1
|
Komprdová K, Domínguez-Romero E, Sharma BM, Komprda J, Melymuk L, Murínová ĽP, Čonka K, Trnovec T, Černá M, Drobná B, Fabišiková A, Sejáková ZS, Scheringer M. Application of a pharmacokinetic model in characterizing sources of polychlorinated biphenyl exposure and determining threshold daily intakes for adverse health effects in infants and toddlers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154734. [PMID: 35337869 DOI: 10.1016/j.scitotenv.2022.154734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/27/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Characterization of PCB exposure sources for vulnerable population groups is essential to minimize the health effects of PCB exposure. At the same time, it is important to consolidate the knowledge on threshold intakes of PCBs for infants and toddlers to prevent health effects. We estimated total PCB concentrations from birth to 2 years of age in children from Slovak and Czech populations, which continue to have high PCB concentrations in breast milk. Using a pharmacokinetic (PK) model, we characterized dominant PCB exposure sources and estimated new threshold estimated daily intakes (TEDI) (above which adverse effects cannot be excluded) for postnatal PCB exposure in infants and toddlers. In the PK model, concentrations of seven indicator PCBs in breast milk and cord blood samples from 291 mother-child pairs from the Slovak birth cohort, and 396 breast milk samples from Czech mothers we used, together with their physiological characteristics and PCB concentrations from other exposure sources (food, dust, air). The estimated total PCB concentrations in children's blood at different ages were compared with threshold PCB concentrations of 500, 700 and 1000 ng·glipid-1 in serum proposed by the French Agency for Food, Environmental and Occupational Health & Safety (ANSES) and the German Environment Agency (UBA), above which possible adverse health effects may be expected. We estimated that up to 20.6% of Slovak children and up to 45.7% of Czech children at two years of age exceeded the threshold value of 700 ng·glipid-1 in blood. Mean TEDIs leading to values of 500 ng·glipid-1 in blood for children up to two years ranged between 110 and 220 ng·kg-1·bw·day-1, varying according to breastfeeding duration. Breast milk and prenatal exposure contributed to 71%-85% of PCBs exposure at two years of age. In contrast, the contributions of PCBs from dust and indoor air were negligible.
Collapse
Affiliation(s)
- Klára Komprdová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic.
| | | | - Brij Mohan Sharma
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic.
| | - Jiří Komprda
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic.
| | - Lisa Melymuk
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic.
| | - Ľubica Palkovičová Murínová
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, Limbová 12, 83303 Bratislava, Slovakia.
| | - Kamil Čonka
- Department of Toxic Organic Pollutants, Faculty of Medicine, Slovak Medical University, Limbová 12, 833 03 Bratislava, Slovakia.
| | - Tomáš Trnovec
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, Limbová 12, 83303 Bratislava, Slovakia.
| | - Milena Černá
- National Institute of Public Health, Prague, Czech Republic.
| | - Beata Drobná
- Department of Toxic Organic Pollutants, Faculty of Medicine, Slovak Medical University, Limbová 12, 833 03 Bratislava, Slovakia.
| | - Anna Fabišiková
- Department of Toxic Organic Pollutants, Faculty of Medicine, Slovak Medical University, Limbová 12, 833 03 Bratislava, Slovakia.
| | - Zuzana Stachová Sejáková
- Department of Toxic Organic Pollutants, Faculty of Medicine, Slovak Medical University, Limbová 12, 833 03 Bratislava, Slovakia.
| | - Martin Scheringer
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic.
| |
Collapse
|
2
|
Brun NR, Panlilio JM, Zhang K, Zhao Y, Ivashkin E, Stegeman JJ, Goldstone JV. Developmental exposure to non-dioxin-like polychlorinated biphenyls promotes sensory deficits and disrupts dopaminergic and GABAergic signaling in zebrafish. Commun Biol 2021; 4:1129. [PMID: 34561524 PMCID: PMC8463681 DOI: 10.1038/s42003-021-02626-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/25/2021] [Indexed: 11/09/2022] Open
Abstract
The most abundant polychlorinated biphenyl (PCB) congeners found in the environment and in humans are neurotoxic. This is of particular concern for early life stages because the exposure of the more vulnerable developing nervous system to neurotoxic chemicals can result in neurobehavioral disorders. In this study, we uncover currently unknown links between PCB target mechanisms and neurobehavioral deficits using zebrafish as a vertebrate model. We investigated the effects of the abundant non-dioxin-like (NDL) congener PCB153 on neuronal morphology and synaptic transmission linked to the proper execution of a sensorimotor response. Zebrafish that were exposed during development to concentrations similar to those found in human cord blood and PCB contaminated sites showed a delay in startle response. Morphological and biochemical data demonstrate that even though PCB153-induced swelling of afferent sensory neurons, the disruption of dopaminergic and GABAergic signaling appears to contribute to PCB-induced motor deficits. A similar delay was observed for other NDL congeners but not for the potent dioxin-like congener PCB126. The effects on important and broadly conserved signaling mechanisms in vertebrates suggest that NDL PCBs may contribute to neurodevelopmental abnormalities in humans and increased selection pressures in vertebrate wildlife.
Collapse
Affiliation(s)
- Nadja R Brun
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
| | - Jennifer M Panlilio
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Kun Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.,Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Yanbin Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.,Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Evgeny Ivashkin
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA.,A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - John J Stegeman
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
| | - Jared V Goldstone
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
| |
Collapse
|
3
|
Buekers J, Verheyen V, Remy S, Covaci A, Colles A, Koppen G, Govarts E, Bruckers L, Leermakers M, St-Amand A, Schoeters G. Combined chemical exposure using exposure loads on human biomonitoring data of the 4th Flemish Environment and Health Study (FLEHS-4). Int J Hyg Environ Health 2021; 238:113849. [PMID: 34547602 DOI: 10.1016/j.ijheh.2021.113849] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 01/14/2023]
Abstract
To improve our understanding of internal exposure to multiple chemicals, the concept exposure load (EL) was used on human biomonitoring (HBM) data of the 4th FLEHS (Flemish Environment and Health Study; 2016-2020). The investigated chemicals were per- and polyfluoroalkyl substances (PFASs), bisphenols, phthalates and alternative plasticizers, flame retardants, pesticides, toxic metals, organochlorine compounds and polycyclic aromatic hydrocarbons (PAHs). The EL calculates "the number of chemicals to which individuals are internally exposed above a predefined threshold". In this study, the 50th and 90th percentile of each of the 45 chemicals were applied as thresholds for the EL calculations for 387 study participants. Around 20% of the participants were exposed to >27 chemicals above the P50 and to >6 chemicals above the P90 level. This shows that participants can be internally exposed to multiple chemicals in relatively high concentrations. When the chemical composition of the EL was considered, the variability between individuals was driven by some chemicals more than others. The variability of the chemical profiles at high exposure loads (EL-P90) was somewhat dominated by e.g. organochlorine chemicals, PFASs, phthalates, PAHs, organophosphate flame retardants, bisphenols (A & F), pesticides, metals, but to a lesser extent by brominated flame retardants, the organophosphorus flame retardants TCIPP & TBOEP, naphthalene and benzene, bisphenols S, B & Z, the pesticide 2,4-D, the phthalate DEP and alternative plasticizer DINCH. Associations between the EL and exposure determinants suggested determinants formerly associated with fat soluble chemicals, PFASs, bisphenols, and PAHs. This information adds to the knowledge needed to reduce the exposure by policymakers and citizens. However, a more in depth study is necessary to explore in detail the causes for the higher EL in some individuals. Some limitations in the EL concept are that a binary number is used for exposure above or below a threshold, while toxicity and residence time in the body are not accounted for and the sequence of exposure in different life stages is unknown. However, EL is a first useful step to get more insight in multiple chemical exposure in higher exposed subpopulations (relative to the rest of the sampled population).
Collapse
Affiliation(s)
- Jurgen Buekers
- VITO, Flemish Institute for Technological Research, Unit Health, Boeretang 200, 2400, Mol, Belgium.
| | - Veerle Verheyen
- VITO, Flemish Institute for Technological Research, Unit Health, Boeretang 200, 2400, Mol, Belgium
| | - Sylvie Remy
- VITO, Flemish Institute for Technological Research, Unit Health, Boeretang 200, 2400, Mol, Belgium
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, 2610, Wilrijk, Belgium
| | - Ann Colles
- VITO, Flemish Institute for Technological Research, Unit Health, Boeretang 200, 2400, Mol, Belgium
| | - Gudrun Koppen
- VITO, Flemish Institute for Technological Research, Unit Health, Boeretang 200, 2400, Mol, Belgium
| | - Eva Govarts
- VITO, Flemish Institute for Technological Research, Unit Health, Boeretang 200, 2400, Mol, Belgium
| | - Liesbeth Bruckers
- Hasselt University, Data Science Institute, Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Diepenbeek, Belgium
| | - Martine Leermakers
- Department of Analytical, Environmental and Geochemistry (AMGC), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | | | - Greet Schoeters
- VITO, Flemish Institute for Technological Research, Unit Health, Boeretang 200, 2400, Mol, Belgium; Department of Biomedical Sciences, University of Antwerp, 2610, Wilrijk, Belgium
| |
Collapse
|
4
|
Aluru N, Krick KS, McDonald AM, Karchner SI. Developmental Exposure to PCB153 (2,2',4,4',5,5'-Hexachlorobiphenyl) Alters Circadian Rhythms and the Expression of Clock and Metabolic Genes. Toxicol Sci 2021; 173:41-52. [PMID: 31621872 DOI: 10.1093/toxsci/kfz217] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Polychlorinated biphenyls (PCBs) are highly persistent and ubiquitously distributed environmental pollutants. Based on their chemical structure, PCBs are classified into non-ortho-substituted and ortho-substituted congeners. Non-ortho-substituted PCBs are structurally similar to dioxin and their toxic effects and mode of action are well-established. In contrast, very little is known about the effects of ortho-substituted PCBs, particularly, during early development. The objective of this study is to investigate the effects of exposure to an environmentally prominent ortho-substituted PCB (2,2',4,4',5,5'-hexachlorobiphenyl; PCB153) on zebrafish embryos. We exposed zebrafish embryos to 3 different concentrations of PCB153 starting from 4 to 120 hours post-fertilization (hpf). We quantified gross morphological changes, behavioral phenotypes, gene expression changes, and circadian behavior in the larvae. There were no developmental defects during the exposure period, but starting at 7 dpf, we observed spinal deformity in the 10 μM PCB153 treated group. A total of 633, 2227, and 3378 differentially expressed genes were observed in 0.1 μM (0.036 μg/ml), 1 μM (0.36 μg/ml), and 10 μM (3.6 μg/ml) PCB153-treated embryos, respectively. Of these, 301 genes were common to all treatment groups. KEGG pathway analysis revealed enrichment of genes related to circadian rhythm, FoxO signaling, and insulin resistance pathways. Behavioral analysis revealed that PCB153 exposure significantly alters circadian behavior. Disruption of circadian rhythms has been associated with the development of metabolic and neurological diseases. Thus, understanding the mechanisms of action of environmental chemicals in disrupting metabolism and other physiological processes is essential.
Collapse
Affiliation(s)
- Neelakanteswar Aluru
- Biology Department, Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
| | - Keegan S Krick
- Biology Department, Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
| | - Adriane M McDonald
- Biology Department, Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543.,Biology Department, Spelman College, Atlanta, Georgia 30314
| | - Sibel I Karchner
- Biology Department, Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
| |
Collapse
|
5
|
Simhadri JJ, Loffredo CA, Trnovec T, Murinova LP, Nunlee-Bland G, Koppe JG, Schoeters G, Jana SS, Ghosh S. Biomarkers of metabolic disorders and neurobehavioral diseases in a PCB- exposed population: What we learned and the implications for future research. ENVIRONMENTAL RESEARCH 2020; 191:110211. [PMID: 32937175 PMCID: PMC7658018 DOI: 10.1016/j.envres.2020.110211] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/08/2020] [Indexed: 05/15/2023]
Abstract
Polychlorinated biphenyls (PCBs) are one of the original twelve classes of toxic chemicals covered by the Stockholm Convention on Persistent Organic Pollutants (POP), an international environmental treaty signed in 2001. PCBs are present in the environment as mixtures of multiple isomers at different degree of chlorination. These compounds are manmade and possess useful industrial properties including extreme longevity under harsh conditions, heat absorbance, and the ability to form an oily liquid at room temperature that is useful for electrical utilities and in other industrial applications. They have been widely used for a wide range of industrial purposes over the decades. Despite a ban in production in 1979 in the US and many other countries, they remain persistent and ubiquitous in environment as contaminants due to their improper disposal. Humans, independent of where they live, are therefore exposed to PCBs, which are routinely found in random surveys of human and animal tissues. The prolonged exposures to PCBs have been associated with the development of different diseases and disorders, and they are classified as endocrine disruptors. Due to its ability to interact with thyroid hormone, metabolism and function, they are thought to be implicated in the global rise of obesity diabetes, and their potential toxicity for neurodevelopment and disorders, an example of gene by environmental interaction (GxE). The current review is primarily intended to summarize the evidence for the association of PCB exposures with increased risks for metabolic dysfunctions and neurobehavioral disorders. In particular, we present evidence of gene expression alterations in PCB-exposed populations to construct the underlying pathways that may lead to those diseases and disorders in course of life. We conclude the review with future perspectives on biomarker-based research to identify susceptible individuals and populations.
Collapse
Affiliation(s)
- Jyothirmai J Simhadri
- Department of Pediatrics and Child Health, College of Medicine, Howard University, Washington DC, USA
| | - Christopher A Loffredo
- Departments of Oncology and of Biostatistics, Georgetown University, Washington, DC, USA
| | - Tomas Trnovec
- Department of Pediatrics, EKZ-AMC, University of Amsterdam, Netherlands
| | | | - Gail Nunlee-Bland
- Department of Pediatrics and Child Health, College of Medicine, Howard University, Washington DC, USA
| | - Janna G Koppe
- Department of Pediatrics, EKZ-AMC, University of Amsterdam, Netherlands
| | - Greet Schoeters
- Dept. Biomedical Sciences, University of Antwerp, Antwerp, Belgium & Flemish Institute for Technological Research (VITO), Mol, Belgium
| | | | - Somiranjan Ghosh
- Department of Pediatrics and Child Health, College of Medicine, Howard University, Washington DC, USA; Department of Biology, Howard University, Washington, DC, USA.
| |
Collapse
|
6
|
Strémy M, Šutová Z, Murínová ĽP, Richterová D, Wimmerová S, Čonka K, Drobná B, Fábelová L, Jurečková D, Jusko TA, Tihányi J, Trnovec T. The spatial distribution of congener-specific human PCB concentrations in a PCB-polluted region. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:2292-2303. [PMID: 30332662 PMCID: PMC6246788 DOI: 10.1016/j.scitotenv.2018.10.123] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 10/09/2018] [Accepted: 10/09/2018] [Indexed: 05/30/2023]
Abstract
Serum PCB congener concentrations were measured in 602 adults living near a PCB pollution source in eastern Slovakia. We created isoconcentration maps for 21 PCB congeners by geocoding each participant's place of residence and kriging. Concentrations of PCB congeners were inversely associated with the distance of the participants' residence from the source of pollution. Congener-specific risk factors were derived, particularly for PCBs 52 and 153. We observed that the spatial distribution of serum concentrations was influenced by micro-climatic parameters and physicochemical properties of the congeners. PCB congener profiles strongly correlated with that of the PCB commercial product Delor 106, which was manufactured in the region. The isoconcentration maps indicate that the zones with the highest predicted congener concentration have a mean area of approximately 235.75±188.56km2 and the mean enrichment of concentration of congeners in serum in these zones is about 5.12±1.36. We estimate that depending on congener approximately 23,457±18,762 individuals with PCB concentrations exceeding health-based guidance values live in these zones.
Collapse
Affiliation(s)
- Maximilián Strémy
- Research Centre of Progressive Technologies, Faculty of Materials Science and Technology in Trnava, Slovak University of Technology in Bratislava, Hajdóczyho 1, 917 24 Trnava, Slovakia
| | - Zuzana Šutová
- Research Centre of Progressive Technologies, Faculty of Materials Science and Technology in Trnava, Slovak University of Technology in Bratislava, Hajdóczyho 1, 917 24 Trnava, Slovakia
| | | | | | - Soňa Wimmerová
- Slovak Medical University, Limbová 12, 83303 Bratislava, Slovakia
| | - Kamil Čonka
- Slovak Medical University, Limbová 12, 83303 Bratislava, Slovakia
| | - Beata Drobná
- Slovak Medical University, Limbová 12, 83303 Bratislava, Slovakia
| | - Lucia Fábelová
- Slovak Medical University, Limbová 12, 83303 Bratislava, Slovakia
| | - Dana Jurečková
- The Štefan Kukura Hospital and Policlinic, Michalovce, Slovakia
| | - Todd A Jusko
- Departments of Public Health Sciences and Environmental Medicine, University of Rochester School of Medicine and Dentistry, 265 Crittenden Blvd., Rochester, NY 14642, USA
| | - Juraj Tihányi
- Slovak Medical University, Limbová 12, 83303 Bratislava, Slovakia
| | - Tomáš Trnovec
- Slovak Medical University, Limbová 12, 83303 Bratislava, Slovakia.
| |
Collapse
|
7
|
Kakimoto R, Ichiba M, Matsumoto A, Nakai K, Tatsuta N, Iwai-Shimada M, Ishiyama M, Ryuda N, Someya T, Tokumoto I, Ueno D. Variability and reliability of POP concentrations in multiple breast milk samples collected from the same mothers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:16309-16315. [PMID: 29332276 DOI: 10.1007/s11356-017-1031-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 12/12/2017] [Indexed: 06/07/2023]
Abstract
Risk assessment of infant using a realistic persistent organic pollutant (POP) exposure through breast milk is essential to devise future regulation of POPs. However, recent investigations have demonstrated that POP levels in breast milk collected from the same mother showed a wide range of variation daily and monthly. To estimate the appropriate sample size of breast milk from the same mother to obtain reliable POP concentrations, breast milk samples were collected from five mothers living in Japan from 2006 to 2012. Milk samples from each mother were collected 3 to 6 times a day through 3 to 7 days consecutively. Food samples as the duplicated method were collected from two mothers during the period of breast milk sample collection. Those were employed for POP (PCBs, DDTs, chlordanes, and HCB) analysis. PCB concentrations detected in breast milk samples showed a wide range of variation which was maximum 63 and 60% of relative standard deviation (RSD) in lipid and wet weight basis, respectively. The time course trend of those variations among the mothers did not show any typical pattern. A larger amount of PCB intake through food seemed to affect 10 h after those concentrations in breast milk in lipid weight basis. Intraclass correlation coefficient (ICC) analyses indicated that the appropriate sample size for good reproducibility of POP concentrations in breast milk required at least two samples for lipid and wet weight basis.
Collapse
Affiliation(s)
- Risa Kakimoto
- Department of Environmental Science, Graduate School of Agriculture, Saga University, Honjo 1, Saga, 840-8502, Japan
| | - Masayoshi Ichiba
- Department of Social Medicine, Saga University School of Medicine, Saga, Japan
| | - Akiko Matsumoto
- Department of Social Medicine, Saga University School of Medicine, Saga, Japan
| | - Kunihiko Nakai
- Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Nozomi Tatsuta
- Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Miyuki Iwai-Shimada
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Japan
| | - Momoko Ishiyama
- Department of Environmental Science, Graduate School of Agriculture, Saga University, Honjo 1, Saga, 840-8502, Japan
| | - Noriko Ryuda
- Department of Environmental Science, Graduate School of Agriculture, Saga University, Honjo 1, Saga, 840-8502, Japan
| | - Takashi Someya
- Department of Environmental Science, Graduate School of Agriculture, Saga University, Honjo 1, Saga, 840-8502, Japan
| | - Ieyasu Tokumoto
- Department of Environmental Science, Graduate School of Agriculture, Saga University, Honjo 1, Saga, 840-8502, Japan
| | - Daisuke Ueno
- Department of Environmental Science, Graduate School of Agriculture, Saga University, Honjo 1, Saga, 840-8502, Japan.
| |
Collapse
|
8
|
Koštiaková V, Moleti A, Wimmerová S, Jusko TA, Palkovičová Murínová Ľ, Sisto R, Richterová D, Kováč J, Čonka K, Patayová H, Tihányi J, Trnovec T. DPOAEs in infants developmentally exposed to PCBs show two differently time spaced exposure sensitive windows. CHEMOSPHERE 2016; 161:518-526. [PMID: 27470944 PMCID: PMC6042651 DOI: 10.1016/j.chemosphere.2016.07.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/14/2016] [Accepted: 07/14/2016] [Indexed: 05/09/2023]
Abstract
The study aim was to identify the timing of sensitive windows for ototoxicity related to perinatal exposure to PCBs. A total of 351 and 214 children from a birth cohort in eastern Slovakia underwent otoacoustic testing at 45 and 72 months, respectively, and distortion product otoacoustic emissions (DPOAEs) at 11 frequencies were recorded. Cord and child 6-, 16-, 45-, and 72- month blood samples were analyzed for PCB 153 concentration. The PCB 153 concentration-time profiles were approximated with a system model to calculate area under the PCB*time curves (AUCs) for specific time intervals (3 and 6 months for 45 and 72 months data, respectively). DPOAE amplitudes were correlated (Spearman) with cord serum PCB and AUCs, markers of prenatal and postnatal exposure, respectively. Two exposure critical windows were identified in infants, the first related to prenatal and early postnatal and the second to postnatal exposure to PCBs. Our data have shown tonotopicity, sexual dimorphism, and asymmetry in ototoxicity of PCBs.
Collapse
Affiliation(s)
| | - Arturo Moleti
- University of Rome, Tor Vergata, Department of Physics, Rome, Italy
| | - Soňa Wimmerová
- Slovak Medical University, Limbová 14, 83303, Bratislava, Slovakia
| | - Todd A Jusko
- Departments of Public Health Sciences and Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | - Renata Sisto
- INAIL Research, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Monteporzio Catone, Italy
| | | | - Ján Kováč
- Department of Stomatology and Maxillofacial Surgery, Comenius University, Faculty of Medicine in Bratislava, Bratislava, Slovakia
| | - Kamil Čonka
- Slovak Medical University, Limbová 14, 83303, Bratislava, Slovakia
| | | | - Juraj Tihányi
- Slovak Medical University, Limbová 14, 83303, Bratislava, Slovakia
| | - Tomáš Trnovec
- Slovak Medical University, Limbová 14, 83303, Bratislava, Slovakia.
| |
Collapse
|
9
|
Caspersen IH, Kvalem HE, Haugen M, Brantsæter AL, Meltzer HM, Alexander J, Thomsen C, Frøshaug M, Bremnes NMB, Broadwell SL, Granum B, Kogevinas M, Knutsen HK. Determinants of plasma PCB, brominated flame retardants, and organochlorine pesticides in pregnant women and 3 year old children in The Norwegian Mother and Child Cohort Study. ENVIRONMENTAL RESEARCH 2016; 146:136-44. [PMID: 26749444 DOI: 10.1016/j.envres.2015.12.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/25/2015] [Accepted: 12/18/2015] [Indexed: 05/26/2023]
Abstract
BACKGROUND Exposure to persistent organic pollutants (POPs) during prenatal and postnatal life has been extensively studied in relation to adverse health effects in children. OBJECTIVES The aim was to identify determinants of the concentrations of polychlorinated biphenyls (PCBs), brominated flame retardants (polybrominated diphenyl ethers, PBDEs; polybrominated biphenyl, PBB), and organochlorine pesticides (OCPs) in blood samples from pregnant women and children in The Norwegian Mother and Child Cohort Study (MoBa). METHODS Blood samples were collected from two independent subsamples within MoBa; a group of women (n=96) enrolled in mid-pregnancy during the years 2002-2008 and a group of 3 year old children (n=99) participating during 2010-2011. PCB congeners (74, 99, 138, 153, 180, 170, 194, 209, 105, 114, 118, 156, 157, 167, and 189), brominated flame retardants (PBDE-28, 47, 99, 100, 153, 154, and PBB-153), as well as the OCPs hexachlorobenzene (HCB), oxychlordane, 4,4'dichlorodiphenyltrichloroethane (DDT), and 4,4'dichlorodiphenyldichloroethylene (DDE) were measured in both pregnant women and children. RESULTS Age, low parity, and low pre-pregnant BMI were the most important determinants of increased plasma concentrations of POPs in pregnant women. In 3 year old children, prolonged breastfeeding duration was a major determinant of increased POP concentrations. Estimated dietary exposure to PCBs during pregnancy was positively associated with plasma concentrations in 3 year old children, but not in pregnant women. Plasma concentrations were approximately 40% higher in children compared to pregnant women. CONCLUSIONS Several factors associated with exposure and toxicokinetics, i.e. accumulation, excretion and transfer via breastmilk of POPs were the main predictors of POP levels in pregnant women and children. Diet, which is the main exposure source for these compounds in the general population, was found to predict PCB levels only among children. For the PBDEs, for which non-dietary sources are more important, toxicokinetic factors appeared to have less predictive impact.
Collapse
Affiliation(s)
| | - Helen Engelstad Kvalem
- Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, NO-0403 Oslo, Norway; Bjørknes College, Lovisenberggata 13, NO-0456 Oslo, Norway
| | - Margaretha Haugen
- Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, NO-0403 Oslo, Norway
| | - Anne Lise Brantsæter
- Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, NO-0403 Oslo, Norway
| | | | - Jan Alexander
- Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, NO-0403 Oslo, Norway
| | - Cathrine Thomsen
- Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, NO-0403 Oslo, Norway
| | - May Frøshaug
- Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, NO-0403 Oslo, Norway
| | | | | | - Berit Granum
- Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, NO-0403 Oslo, Norway
| | - Manolis Kogevinas
- Centre for Research in Environmental Epidemiology (CREAL), Doctor Aiguader 88, Barcelona, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain; CIBER Epidemiologia y Salud Pública (CIBERESP), Madrid, Spain
| | | |
Collapse
|
10
|
Egsmose EL, Bräuner EV, Frederiksen M, Mørck TA, Siersma VD, Hansen PW, Nielsen F, Grandjean P, Knudsen LE. Associations between plasma concentrations of PCB 28 and possible indoor exposure sources in Danish school children and mothers. ENVIRONMENT INTERNATIONAL 2016; 87:13-19. [PMID: 26638015 DOI: 10.1016/j.envint.2015.11.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 11/07/2015] [Accepted: 11/08/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Polychlorinated biphenyls (PCBs) are ubiquitously present in the environment and are suspected of carcinogenic, neurotoxic and immunotoxic effects. Significantly higher plasma concentrations of the congener PCB 28 occur in children compared to adults. Exposure in schools may contribute to this difference. OBJECTIVE To determine whether increased blood plasma concentrations of PCB 28 in Danish school children and mothers are associated with living in homes or attending schools constructed in the PCB period (1959-1977). METHODS PCB 28 was analyzed in plasma samples from 116 children aged 6-11years and 143 mothers living in an urban and a rural area in Denmark and participating in the European pilot project DEMOCOPHES (Demonstration of a study to COordinate and Perform Human Biomonitoring on a European Scale). In Denmark, PCBs were used in construction in the period 1950-1977, and year of construction or renovation of the homes and schools was used as a proxy for indoor PCB exposure. Linear regression models were used to assess the association between potential PCB exposure from building materials and lipid adjusted concentrations of PCB 28 in plasma, with and without adjustment for potential confounders. RESULTS Among the 116 children and 143 mothers, we were able to specify home construction period in all but 4 children and 5 mothers leaving 111 children and 138 mothers for our analyses. The median lipid adjusted plasma PCB 28 concentration was 3 (range: 1-28) ng/g lipid in the children and 2 (range: 1-8) ng/g lipid in the mothers. Children living in homes built in the PCB period had significantly higher lipid adjusted plasma PCB 28 concentrations compared to children living in homes built before or after the PCB period. Following adjustment for covariates, PCB 28 concentrations in children were 40 (95% CI: 13; 68) percent higher than concentrations of children living in homes constructed at other times. Furthermore, children attending schools built or substantially refurbished in the PCB period also had significantly higher (46%, 95% CI: 22; 70) PCB 28 concentrations compared to children attending schools constructed before or after the PCB period, while their mothers had similar concentrations. Adjustment for the most prevalent congener, PCB 153, did not change this effect of home or school construction. When both home and school construction year were included in the models, the increase in lipid adjusted plasma PCB 28 for children living in or attending schools from the PCB period was no longer statistically significant. The individual effect of home and school construction periods could not be evaluated further with the available data. CONCLUSION Our results suggest that PCB exposure in the indoor environment in schools and homes constructed during the PCB period may contribute significantly to children's plasma PCB 28 concentration. Efforts to minimize PCB exposure in indoor environments should be considered.
Collapse
Affiliation(s)
- Emilie Lund Egsmose
- Section of Environmental Health, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Elvira Vaclavik Bräuner
- Department of Construction and Health, Danish Building Research Institute, Aalborg University, Denmark
| | - Marie Frederiksen
- Department of Construction and Health, Danish Building Research Institute, Aalborg University, Denmark
| | - Thit Aarøe Mørck
- Section of Environmental Health, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Volkert Dirk Siersma
- The Research Unit for General Practice and Section of General Practice, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Pernille Winton Hansen
- Section of Environmental Health, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Flemming Nielsen
- Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - Philippe Grandjean
- Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - Lisbeth E Knudsen
- Section of Environmental Health, Faculty of Health Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
11
|
Šovčíková E, Wimmerová S, Strémy M, Kotianová J, Loffredo CA, Murínová ĽP, Chovancová J, Čonka K, Lancz K, Trnovec T. Simple reaction time in 8-9-year old children environmentally exposed to PCBs. Neurotoxicology 2015; 51:138-44. [PMID: 26480857 DOI: 10.1016/j.neuro.2015.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 10/05/2015] [Accepted: 10/12/2015] [Indexed: 10/22/2022]
Abstract
Simple reaction time (SRT) has been studied in children exposed to polychlorinated biphenyls (PCBs), with variable results. In the current work we examined SRT in 146 boys and 161 girls, aged 8.53 ± 0.65 years (mean ± SD), exposed to PCBs in the environment of eastern Slovakia. We divided the children into tertiles with regard to increasing PCB serum concentration. The mean ± SEM serum concentration of the sum of 15 PCB congeners was 191.15 ± 5.39, 419.23 ± 8.47, and 1315.12 ± 92.57 ng/g lipids in children of the first, second, and third tertiles, respectively. We created probability distribution plots for each child from their multiple trials of the SRT testing. We fitted response time distributions from all valid trials with the ex-Gaussian function, a convolution of a normal and an additional exponential function, providing estimates of three independent parameters μ, σ, and τ. μ is the mean of the normal component, σ is the standard deviation of the normal component, and τ is the mean of the exponential component. Group response time distributions were calculated using the Vincent averaging technique. A Q-Q plot comparing probability distribution of the first vs. third tertile indicated that deviation of the quantiles of the latter tertile from those of the former begins at the 40th percentile and does not show a positive acceleration. This was confirmed in comparison of the ex-Gaussian parameters of these two tertiles adjusted for sex, age, Raven IQ of the child, mother's and father's education, behavior at home and school, and BMI: the results showed that the parameters μ and τ significantly (p ≤ 0.05) increased with PCB exposure. Similar increases of the ex-Gaussian parameter τ in children suffering from ADHD have been previously reported and interpreted as intermittent attentional lapses, but were not seen in our cohort. Our study has confirmed that environmental exposure of children to PCBs is associated with prolongation of simple reaction time reflecting impairment of cognitive functions.
Collapse
Affiliation(s)
- Eva Šovčíková
- Department of Environmental Medicine, Slovak Medical University, Limbová 12, 83303 Bratislava, Slovakia
| | - Soňa Wimmerová
- Institute of Biophysics, Informatics and Biostatistics, Slovak Medical University, Limbová 12, 83303 Bratislava, Slovakia
| | - Maximilián Strémy
- Research Centre of Progressive Technologies, Faculty of Materials Science and Technology in Trnava, Slovak University of Technology in Bratislava, Hajdóczyho 1, 91724 Trnava, Slovakia
| | - Janette Kotianová
- Institute of Applied Informatics, Automatization and Mechatronics, Faculty of Materials Science and Technology in Trnava, Slovak University of Technology in Bratislava, Hajdóczyho 1, 91724 Trnava, Slovakia
| | - Christopher A Loffredo
- Department of Oncology & Department of Biostatistics, Georgetown University, Washington, DC 20057, USA
| | | | - Jana Chovancová
- Department of Toxic Organic Pollutants, Slovak Medical University, Limbová 12, 83303 Bratislava, Slovakia
| | - Kamil Čonka
- Department of Toxic Organic Pollutants, Slovak Medical University, Limbová 12, 83303 Bratislava, Slovakia
| | - Kinga Lancz
- Department of Environmental Medicine, Slovak Medical University, Limbová 12, 83303 Bratislava, Slovakia
| | - Tomáš Trnovec
- Department of Environmental Medicine, Slovak Medical University, Limbová 12, 83303 Bratislava, Slovakia.
| |
Collapse
|
12
|
Sisto R, Moleti A, Palkovičová Murínová Ľ, Wimmerová S, Lancz K, Tihányi J, Čonka K, Šovčíková E, Hertz-Picciotto I, Jusko TA, Trnovec T. Environmental exposure to organochlorine pesticides and deficits in cochlear status in children. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:14570-8. [PMID: 25989860 PMCID: PMC4592791 DOI: 10.1007/s11356-015-4690-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 05/11/2015] [Indexed: 05/24/2023]
Abstract
The aim of this study was to examine the hypothesis that organochlorine pesticides (OCPs), hexachlorobenzene (HCB), β-hexachlorocyclohexane (β-HCH), and 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (p,p'-DDT) and its metabolite 1,1-dichloro-2,2-bis(4-chlorophenyl)ethylene (p,p'- DDE) are ototoxic to humans. A multivariate general linear model was designed, in which the statistical relation between blood serum concentrations of HCB, β-HCH, p,p'-DDT, or p,p'-DDE at different ages (at birth, 6, 16, and 45 months) and the distortion product otoacoustic emissions (DPOAEs) was treated as multivariate outcome variables. Polychlorinated biphenyl (PCB) congeners and OCPs were strongly correlated in serum of children from our cohort. To ascertain that the association between DPOAEs at a given frequency and concentration of a pesticide is not influenced by PCBs or other OCP also present in serum, we calculated benchmark concentrations (BMCs) relating DPOAEs to a serum pesticide alone and in presence of confounding PCB-153 or other OCPs. We found that BMCs relating DPOAEs to serum pesticides are not affected by confounders. DPOAE amplitudes were associated with serum OCPs at all investigated time intervals, however, in a positive way with prenatal exposure and in a negative way with all postnatal exposures. We observed tonotopicity in the association of pesticides with amplitude of DPOAEs as its strength was frequency dependent. We conclude that exposure to OCPs in infancy at environmental concentrations may be associated with hearing deficits.
Collapse
Affiliation(s)
- Renata Sisto
- Department of Occupational Hygiene, INAIL, Monte Porzio Catone, Italy
| | - Arturo Moleti
- Department of Physics, University of Rome Tor Vergata, Rome, Italy
| | | | - Soňa Wimmerová
- Institute of Biophysics, Informatics and Biostatistics, Slovak Medical University, Limbová 12, 83303, Bratislava, Slovakia
| | - Kinga Lancz
- Department of Environmental Medicine, Slovak Medical University, Limbová 12, 83303, Bratislava, Slovakia
| | - Juraj Tihányi
- Department of Environmental Medicine, Slovak Medical University, Limbová 12, 83303, Bratislava, Slovakia
| | - Kamil Čonka
- Department of Toxic Organic Pollutants, Slovak Medical University, Limbová 12, 83303, Bratislava, Slovakia
| | - Eva Šovčíková
- Department of Environmental Medicine, Slovak Medical University, Limbová 12, 83303, Bratislava, Slovakia
| | - Irva Hertz-Picciotto
- Division of Environmental and Occupational Health, Department of Public Health Sciences, School of Medicine, University of California Davis, Davis, CA, USA
| | - Todd A Jusko
- Division of Epidemiology, Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, 265 Crittenden Blvd, CU420644, Rochester, NY, 14642, USA
| | - Tomáš Trnovec
- Department of Environmental Medicine, Slovak Medical University, Limbová 12, 83303, Bratislava, Slovakia.
| |
Collapse
|