356-024-34126-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/21/2024] [Indexed: 07/06/2024]
Abstract
Notwithstanding the fact that melatonin (MT) and titanium nanoparticles (Ti NPs) alone have been widely used recently to modulate cadmium (Cd) stress in plants, there is a gap in the comparative impacts of these materials on lowering Cd toxicity in sage plants. The objective of this study was to determine how foliar application of MT and Ti NPs affected the growth, Cd accumulation, photosynthesis, water content, lipid peroxidation, and essential oil (EO) quality and quantity of sage plants in Cd-contaminated soils. A factorial experiment was conducted using MT at 100 and 200 μM and Ti NPs at 50 and 100 mg L-1 topically, together with Cd toxicity at 10 and 20 mg Cd kg-1 soil. The results showed that Cd toxicity decreased plant growth and enhanced lipid peroxidation. The Cd stress at 20 mg kg-1 soil resulted in increases in Cd root (693%), Cd shoot (429%), electrolyte leakage (EL, 29%), malondialdehyde (MDA, 72%), shoot weight (31%), root weight (27%), chlorophyll (Chl) a + b (26%), relative water content (RWC, 23%), and EO yield (30%). The application of MT and Ti NPs controlled drought stress by reducing MDA and EL, enhancing plant weight, Chl, RWC, and EO production, and minimizing Cd accumulation in plant tissues. The predominant compounds in the EO were α-thujone, 1,8-cineole, β-thujone, camphor, and α-humulene. MT and Ti NPs caused α-thujone to rise, whereas Cd stress caused it to fall. Based on heat map analysis, MDA was the trait that was most sensitive to treatments. In summary, the research emphasizes the possibility of MT and Ti NPs, particularly MT at 200 μM, to mitigate Cd toxicity in sage plants and enhance their biochemical reactions.
Collapse
Affiliation(s)
- Atefeh Koohi
- Department of Biology, Tonekabone Branch, Islamic Azad University, Tonekabone, Iran
| | - Parvaneh Rahdari
- Department of Biology, Tonekabone Branch, Islamic Azad University, Tonekabone, Iran.
| | - Babak Babakhani
- Department of Biology, Tonekabone Branch, Islamic Azad University, Tonekabone, Iran
| | - Mahmoud Asadi
- Department of Biology, Tonekabone Branch, Islamic Azad University, Tonekabone, Iran
| |
Collapse
|
13
|
Wang JF, Liu C, Xu ZM, Wang FP, Sun YY, Huang JW, Li QS. Microbial mechanisms in nitrogen fertilization: Modulating the re-mobilization of clay mineral-bound cadmium in agricultural soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171809. [PMID: 38513845 DOI: 10.1016/j.scitotenv.2024.171809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/13/2024] [Accepted: 03/16/2024] [Indexed: 03/23/2024]
Abstract
Soil cadmium (Cd) can affect crop growth and food safety, and through the enrichment in the food chain, it ultimately poses a risk to human health. Reducing the re-mobilization of Cd caused by the release of protons and acids by crops and microorganisms after stabilization is one of the significant technical challenges in agricultural activities. This study aimed to investigate the re-mobilization of stabilized Cd within the clay mineral-bound fraction of soil and its subsequent accumulation in crops utilizing nitrogen ammonium nitrogen (NH4+-N) and nitrate nitrogen (NO3--N), at 60 and 120 mg kg-1. Furthermore, the study harvested root exudates at various growth stages to assess their direct influence on the re-mobilization of stabilized Cd and to evaluate the indirect effects mediated by soil microorganisms. The results revealed that, in contrast to the NO3--N treatment, the NH4+-N treatment significantly enhanced the conversion of clay mineral-bound Cd in the soil to NH4NO3-extractable Cd. It also amplified the accumulation of Cd in edible amaranth, with concentrations in roots and shoots rising from 1.7-6.0 mg kg-1 to 4.3-9.8 mg kg-1. The introduction of NH4+-N caused a decrease in the pH value of the rhizosphere soil and stimulated the production and secretion organic and amino acids, such as oxalic acid, lactic acid, stearic acid, succinic acid, and l-serine, from the crop roots. Furthermore, compared to NO3--N, the combined interaction of root exudates with NH4+-N has a more pronounced impact on the abundance of microbial genes associated with glycolysis pathway and tricarboxylic acid cycle, such as pkfA, pfkB, sucB, sucC, and sucD. The effects of NH4+-N on crops and microorganisms ultimately result in a significant increase in the re-mobilization of stabilized Cd. However, the simulated experiments showed that microorganisms only contribute to 3.8-6.6 % of the re-mobilization of clay mineral-bound Cd in soil. Therefore, the fundamental strategy to inhibit the re-mobilization of stabilized Cd in vegetable cultivation involves the regulation of proton and organic acid secretion by crops.
Collapse
Affiliation(s)
- Jun-Feng Wang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment and Climate, Jinan University, Guangzhou 510632, China
| | - Can Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment and Climate, Jinan University, Guangzhou 510632, China
| | - Zhi-Min Xu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Fo-Peng Wang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment and Climate, Jinan University, Guangzhou 510632, China
| | - Yun-Yun Sun
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment and Climate, Jinan University, Guangzhou 510632, China
| | - Jia-Wei Huang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment and Climate, Jinan University, Guangzhou 510632, China
| | - Qu-Sheng Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment and Climate, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
14
|
Muhammad I, Ahmad S, Shen W. Melatonin-Mediated Molecular Responses in Plants: Enhancing Stress Tolerance and Mitigating Environmental Challenges in Cereal Crop Production. Int J Mol Sci 2024; 25:4551. [PMID: 38674136 PMCID: PMC11049982 DOI: 10.3390/ijms25084551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Cereal crops are crucial for global food security; however, they are susceptible to various environmental stresses that significantly hamper their productivity. In response, melatonin has emerged as a promising regulator, offering potential benefits for stress tolerance and crop growth. This review explores the effects of melatonin on maize, sorghum, millet, rice, barley, and wheat, aiming to enhance their resilience to stress. The application of melatonin has shown promising outcomes, improving water use efficiency and reducing transpiration rates in millet under drought stress conditions. Furthermore, it enhances the salinity and heavy metal tolerance of millet by regulating the activity of stress-responsive genes. Similarly, melatonin application in sorghum enhances its resistance to high temperatures, low humidity, and nutrient deficiency, potentially involving the modulation of antioxidant defense and aspects related to photosynthetic genes. Melatonin also exerts protective effects against drought, salinity, heavy metal, extreme temperatures, and waterlogging stresses in maize, wheat, rice, and barley crops by decreasing reactive oxygen species (ROS) production through regulating the antioxidant defense system. The molecular reactions of melatonin upregulated photosynthesis, antioxidant defense mechanisms, the metabolic pathway, and genes and downregulated stress susceptibility genes. In conclusion, melatonin serves as a versatile tool in cereal crops, bolstering stress resistance and promoting sustainable development. Further investigations are warranted to elucidate the underlying molecular mechanisms and refine application techniques to fully harness the potential role of melatonin in cereal crop production systems.
Collapse
Affiliation(s)
- Ihsan Muhammad
- Guangxi Key Laboratory of Forest Ecology and Conservation, State Key Laboratory for Conservation and Utilization of Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China;
| | - Shakeel Ahmad
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China;
| | - Weijun Shen
- Guangxi Key Laboratory of Forest Ecology and Conservation, State Key Laboratory for Conservation and Utilization of Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China;
| |
Collapse
|
15
|
Shen B, Li W, Zheng Y, Zhou X, Zhang Y, Qu M, Wang Y, Yuan Y, Pang K, Feng Y, Wu J, Zeng B. Morphological and molecular response mechanisms of the root system of different Hemarthria compressa species to submergence stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1342814. [PMID: 38638357 PMCID: PMC11024365 DOI: 10.3389/fpls.2024.1342814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/21/2024] [Indexed: 04/20/2024]
Abstract
Introduction The severity of flood disasters is increasing due to climate change, resulting in a significant reduction in the yield and quality of forage crops worldwide. This poses a serious threat to the development of agriculture and livestock. Hemarthria compressa is an important high-quality forage grass in southern China. In recent years, frequent flooding has caused varying degrees of impacts on H. compressa and their ecological environment. Methods In this study, we evaluated differences in flooding tolerance between the root systems of the experimental materials GY (Guang Yi, flood-tolerant) and N1291 (N201801291, flood-sensitive). We measured their morphological indexes after 7 d, 14 d, and 21 d of submergence stress and sequenced their transcriptomes at 8 h and 24 h, with 0 h as the control. Results During submergence stress, the number of adventitious roots and root length of both GY and N1291 tended to increase, but the overall growth of GY was significantly higher than that of N1291. RNA-seq analysis revealed that 6046 and 7493 DEGs were identified in GY-8h and GY-24h, respectively, and 9198 and 4236 DEGs in N1291-8h and N1291-24h, respectively, compared with the control. The GO and KEGG enrichment analysis results indicated the GO terms mainly enriched among the DEGs were oxidation-reduction process, obsolete peroxidase reaction, and other antioxidant-related terms. The KEGG pathways that were most significantly enriched were phenylpropanoid biosynthesis, plant hormone signal transduction etc. The genes of transcription factor families, such as C2H2, bHLH and bZIP, were highly expressed in the H. compressa after submergence, which might be closely related to the submergence adaptive response mechanisms of H. compressa. Discussion This study provides basic data for analyzing the molecular and morphological mechanisms of H. compressa in response to submergence stress, and also provides theoretical support for the subsequent improvement of submergence tolerance traits of H. compressa.
Collapse
Affiliation(s)
- Bingna Shen
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Wenwen Li
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yuqian Zheng
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Xiaoli Zhou
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yinuo Zhang
- College of Grassland Agriculture, Northwest Agriculture and Forestry University, Shanxi, China
| | - Minghao Qu
- College of Animal Science and Technology, Southwest University, Chongqing, China
- Institute of Prataculture, Chongqing Academy of Animal Science, Chongqing, China
| | - Yinchen Wang
- Institute of Animal Husbandry and Veterinary Medicine, Guizhou Provincial Academy of Agricultural Sciences, Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou, China
| | - Yang Yuan
- Institute of Animal Husbandry and Veterinary Medicine, Guizhou Provincial Academy of Agricultural Sciences, Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou, China
| | - Kaiyue Pang
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yanlong Feng
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Jiahai Wu
- Institute of Animal Husbandry and Veterinary Medicine, Guizhou Provincial Academy of Agricultural Sciences, Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou, China
| | - Bing Zeng
- College of Animal Science and Technology, Southwest University, Chongqing, China
- College of Animal Science and Technology, Southwest University, Chongqing University Herbivore Engineering Research Center, Chongqing, China
| |
Collapse
|
16
|
Ahammed GJ, Li Z, Chen J, Dong Y, Qu K, Guo T, Wang F, Liu A, Chen S, Li X. Reactive oxygen species signaling in melatonin-mediated plant stress response. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108398. [PMID: 38359555 DOI: 10.1016/j.plaphy.2024.108398] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/08/2024] [Accepted: 01/22/2024] [Indexed: 02/17/2024]
Abstract
Reactive oxygen species (ROS) are crucial signaling molecules in plants that play multifarious roles in prompt response to environmental stimuli. Despite the classical thoughts that ROS are toxic when accumulate in excess, recent advances in plant ROS signaling biology reveal that ROS participate in biotic and abiotic stress perception, signal integration, and stress-response network activation, hence contributing to plant defense and stress tolerance. ROS production, scavenging and transport are fine-tuned by plant hormones and stress-response signaling pathways. Crucially, the emerging plant hormone melatonin attenuates excessive ROS accumulation under stress, whereas ROS signaling mediates melatonin-induced plant developmental response and stress tolerance. In particular, RESPIRATORY BURST OXIDASE HOMOLOG (RBOH) proteins responsible for apoplastic ROS generation act downstream of melatonin to mediate stress response. In this review, we discuss promising developments in plant ROS signaling and how ROS might mediate melatonin-induced plant resilience to environmental stress.
Collapse
Affiliation(s)
- Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Zhe Li
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Jingying Chen
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Yifan Dong
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Kehao Qu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Tianmeng Guo
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Fenghua Wang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Airong Liu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China
| | - Shuangchen Chen
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China.
| | - Xin Li
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, PR China.
| |
Collapse
|
17
|
Wang J, Liu W, Wang X, Zeb A, Wang Q, Mo F, Shi R, Liu J, Yu M, Li J, Zheng Z, Lian Y. Assessing stress responses in potherb mustard (Brassica juncea var. multiceps) exposed to a synergy of microplastics and cadmium: Insights from physiology, oxidative damage, and metabolomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167920. [PMID: 37863229 DOI: 10.1016/j.scitotenv.2023.167920] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023]
Abstract
Both microplastics (MPs) and cadmium (Cd) are common contaminants in farmland systems, is crucial for assessing their risks for human health and environment, and little research has focused on stress responses mechanisms of crops exposed to the combined pollution. The present study investigated the impact of polyethylene (PE) and polypropylene (PP) microplastics (MPs), in combination with Cd, on the physiological and metabolomic changes as well as rhizosphere soil of potherb mustard. Elevated levels of PEMPs and PPMPs were found to impede nutrient uptake in plants while promoting premature flowering, and the concomitant effect is lower crop yields. The substantial improvement in Cd bioavailability facilitated by MPs in rhizosphere soil, especially in high concentrations of MPs, then elevated bioavailability of Cd contributed to promoted Cd accumulation in plants, with distinct effects depending on the type and concentration of MPs. The presence of MPs Combined exposure to high concentrations of MPs and Cd resulted in alterations in plant physiology and metabolomics, including decreased biomass and photosynthetic parameters, elevated levels of reactive oxygen species primarily H2O2, increased antioxidant enzyme activities, and modifications in metabolite profiles. Overall, our study assessed the potential impact on food security (the availability of cadmium to plant) and crops stress responses regarding the contamination of MPs and Cd, providing new insights for future risk assessment in agriculture.
Collapse
Affiliation(s)
- Jianling Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Weitao Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.
| | - Xue Wang
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Aurang Zeb
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Qi Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Fan Mo
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Ruiying Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Jinzheng Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Miao Yu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Jiantao Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Zeqi Zheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Yuhang Lian
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| |
Collapse
|
18
|
Alhaithloul HAS, Ali B, Alghanem SMS, Zulfiqar F, Al-Robai SA, Ercisli S, Yong JWH, Moosa A, Irfan E, Ali Q, Irshad MA, Abeed AHA. Effect of green-synthesized copper oxide nanoparticles on growth, physiology, nutrient uptake, and cadmium accumulation in Triticum aestivum (L.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115701. [PMID: 37979354 DOI: 10.1016/j.ecoenv.2023.115701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/03/2023] [Accepted: 11/12/2023] [Indexed: 11/20/2023]
Abstract
Cadmium (Cd) stress in crops has been serious concern while little is known about the copper oxide nanoparticles (CuO NPs) effects on Cd accumulation by crops. This study investigated the effectiveness of CuO NPs in mitigating Cd contamination in wheat (Triticum aestivum L.) cultivation through a pot experiment, presenting an eco-friendly solution to a critical agricultural concern. The CuO NPs, synthesized using green methods, exhibited a circular shape with a crystalline structure and a particle size ranging from 8 to 12 nm. The foliar spray of CuO NPs was applied in four different concentrations i.e. control, 25, 50, 75, 100 mg/L. The obtained data demonstrated that, in comparison to the control group, CuO NPs had a beneficial influence on various growth metrics and straw and grain yields of T. aestivum. The green CuO NPs improved T. aestivum growth and physiology under Cd stress, enhanced selected enzyme activities, reduced oxidative stress, and decreased malondialdehyde levels in the T. aestivum plants. CuO NPs lowered Cd contents in T. aestivum tissues and boosted the uptake of essential nutrients from the soil. Overall, foliar applied CuO NPs were effective in minimizing Cd contents in grains thereby reducing the health risks associated with Cd excess in humans. However, more in depth studies with several plant species and application methods of CuO NPs are required for better utilization of NPs in agricultural purposes.
Collapse
Affiliation(s)
| | - Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | | | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Pakistan
| | - Sami Asir Al-Robai
- Department of Biology, Faculty of Science, Al-Baha University, Al-Baha 1988, Saudi Arabia
| | - Sezai Ercisli
- Department of Horticulture, Agricultural Faculty, Ataturk Universitesi, Erzurum 25240, Turkiye; HGF Agro, Ata Teknokent, Erzurum 25240, Turkiye
| | - Jean Wan Hong Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, 23456 Alnarp, Sweden.
| | - Anam Moosa
- Department of Plant Pathology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Pakistan
| | - Effa Irfan
- Department of Biochemistry, University of Agriculture Faisalabad, Pakistan
| | - Qasim Ali
- Department of Botany, Government College University Faisalabad, Faisalabad 38000, Pakistan.
| | - Muhammad Atif Irshad
- Department of Environmental Sciences, The University of Lahore, Lahore, Pakistan.
| | - Amany H A Abeed
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut 71516, Egypt
| |
Collapse
|
19
|
Dhawi F. Utilizing In Silico Approaches to Investigate the Signaling Pathway's Crucial Function in Pennisetum glaucum Under Thermal Stress. Evol Bioinform Online 2023; 19:11769343231211072. [PMID: 38020532 PMCID: PMC10655657 DOI: 10.1177/11769343231211072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Pearl millet (Pennisetum glaucum (L.)) is a remarkable cereal crop known for its ability to thrive in challenging environmental conditions. Despite its resilience, the intricate molecular mechanisms behind its toughness remain a mystery. To address this knowledge gap, we conducted advanced next-generation RNA sequencing. This approach allowed us to compare the gene expression profiles of pearl millet seedlings exposed to heat stress with those grown under standard conditions. Our main focus was on the shoots of 13-day-old pearl millet plants, which we subjected to a brief heat stress episode at 50°C for 60 seconds. Within the vast genomic landscape comprising 36 041 genes, we successfully identified a set of 10 genes that exhibited significant fold changes, ranging from 11 to 14-fold compared to the control conditions. These 10 genes were previously unknown to have such substantial changes in expression compared to the control. To uncover the functional significance hidden within these transcriptomic findings, we utilized computational tools such as MEME, String, and phylogenetic tree analysis. These efforts collectively revealed conserved domains within the transcriptomic landscape, hinting at potential functions associated with these genetic sequences. Of particular note, the distinct transcriptomic patterns specific to pearl millet leaves under thermal stress shed light on intricate connections to fundamental biological processes. These processes included the Ethylene-activated signaling pathway, Regulation of intracellular signal transduction, Negative regulation of signal transduction, Protein autophosphorylation, and Intracellular signal transduction. Together, these processes provide insight into the molecular strategies employed by pearl millet to overcome thermal stress challenges. By integrating cutting-edge RNA sequencing techniques and computational analyses, we have embarked on unraveling the genetic components and pathways that empower pearl millet's resilience in the face of adversity. This newfound understanding has the potential to not only advance our knowledge of plant stress responses but also contribute to enhancing crop resilience in challenging environmental conditions.
Collapse
Affiliation(s)
- Faten Dhawi
- Agricultural Biotechnology Department, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
20
|
Chen T, Zuo D, Yu J, Hou Y, Wang H, Gu L, Zhu B, Wang H, Du X. Full-Length Transcriptome Sequencing Analysis and Characterization of WRKY Transcription Factors Responsive to Cadmium Stress in Arabis paniculata. PLANTS (BASEL, SWITZERLAND) 2023; 12:3779. [PMID: 37960135 PMCID: PMC10649556 DOI: 10.3390/plants12213779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 11/15/2023]
Abstract
Arabis paniculata is a newly discovered hyperaccumulator known for its ability to accumulate multiple metals. WRKY proteins play a significant role in plant responses to various stresses, including cadmium (Cd) stress. However, there is limited research on the molecular biology of Arabis paniculata, especially regarding the WRKY family. In this study, we conducted third-generation sequencing for functional annotation and structural analysis of Arabis paniculata. We obtained 41,196 high-quality isoforms from the full-length transcriptome, with an average length of 1043 bp. A total of 26,670 genes were predicted against NR, Swissprot, KOG, and KEGG databases. Functional comparison using the KOG database revealed excellent annotation in 25 functional categories, with general function prediction (1822 items) being the most predominant. MISA analysis identified 12,593 SSR loci, with single nucleotide repeats being the largest category (44.83% of the total). Moreover, our predictions provide insights into 20,022 coding sequences (CDS), 811 transcription factors, and 17,963 LncRNAs. In total, 34 WRKY gene sequences were identified in Arabis paniculata. Bioinformatics analysis revealed diverse numbers of amino acids in these WRKYs (113 to 545 aa), and a conserved WRKYGQK sequence within the N-terminus of the WRKY protein. Furthermore, all WRKYs were found to be localized in the nucleus. Phylogenetic analysis classified the WRKY genes into three categories: I (14 members), II (17 members), and III (3 members). Category II was subsequently divided into four sub-categories: II-a (8 members), II-b (1 member), II-c (1 member), and II-d (7 members). Our quantitative real-time polymerase chain reaction (qRT-PCR) experiments revealed that ApWRKY23 and ApWRKY34 exhibited the highest expression levels at the 24-h time point, suggesting their potential role as the candidate genes for Cd stress response. These findings contribute to our understanding of the genomic information of Arabis paniculata and provide a basis for the analysis of its genetic diversity. Additionally, this study paves the way for a comprehensive exploration of the molecular mechanisms underlying the WRKY genes in Arabis paniculata under Cd stress conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Huinan Wang
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (T.C.); (D.Z.); (J.Y.); (Y.H.); (H.W.); (L.G.); (B.Z.)
| | - Xuye Du
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (T.C.); (D.Z.); (J.Y.); (Y.H.); (H.W.); (L.G.); (B.Z.)
| |
Collapse
|
21
|
Al-Huqail AA, Alghanem SMS, Abbas ZK, Al Aboud NM, Masood N, Irshad MA, Abbas T, Abeed AHA, Darwish DBE. Evaluation of nanoceria on cadmium uptake in Triticum aestivum (L.) and its implications for dietary health risk. CHEMOSPHERE 2023; 341:140115. [PMID: 37689157 DOI: 10.1016/j.chemosphere.2023.140115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
In recent times, significant attention has been directed toward the synthesis and application of nanoparticles (NPs) in agriculture sector. In current study, nanoceria (CeO2 NPs) synthesized by green method were employed to address cadmium (Cd) accumulation in wheat (Triticum aestivum L.) cultivated in field with excess Cd. The application of CeO2 NPs was carried out through foliar spraying, performed twice during the growth of T. aestivum. Four levels of CeO2 NPs were used: T0, T1, T2, and T3 as 0, 50, 75, and 100 mgL-1, respectively. Results highlighted the positive effects of CeO2 NPs on various growth parameters, including plant height, spike length, photosynthetic related attributes, as well as straw and grain of grains in comparison to T1 (control group). Furthermore, CeO2 NPs led to a reduction in oxidative stress in the leaves and enhanced in enzyme activities in comparison to T1. Notably, Cd concentrations in straw, roots, and grains exhibited a decline following the treatment with CeO2 NPs, in contrast to the control group. In terms of health implications, the calculated health risk index associated with dietary consumption of grains by adults remained below the defined threshold with supply of nanoparticles. Foliar application of CeO2 NPs proved to be an effective approach in reducing cadmium content in wheat grains. This reduction holds significant potential for minimizing the risk of cadmium exposure to human health through the food chain. Employing the green synthesis method amplifies the potential for extensive production and a wide array of environmental applications for CeO2 NPs. This dual capacity makes them proficient in tackling environmental stresses while concurrently mitigating adverse ecological effects.
Collapse
Affiliation(s)
- Arwa Abdulkreem Al-Huqail
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | | | - Zahid Khorshid Abbas
- Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Nora M Al Aboud
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Nasir Masood
- Department of Biosciences, COMSATS University Islamabad, Islamabad Campus, Tarlai Kalan Chak, Shehzad Park Road, Islamabad, 45550, Pakistan.
| | | | - Tahir Abbas
- Department of Environmental Sciences, University of Jhang, Pakistan
| | - Amany H A Abeed
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | - Doaa Bahaa Eldin Darwish
- Biology Department, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia; Botany Department, Faculty of Science, Mansoura University, Mansoura, 35511, Egypt
| |
Collapse
|
22
|
Khan MSS, Ahmed S, Ikram AU, Hannan F, Yasin MU, Wang J, Zhao B, Islam F, Chen J. Phytomelatonin: A key regulator of redox and phytohormones signaling against biotic/abiotic stresses. Redox Biol 2023; 64:102805. [PMID: 37406579 PMCID: PMC10363481 DOI: 10.1016/j.redox.2023.102805] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/21/2023] [Accepted: 06/29/2023] [Indexed: 07/07/2023] Open
Abstract
Plants being sessile in nature, are exposed to unwarranted threats as a result of constantly changing environmental conditions. These adverse factors can have negative impacts on their growth, development, and yield. Hormones are key signaling molecules enabling cells to respond rapidly to different external and internal stimuli. In plants, melatonin (MT) plays a critical role in the integration of various environmental signals and activation of stress-response networks to develop defense mechanisms and plant resilience. Additionally, melatonin can tackle the stress-induced alteration of cellular redox equilibrium by regulating the expression of redox hemostasis-related genes and proteins. The purpose of this article is to compile and summarize the scientific research pertaining to MT's effects on plants' resilience to biotic and abiotic stresses. Here, we have summarized that MT exerts a synergistic effect with other phytohormones, for instance, ethylene, jasmonic acid, and salicylic acid, and activates plant defense-related genes against phytopathogens. Furthermore, MT interacts with secondary messengers like Ca2+, nitric oxide, and reactive oxygen species to regulate the redox network. This interaction triggers different transcription factors to alleviate stress-related responses in plants. Hence, the critical synergic role of MT with diverse plant hormones and secondary messengers demonstrates phytomelatonin's importance in influencing multiple mechanisms to contribute to plant resilience against harsh environmental factors.
Collapse
Affiliation(s)
| | - Sulaiman Ahmed
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
| | - Aziz Ul Ikram
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
| | - Fakhir Hannan
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Umair Yasin
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jin Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Biying Zhao
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China.
| | - Faisal Islam
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China.
| | - Jian Chen
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|