1
|
Atterling Brolin K, Schaeffer E, Kuri A, Rumrich IK, Schumacher Schuh AF, Darweesh SK, Kaasinen V, Tolppanen A, Chahine LM, Noyce AJ. Environmental Risk Factors for Parkinson's Disease: A Critical Review and Policy Implications. Mov Disord 2025; 40:204-221. [PMID: 39601461 PMCID: PMC11832802 DOI: 10.1002/mds.30067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/13/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
The age-standardized prevalence of Parkinson's disease (PD) has increased substantially over the years and is expected to increase further. This emphasizes the need to identify modifiable risk factors of PD, which could form a logical entry point for the prevention of PD. The World Health Organization (WHO) has recommended reducing exposure to specific environmental factors that have been reported to be associated with PD, in particular pesticides, trichloroethylene (TCE), and air pollution. In this review we critically evaluate the epidemiological and biological evidence on the associations of these factors with PD and review evidence on whether these putative associations are causal. We conclude that when considered in isolation, it is difficult to determine whether these associations are causal, in large part because of the decades-long lag between relevant exposures and the incidence of manifest PD. However, when considered in tandem with evidence from complementary research lines (such as animal models), it is increasingly likely that these associations reflect harmful causal effects. Fundamentally, whilst we highlight some evidence gaps that require further attention, we believe the current evidence base is sufficiently strong enough to support our call for stronger policy action. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Kajsa Atterling Brolin
- Translational Neurogenetics Unit, Department of Experimental Medical ScienceLund UniversityLundSweden
- Centre for Preventive Neurology, Wolfson Institute of Population HealthQueen Mary University of LondonLondonUK
| | - Eva Schaeffer
- Department of Neurology, University Hospital Schleswig‐HolsteinCampus Kiel and Kiel UniversityKielGermany
| | - Ashvin Kuri
- Centre for Preventive Neurology, Wolfson Institute of Population HealthQueen Mary University of LondonLondonUK
| | - Isabell Katharina Rumrich
- School of PharmacyUniversity of Eastern FinlandFinland
- Department of Health ProtectionFinnish Institute for Health and WelfareFinland
| | - Artur Francisco Schumacher Schuh
- Departamento de FarmacologiaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
- Serviço de NeurologiaHospital de Clínicas de Porto AlegrePorto AlegreBrazil
| | - Sirwan K.L. Darweesh
- Radboud University Medical CenterDonders Institute for Brain, Cognition and Behaviour, Department of Neurology, Center of Expertise for Parkinson & Movement DisordersNijmegenThe Netherlands
| | - Valtteri Kaasinen
- Clinical NeurosciencesUniversity of TurkuTurkuFinland
- NeurocenterTurku University HospitalTurkuFinland
| | | | - Lana M. Chahine
- Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Alastair J. Noyce
- Centre for Preventive Neurology, Wolfson Institute of Population HealthQueen Mary University of LondonLondonUK
| |
Collapse
|
2
|
Meerman JJ, Legler J, Piersma AH, Westerink RHS, Heusinkveld HJ. An adverse outcome pathway for chemical-induced Parkinson's disease: Calcium is key. Neurotoxicology 2023; 99:226-243. [PMID: 37926220 DOI: 10.1016/j.neuro.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023]
Abstract
Exposure to pesticides is associated with an increased risk of developing Parkinson's disease (PD). Currently, rodent-based risk assessment studies cannot adequately capture neurodegenerative effects of pesticides due to a lack of human-relevant endpoints targeted at neurodegeneration. Thus, there is a need for improvement of the risk assessment guidelines. Specifically, a mechanistic assessment strategy, based on human physiology and (patho)biology is needed, which can be applied in next generation risk assessment. The Adverse Outcome Pathway (AOP) framework is particularly well-suited to provide the mechanistic basis for such a strategy. Here, we conducted a semi-systematic review in Embase and MEDLINE, focused on neurodegeneration and pesticides, to develop an AOP network for parkinsonian motor symptoms. Articles were labelled and included/excluded using the online platform Sysrev. Only primary articles, written in English, focused on effects of pesticides or PD model compounds in models for the brain were included. A total of 66 articles, out of the 1700 screened, was included. PD symptoms are caused by loss of function and ultimately death of dopaminergic neurons in the substantia nigra (SN). Our literature review highlights that a unique feature of these cells that increases their vulnerability is their reliance on continuous low-level influx of calcium. As such, excess intracellular calcium was identified as a central early Key Event (KE). This KE can lead to death of dopaminergic neurons of the SN, and eventually parkinsonian motor symptoms, via four distinct pathways: 1) activation of calpains, 2) endoplasmic reticulum stress, 3) impairment of protein degradation, and 4) oxidative damage. Several receptors have been identified that may serve as molecular initiating events (MIEs) to trigger one or more of these pathways. The proposed AOP network provides the biological basis that can be used to develop a mechanistic testing strategy that captures neurodegenerative effects of pesticides.
Collapse
Affiliation(s)
- Julia J Meerman
- Centre for Health Protection, Dutch National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, the Netherlands; Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Juliette Legler
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Aldert H Piersma
- Centre for Health Protection, Dutch National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, the Netherlands; Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Remco H S Westerink
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Harm J Heusinkveld
- Centre for Health Protection, Dutch National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, the Netherlands.
| |
Collapse
|
3
|
Sule RO, Phinney BS, Salemi MR, Gomes AV. Mitochondrial and Proteasome Dysfunction Occurs in the Hearts of Mice Treated with Triazine Herbicide Prometryn. Int J Mol Sci 2023; 24:15266. [PMID: 37894945 PMCID: PMC10607192 DOI: 10.3390/ijms242015266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Prometryn is a methylthio-s-triazine herbicide used to control the growth of annual broadleaf and grass weeds in many cultivated plants. Significant traces of prometryn are documented in the environment, mainly in waters, soil, and plants used for human and domestic consumption. Previous studies have shown that triazine herbicides have carcinogenic potential in humans. However, there is limited information about the effects of prometryn on the cardiac system in the literature, or the mechanisms and signaling pathways underlying any potential cytotoxic effects are not known. It is important to understand the possible effects of exogenous compounds such as prometryn on the heart. To determine the mechanisms and signaling pathways affected by prometryn (185 mg/kg every 48 h for seven days), we performed proteomic profiling of male mice heart with quantitative liquid chromatography-tandem mass spectrometry (LC-MS/MS) using ten-plex tandem mass tag (TMT) labeling. The data suggest that several major pathways, including energy metabolism, protein degradation, fatty acid metabolism, calcium signaling, and antioxidant defense system were altered in the hearts of prometryn-treated mice. Proteasome and immunoproteasome activity assays and expression levels showed proteasome dysfunction in the hearts of prometryn-treated mice. The results suggest that prometryn induced changes in mitochondrial function and various signaling pathways within the heart, particularly affecting stress-related responses.
Collapse
Affiliation(s)
- Rasheed O. Sule
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, One Shields Ave., Davis, CA 95616, USA
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Brett S. Phinney
- Proteomics Core Facility, University of California, Davis, Davis, CA 95616, USA; (B.S.P.); (M.R.S.)
| | - Michelle R. Salemi
- Proteomics Core Facility, University of California, Davis, Davis, CA 95616, USA; (B.S.P.); (M.R.S.)
| | - Aldrin V. Gomes
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, One Shields Ave., Davis, CA 95616, USA
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
4
|
Shen C, Sheng ZG, Shao J, Tang M, Mao L, Huang CH, Zhang ZH, Zhu BZ. Mechanistic investigation of the differential synergistic neurotoxicity between pesticide metam sodium and copper or zinc. CHEMOSPHERE 2023; 328:138430. [PMID: 36963585 DOI: 10.1016/j.chemosphere.2023.138430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/21/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
Epidemiological studies suggest neurological disorders have been associated with the co-exposure to certain pesticides and transition metals. The present study aims to investigate whether co-exposure to the widely-used pesticide metam sodium and copper (Cu2+) or zinc ion (Zn2+) is able to cause synergistic neurotoxicity in neural PC12 cells and its possible mechanism(s). We found that both metam/Cu2+ and metam/Zn2+ synergistically induced apoptosis, intracellular Cu2+/Zn2+ uptake, reactive oxygen species (ROS) accumulation, double-strand DNA breakage, mitochondrial membrane potential decrease, and nerve function disorder. In addition, metam/Cu2+ was shown to release cytochrome c and apoptosis-inducing factor (AIF) from mitochondria to cytoplasm and nucleus, respectively, and activate the caspase 9, 8, 3, 7. However, metam/Zn2+ induced caspase 7 activation and AIF translocation and mildly activated cytochrome c/caspase 9/caspase 3 pathway. Furthermore, metam/Cu2+ activated caspase 3/7 by the p38 pathway, whereas metam/Zn2+ did so via both the p38 and JNK pathways. These results demonstrated that metam/Cu2+ or metam/Zn2+ co-exposure cause synergistic neurotoxicity via different mechanisms, indicating a potential risk to human health when they environmentally co-exist.
Collapse
Affiliation(s)
- Chen Shen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhi-Guo Sheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jie Shao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Miao Tang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Mao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chun-Hua Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhi-Hui Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Department of Stomatology, Peking University Third Hospital, Beijing, 100191, China
| | - Ben-Zhan Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Joint Institute for Environmental Science, Research Center for Eco-Environmental Sciences and Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
5
|
Neurodegeneration in a Regulatory Context: The Need for Speed. CURRENT OPINION IN TOXICOLOGY 2022. [DOI: 10.1016/j.cotox.2022.100383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
6
|
Sarailoo M, Afshari S, Asghariazar V, Safarzadeh E, Dadkhah M. Cognitive Impairment and Neurodegenerative Diseases Development Associated with Organophosphate Pesticides Exposure: a Review Study. Neurotox Res 2022; 40:1624-1643. [PMID: 36066747 DOI: 10.1007/s12640-022-00552-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/22/2022] [Accepted: 07/27/2022] [Indexed: 10/14/2022]
Abstract
A significant body of literature emphasizes the role of insecticide, particularly organophosphates (OPs), as the major environmental factor in the etiology of neurodegenerative diseases. This review aims to study the relationship between OP insecticide exposure, cognitive impairment, and neurodegenerative disease development. Human populations, especially in developing countries, are frequently exposed to OPs due to their extensive applications. The involvement of various signaling pathways in OP neurotoxicity are reported, but the OP-induced cognitive impairment and link between OP exposure and the pathophysiology of neurodegenerative diseases are not clearly understood. In the present review, we have therefore aimed to come to new conclusions which may help to find protective and preventive strategies against OP neurotoxicity and may establish a possible link between organophosphate exposure, cognitive impairment, and OP-induced neurotoxicity. Moreover, we discuss the findings obtained from animal and human research providing some support for OP-induced cognitive impairment and neurodegenerative disorders.
Collapse
Affiliation(s)
- Mehdi Sarailoo
- Students Research Committee, School of Public Health, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Salva Afshari
- Students Research Committee, Pharmacy School, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Vahid Asghariazar
- Deputy of Research & Technology, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Elham Safarzadeh
- Department of Microbiology, Parasitology, and Immunology, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Masoomeh Dadkhah
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
7
|
Re DB, Yan B, Calderón-Garcidueñas L, Andrew AS, Tischbein M, Stommel EW. A perspective on persistent toxicants in veterans and amyotrophic lateral sclerosis: identifying exposures determining higher ALS risk. J Neurol 2022; 269:2359-2377. [PMID: 34973105 PMCID: PMC9021134 DOI: 10.1007/s00415-021-10928-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023]
Abstract
Multiple studies indicate that United States veterans have an increased risk of developing amyotrophic lateral sclerosis (ALS) compared to civilians. However, the responsible etiological factors are unknown. In the general population, specific occupational (e.g. truck drivers, airline pilots) and environmental exposures (e.g. metals, pesticides) are associated with an increased ALS risk. As such, the increased prevalence of ALS in veterans strongly suggests that there are exposures experienced by military personnel that are disproportionate to civilians. During service, veterans may encounter numerous neurotoxic exposures (e.g. burn pits, engine exhaust, firing ranges). So far, however, there is a paucity of studies investigating environmental factors contributing to ALS in veterans and even fewer assessing their exposure using biomarkers. Herein, we discuss ALS pathogenesis in relation to a series of persistent neurotoxicants (often emitted as mixtures) including: chemical elements, nanoparticles and lipophilic toxicants such as dioxins, polycyclic aromatic hydrocarbons and polychlorinated biphenyls. We propose these toxicants should be directly measured in veteran central nervous system tissue, where they may have accumulated for decades. Specific toxicants (or mixtures thereof) may accelerate ALS development following a multistep hypothesis or act synergistically with other service-linked exposures (e.g. head trauma/concussions). Such possibilities could explain the lower age of onset observed in veterans compared to civilians. Identifying high-risk exposures within vulnerable populations is key to understanding ALS etiopathogenesis and is urgently needed to act upon modifiable risk factors for military personnel who deserve enhanced protection during their years of service, not only for their short-term, but also long-term health.
Collapse
Affiliation(s)
- Diane B Re
- Department of Environmental Health Science, Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, USA
| | - Beizhan Yan
- Department of Geochemistry, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA
| | - Lilian Calderón-Garcidueñas
- Department Biomedical Sciences, College of Health, University of Montana, Missoula, MT, USA
- Universidad del Valle de México, Mexico City, Mexico
| | - Angeline S Andrew
- Department of Neurology, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Maeve Tischbein
- Department of Neurology, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Elijah W Stommel
- Department of Neurology, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.
| |
Collapse
|
8
|
Stadler K, Li X, Liu B, Bao W, Wang K, Lehmler HJ. Systematic review of human biomonitoring studies of ethylenethiourea, a urinary biomarker for exposure to dithiocarbamate fungicides. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118419. [PMID: 34751155 PMCID: PMC8627121 DOI: 10.1016/j.envpol.2021.118419] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/27/2021] [Accepted: 10/27/2021] [Indexed: 05/07/2023]
Abstract
Toxicological and epidemiological studies implicate exposure to dithiocarbamate (DTC) fungicides in adverse health outcomes. However, there is limited information about human exposure to these chemicals. This systematic review determined to which extent human populations worldwide, including children, pregnant women, and adults, are exposed environmentally or occupationally to DTC pesticides and how these exposures compare to the NHANES 2003-2008 population, using urinary ETU data as an outcome measure. PubMed, Embase, and SciFinder were searched using the keywords "ethylenethiourea" or CAS No.: 96-45-7, and urine or urinary. Duplicates and irrelevant studies were removed from the search results based on predetermined exclusion criteria. This screening process identified 17 relevant papers. One additional paper was found independent of this search. Data from studies were extracted using a pre-established data collection form. Ten, two, and five manuscripts reported urinary levels in environmentally exposed adults, children, and pregnant women, respectively. Median ETU levels ranged from 0.15 to 4.7 μg/g creatinine in adults (1994-2017), 0.24-0.83 μg/g creatinine in children (2011), and 2.6-5.24 ng/ml in pregnant women (2011). Eight studies reported urinary ETU levels in mostly agriculturally exposed populations, with median ETU levels ranging from 0.42 to 49.6 μg/g creatinine (1999-2011). With one exception, all studies were conducted between 1994 and 2011. ETU levels in the NHANES 2003-2008 population appeared to be generally lower than most studies identified in this review. This finding suggests that, historically, DTC fungicide exposures in the general population of high-income countries, such as the US, were low, whereas agricultural populations may have experienced higher exposure. Unfortunately, more recent exposure data are missing, especially in countries where DTC pesticides are not being phased out.
Collapse
Affiliation(s)
- Katrina Stadler
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA, 52242, USA
| | - Xueshu Li
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA, 52242, USA
| | - Buyun Liu
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA, 52242, USA
| | - Wei Bao
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, IA, 52242, USA
| | - Kai Wang
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, 52242, USA
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
9
|
Wang EW, Trojano ML, Lewis MM, Du G, Chen H, Brown GL, Jellen LC, Song I, Neely E, Kong L, Connor JR, Huang X. HFE H63D Limits Nigral Vulnerability to Paraquat in Agricultural Workers. Toxicol Sci 2021; 181:47-57. [PMID: 33739421 DOI: 10.1093/toxsci/kfab020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Paraquat is an herbicide whose use is associated with Parkinson's disease (PD), a neurodegenerative disorder marked by neuron loss in the substantia nigra pars compacta (SNc). We recently observed that the murine homolog to the human H63D variant of the homeostatic iron regulator (HFE) may decrease paraquat-associated nigral neurotoxicity in mice. The present study examined the potential influence of H63D on paraquat-associated neurotoxicity in humans. Twenty-eight paraquat-exposed workers were identified from exposure histories and compared with 41 unexposed controls. HFE genotypes, and serum iron and transferrin were measured from blood samples. MRI was used to assess the SNc transverse relaxation rate (R2*), a marker for iron, and diffusion tensor imaging scalars of fractional anisotropy (FA) and mean diffusivity, markers of microstructural integrity. Twenty-seven subjects (9 exposed and 18 controls) were H63D heterozygous. After adjusting for age and use of other PD-associated pesticides and solvents, serum iron and transferrin were higher in exposed H63D carriers than in unexposed carriers and HFE wildtypes. SNc R2* was lower in exposed H63D carriers than in unexposed carriers, whereas SNc FA was lower in exposed HFE wildtypes than in either unexposed HFE wildtypes or exposed H63D carriers. Serum iron and SNc FA measures correlated positively among exposed, but not unexposed, subjects. These data suggest that H63D heterozygosity is associated with lower neurotoxicity presumptively linked to paraquat. Future studies with larger cohorts are warranted to replicate these findings and examine potential underlying mechanisms, especially given the high prevalence of the H63D allele in humans.
Collapse
Affiliation(s)
- Ernest W Wang
- Department of Neurology, Pennsylvania State Health-Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033, USA
| | - Max L Trojano
- Department of Neurology, Pennsylvania State Health-Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033, USA
| | - Mechelle M Lewis
- Department of Neurology, Pennsylvania State Health-Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033, USA.,Department of Pharmacology, Pennsylvania State Health-Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033, USA
| | - Guangwei Du
- Department of Neurology, Pennsylvania State Health-Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033, USA
| | - Hairong Chen
- Department of Neurology, Pennsylvania State Health-Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033, USA
| | - Gregory L Brown
- Department of Neurology, Pennsylvania State Health-Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033, USA
| | - Leslie C Jellen
- Department of Neurology, Pennsylvania State Health-Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033, USA
| | - Insung Song
- Department of Neurosurgery, Pennsylvania State Health-Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033, USA
| | - Elizabeth Neely
- Department of Neurosurgery, Pennsylvania State Health-Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033, USA
| | - Lan Kong
- Department of Public Health Sciences, Pennsylvania State Health-Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033, USA
| | - James R Connor
- Department of Neurosurgery, Pennsylvania State Health-Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033, USA
| | - Xuemei Huang
- Department of Neurology, Pennsylvania State Health-Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033, USA.,Department of Pharmacology, Pennsylvania State Health-Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033, USA.,Department of Neurosurgery, Pennsylvania State Health-Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033, USA.,Department of Radiology, Pennsylvania State Health-Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033, USA.,Department of Kinesiology, Pennsylvania State Health-Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033, USA
| |
Collapse
|
10
|
Russo M, Sobh A, Zhang P, Loguinov A, Tagmount A, Vulpe CD, Liu B. Functional Pathway Identification With CRISPR/Cas9 Genome-wide Gene Disruption in Human Dopaminergic Neuronal Cells Following Chronic Treatment With Dieldrin. Toxicol Sci 2021; 176:366-381. [PMID: 32421776 DOI: 10.1093/toxsci/kfaa071] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Organochlorine pesticides, once widely used, are extremely persistent and bio-accumulative in the environment. Epidemiological studies have implicated that environmental exposure to organochlorine pesticides including dieldrin is a risk factor for the development of Parkinson's disease. However, the pertinent mechanisms of action remain poorly understood. In this study, we carried out a genome-wide (Brunello library, 19 114 genes, 76 411 sgRNAs) CRISPR/Cas9 screen in human dopaminergic SH-SY5Y neuronal cells exposed to a chronic treatment (30 days) with dieldrin to identify cellular pathways that are functionally related to the chronic cellular toxicity. Our results indicate that dieldrin toxicity was enhanced by gene disruption of specific components of the ubiquitin proteasome system as well as, surprisingly, the protein degradation pathways previously implicated in inherited forms of Parkinson's disease, centered on Parkin. In addition, disruption of regulatory components of the mTOR pathway which integrates cellular responses to both intra- and extracellular signals and is a central regulator for cell metabolism, growth, proliferation, and survival, led to increased sensitivity to dieldrin-induced cellular toxicity. This study is one of the first to apply a genome-wide CRISPR/Cas9-based functional gene disruption screening approach in an adherent neuronal cell line to globally decipher cellular mechanisms that contribute to environmental toxicant-induced neurotoxicity and provides novel insight into the dopaminergic neurotoxicity associated with chronic exposure to dieldrin.
Collapse
Affiliation(s)
- Max Russo
- Department of Pharmacodynamics, College of Pharmacy
| | - Amin Sobh
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida 32610
| | - Ping Zhang
- Department of Pharmacodynamics, College of Pharmacy
| | - Alex Loguinov
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida 32610
| | - Abderrahmane Tagmount
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida 32610
| | - Chris D Vulpe
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida 32610
| | - Bin Liu
- Department of Pharmacodynamics, College of Pharmacy
| |
Collapse
|
11
|
Mondal S, Subramaniam C. Scalable approach towards specific and ultrasensitive cation sensing under harsh environmental conditions by engineering the analyte-transducer interface. NANOSCALE ADVANCES 2021; 3:3752-3761. [PMID: 36133005 PMCID: PMC9418407 DOI: 10.1039/d0na01042a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/17/2021] [Indexed: 06/16/2023]
Abstract
Affordable and high-performing sensing platforms are becoming increasingly critical for sustainable environmental monitoring and medical diagnostics. Such miniaturized and point-of-care sensing platforms need to overcome the fundamental tradeoff between ultrahigh sensitivity and specificity while retaining the dynamic concentration range and robustness of operation. Therefore, designing scalable and robust sensors poses an escalating and immediate demand in a rapidly automated society. Addressing this demand, we demonstrate a cable-type electrochemical sensing platform exhibiting rapid (10 s), extremely reliable (RSD <5%) and ultrahigh sensitivity (ppb levels) towards K+, Cd2+ and Hg2+ found in complex biofluids such as human perspiration and effluent water. The sensor delivers quantifiable performance even with 10 μL of analyte without any requirement of purification or preconcentration and thereby overcomes an important bottleneck for on-field diagnostics. The backbone of the sensor consists of single-walled carbon nanotubes (CNTs) that are conformally coated on affordable cellulose yarns to form ideally non-Faradaic, electrically conductive, capacitive electrodes (CNT-thread). Subsequent coaxial coating of such CNT-threads with an appropriate ionophore membrane (IM) realizes the working electrode exhibiting uniformity in the surface coverage of the ionophore leading to reliable and directly quantifiable signals. Furthermore, we show that the extensive CNT-thread-IM interface is critical to achieve ultrahigh sensitivity and robust operability. Importantly, the design approach adopted is universal and scalable for a range of cations such as K+, Hg2+ and Cd2+. Thus, the sensor delivers ultrasensitive detection of K+ from very low volumes (10 μL) of human perspiration that contains a wide range of other ions (Cu2+, Zn2+, Cd2+, Fe2+, NO3 -, Cl-) at 1000-fold higher ionic strength along with bioinorganic suspended matter (dead cells, organelles). This eliminates any sample treatment or preconcentration requirements thereby overcoming a major obstacle for point-of-care applications. Furthermore, both multicomponent and multivariate analyses are demonstrated with the sensing device targeting portable and wearable applications.
Collapse
Affiliation(s)
- Sudeshna Mondal
- Department of Chemistry, Indian Institute of Technology Bombay Powai 400076 Mumbai India
| | | |
Collapse
|
12
|
Tarazona S, Bernabeu E, Carmona H, Gómez-Giménez B, García-Planells J, Leonards PEG, Jung S, Conesa A, Felipo V, Llansola M. A Multiomics Study To Unravel the Effects of Developmental Exposure to Endosulfan in Rats: Molecular Explanation for Sex-Dependent Effects. ACS Chem Neurosci 2019; 10:4264-4279. [PMID: 31464424 DOI: 10.1021/acschemneuro.9b00304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Exposure to low levels of environmental contaminants, including pesticides, induces neurodevelopmental toxicity. Environmental and food contaminants can reach the brain of the fetus, affecting brain development and leading to neurological dysfunction. The pesticide endosulfan is a persistent pollutant, and significant levels still remain detectable in the environment although its use is banned in some countries. In rats, endosulfan exposure during brain development alters motor activity, coordination, learning, and memory, even several months after uptake, and does so in a sex-dependent way. However, the molecular mechanisms driving these effects have not been studied in detail. In this work, we performed a multiomics study in cerebellum from rats exposed to endosulfan during embryonic development. Pregnant rats were orally exposed to a low dose (0.5 mg/kg) of endosulfan, daily, from gestational day 7 to postnatal day 21. The progeny was evaluated for cognitive and motor functions at adulthood. Expression of messenger RNA and microRNA genes, as well as protein and metabolite levels, were measured on cerebellar samples from males and females. An integrative analysis was conducted to identify altered processes under endosulfan effect. Effects between males and females were compared. Pathways significantly altered by endosulfan exposure included the phosphatidylinositol signaling system, calcium signaling, the cGMP-PKG pathway, the inflammatory and immune system, protein processing in the endoplasmic reticulum, and GABA and taurine metabolism. Sex-dependent effects of endosulfan in the omics results that matched sex differences in cognitive and motor tests were found. These results shed light on the molecular basis of impaired neurodevelopment and contribute to the identification of new biomarkers of neurotoxicity.
Collapse
Affiliation(s)
- Sonia Tarazona
- Department of Genomics of Gene Expression, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
- Department of Applied Statistics, Operations Research and Quality, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Elena Bernabeu
- Department of Genomics of Gene Expression, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Héctor Carmona
- Department of Genomics of Gene Expression, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Belén Gómez-Giménez
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Javier García-Planells
- IMEGEN, Instituto de Medicina Genómica, S.L. Parc Científic de la Universitat de València, 46980 Paterna, Spain
| | - Pim E. G. Leonards
- Department of Environment & Health, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Stephan Jung
- Proteome Sciences R&D GmbH & Co. KG, 60438 Frankfurt, Germany
| | - Ana Conesa
- Microbiology and Cell Science Department, Institute for Food and Agricultural Sciences, University of Florida, Gainesville, Florida 32603, United States
- Genetics Institute, University of Florida, Gainesville, Florida 32603, United States
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Marta Llansola
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| |
Collapse
|
13
|
Cao F, Souders Ii CL, Perez-Rodriguez V, Martyniuk CJ. Elucidating Conserved Transcriptional Networks Underlying Pesticide Exposure and Parkinson's Disease: A Focus on Chemicals of Epidemiological Relevance. Front Genet 2019; 9:701. [PMID: 30740124 PMCID: PMC6355689 DOI: 10.3389/fgene.2018.00701] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/13/2018] [Indexed: 12/21/2022] Open
Abstract
While a number of genetic mutations are associated with Parkinson's disease (PD), it is also widely acknowledged that the environment plays a significant role in the etiology of neurodegenerative diseases. Epidemiological evidence suggests that occupational exposure to pesticides (e.g., dieldrin, paraquat, rotenone, maneb, and ziram) is associated with a higher risk of developing PD in susceptible populations. Within dopaminergic neurons, environmental chemicals can have an array of adverse effects resulting in cell death, such as aberrant redox cycling and oxidative damage, mitochondrial dysfunction, unfolded protein response, ubiquitin-proteome system dysfunction, neuroinflammation, and metabolic disruption. More recently, our understanding of how pesticides affect cells of the central nervous system has been strengthened by computational biology. New insight has been gained about transcriptional and proteomic networks, and the metabolic pathways perturbed by pesticides. These networks and cell signaling pathways constitute potential therapeutic targets for intervention to slow or mitigate neurodegenerative diseases. Here we review the epidemiological evidence that supports a role for specific pesticides in the etiology of PD and identify molecular profiles amongst these pesticides that may contribute to the disease. Using the Comparative Toxicogenomics Database, these transcripts were compared to those regulated by the PD-associated neurotoxicant MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine). While many transcripts are already established as those related to PD (alpha-synuclein, caspases, leucine rich repeat kinase 2, and parkin2), lesser studied targets have emerged as “pesticide/PD-associated transcripts” [e.g., phosphatidylinositol glycan anchor biosynthesis class C (Pigc), allograft inflammatory factor 1 (Aif1), TIMP metallopeptidase inhibitor 3, and DNA damage inducible transcript 4]. We also compared pesticide-regulated genes to a recent meta-analysis of genome-wide association studies in PD which revealed new genetic mutant alleles; the pesticides under review regulated the expression of many of these genes (e.g., ELOVL fatty acid elongase 7, ATPase H+ transporting V0 subunit a1, and bridging integrator 3). The significance is that these proteins may contribute to pesticide-related increases in PD risk. This review collates information on transcriptome responses to PD-associated pesticides to develop a mechanistic framework for quantifying PD risk with exposures.
Collapse
Affiliation(s)
- Fangjie Cao
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, University of Florida Genetics Institute, College of Veterinary Medicine, University of Florida Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL, United States
| | - Christopher L Souders Ii
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, University of Florida Genetics Institute, College of Veterinary Medicine, University of Florida Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL, United States
| | - Veronica Perez-Rodriguez
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, University of Florida Genetics Institute, College of Veterinary Medicine, University of Florida Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL, United States
| | - Christopher J Martyniuk
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, University of Florida Genetics Institute, College of Veterinary Medicine, University of Florida Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL, United States
| |
Collapse
|
14
|
Cao F, Souders CL, Li P, Adamovsky O, Pang S, Qiu L, Martyniuk CJ. Developmental toxicity of the fungicide ziram in zebrafish (Danio rerio). CHEMOSPHERE 2019; 214:303-313. [PMID: 30265938 DOI: 10.1016/j.chemosphere.2018.09.105] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/14/2018] [Accepted: 09/17/2018] [Indexed: 06/08/2023]
Abstract
Ziram is a broad spectrum pesticide that belongs to the class of dimethyl-dithiocarbamate (DTC) fungicides. The objectives of this study were to assess the effects of ziram in developing zebrafish. Ziram was highly toxic to zebrafish embryos, with a 96-h LC50 value of 1082.54 nM (∼0.33 mg/L). Zebrafish embryos at 6 h post-fertilization (hpf) were exposed to solvent control (0.1% DMSO), or one dose of 1, 10, 100, and 1000 nM ziram for 96 h. Ziram induced lethality in a dose-dependent manner, decreased hatching rate and heartbeat, and caused wavy deformities at 72 and 96 hpf at 100 and 1000 nM. Basal oxygen consumption rates of zebrafish at 24 hpf were decreased with 1000 nM, suggesting that ziram affects oxidative phosphorylation. We also measured the expression of transcripts associated with the oxidative stress response (sod1 and sod2) and dopamine receptor signaling at ∼96 h of exposure. There was no difference in the expression of genes related to oxidative stress, nor those related to the dopamine system. Locomotor activity was also assessed in larval zebrafish (7 dpf), and ziram increased total activity, the velocity in light zone, and total distance moved at 10 nM, while it decreased the mean time spent in the dark zone at 1 and 10 nM. Behavioral responses were dependent upon the time point and clutch examined. These data demonstrate that ziram negatively impacts embryonic development (i.e. mortality, hatching, heartbeat and notochord development) of zebrafish, decreases basal respiration of embryos, and alters behavioral responses in larvae.
Collapse
Affiliation(s)
- Fangjie Cao
- Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, China; Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Christopher L Souders
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Pengfei Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ondrej Adamovsky
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA; Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Sen Pang
- Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, China; Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Lihong Qiu
- Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing, 100193, China
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
15
|
Budnik LT, Adam B, Albin M, Banelli B, Baur X, Belpoggi F, Bolognesi C, Broberg K, Gustavsson P, Göen T, Fischer A, Jarosinska D, Manservisi F, O’Kennedy R, Øvrevik J, Paunovic E, Ritz B, Scheepers PTJ, Schlünssen V, Schwarzenbach H, Schwarze PE, Sheils O, Sigsgaard T, Van Damme K, Casteleyn L. Diagnosis, monitoring and prevention of exposure-related non-communicable diseases in the living and working environment: DiMoPEx-project is designed to determine the impacts of environmental exposure on human health. J Occup Med Toxicol 2018; 13:6. [PMID: 29441119 PMCID: PMC5800006 DOI: 10.1186/s12995-018-0186-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 01/15/2018] [Indexed: 02/07/2023] Open
Abstract
The WHO has ranked environmental hazardous exposures in the living and working environment among the top risk factors for chronic disease mortality. Worldwide, about 40 million people die each year from noncommunicable diseases (NCDs) including cancer, diabetes, and chronic cardiovascular, neurological and lung diseases. The exposure to ambient pollution in the living and working environment is exacerbated by individual susceptibilities and lifestyle-driven factors to produce complex and complicated NCD etiologies. Research addressing the links between environmental exposure and disease prevalence is key for prevention of the pandemic increase in NCD morbidity and mortality. However, the long latency, the chronic course of some diseases and the necessity to address cumulative exposures over very long periods does mean that it is often difficult to identify causal environmental exposures. EU-funded COST Action DiMoPEx is developing new concepts for a better understanding of health-environment (including gene-environment) interactions in the etiology of NCDs. The overarching idea is to teach and train scientists and physicians to learn how to include efficient and valid exposure assessments in their research and in their clinical practice in current and future cooperative projects. DiMoPEx partners have identified some of the emerging research needs, which include the lack of evidence-based exposure data and the need for human-equivalent animal models mirroring human lifespan and low-dose cumulative exposures. Utilizing an interdisciplinary approach incorporating seven working groups, DiMoPEx will focus on aspects of air pollution with particulate matter including dust and fibers and on exposure to low doses of solvents and sensitizing agents. Biomarkers of early exposure and their associated effects as indicators of disease-derived information will be tested and standardized within individual projects. Risks arising from some NCDs, like pneumoconioses, cancers and allergies, are predictable and preventable. Consequently, preventative action could lead to decreasing disease morbidity and mortality for many of the NCDs that are of major public concern. DiMoPEx plans to catalyze and stimulate interaction of scientists with policy-makers in attacking these exposure-related diseases.
Collapse
Affiliation(s)
- Lygia Therese Budnik
- Division of Translational Toxicology and Immunology, Institute for Occupational and Maritime Medicine (ZfAM), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Balazs Adam
- Faculty of Public Health, Department of Preventive Medicine, University of Debrecen, Debrecen, Hungary
| | - Maria Albin
- Division of Occupational and Environmental Medicine, University of Lund, Lund, Sweden
- Karolinska Institutet, Institute of Environmental Medicine (IMM), Stockholm, Sweden
| | - Barbara Banelli
- Tumor Epigenetics Unit, Ospedale Policlinico San Martino, National Cancer Institute, IRCCS and University of Genoa, DISSAL, Genoa, Italy
| | - Xaver Baur
- European Society for Environmental and Occupational Medicine, Berlin, Germany
| | - Fiorella Belpoggi
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Bentivoglio, Bologna, Italy
| | - Claudia Bolognesi
- San Martino-IST Environmental Carcinogenesis Unit, IRCCS, Ospedale Policlinico San Martino, National Cancer Institute, Genoa, Italy
| | - Karin Broberg
- Karolinska Institutet, Institute of Environmental Medicine (IMM), Stockholm, Sweden
| | - Per Gustavsson
- Karolinska Institutet, Institute of Environmental Medicine (IMM), Stockholm, Sweden
| | - Thomas Göen
- Social and Environmental Medicine, Institute and Outpatient Clinic of Occupational, Friedrich-Alexander-University Erlangen-Nurnberg, Erlangen, Germany
| | - Axel Fischer
- Institute of Occupational Medicine, Charité Universitäts Medizin, Berlin, Germany
| | | | - Fabiana Manservisi
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Bentivoglio, Bologna, Italy
| | - Richard O’Kennedy
- Biomedical Diagnostics Institute, Dublin City University, Dublin, Ireland
| | | | | | - Beate Ritz
- Center for Occupational and Environmental Health, Fielding School of Public Health (FSPH), University of California Los Angeles (UCLA), Los Angeles, USA
| | - Paul T. J. Scheepers
- Radboud Institute for Health Sciences, Radboudumc (Radboud university medical center), Nijmegen, the Netherlands
| | - Vivi Schlünssen
- National Research Center for the Working Environment, Copenhagen, Denmark
- Department of Public Health, Section Environment, Occupation & Health & Danish Ramazzini Centre Aarhus, Aarhus University, Aarhus, Denmark
| | - Heidi Schwarzenbach
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | | | - Orla Sheils
- Department of Histopathology, Central Pathology Laboratory, St James’s Hospital, Trinity translational Medicine Institute, Dublin, Ireland
| | - Torben Sigsgaard
- Department of Public Health, Section Environment, Occupation & Health & Danish Ramazzini Centre Aarhus, Aarhus University, Aarhus, Denmark
| | - Karel Van Damme
- Center for Human Genetics, University of Leuven, Leuven, Belgium
| | | |
Collapse
|
16
|
Chen T, Tan J, Wan Z, Zou Y, Afewerky HK, Zhang Z, Zhang T. Effects of Commonly Used Pesticides in China on the Mitochondria and Ubiquitin-Proteasome System in Parkinson's Disease. Int J Mol Sci 2017; 18:ijms18122507. [PMID: 29168786 PMCID: PMC5751110 DOI: 10.3390/ijms18122507] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/12/2017] [Accepted: 11/20/2017] [Indexed: 02/08/2023] Open
Abstract
Evidence continues to accumulate that pesticides are the leading candidates of environmental toxins that may contribute to the pathogenesis of Parkinson’s disease. The mechanisms, however, remain largely unclear. According to epidemiological studies, we selected nine representative pesticides (paraquat, rotenone, chlorpyrifos, pendimethalin, endosulfan, fenpyroximate, tebufenpyrad, trichlorphon and carbaryl) which are commonly used in China and detected the effects of the pesticides on mitochondria and ubiquitin-proteasome system (UPS) function. Our results reveal that all the nine studied pesticides induce morphological changes of mitochondria at low concentrations. Paraquat, rotenone, chlorpyrifos, pendimethalin, endosulfan, fenpyroximate and tebufenpyrad induced mitochondria fragmentation. Furthermore, some of them (paraquat, rotenone, chlorpyrifos, fenpyroximate and tebufenpyrad) caused a significant dose-dependent decrease of intracellular ATP. Interestingly, these pesticides which induce mitochondria dysfunction also inhibit 26S and 20S proteasome activity. However, two out of the nine pesticides, namely trichlorphon and carbaryl, were found not to cause mitochondrial fragmentation or functional damage, nor inhibit the activity of the proteasome, which provides significant guidance for selection of pesticides in China. Moreover, our results demonstrate a potential link between inhibition of mitochondria and the UPS, and pesticide-induced Parkinsonism.
Collapse
Affiliation(s)
- Tingting Chen
- State Key Laboratory of Medical Genetics, Xiangya Medical School, Central South University, Changsha 410078, China.
| | - Jieqiong Tan
- State Key Laboratory of Medical Genetics, Xiangya Medical School, Central South University, Changsha 410078, China.
| | - Zhengqing Wan
- State Key Laboratory of Medical Genetics, Xiangya Medical School, Central South University, Changsha 410078, China.
| | - Yongyi Zou
- State Key Laboratory of Medical Genetics, Xiangya Medical School, Central South University, Changsha 410078, China.
| | - Henok Kessete Afewerky
- State Key Laboratory of Medical Genetics, Xiangya Medical School, Central South University, Changsha 410078, China.
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
- The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Zhuohua Zhang
- State Key Laboratory of Medical Genetics, Xiangya Medical School, Central South University, Changsha 410078, China.
| | - Tongmei Zhang
- State Key Laboratory of Medical Genetics, Xiangya Medical School, Central South University, Changsha 410078, China.
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
- The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
17
|
Paul KC, Sinsheimer JS, Cockburn M, Bronstein JM, Bordelon Y, Ritz B. Organophosphate pesticides and PON1 L55M in Parkinson's disease progression. ENVIRONMENT INTERNATIONAL 2017; 107:75-81. [PMID: 28689109 PMCID: PMC5600289 DOI: 10.1016/j.envint.2017.06.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/08/2017] [Accepted: 06/22/2017] [Indexed: 05/13/2023]
Abstract
BACKGROUND Parkinson's disease (PD) has motor and non-motor features that contribute to its phenotype and functional decline. Organophosphate (OP) pesticides and PON1 L55M, which influences OP metabolism, have been implicated in multiple mechanisms related to neuronal cell death and may influence PD symptom progression. OBJECTIVE To investigate whether ambient agricultural OP exposure and PON1 L55M influence the rate of motor, cognitive, and mood-related symptom progression in PD. METHODS We followed a longitudinal cohort of 246 incident PD patients on average over 5years (7.5years after diagnosis), repeatedly measuring symptom progression with the Mini-Mental State Exam (MMSE), Unified Parkinson's Disease Rating Scale (UPDRS), and Geriatric Depressive Scale (GDS). OP exposures were generated with a geographic information system (GIS) based exposure assessment tool. We employed repeated-measures regression to assess associations between OP exposure and/or PON1 L55M genotype and progression. RESULTS High OP exposures were associated with faster progression of motor (UPDRS β=0.24, 95% CI=-0.01, 0.49) and cognitive scores (MMSE β=-0.06, 95% CI=-0.11, -0.01). PON1 55MM was associated with faster progression of motor (UPDRS β=0.28, 95% CI=0.08, 0.48) and depressive symptoms (GDS β=0.07; 95% CI=0.01, 0.13). We also found the PON1 L55M variant to interact with OP exposures in influencing MMSE cognitive scores (β=-1.26, 95% CI=-2.43, -0.09). CONCLUSION Our study provides preliminary support for the involvement of OP pesticides and PON1 in PD-related motor, cognitive, or depressive symptom progression. Future studies are needed to replicate findings and examine whether elderly populations generally are similarly impacted by pesticides or PON1 55M genotypes.
Collapse
Affiliation(s)
- Kimberly C Paul
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, California, USA
| | - Janet S Sinsheimer
- Department of Biostatistics, UCLA Fielding School of Public Health, Los Angeles, California, USA; Departments of Human Genetics and Biomathematics, David Geffen School of Medicine, Los Angeles, California, USA
| | - Myles Cockburn
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, CA, USA
| | - Jeff M Bronstein
- Department of Neurology, David Geffen School of Medicine, Los Angeles, California, USA
| | - Yvette Bordelon
- Department of Neurology, David Geffen School of Medicine, Los Angeles, California, USA
| | - Beate Ritz
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, California, USA; Department of Neurology, David Geffen School of Medicine, Los Angeles, California, USA.
| |
Collapse
|
18
|
Abstract
BACKGROUND Recent evidence highlights the reality of unprecedented human exposure to toxic chemical agents found throughout our environment - in our food and water supply, in the air we breathe, in the products we apply to our skin, in the medical and dental materials placed into our bodies, and even within the confines of the womb. With biomonitoring confirming the widespread bioaccumulation of myriad toxicants among population groups, expanding research continues to explore the pathobiological impact of these agents on human metabolism. METHODS This review was prepared by assessing available medical and scientific literature from Medline as well as by reviewing several books, toxicology journals, government publications, and conference proceedings. The format of a traditional integrated review was chosen. RESULTS Toxicant exposure and accrual has been linked to numerous biochemical and pathophysiological mechanisms of harm. Some toxicants effect metabolic disruption via multiple mechanisms. CONCLUSIONS As a primary causative determinant of chronic disease, toxicant exposures induce metabolic disruption in myriad ways, which consequently result in varied clinical manifestations, which are then categorized by health providers into innumerable diagnoses. Chemical disruption of human metabolism has become an etiological determinant of much illness throughout the lifecycle, from neurodevelopmental abnormalities in-utero to dementia in the elderly.
Collapse
Affiliation(s)
- Stephen J Genuis
- a Faculty of Medicine, University of Alberta , Edmonton , Alberta , Canada
| | - Edmond Kyrillos
- b Department of Family Medicine , Faculty of Medicine, University of Ottawa , Ottawa , Ontario , Canada
| |
Collapse
|
19
|
Ritz BR, Paul KC, Bronstein JM. Of Pesticides and Men: a California Story of Genes and Environment in Parkinson's Disease. Curr Environ Health Rep 2016; 3:40-52. [PMID: 26857251 DOI: 10.1007/s40572-016-0083-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
At the start of the postgenomics era, most Parkinson's disease (PD) etiology cannot be explained by our knowledge of genetic or environmental factors alone. For more than a decade, we have explored gene-environment (GxE) interactions possibly responsible for the heterogeneity of genetic as well as environmental results across populations. We developed three pesticide exposure measures (ambient due to agricultural applications, home and garden use, and occupational use) in a large population-based case-control study of incident PD in central California. Specifically, we assessed interactions with genes responsible for pesticide metabolism (PON1); transport across the blood-brain barrier (ABCB1); pesticides interfering with or depending on dopamine transporter activity (DAT/SLC6A3) and dopamine metabolism (ALDH2); impacting mitochondrial function via oxidative/nitrosative stress (NOS1) or proteasome inhibition (SKP1); and contributing to immune dysregulation (HLA-DR). These studies established some specificity for pesticides' neurodegenerative actions, contributed biologic plausibility to epidemiologic findings, and identified genetically susceptible populations.
Collapse
Affiliation(s)
- Beate R Ritz
- Department of Epidemiology, Fielding School of Public Health, UCLA, 650 Charles Young Dr South, Los Angeles, CA, 90095-1772, USA. .,Center for Occupational and Environmental Health, UCLA, Los Angeles, CA, USA. .,Department of Neurology, Geffen School of Medicine, UCLA, 710 Westwood Plaza, Los Angeles, CA, 90095, USA.
| | - Kimberly C Paul
- Department of Epidemiology, Fielding School of Public Health, UCLA, 650 Charles Young Dr South, Los Angeles, CA, 90095-1772, USA
| | - Jeff M Bronstein
- Department of Neurology, Geffen School of Medicine, UCLA, 710 Westwood Plaza, Los Angeles, CA, 90095, USA
| |
Collapse
|
20
|
Kahl VFS, da Silva J, da Silva FR. Influence of exposure to pesticides on telomere length in tobacco farmers: A biology system approach. Mutat Res 2016; 791-792:19-26. [PMID: 27566293 DOI: 10.1016/j.mrfmmm.2016.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 08/15/2016] [Accepted: 08/15/2016] [Indexed: 06/06/2023]
Abstract
Various pesticides in the form of mixtures must be used to keep tobacco crops pest-free. Recent studies have shown a link between occupational exposure to pesticides in tobacco crops and increased damage to the DNA, mononuclei, nuclear buds and binucleated cells in buccal cells as well as micronuclei in lymphocytes. Furthermore, pesticides used specifically for tobacco crops shorten telomere length (TL) significantly. However, the molecular mechanism of pesticide action on telomere length is not fully understood. Our study evaluated the interaction between a complex mixture of chemical compounds (tobacco cultivation pesticides plus nicotine) and proteins associated with maintaining TL, as well as the biological processes involved in this exposure by System Biology tools to provide insight regarding the influence of pesticide exposure on TL maintenance in tobacco farmers. Our analysis showed that one cluster was associated with TL proteins that act in bioprocesses such as (i) telomere maintenance via telomere lengthening; (ii) senescence; (iii) age-dependent telomere shortening; (iv) DNA repair (v) cellular response to stress and (vi) regulation of proteasome ubiquitin-dependent protein catabolic process. We also describe how pesticides and nicotine regulate telomere length. In addition, pesticides inhibit the ubiquitin proteasome system (UPS) and consequently increase proteins of the shelterin complex, avoiding the access of telomerase in telomere and, nicotine activates UPS mechanisms and promotes the degradation of human telomerase reverse transcriptase (hTERT), decreasing telomerase activity.
Collapse
Affiliation(s)
- Vivian Francília Silva Kahl
- Laboratory of Genetic Toxicology, PPGBioSaúde and PPGGTA, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Juliana da Silva
- Laboratory of Genetic Toxicology, PPGBioSaúde and PPGGTA, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil.
| | | |
Collapse
|
21
|
Vester A, Caudle WM. The Synapse as a Central Target for Neurodevelopmental Susceptibility to Pesticides. TOXICS 2016; 4:toxics4030018. [PMID: 29051423 PMCID: PMC5606656 DOI: 10.3390/toxics4030018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/07/2016] [Accepted: 08/17/2016] [Indexed: 12/12/2022]
Abstract
The developmental period of the nervous system is carefully orchestrated and highly vulnerable to alterations. One crucial factor of a properly-functioning nervous system is the synapse, as synaptic signaling is critical for the formation and maturation of neural circuits. Studies show that genetic and environmental impacts can affect diverse components of synaptic function. Importantly, synaptic dysfunction is known to be associated with neurologic and psychiatric disorders, as well as more subtle cognitive, psychomotor, and sensory defects. Given the importance of the synapse in numerous domains, we wanted to delineate the effects of pesticide exposure on synaptic function. In this review, we summarize current epidemiologic and molecular studies that demonstrate organochlorine, organophosphate, and pyrethroid pesticide exposures target the developing synapse. We postulate that the synapse plays a central role in synaptic vulnerability to pesticide exposure during neurodevelopment, and the synapse is a worthy candidate for investigating more subtle effects of chronic pesticide exposure in future studies.
Collapse
Affiliation(s)
- Aimee Vester
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA.
| | - W Michael Caudle
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA.
- Center for Neurodegenerative Disease, School of Medicine, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
22
|
Kammerl IE, Meiners S. Proteasome function shapes innate and adaptive immune responses. Am J Physiol Lung Cell Mol Physiol 2016; 311:L328-36. [PMID: 27343191 DOI: 10.1152/ajplung.00156.2016] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/17/2016] [Indexed: 11/22/2022] Open
Abstract
The proteasome system degrades more than 80% of intracellular proteins into small peptides. Accordingly, the proteasome is involved in many essential cellular functions, such as protein quality control, transcription, immune responses, cell signaling, and apoptosis. Moreover, degradation products are loaded onto major histocompatibility class I molecules to communicate the intracellular protein composition to the immune system. The standard 20S proteasome core complex contains three distinct catalytic active sites that are exchanged upon stimulation with inflammatory cytokines to form the so-called immunoproteasome. Immunoproteasomes are constitutively expressed in immune cells and have different proteolytic activities compared with standard proteasomes. They are rapidly induced in parenchymal cells upon intracellular pathogen infection and are crucial for priming effective CD8(+) T-cell-mediated immune responses against infected cells. Beyond shaping these adaptive immune reactions, immunoproteasomes also regulate the function of immune cells by degradation of inflammatory and immune mediators. Accordingly, they emerge as novel regulators of innate immune responses. The recently unraveled impairment of immunoproteasome function by environmental challenges and by genetic variations of immunoproteasome genes might represent a currently underestimated risk factor for the development and progression of lung diseases. In particular, immunoproteasome dysfunction will dampen resolution of infections, thereby promoting exacerbations, may foster autoimmunity in chronic lung diseases, and possibly contributes to immune evasion of tumor cells. Novel pharmacological tools, such as site-specific inhibitors of the immunoproteasome, as well as activity-based probes, however, hold promises as innovative therapeutic drugs for respiratory diseases and biomarker profiling, respectively.
Collapse
Affiliation(s)
- Ilona E Kammerl
- Comprehensive Pneumology Center, University Hospital, Ludwig-Maximilians University and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Silke Meiners
- Comprehensive Pneumology Center, University Hospital, Ludwig-Maximilians University and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| |
Collapse
|
23
|
Gao J, Kang XY, Sun S, Li L, Zhang BL, Li YQ, Gao DS. Transcription factor Six2 mediates the protection of GDNF on 6-OHDA lesioned dopaminergic neurons by regulating Smurf1 expression. Cell Death Dis 2016; 7:e2217. [PMID: 27148690 PMCID: PMC4917658 DOI: 10.1038/cddis.2016.120] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 04/06/2016] [Accepted: 04/06/2016] [Indexed: 01/19/2023]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) has strong neuroprotective and neurorestorative effects on dopaminergic (DA) neurons in the substantia nigra (SN); however, the underlying molecular mechanisms remain to be fully elucidated. In this study, we found that the expression level of transcription factor Six2 was increased in damaged DA neurons after GDNF rescue in vivo and in vitro. Knockdown of Six2 resulted in decreased cell viability and increased the apoptosis of damaged DA neurons after GDNF treatment in vitro. In contrast, Six2 overexpression increased cell viability and decreased cell apoptosis. Furthermore, genome-wide chromatin immunoprecipitation sequencing (ChIP-seq) indicated that Six2 directly bound to the promoter CAGCTG sequence of smad ubiquitylation regulatory factor 1 (Smurf1). ChIP-quantitative polymerase chain reaction (qPCR) analysis showed that Smurf1 expression was significantly upregulated after GDNF rescue. Moreover, knockdown of Six2 decreased Smurf1 expression, whereas overexpression of Six2 increased Smurf1 expression in damaged DA neurons after GDNF rescue. Meanwhile, knockdown and overexpression of Smurf1 increased and decreased p53 expression, respectively. Taken together, our results from in vitro and in vivo analysis indicate that Six2 mediates the protective effects of GDNF on damaged DA neurons by regulating Smurf1 expression, which could be useful in identifying potential drug targets for injured DA neurons.
Collapse
Affiliation(s)
- J Gao
- Department of Anatomy and Histology, The Fourth Military Medical University, Xian 710003, Shanxi, China.,Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical College, Xuzhou 221004, Jiangsu, China
| | - X-Y Kang
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical College, Xuzhou 221004, Jiangsu, China
| | - S Sun
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical College, Xuzhou 221004, Jiangsu, China
| | - L Li
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical College, Xuzhou 221004, Jiangsu, China
| | - B-L Zhang
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical College, Xuzhou 221004, Jiangsu, China
| | - Y-Q Li
- Department of Anatomy and Histology, The Fourth Military Medical University, Xian 710003, Shanxi, China
| | - D-S Gao
- Department of Anatomy and Histology, The Fourth Military Medical University, Xian 710003, Shanxi, China.,Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical College, Xuzhou 221004, Jiangsu, China
| |
Collapse
|
24
|
Benesova V, Kinterova V, Kanka J, Toralova T. Characterization of SCF-Complex during Bovine Preimplantation Development. PLoS One 2016; 11:e0147096. [PMID: 26824694 PMCID: PMC4732672 DOI: 10.1371/journal.pone.0147096] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 12/30/2015] [Indexed: 12/28/2022] Open
Abstract
The degradation of maternal proteins is one of the most important events during early development, and it is presumed to be essential for embryonic genome activation (EGA), but the precise mechanism is still not known. It is thought that a large proportion of the degradation of maternal proteins is mediated by the ubiquitin-proteolytic system. In this study we focused on the expression of the Skp1-Cullin1-F-box (SCF) complex, a modular RING-type E3 ubiquitin-ligase, during bovine preimplantation development. The complex consists of three invariable components—Cul1, Skp1, Rbx1 and F-box protein, which determines the substrate specificity. The protein level and mRNA expression of all three invariable members were determined. Cul1 and Skp1 mRNA synthesis was activated at early embryonic stages, at the 4c and early 8c stage, respectively, which suggests that these transcripts are necessary for preparing the embryo for EGA. CUL1 protein level increased from MII to the morula stage, with a significant difference between MII and L8c, and between MII and the morula. The CUL1 protein was localized primarily to nuclei and to a lesser extent to the cytoplasm, with a lower signal in the inner cell mass (ICM) compared to the trophectoderm (TE) at the blastocyst stage. The level of SKP1 protein significantly increased from MII oocytes to 4c embryos, but then significantly decreased again. The localization of the SKP1 protein was analysed throughout the cell and similarly to CUL1 at the blastocyst stage, the staining was less intensive in the ICM. There were no statistical differences in RBX1 protein level and localization. The active SCF-complex, which is determined by the interaction of Cul1 and Skp1, was found throughout the whole embryo during preimplantation development, but there was a difference at the blastocyst stage, which exhibits a much stronger signal in the TE than in the ICM. These results suggest that all these genes could play an important role during preimplantation development. This paper reveals comprehensive expression profile, the basic but important knowledge necessary for further studying.
Collapse
Affiliation(s)
- Veronika Benesova
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics Academy of Science of Czech Republic, v.v.i., Libechov, Czech Republic
- Faculty of Science, Charles University in Prague, Prague, Czech Republic
- * E-mail:
| | - Veronika Kinterova
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics Academy of Science of Czech Republic, v.v.i., Libechov, Czech Republic
- Department of Veterinary Sciences, Czech University of Life Sciences in Prague, Prague, Czech Republic
| | - Jiri Kanka
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics Academy of Science of Czech Republic, v.v.i., Libechov, Czech Republic
| | - Tereza Toralova
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics Academy of Science of Czech Republic, v.v.i., Libechov, Czech Republic
| |
Collapse
|
25
|
Elbaz A, Carcaillon L, Kab S, Moisan F. Epidemiology of Parkinson's disease. Rev Neurol (Paris) 2016; 172:14-26. [DOI: 10.1016/j.neurol.2015.09.012] [Citation(s) in RCA: 221] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 08/25/2015] [Accepted: 09/01/2015] [Indexed: 12/25/2022]
|
26
|
Martin CA, Myers KM, Chen A, Martin NT, Barajas A, Schweizer FE, Krantz DE. Ziram, a pesticide associated with increased risk for Parkinson's disease, differentially affects the presynaptic function of aminergic and glutamatergic nerve terminals at the Drosophila neuromuscular junction. Exp Neurol 2016; 275 Pt 1:232-41. [PMID: 26439313 PMCID: PMC4688233 DOI: 10.1016/j.expneurol.2015.09.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 09/04/2015] [Accepted: 09/26/2015] [Indexed: 12/29/2022]
Abstract
Multiple populations of aminergic neurons are affected in Parkinson's disease (PD), with serotonergic and noradrenergic loci responsible for some non-motor symptoms. Environmental toxins, such as the dithiocarbamate fungicide ziram, significantly increase the risk of developing PD and the attendant spectrum of both motor and non-motor symptoms. The mechanisms by which ziram and other environmental toxins increase the risk of PD, and the potential effects of these toxins on aminergic neurons, remain unclear. To determine the relative effects of ziram on the synaptic function of aminergic versus non-aminergic neurons, we used live-imaging at the Drosophila melanogaster larval neuromuscular junction (NMJ). In contrast to nearly all other studies of this model synapse, we imaged presynaptic function at both glutamatergic Type Ib and aminergic Type II boutons, the latter responsible for storage and release of octopamine, the invertebrate equivalent of noradrenalin. To quantify the kinetics of exo- and endo-cytosis, we employed an acid-sensitive form of GFP fused to the Drosophila vesicular monoamine transporter (DVMAT-pHluorin). Additional genetic probes were used to visualize intracellular calcium flux (GCaMP) and voltage changes (ArcLight). We find that at glutamatergic Type Ib terminals, exposure to ziram increases exocytosis and inhibits endocytosis. By contrast, at octopaminergic Type II terminals, ziram has no detectable effect on exocytosis and dramatically inhibits endocytosis. In contrast to other reports on the neuronal effects of ziram, these effects do not appear to result from perturbation of the Ubiquitin Proteasome System (UPS) or calcium homeostasis. Unexpectedly, ziram also caused spontaneous and synchronized bursts of calcium influx (measured by GCaMP) and electrical activity (measured by ArcLight) at aminergic Type II, but not glutamatergic Type Ib, nerve terminals. These events are sensitive to both tetrodotoxin and cadmium chloride, and thus appear to represent spontaneous depolarizations followed by calcium influx into Type II terminals. We speculate that the differential effects of ziram on Type II versus Type Ib terminals may be relevant to the specific sensitivity of aminergic neurons in PD, and suggest that changes in neuronal excitability could contribute to the increased risk for PD caused by exposure to ziram. We also suggest that the fly NMJ will be useful to explore the synaptic effects of other pesticides associated with an increased risk of PD.
Collapse
Affiliation(s)
- Ciara A Martin
- Department of Psychiatry and Biobehavioral Sciences, Hatos Center for Neuropharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, United States; UCLA Interdepartmental Program in Molecular Toxicology, Los Angeles, CA 90095, United States.
| | - Katherine M Myers
- Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, United States; UCLA Interdepartmental Program for Neuroscience, Los Angeles, CA 90095, United States.
| | - Audrey Chen
- Department of Psychiatry and Biobehavioral Sciences, Hatos Center for Neuropharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, United States; Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, United States.
| | - Nathan T Martin
- UCLA Biomedical Physics Interdepartmental Graduate Program, Los Angeles, CA 90095, United States.
| | - Angel Barajas
- Department of Psychiatry and Biobehavioral Sciences, Hatos Center for Neuropharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, United States.
| | - Felix E Schweizer
- Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, United States; UCLA Interdepartmental Program for Neuroscience, Los Angeles, CA 90095, United States.
| | - David E Krantz
- Department of Psychiatry and Biobehavioral Sciences, Hatos Center for Neuropharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, United States; UCLA Interdepartmental Program in Molecular Toxicology, Los Angeles, CA 90095, United States; UCLA Interdepartmental Program for Neuroscience, Los Angeles, CA 90095, United States.
| |
Collapse
|
27
|
Narayan S, Sinsheimer JS, Paul KC, Liew Z, Cockburn M, Bronstein JM, Ritz B. Genetic variability in ABCB1, occupational pesticide exposure, and Parkinson's disease. ENVIRONMENTAL RESEARCH 2015; 143:98-106. [PMID: 26457621 PMCID: PMC4911423 DOI: 10.1016/j.envres.2015.08.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 08/15/2015] [Accepted: 08/21/2015] [Indexed: 06/02/2023]
Abstract
BACKGROUND Studies suggested that variants in the ABCB1 gene encoding P-glycoprotein, a xenobiotic transporter, may increase susceptibility to pesticide exposures linked to Parkinson's Disease (PD) risk. OBJECTIVES To investigate the joint impact of two ABCB1 polymorphisms and pesticide exposures on PD risk. METHODS In a population-based case control study, we genotyped ABCB1 gene variants at rs1045642 (c.3435C/T) and rs2032582 (c.2677G/T/A) and assessed occupational exposures to organochlorine (OC) and organophosphorus (OP) pesticides based on self-reported occupational use and record-based ambient workplace exposures for 282 PD cases and 514 controls of European ancestry. We identified active ingredients in self-reported occupational use pesticides from a California database and estimated ambient workplace exposures between 1974 and 1999 employing a geographic information system together with records for state pesticide and land use. With unconditional logistic regression, we estimated marginal and joint contributions for occupational pesticide exposures and ABCB1 variants in PD. RESULTS For occupationally exposed carriers of homozygous ABCB1 variant genotypes, we estimated odds ratios of 1.89 [95% confidence interval (CI): (0.87, 4.07)] to 3.71 [95% CI: (1.96, 7.02)], with the highest odds ratios estimated for occupationally exposed carriers of homozygous ABCB1 variant genotypes at both SNPs; but we found no multiplicative scale interactions. CONCLUSIONS This study lends support to a previous report that commonly used pesticides, specifically OCs and OPs, and variant ABCB1 genotypes at two polymorphic sites jointly increase risk of PD.
Collapse
Affiliation(s)
- Shilpa Narayan
- Department of Epidemiology, Fielding School of Public Health, UCLA, Los Angeles, CA, USA
| | - Janet S Sinsheimer
- Departments of Human Genetics and Biomathematics, David Geffen School of Medicine, and Department of Biostatistics, Fielding School of Public Health, UCLA, Los Angeles, CA, USA
| | - Kimberly C Paul
- Department of Epidemiology, Fielding School of Public Health, UCLA, Los Angeles, CA, USA
| | - Zeyan Liew
- Department of Epidemiology, Fielding School of Public Health, UCLA, Los Angeles, CA, USA
| | - Myles Cockburn
- Department of Preventative Medicine, University of Southern California (USC) Keck School of Medicine and Department of Geography, USC, Los Angeles, CA, USA
| | - Jeff M Bronstein
- Department of Neurology, School of Medicine, UCLA, Los Angeles, CA, USA
| | - Beate Ritz
- Department of Epidemiology, Fielding School of Public Health, UCLA, Los Angeles, CA, USA; Department of Neurology, School of Medicine, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
28
|
Cespedes CL, Alarcon J, Aqueveque PM, Lobo T, Becerra J, Balbontin C, Avila JG, Kubo I, Seigler DS. New environmentally-friendly antimicrobials and biocides from Andean and Mexican biodiversity. ENVIRONMENTAL RESEARCH 2015; 142:549-562. [PMID: 26298556 DOI: 10.1016/j.envres.2015.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 08/06/2015] [Accepted: 08/06/2015] [Indexed: 06/04/2023]
Abstract
Persistent application of pesticides often leads to accumulation in the environment and to the development of resistance in various organisms. These chemicals frequently degrade slowly and have the potential to bio-accumulate across the food chain and in top predators. Cancer and neuronal damage at genomic and proteomic levels have been linked to exposure to pesticides in humans. These negative effects encourage search for new sources of biopesticides that are more "environmentally-friendly" to the environment and human health. Many plant or fungal compounds have significant biological activity associated with the presence of secondary metabolites. Plant biotechnology and new molecular methods offer ways to understand regulation and to improve production of secondary metabolites of interest. Naturally occurring crop protection chemicals offer new approaches for pest management by providing new sources of biologically active natural products with biodegradability, low mammalian toxicity and environmentally-friendly qualities. Latin America is one of the world's most biodiverse regions and provide a previously unsuspected reservoir of new and potentially useful molecules. Phytochemicals from a number of families of plants and fungi from the southern Andes and from Mexico have now been evaluated. Andean basidiomycetes are also a great source of scientifically new compounds that are interesting and potentially useful. Use of biopesticides is an important component of integrated pest management (IPM) and can improve the risks and benefits of production of many crops all over the world.
Collapse
Affiliation(s)
- Carlos L Cespedes
- Phytochemical-Ecology, Grupo de Investigación Quimica y Biotecnología de Productos Naturales Bioactivos, Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bio Bio, Chillan, Chile.
| | - Julio Alarcon
- Synthesis/Biotransformation of Natural Products Labs, Grupo de Investigación Quimica y Biotecnología de Productos Naturales Bioactivos, Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bio Bio, Chillan, Chile
| | - Pedro M Aqueveque
- Laboratorio de Microbiología y Micología Aplicada, Departamento de Agroindustrias, Facultad de Ingeniería Agrícola, Universidad de Concepción, Chillan, Chile
| | - Tatiana Lobo
- Escuela de Quimica, Facultad de Ciencias, Universidad Nacional de Colombia sede Medellin, Colombia
| | - Julio Becerra
- Synthesis/Biotransformation of Natural Products Labs, Grupo de Investigación Quimica y Biotecnología de Productos Naturales Bioactivos, Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bio Bio, Chillan, Chile
| | - Cristian Balbontin
- Phytochemical-Ecology, Grupo de Investigación Quimica y Biotecnología de Productos Naturales Bioactivos, Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bio Bio, Chillan, Chile
| | - Jose G Avila
- Laboratorio de Fitoquimica, Unidad UBIPRO, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autonoma de Mexico, Tlalnepantla, Mexico DF, Mexico
| | - Isao Kubo
- ESPM Departmenty, University of California at Berkeley, CA, USA
| | - David S Seigler
- Department of Plant Biology, Herbarium, University of Illinois at Urbana-Champaign, IL, USA
| |
Collapse
|
29
|
Dennis KE, Valentine WM. Ziram and sodium N,N-dimethyldithiocarbamate inhibit ubiquitin activation through intracellular metal transport and increased oxidative stress in HEK293 cells. Chem Res Toxicol 2015; 28:682-90. [PMID: 25714994 PMCID: PMC4406076 DOI: 10.1021/tx500450x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
Ubiquitin activating enzyme E1 plays
a pivotal role in ubiquitin
based protein signaling through regulating the initiating step of
the cascade. Previous studies demonstrated that E1 is inhibited by
covalent modification of reactive cysteines contained within the ubiquitin-binding
groove and by conditions that increase oxidative stress and deplete
cellular antioxidants. In this study, we determined the relative contribution
of covalent adduction and oxidative stress to E1 inhibition produced
by ziram and sodium N,N-dimethyldithiocarbamate
(DMDC) in HEK293 cells. Although no dithiocarbamate-derived E1 adducts
were identified on E1 using shotgun LC/MS/MS for either ziram or DMDC,
both dithiocarbamates significantly decreased E1 activity, with ziram
demonstrating greater potency. Ziram increased intracellular levels
of zinc and copper, DMDC increased intracellular levels of only copper,
and both dithiocarbamates enhanced oxidative injury evidenced by elevated
levels of protein carbonyls and expression of heme oxygenase-1. To
assess the contribution of intracellular copper transport to E1 inhibition,
coincubations were performed with the copper chelator triethylenetetramine
hydrochloride (TET). TET significantly protected E1 activity for both
of the dithiocarbamates and decreased the associated oxidative injury
in HEK293 cells as well as prevented dithiocarbamate-mediated lipid
peroxidation assayed using an ethyl aracidonate micelle system. Because
TET did not completely ameliorate intracellular transport of copper
or zinc for ziram, TET apparently maintained E1 activity through its
ability to diminish dithiocarbamate-mediated oxidative stress. Experiments
to determine the relative contribution of elevated intracellular zinc
and copper were performed using a metal free incubation system and
showed that increases in either metal were sufficient to inhibit E1.
To evaluate the utility of the HEK293 in vitro system for screening
environmental agents, a series of additional pesticides and metals
was assayed, and eight agents that produced a significant decrease
and five that produced a significant increase in activated E1 were
identified. These studies suggest that E1 is a sensitive redox sensor
that can be modulated by exposure to environmental agents and can
regulate downstream cellular processes.
Collapse
Affiliation(s)
- Kathleen E Dennis
- †Department of Pathology, Microbiology and Immunology, ‡Center in Molecular Toxicology, §Vanderbilt Brain Institute, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, Tennessee 37232-2561, United States
| | - William M Valentine
- †Department of Pathology, Microbiology and Immunology, ‡Center in Molecular Toxicology, §Vanderbilt Brain Institute, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, Tennessee 37232-2561, United States
| |
Collapse
|
30
|
Abstract
In recent years, the contribution of exposure to environmental toxicants has been recognized as a significant contributor to the etiopathogenesis of parkinsonism. Of these toxicants, exposure to pesticides, metals, solvents used in manufacturing processes, as well as flame-retardant chemicals used in consumer and commercial products, has received the greatest attention as possible risk factors. Related to this, individuals who are exposed to these compounds at high concentrations or for prolonged periods of time in an occupational setting appear to be one of the more vulnerable populations to these effects. Our understanding of which compounds are involved and the potential molecular pathways that are susceptible to these chemicals and may underlie the pathogenesis has greatly improved. However, there are still hundreds of chemicals that we are exposed to in the environment for which we do not have any information on their potential neurotoxicity on the nigrostriatal dopamine system. Thus, using our past accomplishments as a blueprint, future endeavors should focus on elaborating upon these initial findings in order to identify specific and relevant chemical toxicants in our environment that can impact the risk of parkinsonism and work towards a means to attenuate or abolish their effects on the human population.
Collapse
Affiliation(s)
- W Michael Caudle
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| |
Collapse
|
31
|
Wilson WW, Shapiro LP, Bradner JM, Caudle WM. Developmental exposure to the organochlorine insecticide endosulfan damages the nigrostriatal dopamine system in male offspring. Neurotoxicology 2014; 44:279-87. [PMID: 25092410 PMCID: PMC4175067 DOI: 10.1016/j.neuro.2014.07.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 07/06/2014] [Accepted: 07/24/2014] [Indexed: 11/22/2022]
Abstract
The contribution of environmental toxicants to the etiology and risk of Parkinson's disease (PD) has been clearly established, with organochlorine insecticides routinely shown to damage the nigrostriatal dopamine pathway. Although PD is generally considered an adult onset disease, it has been postulated that exposure to environmental contaminants or other factors early in life during critical periods of neurodevelopment could alter the dopaminergic circuit and predispose individuals to developing PD. Recent epidemiological evidence has found exposure to the organochlorine insecticide endosulfan to be a risk factor for PD. However, the specific dopaminergic targets or vulnerable developmental time points related to endosulfan exposure have not been investigated. Thus, we sought to investigate dopaminergic neurotoxicity following developmental exposure to endosulfan as well as following an additional challenge with MPTP. Our in vitro findings demonstrate a reduction in SK-N-SH cells and ventral mesencephalic primary cultures after endosulfan treatment. Using an in vivo developmental model, exposure to endosulfan during gestation and lactation caused a reduction in DAT and TH in the striatum of male offspring. These alterations were exacerbated following subsequent treatment with MPTP. In contrast, exposure of adult mice to endosulfan did not elicit dopaminergic damage and did not appear to increase the vulnerability of the dopamine neurons to MPTP. These findings suggest that development during gestation and lactation represents a critical window of susceptibility to endosulfan exposure and development of the nigrostriatal dopamine system. Furthermore, these exposures appear to sensitize the dopamine neurons to additional insults that may occur later in life.
Collapse
Affiliation(s)
- W Wyatt Wilson
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322-3090, USA
| | - Lauren P Shapiro
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322-3090, USA
| | - Joshua M Bradner
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322-3090, USA; Center for Neurodegenerative Disease, School of Medicine, Emory University, Atlanta, GA 30322-3090, USA
| | - W Michael Caudle
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322-3090, USA; Center for Neurodegenerative Disease, School of Medicine, Emory University, Atlanta, GA 30322-3090, USA.
| |
Collapse
|
32
|
Céspedes CL, Salazar JR, Ariza-Castolo A, Yamaguchi L, Avila JG, Aqueveque P, Kubo I, Alarcón J. Biopesticides from plants: Calceolaria integrifolia s.l. ENVIRONMENTAL RESEARCH 2014; 132:391-406. [PMID: 24893349 DOI: 10.1016/j.envres.2014.04.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 03/31/2014] [Accepted: 04/02/2014] [Indexed: 06/03/2023]
Abstract
The effects of persistent organic pollutants (POPs) on humans and biodiversity are multiple and varied. Nowadays environmentally-friendly pesticides are strongly preferred to POPs. It is noteworthy that the crop protection role of pesticides and other techniques, i.e. biopesticides, plant extracts, prevention methods, organic methods, evaluation of plant resistance to certain pests under an integrated pest management (IPM), could improve the risks and benefits which must be assessed on a sound scientific basis. For this directive it is crucial to bring about a significant reduction in the use of chemical pesticides, not least through the promotion of sustainable alternative solutions such as organic farming and IPM. Biopesticides are derived from natural materials such as animals, plants, bacteria, and certain minerals. Most of them are biodegradable in relatively short periods of time. On this regard, substances from Calceolaria species emerge as a strong alternative to the use of POPs. The American genus Calceolaria species are regarded both as a notorious weeds and popular ornamental garden plants. Some have medicinal applications. Other taxa of Calceolaria are toxic to insects and resistant to microbial attack. These properties are probably associated with the presence of terpenes, iridoids, flavonoids, naphthoquinones and phenylpropanoids previously demonstrated to have interesting biological activities. In this article a comprehensive evaluation of the potential utilization of Calceolaria species as a source of biopesticides is made. The chemical profile of selected members of the Chilean Calceolaria integrifolia sensu lato complex represents a significant addition to previous studies. New secondary metabolites were isolated, identified and tested for their antifeedant, insect growth regulation and insecticidal activities against Spodoptera frugiperda and Drosophila melanogaster. These species serve as a model of insect pests using conventional procedures. Additionally, bactericidal and fungicidal activity were determined. Dunnione mixed with gallic acid was the most active fungistatic and fungicidal combination encountered. Several compounds as isorhamnetin, combined with ferulic and gallic acid quickly reduced cell viability, but cell viability was recovered quickly and did not differ from that of the control. The effect of these mixtures on cultures of Aspergillus niger, Fusarium moniliforme, Fusarium sporotrichum, Rhizoctonia solani, and Trichophyton mentagrophytes, was sublethal. However, when fungistatic isorhamnetin and dunnione were combined with sublethal amounts of both ferulic and gallic acid, respectively, strong fungicidal activity against theses strains was observed. Thus, dunnione combined with gallic acid completely restricted the recovery of cell viability. This apparent synergistic effect was probably due to the blockade of the recovery process from induced-stress. The same series of phenolics (iridoids, flavonoids, naphthoquinones and phenylpropanoids) were also tested against the Gram-negative bacteria Escherichia coli, Enterobacter agglomerans, and Salmonella typhi, and against the Gram-positive bacteria Bacillus subtilis, Sarcinia lutea, and Staphylococcus aureus and their effects compared with those that of kanamycin. Mixtures of isorhamnetin/dunnione/kaempferol/ferulic/gallic acid in various combinations were found to have the most potent bactericidal and fungicidal activity with MFC between 10 and 50 μg/ml. Quercetin was found to be the most potent fungistatic single compound with an MIC of 15 µg/ml. A time-kill curve study showed that quercetin was fungicidal against fungi assayed at any growth stage. This antifungal activity was slightly enhanced by combination with gallic acid. The primary antifungal action of the mixtures assayed likely comes from their ability to act as nonionic surfactants that disrupt the function of native membrane-associated proteins. Hence, the antifungal activity of isorhamnetin and other O-methyl flavonols appears to be mediated by biophysical processes. Maximum activity is obtained when the balance between hydrophilic and hydrophobic portions of the molecules of the mixtures becomes the most appropriate. Diterpenes, flavonoids, phenylpropanoids, iridoids and phenolic acids were identified by chromatographic procedures (HPLC-DAD), ESI-MS, and NMR hyphenated techniques.
Collapse
Affiliation(s)
- Carlos L Céspedes
- Basic Science Department, Faculty of Sciences, University of Bío Bío, Andres Bello Av, s/n, Chillán, P.O. Box 447, Ñuble 3780000, Chile.
| | - Juan R Salazar
- Facultad de Ciencias Químicas, Universidad La Salle, México DF, México
| | | | - Lydia Yamaguchi
- Instituto de Química, Universidad de São Paulo, São Paulo, Brazil
| | - José G Avila
- Laboratorio de Fitoquímica, UBIPRO, FES-Iztacala, UNAM, México DF, México
| | - Pedro Aqueveque
- Laboratorio de Microbiología y Micología Aplicada, Departamento de Agroindustrias, Facultad de Ingeniería Agrícola, Universidad de Concepción, Chillán, Chile
| | - Isao Kubo
- ESPM Department, University of California at Berkeley, USA
| | - Julio Alarcón
- Basic Science Department, Faculty of Sciences, University of Bío Bío, Andres Bello Av, s/n, Chillán, P.O. Box 447, Ñuble 3780000, Chile
| |
Collapse
|
33
|
Barnhill LM, Bronstein JM. Pesticides and Parkinson's disease: is it in your genes? Neurodegener Dis Manag 2014; 4:197-200. [DOI: 10.2217/nmt.14.18] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Lisa M Barnhill
- Department of Neurology & Molecular Toxicology Program, David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Jeff M Bronstein
- Department of Neurology & Molecular Toxicology Program, David Geffen School of Medicine, Los Angeles, CA 90095, USA
- Greater Los Angeles Veterans Administration Medical Center, Los Angeles, CA 90095, USA
| |
Collapse
|
34
|
Sandhya P, Danda D. Role of vacuolar ATPase and Skp1 in Sjögren's syndrome. Med Hypotheses 2014; 82:319-25. [PMID: 24480435 DOI: 10.1016/j.mehy.2013.12.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 12/23/2013] [Accepted: 12/24/2013] [Indexed: 12/23/2022]
Abstract
Immune mechanisms alone cannot directly account for exocrine gland dysfunction and extraglandular features such as renal tubular acidosis, neuropathy, hearing loss and fatigue in Sjögren's syndrome (SS). Absence of Vacuolar ATPase (V-ATPase) has been reported in SS related renal tubular acidosis (RTA). We hypothesise how defect in V-ATPase could account for decreased neurotransmitter release leading onto exocrine dysfunction, neuroendocrine manifestations and hearing loss which are well described manifestations in SS. S-phase-kinase-associated protein-1 (Skp1) is a constituent of RAVE which is involved in V-ATPase assembly. It is also a component of SCF ligase which is crucial in NFκB signalling. SKP1 also interacts with TRIM 21/Ro 52 which is an autoantigen in SS. By virtue of these interactions, we postulate how a defective skp1 could fit into the existing pathogenesis of SS and also account for increased risk of lymphoma in SS as well as congenital heart block in fetus of mothers with SS.
Collapse
Affiliation(s)
- Pulukool Sandhya
- Department of Clinical Immunology and Rheumatology, Christian Medical College and Hospital, Vellore 632004, India.
| | - Debashish Danda
- Department of Clinical Immunology and Rheumatology, Christian Medical College and Hospital, Vellore 632004, India
| |
Collapse
|
35
|
Balkan S, Aktaç T. Protective effects of α-lipoic acid and chondroitin-4-sulfate against benomyl-induced toxicity in rats. TOXICOLOGICAL & ENVIRONMENTAL CHEMISTRY 2013; 95:1712-1721. [DOI: 10.1080/02772248.2014.897707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|