1
|
Beggel S, Kalis EJJ, Geist J. Towards harmonized ecotoxicological effect assessment of micro- and nanoplastics in aquatic systems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125504. [PMID: 39662584 DOI: 10.1016/j.envpol.2024.125504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 12/13/2024]
Abstract
Micro- and nanoplastics are globally important environmental pollutants. Although research in this field is continuously improving, there are a number of uncertainties, inconsistencies and methodological challenges in the effect assessment of micro- and nanoparticles in freshwater systems. The current understanding of adverse effects is partly biased by the use of non-relevant particle types, unsuitable test setups and environmentally unrealistic dose metrics, which does not take into account realistic processes in particle uptake and consequent effects. Here we summarize the current state of the art by compiling the most recent research with the aim to highlight research gaps and further necessary steps towards more harmonized testing systems. In particular, ecotoxicological scenarios need to mirror environmentally realistic particle diversity and bioavailability. Harmonized test setups should include different uptake pathways, exposures and comparisons with natural reference particles. Effect assessments need to differentiate direct physical particle effects, such as lesions and toxicity caused by the polymer, from indirect effects, such as alterations of ambient environmental conditions by leaching, change of turbidity, food dilution and organisms' behavior. Implementation of these suggestions can contribute to harmonization and more effective, evidence-based assessments of the ecotoxicological effects of micro- and nanoplastics.
Collapse
Affiliation(s)
- Sebastian Beggel
- Aquatic Systems Biology Unit, TUM School of Life Sciences, Technical University of Munich, Mühlenweg 22, 85354, Freising, Germany
| | - Erwin J J Kalis
- Aquatic Systems Biology Unit, TUM School of Life Sciences, Technical University of Munich, Mühlenweg 22, 85354, Freising, Germany
| | - Juergen Geist
- Aquatic Systems Biology Unit, TUM School of Life Sciences, Technical University of Munich, Mühlenweg 22, 85354, Freising, Germany.
| |
Collapse
|
2
|
Yu CW, Yen PL, Kuo YH, Lin TA, Liao VHC. Early-life polystyrene nanoplastics exposure impairs pathogen avoidance behavior associated with intestine-derived insulin-like neuropeptide (ins-11) and serotonin signaling in Caenorhabditis elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117347. [PMID: 39557011 DOI: 10.1016/j.ecoenv.2024.117347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/30/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024]
Abstract
Nanoplastics (NPs) contamination is an emerging global concern due to the widespread use of plastic products and their potentially negative health impact on ecosystems. Despite their ubiquity, the effects of early-life NPs exposure on host-pathogen interactions remain largely unknown. In this study, we show that early-life exposure to polystyrene NPs (PS-NPs, 100-nm) at predicted environmentally relevant concentrations (10 µg/L) significantly impairs food preference and reduces avoidance of the pathogenic bacterium Bacillus thuringiensis in Caenorhabditis elegans. Exposure to PS-NPs led to a decrease in avoidance from 40.3 % in controls to 30.6 % at 10 µg/L and further to 23.1 % and 17.4 % at 50 and 100 µg/L, respectively. Mechanistic insights reveal that PS-NPs downregulate intestine-derived insulin-like neuropeptide (ins-11) via the transcription factor HLH-30 and the p38 MAPK signaling pathways, both are essential for avoidance behavior. Notably, acute serotonin treatment restored the avoidance behavior, indicating a role of serotonin signaling in this process. Our study indicates that early-life exposure to PS-NPs (100-nm) adversely affects the avoidance behavior of C. elegans, making them more vulnerable to harmful pathogens, thereby affecting their health. These findings highlight significant ecological and health hazards by early-life PS-NPs exposure.
Collapse
Affiliation(s)
- Chan-Wei Yu
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road., Taipei 106, Taiwan
| | - Pei-Ling Yen
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road., Taipei 106, Taiwan
| | - Yu-Hsuan Kuo
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road., Taipei 106, Taiwan
| | - Ting-An Lin
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road., Taipei 106, Taiwan
| | - Vivian Hsiu-Chuan Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road., Taipei 106, Taiwan.
| |
Collapse
|
3
|
Verma CR, Khare T, Chakraborty P, Gosavi SM, Petrtýl M, Kalous L, Kumkar P. Impact of diethyl phthalate on freshwater planarian behaviour, regeneration, and antioxidant defence. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 276:107110. [PMID: 39378734 DOI: 10.1016/j.aquatox.2024.107110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/13/2024] [Accepted: 09/29/2024] [Indexed: 10/10/2024]
Abstract
Diethyl phthalate (DEP) has been widely used as a plasticiser in various consumer products, including cosmetics, personal care items, and pharmaceuticals, and recent studies reported a higher abundance of this priority phthalate in the aquatic environment. DEP is a potential endocrine disruptor, affecting immune systems in humans and wildlife even at low-level chronic exposure. As concern over phthalates increases globally, regulatory bodies focus more on their environmental impact. However, limited research is available, particularly using model organisms like planarians. Planarians are ideal for toxicological studies and may provide insightful information on pollutants' neurotoxic, developmental, and ecological effects, especially in freshwater environments where planarians play a vital role in ecosystem balance. Therefore, the objective of the current study was to examine the toxicity of DEP using the freshwater Dugesia sp., as an experimental animal. The LC50 for the test organism was calculated using DEP concentrations of 800, 400, 200, 100, and 50 µM, with an estimated LC50 of 357.24 µM. Furthermore, planarians were exposed to sub-lethal DEP concentration (178.62 µM) for one day as well as eight days to evaluate the impact of DEP on planarian locomotion, feeding behaviour, and regeneration ability. At sub-lethal concentration, locomotion and feeding ability were decreased, and regeneration was delayed. Furthermore, neuro-transmittance in planaria was altered by sub-lethal DEP concentration, as indicated by a reduced acetylcholinesterase (AChE) activity. DEP exposure induced oxidative damage in the tested planarians as shown by a marked increase in stress biomarkers, including lipid peroxidation levels and antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), peroxidase (POX), and glutathione S-transferase (GST). Our study revealed that DEP exposure may prove fatal to freshwater organisms, such as planarians. The observed alterations in behaviour and regeneration ability demonstrate the severity of the effects exerted by DEP as a toxicant in aquatic ecosystems, thereby indicating the need to restrict its usage to protect aquatic environments.
Collapse
Affiliation(s)
- Chandani R Verma
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Czech Republic
| | - Tushar Khare
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Czech Republic; Department of Biotechnology, Modern College of Arts, Science and Commerce, Ganeshkhind, Pune, India
| | - Paromita Chakraborty
- Environmental Science and Technology Laboratory, Centre for Research in Environment, Sustainability Advocacy and Climate Change (REACH), Directorate of Research, SRM Institute of Science and Technology, Chengalpattu District, Tamil Nadu, 603203, India; University of Lodz, Faculty of Biology and Environmental Protection, UNESCO Chair on Ecohydrology and Applied Ecology, Banacha 12/16, 90-237 Lodz, Poland
| | - Sachin M Gosavi
- Department of Zoology, Maharashtra College of Arts, Science and Commerce, Mumbai, Maharashtra, India
| | - Miloslav Petrtýl
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Czech Republic
| | - Lukáš Kalous
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Czech Republic
| | - Pradeep Kumkar
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Czech Republic.
| |
Collapse
|
4
|
Sousa RR, Vasconcelos RB, Barbosa RS, Sarmento RA, Pereira DH, Souza NLGD, Cavallini GS. Behavioral and physiological responses of Girardia tigrina exposed to polyethylene microplastics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:46052-46060. [PMID: 38981965 DOI: 10.1007/s11356-024-34304-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024]
Abstract
Microplastic particles appear in great abundance and variety in freshwater ecosystems across the globe, spanning lakes and rivers, with increasingly frequent exposure of aquatic organisms. Studies on the mechanisms of any effects of plastic particles are still scarce, particularly in relation to the regenerative capacity of biota, for which there is no established model organism; however, planaria have shown sensitivity for assessing these risks to the aquatic environment. Thus, the present study aimed to investigate the behavioral and regeneration responses of the freshwater planaria Girardia tigrina exposed to polyethylene (PE) microplastics (MPs) incorporated into their food source. The greatest effect was observed on planarian regeneration, which was manifested at 10 μg/mg liver. Planaria reproduction and fertility were affected at 50 μg/mg liver; however, planaria locomotion was not affected at the concentrations evaluated. Mid-infrared absorption spectroscopy (FT-IR) was used to identify the constituent polymers, and ingestion of the polyethylene microplastic by the planaria was confirmed by infrared spectroscopy. The results highlight the potential adverse effects of exposure to polyethylene microplastic and show that the reproductive behavior and regeneration of a freshwater organism can be indicators of toxicity resulting from environmental pollution.
Collapse
Affiliation(s)
- Rayane Reis Sousa
- Programa de Pós-Graduação Em Produção Vegetal, Universidade Federal Do Tocantins, Campus de Gurupi, Gurupi, Tocantins, 77402-970, Brazil
| | - Roberta Brito Vasconcelos
- Programa de Pós-Graduação Em Química, Universidade Federal Do Tocantins, Campus de Gurupi, Gurupi, Tocantins, 77402-970, Brazil
| | - Rone Silva Barbosa
- Programa de Pós-Graduação Em Produção Vegetal, Universidade Federal Do Tocantins, Campus de Gurupi, Gurupi, Tocantins, 77402-970, Brazil
| | - Renato Almeida Sarmento
- Programa de Pós-Graduação Em Produção Vegetal, Universidade Federal Do Tocantins, Campus de Gurupi, Gurupi, Tocantins, 77402-970, Brazil
| | - Douglas Henrique Pereira
- Programa de Pós-Graduação Em Química, Universidade Federal Do Tocantins, Campus de Gurupi, Gurupi, Tocantins, 77402-970, Brazil
| | | | - Grasiele Soares Cavallini
- Programa de Pós-Graduação Em Química, Universidade Federal Do Tocantins, Campus de Gurupi, Gurupi, Tocantins, 77402-970, Brazil.
| |
Collapse
|
5
|
Leynen N, Tytgat JS, Bijnens K, Jaenen V, Verleysen E, Artois T, Van Belleghem F, Saenen ND, Smeets K. Assessing the in vivo toxicity of titanium dioxide nanoparticles in Schmidtea mediterranea: uptake pathways and (neuro)developmental outcomes. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 270:106895. [PMID: 38554681 DOI: 10.1016/j.aquatox.2024.106895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/22/2024] [Accepted: 03/11/2024] [Indexed: 04/02/2024]
Abstract
Titanium dioxide nanoparticles (TiO2-NPs) in aquatic environments, originating from urban run-off, product use and post-consumer degradation, interact with aquatic organisms through water and sediments. Thorough toxicity assessment requires comprehensive data across all ecosystem compartments especially the benthic zone, which is currently lacking. Moreover, a proper physicochemical characterization of the particles is needed before and during toxicity assessment. In the present work, we used the planarian Schmidtea mediterranea to investigate the effects of TiO2-NPs (5 mg/L and 50 mg/L). Planarians are benthic organisms that play an important role in the food chain as predators. Our study integrated particle characterization with toxicokinetic and toxicodynamic parameters and showed that the uptake of TiO2-NPs of 21 nm occurred through the epidermis and intestine. Epidermal irritation and mucus production occurred immediately after exposure, and TiO2-NPs induced stronger effects in regenerating organisms. More specifically, TiO2-NPs interfered with neuroregeneration, inducing behavioral effects. A delay in the formation of the anterior commissure between the two brain lobes after seven and nine days of exposure to 50 mg/L was observed, probably as a result of a decrease in stem cell proliferation. Our findings underscore the need to incorporate multiple exposure routes in toxicity screenings. Additionally, we highlight the vulnerability of developing organisms and recommend their inclusion in future risk assessment strategies.
Collapse
Affiliation(s)
- N Leynen
- Centre for Environmental Sciences, Zoology, Biodiversity and Toxicology, Hasselt University, Hasselt, Belgium
| | - J S Tytgat
- Centre for Environmental Sciences, Zoology, Biodiversity and Toxicology, Hasselt University, Hasselt, Belgium
| | - K Bijnens
- Centre for Environmental Sciences, Zoology, Biodiversity and Toxicology, Hasselt University, Hasselt, Belgium
| | - V Jaenen
- Centre for Environmental Sciences, Zoology, Biodiversity and Toxicology, Hasselt University, Hasselt, Belgium
| | - E Verleysen
- Trace Elements and Nanomaterials, Sciensano, Groeselenbergstraat 99, 1180 Uccle, Belgium
| | - T Artois
- Centre for Environmental Sciences, Zoology, Biodiversity and Toxicology, Hasselt University, Hasselt, Belgium
| | - F Van Belleghem
- Centre for Environmental Sciences, Zoology, Biodiversity and Toxicology, Hasselt University, Hasselt, Belgium; Department of Environmental Sciences, Faculty of Science, Open Universiteit, Heerlen, the Netherlands
| | - N D Saenen
- Centre for Environmental Sciences, Zoology, Biodiversity and Toxicology, Hasselt University, Hasselt, Belgium
| | - K Smeets
- Centre for Environmental Sciences, Zoology, Biodiversity and Toxicology, Hasselt University, Hasselt, Belgium.
| |
Collapse
|
6
|
Jimenez-Guri E, Paganos P, La Vecchia C, Annona G, Caccavale F, Molina MD, Ferrández-Roldán A, Donnellan RD, Salatiello F, Johnstone A, Eliso MC, Spagnuolo A, Cañestro C, Albalat R, Martín-Durán JM, Williams EA, D'Aniello E, Arnone MI. Developmental toxicity of pre-production plastic pellets affects a large swathe of invertebrate taxa. CHEMOSPHERE 2024; 356:141887. [PMID: 38583530 DOI: 10.1016/j.chemosphere.2024.141887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/14/2024] [Accepted: 04/01/2024] [Indexed: 04/09/2024]
Abstract
Microplastics pose risks to marine organisms through ingestion, entanglement, and as carriers of toxic additives and environmental pollutants. Plastic pre-production pellet leachates have been shown to affect the development of sea urchins and, to some extent, mussels. The extent of those developmental effects on other animal phyla remains unknown. Here, we test the toxicity of environmental mixed nurdle samples and new PVC pellets for the embryonic development or asexual reproduction by regeneration of animals from all the major animal superphyla (Lophotrochozoa, Ecdysozoa, Deuterostomia and Cnidaria). Our results show diverse, concentration-dependent impacts in all the species sampled for new pellets, and for molluscs and deuterostomes for environmental samples. Embryo axial formation, cell specification and, specially, morphogenesis seem to be the main processes affected by plastic leachate exposure. Our study serves as a proof of principle for the potentially catastrophic effects that increasing plastic concentrations in the oceans and other ecosystems can have across animal populations from all major animal superphyla.
Collapse
Affiliation(s)
- Eva Jimenez-Guri
- Stazione Zoologica Anton Dohrn, Department of Biology and Evolution of Marine Organisms, Naples, Italy; Center for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn, UK.
| | - Periklis Paganos
- Stazione Zoologica Anton Dohrn, Department of Biology and Evolution of Marine Organisms, Naples, Italy
| | - Claudia La Vecchia
- Stazione Zoologica Anton Dohrn, Department of Biology and Evolution of Marine Organisms, Naples, Italy
| | - Giovanni Annona
- Stazione Zoologica Anton Dohrn, Department of Research Infrastructures for Marine Biological Resources, Naples, Italy
| | - Filomena Caccavale
- Stazione Zoologica Anton Dohrn, Department of Biology and Evolution of Marine Organisms, Naples, Italy
| | - Maria Dolores Molina
- Department of Genetica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Catalunya, Spain; Institute of Biomedicine of the University of Barcelona (IBUB), Catalunya, Spain
| | - Alfonso Ferrández-Roldán
- Department of Genetica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Catalunya, Spain; Institut de Recerca de la Biodiversitat (IRBio), Facultat de Biologia, Universitat de Barcelona, Catalunya, Spain
| | - Rory Daniel Donnellan
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Federica Salatiello
- Stazione Zoologica Anton Dohrn, Department of Biology and Evolution of Marine Organisms, Naples, Italy
| | - Adam Johnstone
- College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Maria Concetta Eliso
- Stazione Zoologica Anton Dohrn, Department of Biology and Evolution of Marine Organisms, Naples, Italy
| | - Antonietta Spagnuolo
- Stazione Zoologica Anton Dohrn, Department of Biology and Evolution of Marine Organisms, Naples, Italy
| | - Cristian Cañestro
- Department of Genetica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Catalunya, Spain; Institut de Recerca de la Biodiversitat (IRBio), Facultat de Biologia, Universitat de Barcelona, Catalunya, Spain
| | - Ricard Albalat
- Department of Genetica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Catalunya, Spain; Institut de Recerca de la Biodiversitat (IRBio), Facultat de Biologia, Universitat de Barcelona, Catalunya, Spain
| | - José María Martín-Durán
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - Elizabeth A Williams
- College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Enrico D'Aniello
- Stazione Zoologica Anton Dohrn, Department of Biology and Evolution of Marine Organisms, Naples, Italy
| | - Maria Ina Arnone
- Stazione Zoologica Anton Dohrn, Department of Biology and Evolution of Marine Organisms, Naples, Italy
| |
Collapse
|
7
|
Skawina A, Dąbrowska A, Bonk A, Paterczyk B, Nowakowska J. Tracking the micro- and nanoplastics in the terrestrial-freshwater food webs. Bivalves as sentinel species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170468. [PMID: 38296093 DOI: 10.1016/j.scitotenv.2024.170468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/05/2024]
Abstract
Micro- (MPs) and nanoplastics (NPs) are currently ubiquitous in the ecosystems, and freshwater biota is still insufficiently studied to understand the global fate, transport paths, and consequences of their presence. Thus, in this study, we investigated the role of bivalves and a trophic transfer of MPs and NPs in an experimental food chain. The food chain consisted of terrestrial non-selective detritivore Dendrobaena (Eisenia) sp., freshwater benthic filter feeder Unio tumidus, and freshwater benthic detritivore-collectors Asellus aquaticus or Gammarus sp. Animals were exposed to different fluorescently labeled micro- and nanoplastics (PMMA 20 μm, nanoPS 15-18 nm, and 100 nm, PS 1 μm and 20 μm, PE from cosmetics) as well as to the faeces of animals exposed to plastics to assess their influence on the environmental transportation, availability to biota, and bioaccumulation of supplied particles. Damaged and intact fluorescent particles were observed in the faeces of terrestrial detritivores and in the droppings of aquatic filter feeders, respectively. They were also present in the guts of bivalves and of crustaceans which were fed with bivalve droppings. Bivalves (Unio tumidus, and additionally Unio pictorum, and Sphaerium corneum) produced droppings containing micro- and nanoparticles filtered from suspension and deposited them onto the tank bottom, making them available for broader feeding guilds of animals (e.g. collectors, like crustaceans). Finally, the natural ageing of PS and its morphological changes, leakage of the fluorescent labelling, and agglomeration of particles were demonstrated. That supports our hypothesis of the crucial role of the characterization of physical and chemical materials in adequately understanding the mechanisms of their interaction with biota. Microscopical methods (confocal, fluorescent, scanning electron) and Raman and FT-IR spectroscopy were used to track the particles' passage in a food web and monitor structural changes of the MPs' and NPs' surface.
Collapse
Affiliation(s)
- Aleksandra Skawina
- University of Warsaw, Faculty of Biology, Institute of Evolutionary Biology, Żwirki i Wigury 101 Str., 02-089 Warsaw, Poland; University of Warsaw, Faculty of Biology, Institute of Functional Biology and Ecology, Miecznikowa 1 Str., 02-096 Warsaw, Poland.
| | - Agnieszka Dąbrowska
- University of Warsaw, Faculty of Chemistry, Laboratory of Spectroscopy and Intermolecular Interactions, Pasteura 1 Str., 02-093 Warsaw, Poland.
| | - Agata Bonk
- University of Bremen, Faculty 2 Biology, Chemistry Leobener Str., 28359 Bremen, Germany
| | - Bohdan Paterczyk
- University of Warsaw, Faculty of Biology, Imaging Laboratory, Miecznikowa 1 Str., 02-096 Warsaw, Poland
| | - Julita Nowakowska
- University of Warsaw, Faculty of Biology, Imaging Laboratory, Miecznikowa 1 Str., 02-096 Warsaw, Poland
| |
Collapse
|
8
|
Shi C, Liu Z, Yu B, Zhang Y, Yang H, Han Y, Wang B, Liu Z, Zhang H. Emergence of nanoplastics in the aquatic environment and possible impacts on aquatic organisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167404. [PMID: 37769717 DOI: 10.1016/j.scitotenv.2023.167404] [Citation(s) in RCA: 70] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Plastic production on a global scale is instrumental in advancing modern society. However, plastic can be broken down by mechanical and chemical forces of humans and nature, and knowledge of the fate and effects of plastic, especially nanoplastics, in the aquatic environment remains poor. We provide an overview of current knowledge on the environmental occurrence and toxicity of nanoplastics, and suggestions for future research. There are nanoplastics present in seas, rivers, and nature reserves from Asia, Europe, Antarctica, and the Arctic Ocean at levels of 0.3-488 microgram per liter. Once in the aquatic environment, nanoplastics accumulate in plankton, nekton, benthos through ingestion and adherence, with multiple toxic results including inhibited growth, reproductive abnormalities, oxidative stress, and immune system dysfunction. Further investigations should focus on chemical analysis methods for nanoplastics, effect and mechanism of nanoplastics at environmental relevant concentrations in aquatic organisms, as well as the mechanism of the Trojan horse effect of nanoplastics.
Collapse
Affiliation(s)
- Chaoli Shi
- Hangzhou Normal University, Hangzhou 311121, China
| | - Zhiqun Liu
- Hangzhou Normal University, Hangzhou 311121, China
| | - Bingzhi Yu
- Hangzhou Normal University, Hangzhou 311121, China
| | - Yinan Zhang
- Hangzhou Normal University, Hangzhou 311121, China
| | - Hongmei Yang
- Hangzhou Normal University, Hangzhou 311121, China
| | - Yu Han
- Hangzhou Normal University, Hangzhou 311121, China
| | - Binhao Wang
- Hangzhou Normal University, Hangzhou 311121, China
| | - Zhiquan Liu
- Hangzhou Normal University, Hangzhou 311121, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environment Sciences, Shanghai 200233, China.
| | - Hangjun Zhang
- Hangzhou Normal University, Hangzhou 311121, China; Hangzhou Internation Urbanology Research Center, Hangzhou 311121, China
| |
Collapse
|
9
|
Silva MSS, Pires A, Vethaak AD, Martínez-Gómez C, Almeida M, Pinto R, Figueira E, Oliveira M. Effects of polymethylmethacrylate nanoplastics on the polychaete Hediste diversicolor: Behavioural, regenerative, and biochemical responses. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 265:106743. [PMID: 37931377 DOI: 10.1016/j.aquatox.2023.106743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/08/2023]
Abstract
Plastics, particularly microplastics (MPs) and nanoplastics (NPs), have been regarded as pollutants of emerging concern due to their effects on organisms and ecosystems, especially considering marine environments. However, in terms of NPs, there is still a knowledge gap regarding the effects of size and polymer on marine invertebrates, such as benthic organisms. Therefore, this study aimed to understand, regarding behavioural, physiological, and biochemical endpoints (neurotransmission, energy metabolism, antioxidant status, and oxidative damage), the effects of 50 nm waterborne polymethylmethacrylate (PMMA) NPs (0.5 to 500 µg/L) on the marine benthic polychaete Hediste diversicolor, a key species in estuarine and coastal ecosystems. Results demonstrated that worms exposed to PMMA NPs had a shorter burrowing time than control organisms. Nevertheless, worms exposed to PMMA NPs (0.5 and 500 µg/L) decreased cholinesterase activity. Energy metabolism was decreased at 50 and 500 µg/L, and glycogen content decreased at all concentrations of PMMA NPs. Enzymes related to the antioxidant defence system (superoxide dismutase and glutathione peroxidase) displayed increased activities in H. diversicolor specimens exposed to concentrations between 0.5 and 500 µg/L, which led to no damage at the cell membrane and protein levels. In this study, polychaetes also displayed a lower regenerative capacity when exposed to PMMA NPs. Overall, the data obtained in this study emphasize the potential consequences of PMMA NPs to benthic worms, particularly between 0.5 and 50 µg/L, with polychaetes exposed to 50 µg/L being the most impacted by the analysed NPs. However, since sediments are considered to be sinks and sources of plastics, further studies are needed to better understand the impacts of different sizes and polymers on marine organisms, particularly benthic species.
Collapse
Affiliation(s)
- M S S Silva
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Adília Pires
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - A Dick Vethaak
- Department of Environment and Health, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Deltares, Marine and Coastal Systems, Delft, the Netherlands
| | - Concepción Martínez-Gómez
- Instituto Español de Oceanografía (IEO), CSIC, Centro Oceanográfico de Murcia, C/Varadero, 1, San Pedro del Pinatar, Murcia 30740, Spain
| | - Mónica Almeida
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ricardo Pinto
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Etelvina Figueira
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Miguel Oliveira
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
10
|
Cesarini G, Secco S, Taurozzi D, Venditti I, Battocchio C, Marcheggiani S, Mancini L, Fratoddi I, Scalici M, Puccinelli C. Teratogenic effects of environmental concentration of plastic particles on freshwater organisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165564. [PMID: 37467998 DOI: 10.1016/j.scitotenv.2023.165564] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/21/2023]
Abstract
Given the widespread presence of plastics, especially in micro- and nanoscale sizes, in freshwater systems, it is crucial to identify a suitable model organism for assessing the potential toxic and teratogenic effects of exposure to plastic particles. Until now, the early life stage of freshwater organisms and the regeneration capacity in relation to plastic particles exposure is a still poorly investigated topic. In this study, we examine the teratogenic effect on diatom Cocconeis placentula and cnidarian Hydra vulgaris under controlled exposure conditions of poly(styrene-co-methyl methacrylate) (P(S-co-MMA)) particles. Significant effects were observed at the lowest concentrations (0.1 μg/L). A significant increase in the teratological frequency in C. placentula and a significant decrease in the regeneration rate in H. vulgaris were found at the lowest concentration. The delay in hydra regeneration impaired the feeding capacity and tentacles reactivity at 96 h of exposure. No effects on diatom growth were observed upon exposure to P(S-co-MMA) particles (0.1, 1, 100, 10,000 μg/L) for 28 days and these findings agree with other studies investigating algal growth. The application of the Teratogenic Risk Index, modified for diatoms, highlighted a moderate risk for the lowest concentration evaluating C. placentula and low risk at the lowest and the highest concentrations considering H. vulgaris. This study suggests the importance of testing organisms belonging to different trophic levels as diverse teratogenic effects can be found and the need to evaluate environmentally relevant concentrations of plastic particles.
Collapse
Affiliation(s)
- Giulia Cesarini
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146 Rome, Italy
| | - Silvia Secco
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146 Rome, Italy
| | - Davide Taurozzi
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146 Rome, Italy
| | - Iole Venditti
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146 Rome, Italy
| | - Chiara Battocchio
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146 Rome, Italy
| | - Stefania Marcheggiani
- Department of Environment and Health, Italian National Institute of Health (ISS), Viale Regina Elena, 299, 00161 Rome, Italy
| | - Laura Mancini
- Department of Environment and Health, Italian National Institute of Health (ISS), Viale Regina Elena, 299, 00161 Rome, Italy
| | - Ilaria Fratoddi
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Massimiliano Scalici
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146 Rome, Italy.
| | - Camilla Puccinelli
- Department of Environment and Health, Italian National Institute of Health (ISS), Viale Regina Elena, 299, 00161 Rome, Italy.
| |
Collapse
|
11
|
Zhao WJ, Yang XQ, Shi CY, Zhang HC, Chen GW, Liu DZ. Neurotoxicity of Glyphosate to Planarian Dugesia japonica. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 111:66. [PMID: 37904018 DOI: 10.1007/s00128-023-03826-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/13/2023] [Indexed: 11/01/2023]
Abstract
As one of the most widely used herbicides in agricultural industry, the residues of glyphosate (GLY) are frequent environmental pollutants. Freshwater planarian Dugesia japonica has been developed as a model for neurotoxicology. In this study, the effects of GLY on locomotion and feeding behavior, as well as neuroenzyme activities and mRNA expressions of D. japonica were determined. Additionally, histochemical localization was executed to explore the damage to the central nervous system (CNS) of planarians stressed by GLY. The results showed that the locomotor velocity, ingestion rate and the neuroenzyme activity were inhibited and the gene expressions were altered. Also, histo-architecture injury to CNS of planarians upon GLY exposure in a time-dependent manner was observed. Collectively, our results indicate that GLY can cause neurotoxicity to freshwater planarians representing as reduction in locomotor velocity and feeding rate by disturbing the neurotransmission systems and damaging the structure of CNS.
Collapse
Affiliation(s)
- Wen-Jing Zhao
- College of Life Sciences, Henan Normal University, No.46, Jianshe East Road, Xinxiang, 453007, China
| | - Xiao-Qing Yang
- College of Life Sciences, Henan Normal University, No.46, Jianshe East Road, Xinxiang, 453007, China
| | - Chang-Ying Shi
- College of Life Sciences, Henan Normal University, No.46, Jianshe East Road, Xinxiang, 453007, China
| | - He-Cai Zhang
- College of Life Sciences, Henan Normal University, No.46, Jianshe East Road, Xinxiang, 453007, China.
| | - Guang-Wen Chen
- College of Life Sciences, Henan Normal University, No.46, Jianshe East Road, Xinxiang, 453007, China.
| | - De-Zeng Liu
- College of Life Sciences, Henan Normal University, No.46, Jianshe East Road, Xinxiang, 453007, China
| |
Collapse
|