1
|
Kiouvrekis Y, Zikas S, Katis I, Tsilikas I, Filippopoulos I. Development of electromagnetic pollution maps utilizing Gaussian process spatial models. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176907. [PMID: 39442732 DOI: 10.1016/j.scitotenv.2024.176907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
The rapid proliferation of wireless technologies in everyday environments demands the quick and precise estimation of electromagnetic field distribution. This distribution is commonly depicted through the electric field strength across various geographical areas. The objective of this research is to determine the most effective geospatial model for generating a national-level electric field strength map within the 30 MHz-6 GHz frequency range. To achieve this, we employed five different methodologies for constructing the electric field strength map. Four of these methodologies are based on Gaussian process regression, while the fifth utilizes the classical weighted-average method of the nearest neighbor. Our study focused on a country with a total area of 9251 km2, using a dataset comprising 3621 measurements. The findings reveal that Gaussian process spatial models, also known as Kriging models, generally outperform other methods when applied to spatial data. However, it was observed that, after excluding some outlier data points, the performance of the classical nearest neighbor models becomes comparable to that of the Gaussian process models. This indicates the potential for both approaches to be effective, depending on the data quality and the presence of outliers.
Collapse
Affiliation(s)
- Yiannis Kiouvrekis
- Mathematics, Computer Science and Artificial Intelligence Laboratory (MCSAI Lab), Department of Public and One Health, University of Thessaly, Terma Mavromichali, Karditsa 43100, Thessaly, Greece; Business School, University of Nicosia, 46 Makedonitissas Ave, Nicosia 2417, Cyprus; University of Limassol, Agias Fylaxeos, Limassol 3025, Cyprus.
| | - Sotiris Zikas
- Mathematics, Computer Science and Artificial Intelligence Laboratory (MCSAI Lab), Department of Public and One Health, University of Thessaly, Terma Mavromichali, Karditsa 43100, Thessaly, Greece
| | - Ilias Katis
- Mathematics, Computer Science and Artificial Intelligence Laboratory (MCSAI Lab), Department of Public and One Health, University of Thessaly, Terma Mavromichali, Karditsa 43100, Thessaly, Greece
| | - Ioannis Tsilikas
- National Technical University of Athens, Dept. Applied Physics and Mathematics, Iroon Polytechniou 9, Zografou, 15772 Athens, Greece
| | | |
Collapse
|
2
|
Korkmaz E, Aerts S, Coesoij R, Bhatt CR, Velghe M, Colussi L, Land D, Petroulakis N, Spirito M, Bolte J. A comprehensive review of 5G NR RF-EMF exposure assessment technologies: fundamentals, advancements, challenges, niches, and implications. ENVIRONMENTAL RESEARCH 2024; 260:119524. [PMID: 38972338 DOI: 10.1016/j.envres.2024.119524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/16/2024] [Accepted: 06/30/2024] [Indexed: 07/09/2024]
Abstract
This review offers a detailed examination of the current landscape of radio frequency (RF) electromagnetic field (EMF) assessment tools, ranging from spectrum analyzers and broadband field meters to area monitors and custom-built devices. The discussion encompasses both standardized and non-standardized measurement protocols, shedding light on the various methods employed in this domain. Furthermore, the review highlights the prevalent use of mobile apps for characterizing 5G NR radio network data. A growing need for low-cost measurement devices is observed, commonly referred to as "sensors" or "sensor nodes", that are capable of enduring diverse environmental conditions. These sensors play a crucial role in both microenvironmental surveys and individual exposures, enabling stationary, mobile, and personal exposure assessments based on body-worn sensors, across wider geographical areas. This review revealed a notable need for cost-effective and long-lasting sensors, whether for individual exposure assessments, mobile (vehicle-integrated) measurements, or incorporation into distributed sensor networks. However, there is a lack of comprehensive information on existing custom-developed RF-EMF measurement tools, especially in terms of measuring uncertainty. Additionally, there is a need for real-time, fast-sampling solutions to understand the highly irregular temporal variations EMF distribution in next-generation networks. Given the diversity of tools and methods, a comprehensive comparison is crucial to determine the necessary statistical tools for aggregating the available measurement data.
Collapse
Affiliation(s)
- Erdal Korkmaz
- The Hague University of Applied Sciences, Research Group Smart Sensor Systems, 2627 AL, Delft, The Netherlands.
| | - Sam Aerts
- The Hague University of Applied Sciences, Research Group Smart Sensor Systems, 2627 AL, Delft, The Netherlands
| | - Richard Coesoij
- Delft University of Technology, Department of Microelectronics, 2628 CN, Delft, The Netherlands
| | - Chhavi Raj Bhatt
- Australian Radiation Protection and Nuclear Safety Agency, VIC 3085, Yallambie, Australia
| | - Maarten Velghe
- National Institute for Public Health and the Environment, Centre for Sustainability, Environment and Health, 3720 BA, Bilthoven, The Netherlands
| | - Loek Colussi
- Dutch Authority for Digital Infrastructure, 9700 AL, Groningen, The Netherlands
| | - Derek Land
- The Hague University of Applied Sciences, Research Group Smart Sensor Systems, 2627 AL, Delft, The Netherlands
| | - Nikolaos Petroulakis
- Institute of Computer Science, Foundation for Research and Technology-Hellas, 70013, Heraklion, Greece
| | - Marco Spirito
- Delft University of Technology, Department of Microelectronics, 2628 CN, Delft, The Netherlands
| | - John Bolte
- The Hague University of Applied Sciences, Research Group Smart Sensor Systems, 2627 AL, Delft, The Netherlands; National Institute for Public Health and the Environment, Centre for Sustainability, Environment and Health, 3720 BA, Bilthoven, The Netherlands
| |
Collapse
|
3
|
Loizeau N, Zahner M, Schindler J, Stephan C, Fröhlich J, Gugler M, Ziegler T, Röösli M. Comparison of ambient radiofrequency electromagnetic field (RF-EMF) levels in outdoor areas and public transport in Switzerland in 2014 and 2021. ENVIRONMENTAL RESEARCH 2023; 237:116921. [PMID: 37598840 DOI: 10.1016/j.envres.2023.116921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/09/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Mobile communication technology has evolved rapidly over the last ten years with a drastic increase in wireless data traffic and the deployment of new telecommunication technologies. The aim of this study was to evaluate the ambient radiofrequency electromagnetic field (RF-EMF) levels and temporal changes in various microenvironments in Switzerland in 2014 and 2021. We measured the ambient RF-EMF levels in V/m in the same 49 outdoor areas and in public transport in 2014 and 2021 using portable RF-EMF exposure meters carried in a backpack. The areas were selected to represent some typical types of microenvironments (e.g. urban city centres, suburban and rural areas). We calculated the summary statistics (mean, percentiles) in mW/m2 and converted back to V/m for each microenvironment. We evaluated the distribution and the variability of the ambient RF-EMF levels per microenvironment types in 2021. Finally, we compared the ambient RF-EMF mean levels in 2014 and 2021 using multilevel regression modelling. In outdoor areas, the average ambient RF-EMF mean levels per microenvironment in 2021 ranged from 0.19 V/m in rural areas to 0.43 V/m in industrial areas (overall mean: 0.27 V/m). In public transports, the mean levels were 0.27 V/m in buses, 0.33 V/m in trains and 0.36 V/m in trams. In 2021, mean levels across all outdoor areas were -0.022 V/m lower (95% confidence interval: -0.072, 0.030) than in 2014. Results from our comprehensive measurement study across Switzerland suggest that RF-EMF levels in public places have not significantly changed between 2014 and 2021 despite an 18-fold increase in mobile data transmission during that period. The absence of temporal changes may be owed to the shift to newer mobile communication technologies, which are more efficient.
Collapse
Affiliation(s)
- Nicolas Loizeau
- Swiss Tropical and Public Health Institute, 4123, Allschwil, Switzerland; University of Basel, 4001, Basel, Switzerland
| | | | - Johannes Schindler
- Grolimund + Partner AG Environmental Engineering, 3097, Bern, Switzerland
| | - Christa Stephan
- Grolimund + Partner AG Environmental Engineering, 3097, Bern, Switzerland
| | | | | | - Toni Ziegler
- Grolimund + Partner AG Environmental Engineering, 3097, Bern, Switzerland
| | - Martin Röösli
- Swiss Tropical and Public Health Institute, 4123, Allschwil, Switzerland; University of Basel, 4001, Basel, Switzerland.
| |
Collapse
|
4
|
Paniagua-Sánchez JM, García-Cobos FJ, Rufo-Pérez M, Jiménez-Barco A. Large-area mobile measurement of outdoor exposure to radio frequencies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162852. [PMID: 36931516 DOI: 10.1016/j.scitotenv.2023.162852] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 05/06/2023]
Abstract
A rapid outdoor sampling technique was tested to measure human exposure to radio frequencies in a city of 96,000 inhabitants. The technique consisted of taking measurements with a personal exposure meter inside a moving vehicle. Tests were carried out to quantify the alteration produced by the vehicle's structure and obtain correction factors in order to minimize this alteration. Data were collected at 3065 points where signals in the FM radio and mobile phone wavebands were detected. The coefficients of exposure to sources with multiple frequencies due to thermal effects were calculated from the measured values of the electric field. Kriging was used to generate maps of these coefficients, and these maps were then merged with aerial photographs of the city to readily identify the areas with greater or lesser exposure. The results indicated that the vehicle increased the FM broadcasting radiation readings by a factor of 1.66, but attenuated those of mobile telephony by factors of 0.54-0.66. The mean electric field levels detected throughout the city were 0.231, 0.057, 0.140, 0.124, and 0.110 V/m for the frequency bands FM, LTE 800 (DL), GSM + UMTS 900(DL), GSM 1800(DL), and UMTS 2100(DL), respectively. The mean coefficient of exposure to sources with multiple frequencies was 2.05 × 10-4, and the maximum was 9.81 × 10-3. It can be concluded from the study that it is possible to assess radio frequency exposure using this method, and that the technique is scalable to different sized cities. It also allows measurement at different times so as to analyse the temporal variation of radio frequency levels.
Collapse
Affiliation(s)
- Jesús M Paniagua-Sánchez
- Department Applied Physics, Polytechnic School, University of Extremadura, Avda. de la Universidad s/n, 10003 Cáceres, Spain.
| | - Francisco J García-Cobos
- Polytechnic School, University of Extremadura, Avda. de la Universidad s/n, 10003 Cáceres, Spain
| | - Montaña Rufo-Pérez
- Department Applied Physics, Polytechnic School, University of Extremadura, Avda. de la Universidad s/n, 10003 Cáceres, Spain
| | - Antonio Jiménez-Barco
- Department Applied Physics, Polytechnic School, University of Extremadura, Avda. de la Universidad s/n, 10003 Cáceres, Spain
| |
Collapse
|
5
|
Ramirez-Vazquez R, Escobar I, Vandenbosch GAE, Vargas F, Caceres-Monllor DA, Arribas E. Measurement studies of personal exposure to radiofrequency electromagnetic fields: A systematic review. ENVIRONMENTAL RESEARCH 2023; 218:114979. [PMID: 36460078 DOI: 10.1016/j.envres.2022.114979] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
The last 25 years have seen an increase in the number of radiofrequency sources with the global adoption of smartphones as primary connectivity devices. The objective of this work was to review and evaluate the measured studies of personal exposure to Radiofrequency Electromagnetic Fields (RF-RMF) and meet the basic quality criteria eligible for inclusion in this Review, according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, following the eligibility criteria of the PECO (Population, Exposure, Comparator, and Outcome) methodology, and the instrument for critical reading Critical Appraisal Skills Programme Español (CASPe). We systematically reviewed the works published between January 1, 1998, and December 31, 2021, yielding 56 publications. Of the different types of studies in which personal exposure to RF-EMF has been measured with two measurement methodologies can be highlighted: Personal measurements with volunteers and Personal measurements with a trained researcher (touring a specific area, one or several microenvironments, an entire city, walking or in some means of transport). Personal exposimeters were used in 83% of the studies. The lowest mean was measured in Egypt with a value of 0.00100 μW/m2 (1.00 nW/m2) in 2007 and the highest mean was measured in Belgium with a value of 285000 μW/m2 (0.285 W/m2) in 2019. The results of our study confirm that RF-EMF exposure levels are well below the maximum levels established by the ICNIRP guidelines.
Collapse
Affiliation(s)
- Raquel Ramirez-Vazquez
- University of Castilla-La Mancha, Applied Physics Department, Faculty of Computer Science Engineering, Avda. de España S/n, University Campus, 02071, Albacete, Spain
| | - Isabel Escobar
- University of Castilla-La Mancha, Applied Physics Department, Faculty of Computer Science Engineering, Avda. de España S/n, University Campus, 02071, Albacete, Spain
| | - Guy A E Vandenbosch
- ESAT-WaveCoRE, Dep. of Electrical Engineering, Katholieke Universiteit Leuven, Kasteelpark Arenberg 10, Box 2444, 3001, Leuven, Belgium
| | | | | | - Enrique Arribas
- University of Castilla-La Mancha, Applied Physics Department, Faculty of Computer Science Engineering, Avda. de España S/n, University Campus, 02071, Albacete, Spain.
| |
Collapse
|
6
|
Martínez-González A, Monzó-Cabrera J, Martínez-Sáez AJ, Lozano-Guerrero AJ. Minimization of measuring points for the electric field exposure map generation in indoor environments by means of Kriging interpolation and selective sampling. ENVIRONMENTAL RESEARCH 2022; 212:113577. [PMID: 35636463 DOI: 10.1016/j.envres.2022.113577] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/05/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
In a world with increasing systems accessing to radio spectrum, the concern for exposure to electromagnetic fields is growing and therefore it is necessary to check limits in those areas where electromagnetic sources are working. Therefore, radio and exposure maps are continuously being generated, mainly in outdoor areas, by using many interpolation techniques. In this work, Surfer software and Kriging interpolation have been used for the first time to generate an indoor exposure map. A regular measuring mesh has been generated. Elimination of Less Significant Points (ELSP) and Geometrical Elimination of Neighbors (GEN) strategies to reduce the measuring points have been presented and evaluated. Both strategies have been compared to the map generated with all the measurements by calculating the root mean square and mean absolute errors. Results indicate that ELSP method can reduce up to 70% of the mesh measuring points while producing similar exposure maps to the one generated with all the measuring points. GEN, however, produces distorted maps and much higher error indicators even for 50% of eliminated measuring points. As a conclusion, a procedure for reducing the measuring points to generate radio and exposure maps is proposed based on the ELSP method and the Kriging interpolation.
Collapse
Affiliation(s)
- A Martínez-González
- Electromagnetics and Matter Group, Universidad Politécnica de Cartagena, Campus Muralla, Cartagena, E-30202, Spain.
| | - J Monzó-Cabrera
- Electromagnetics and Matter Group, Universidad Politécnica de Cartagena, Campus Muralla, Cartagena, E-30202, Spain
| | - A J Martínez-Sáez
- Electromagnetics and Matter Group, Universidad Politécnica de Cartagena, Campus Muralla, Cartagena, E-30202, Spain
| | - A J Lozano-Guerrero
- Electromagnetics and Matter Group, Universidad Politécnica de Cartagena, Campus Muralla, Cartagena, E-30202, Spain
| |
Collapse
|
7
|
Najera A, Ramis R, Las-Heras Andes F, Garcia-Pardo C, Alonso JI, Gonzalez-Rubio J, Hernando A, Martinez JL, Marcos FV. Comments on "What is the radiation before 5G? A correlation study between measurements in situ and in real time and epidemiological indicators in Vallecas, Madrid". ENVIRONMENTAL RESEARCH 2022; 212:113314. [PMID: 35500852 DOI: 10.1016/j.envres.2022.113314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Alberto Najera
- Department of Medical Sciences, Faculty of Medicine of Albacete, University of Castilla-La Mancha, Albacete, Spain; Centro Regional de Investigaciones Biomédicas (CRIB), University of Castilla-La Mancha, Albacete, Spain.
| | - Rebeca Ramis
- Chronic Diseases Department, National Epidemiology Centre, Carlos III Health Institute, Madrid, Spain.
| | - Fernando Las-Heras Andes
- Signal Theory and Communications (TSC-UNIOVI), Dept. of Electrical Engineering, University of Oviedo, Oviedo, Spain.
| | | | - Jose I Alonso
- Dpto. Señales, Sistemas y Radiocomunicaciones, ETSI Telecomunicación, Universidad Politécnica de Madrid, Madrid, Spain.
| | - Jesus Gonzalez-Rubio
- Department of Medical Sciences, Faculty of Medicine of Albacete, University of Castilla-La Mancha, Albacete, Spain; Centro Regional de Investigaciones Biomédicas (CRIB), University of Castilla-La Mancha, Albacete, Spain.
| | - Antonio Hernando
- Instituto de Magnetismo Aplicado, Complutense University, Madrid, Spain; IMDEA, Nanociencia, Universidad Antonio de Nebrija, Madrid and Donosti International Physics Center, San Sebastián, Spain.
| | | | - Francisco Vargas Marcos
- Department: General Sub-Directorate of Environmental Health and Occupational Health, General Directorate of Public Health, Ministry of Health, Madrid, Spain.
| |
Collapse
|
8
|
Koppel T, Ahonen M, Carlberg M, Hardell L. Very high radiofrequency radiation at Skeppsbron in Stockholm, Sweden from mobile phone base station antennas positioned close to pedestrians' heads. ENVIRONMENTAL RESEARCH 2022; 208:112627. [PMID: 34995546 DOI: 10.1016/j.envres.2021.112627] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
In urban environment there is a constant increase of public exposure to radiofrequency electromagnetic fields from mobile phone base stations. With the placement of mobile phone base station antennas radiofrequency hotspots emerge. This study investigates an area at Skeppsbron street in Stockholm, Sweden with an aggregation of base station antennas placed at low level close to pedestrians' heads. Detailed spatial distribution measurements were performed with 1) a radiofrequency broadband analyzer and 2) a portable exposimeter. The results display a greatly uneven distribution of the radiofrequency field with hotspots. The highest spatial average across all quadrat cells was 12.1 V m⁻1 (388 mW m⁻2), whereas the maximum recorded reading from the entire area was 31.6 V m⁻1 (2648 mW m⁻2). Exposimeter measurements show that the majority of exposure is due to mobile phone downlink bands. Most dominant are 2600 and 2100 MHz bands used by 4G and 3G mobile phone services, respectively. The average radiofrequency radiation values from the earlier studies show that the level of ambient RF radiation exposure in Stockholm is increasing. This study concluded that mobile phone base station antennas at Skeppsbron, Stockholm are examples of poor radiofrequency infrastructure design which brings upon highly elevated exposure levels to popular seaside promenade and a busy traffic street.
Collapse
Affiliation(s)
- Tarmo Koppel
- Tallinn University of Technology, SOC353 Ehitajate tee 5, 19086, Tallinn, Estonia
| | - Mikko Ahonen
- Päivölä Institute, Päivöläntie 52, Tarttila, 37770, Finland
| | - Michael Carlberg
- The Environment and Cancer Research Foundation, Studievägen 35, SE 702 17, Örebro, Sweden
| | - Lennart Hardell
- The Environment and Cancer Research Foundation, Studievägen 35, SE 702 17, Örebro, Sweden.
| |
Collapse
|
9
|
Levitt BB, Lai HC, Manville AM. Effects of non-ionizing electromagnetic fields on flora and fauna, part 1. Rising ambient EMF levels in the environment. REVIEWS ON ENVIRONMENTAL HEALTH 2022; 37:81-122. [PMID: 34047144 DOI: 10.1515/reveh-2021-0026] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 03/20/2021] [Indexed: 06/12/2023]
Abstract
Ambient levels of electromagnetic fields (EMF) have risen sharply in the last 80 years, creating a novel energetic exposure that previously did not exist. Most recent decades have seen exponential increases in nearly all environments, including rural/remote areas and lower atmospheric regions. Because of unique physiologies, some species of flora and fauna are sensitive to exogenous EMF in ways that may surpass human reactivity. There is limited, but comprehensive, baseline data in the U.S. from the 1980s against which to compare significant new surveys from different countries. This now provides broader and more precise data on potential transient and chronic exposures to wildlife and habitats. Biological effects have been seen broadly across all taxa and frequencies at vanishingly low intensities comparable to today's ambient exposures. Broad wildlife effects have been seen on orientation and migration, food finding, reproduction, mating, nest and den building, territorial maintenance and defense, and longevity and survivorship. Cyto- and geno-toxic effects have been observed. The above issues are explored in three consecutive parts: Part 1 questions today's ambient EMF capabilities to adversely affect wildlife, with more urgency regarding 5G technologies. Part 2 explores natural and man-made fields, animal magnetoreception mechanisms, and pertinent studies to all wildlife kingdoms. Part 3 examines current exposure standards, applicable laws, and future directions. It is time to recognize ambient EMF as a novel form of pollution and develop rules at regulatory agencies that designate air as 'habitat' so EMF can be regulated like other pollutants. Wildlife loss is often unseen and undocumented until tipping points are reached. Long-term chronic low-level EMF exposure standards, which do not now exist, should be set accordingly for wildlife, and environmental laws should be strictly enforced.
Collapse
Affiliation(s)
- B Blake Levitt
- National Association of Science Writers, Berkeley, CA, USA
| | - Henry C Lai
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Albert M Manville
- Advanced Academic Programs, Krieger School of Arts and Sciences, Environmental Sciences and Policy, Johns Hopkins University, Washington DC Campus, USA
| |
Collapse
|
10
|
Driving electrochemical corrosion of implanted CoCrMo metal via oscillatory electric fields without mechanical wear. Sci Rep 2021; 11:22366. [PMID: 34785746 PMCID: PMC8595661 DOI: 10.1038/s41598-021-01810-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 11/02/2021] [Indexed: 11/08/2022] Open
Abstract
Decades of research have been dedicated to understanding the corrosion mechanisms of metal based implanted prosthetics utilized in modern surgical procedures. Focused primarily on mechanically driven wear, current fretting and crevice corrosion investigations have yet to precisely replicate the complex chemical composition of corrosion products recovered from patients' periprosthetic tissue. This work specifically targets the creation of corrosion products at the metal on metal junction utilized in modular hip prosthetics. Moreover, this manuscript serves as an initial investigation into the potential interaction between implanted CoCrMo metal alloy and low amplitude electrical oscillation, similar in magnitude to those which may develop from ambient electromagnetic radiation. It is believed that introduction of such an electrical oscillation may be able to initiate electrochemical reactions between the metal and surrounding fluid, forming the precursor to secondary wear particles, without mechanically eroding the metal's natural passivation layer. Here, we show that a low magnitude electrical oscillation (≤ 200 mV) in the megahertz frequency (106 Hz) range is capable of initiating corrosion on implanted CoCrMo without the addition of mechanical wear. Specifically, a 50 MHz, 200 mVpp sine wave generates corrosion products comprising of Cr, P, Ca, O, and C, which is consistent with previous literature on the analysis of failed hip prosthetics. These findings demonstrate that mechanical wear may not be required to initiate the production of chemically complex corrosion products.
Collapse
|
11
|
Ramirez-Vazquez R, Escobar I, Arribas E. Comment on "multivariable quantitative relation between cell viability and the exposure parameters of 9.33 GHz RF-EMP irradiation". Electromagn Biol Med 2021; 41:118-119. [PMID: 34380356 DOI: 10.1080/15368378.2021.1963045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Raquel Ramirez-Vazquez
- Applied Physics Department, Faculty of Computer Science Engineering, University of Castilla-La Mancha, Albacete, Spain
| | - Isabel Escobar
- Applied Physics Department, Faculty of Computer Science Engineering, University of Castilla-La Mancha, Albacete, Spain
| | - Enrique Arribas
- Applied Physics Department, Faculty of Computer Science Engineering, University of Castilla-La Mancha, Albacete, Spain
| |
Collapse
|
12
|
Ramirez-Vazquez R, Gonzalez-Rubio J, Escobar I, Suarez Rodriguez CDP, Arribas E. Personal Exposure Assessment to Wi-Fi Radiofrequency Electromagnetic Fields in Mexican Microenvironments. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18041857. [PMID: 33673014 PMCID: PMC7918906 DOI: 10.3390/ijerph18041857] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/23/2022]
Abstract
In recent years, personal exposure to Radiofrequency Electromagnetic Fields (RF-EMF) has substantially increased, and most studies about RF-EMF with volunteers have been developed in Europe. To the best of our knowledge, this is the first study carried out in Mexico with personal exposimeters. The main objective was to measure personal exposure to RF-EMF from Wireless Fidelity or wireless Internet connection (Wi-Fi) frequency bands in Tamazunchale, San Luis Potosi, Mexico, to compare results with maximum levels permitted by international recommendations and to find if there are differences in the microenvironments subject to measurements. The study was conducted with 63 volunteers in different microenvironments: home, workplace, outside, schools, travel, and shopping. The mean minimum values registered were 146.5 μW/m2 in travel from the Wi-Fi 2G band and 116.8 μW/m2 at home from the Wi-Fi 5G band, and the maximum values registered were 499.7 μW/m2 and 264.9 μW/m2 at the workplace for the Wi-Fi 2G band and the Wi-Fi 5G band, respectively. In addition, by time period and type of day, minimum values were registered at nighttime, these values being 129.4 μW/m2 and 93.9 μW/m2, and maximum values were registered in the daytime, these values being 303.1 μW/m2 and 168.3 μW/m2 for the Wi-Fi 2G and Wi-Fi 5G bands, respectively. In no case, values exceeded limits established by the International Commission on Non-Ionizing Radiation Protection (ICNIRP). Of the study participants (n = 63), a subgroup (n = 35) answered a survey on risk perception. According to these results, the Tamazunchale (Mexico) population is worried about this situation in comparison with several European cities; however, the risk perception changes when they are informed about the results for the study.
Collapse
Affiliation(s)
- Raquel Ramirez-Vazquez
- Applied Physics Department, Faculty of Computer Science Engineering, University of Castilla-La Mancha, Avda. de España s/n, Campus Universitario, 02071 Albacete, Spain; (I.E.); (E.A.)
- Correspondence:
| | - Jesus Gonzalez-Rubio
- Medical Science Department, School of Medicine, University of Castilla-La Mancha, C/Almansa 14, 02071 Albacete, Spain;
| | - Isabel Escobar
- Applied Physics Department, Faculty of Computer Science Engineering, University of Castilla-La Mancha, Avda. de España s/n, Campus Universitario, 02071 Albacete, Spain; (I.E.); (E.A.)
| | - Carmen del Pilar Suarez Rodriguez
- Department of Mechanical Engineering, Autonomous University of San Luis Potosi, Academic Coordination of the Huasteca South Region, Tamazunchale, San Luis Potosi 79960, Mexico;
| | - Enrique Arribas
- Applied Physics Department, Faculty of Computer Science Engineering, University of Castilla-La Mancha, Avda. de España s/n, Campus Universitario, 02071 Albacete, Spain; (I.E.); (E.A.)
| |
Collapse
|
13
|
Keshmiri S, Gholampour N, Mohtashami V. ASSESSING THE COMPLIANCE OF ELECTROMAGNETIC FIELDS RADIATED BY BASE STATIONS AND WIFI ACCESS POINTS WITH INTERNATIONAL GUIDELINES ON UNIVERSITY CAMPUS. RADIATION PROTECTION DOSIMETRY 2020; 192:1-13. [PMID: 33230555 DOI: 10.1093/rpd/ncaa183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/05/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
This paper presents a series of electromagnetic field measurements performed on the campus of Ferdowsi University of Mashhad in order to assess the compliance of radiation levels of cellular base stations and WiFi access points with international guidelines. A calibrated, broadband and isotropic probe is used and recommendations of International Telecommunication Union (ITU) are followed up throughout measurements. More than 300 outdoor and indoor locations have been systematically chosen for measurements. The recorded data are post-processed and compared with the guideline of International Commission on Non-Ionizing Radiation Protection (ICNIRP). Measured power densities of WiFi access points are low and do not exceed 1% of the level allowed by ICNIRP. For cellular base stations, measured power density is usually low outdoors, but reaches up to 16% of the allowed radiation level in publicly accessible indoor locations. Comprehensive exposure assessment, as recommended by ITU, has been performed to estimate the maximum possible radiation of one indoor base station. It is concluded that precautionary actions have to be taken by university authorities to limit the presence of students in close proximity to specific indoor antennas. Moreover, comprehensive exposure assessment is more likely necessary for indoor base stations whereas such assessment is not usually required outdoors.
Collapse
Affiliation(s)
- Sajedeh Keshmiri
- Department of Electrical Engineering, Ferdowsi University of Mashhad, Razavi Khorasan Province, 9177948944 Mashhad, Iran
| | - Neda Gholampour
- Department of Electrical Engineering, Ferdowsi University of Mashhad, Razavi Khorasan Province, 9177948944 Mashhad, Iran
| | - Vahid Mohtashami
- Department of Electrical Engineering, Ferdowsi University of Mashhad, Razavi Khorasan Province, 9177948944 Mashhad, Iran
| |
Collapse
|
14
|
Kiouvrekis Y, Manios G, Tsitsia V, Gourzoulidis G, Kappas C. A statistical analysis for RF-EMF exposure levels in sensitive land use: A novel study in Greek primary and secondary education schools. ENVIRONMENTAL RESEARCH 2020; 191:109940. [PMID: 33181972 DOI: 10.1016/j.envres.2020.109940] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 05/16/2023]
Abstract
BACKGROUND The increasing popularity of mobile phones and the expansion of network infrastructure in Greece have given rise to public concerns about potential adverse health effects on sensitive groups, such as children, from long-term radio-frequency (RF) electromagnetic fields (EMFs) exposure. According to Greek law the RF limit values for sensitive land use (schools, hospitals, etc) have been set to 60% of those recommended by EU standard and 70% for the general population. AIMS The objective of this study is to estimate mean RF-EMF exposure levels of Greek primary and secondary edu-cation schools located in urban environments. METHODS In selecting the minimum sample size we observed that the variance of the random variable was unknown, as there has been no similar previous study in Greece with schools as the target population. For this reason, a pilot study was conducted in 65 schools in order to estimate the standard deviation of the population and use that value to calculate the minimum sample size. Using a random machine num-ber generator contracted in R based on pseudo-random number algorithms, we obtained a sample of 492 schools in order to estimate the mean value for RF-EMF radiation sources in the 27 MHz-3GHz range in schools within urban environments in Greece. RESULTS We have performed the appropriate hypothesis test to get that there is sufficient evidence at the α = 0.05 level to conclude that the mean value for RF-EMF radiation sources in the 27 MHz-3GHz range, in schools within urban environments in Greece, is equal to 0.42 V/m, also a 95% confidence interval for the mean value is (0.4024, 0.4395)] with central value equal to the sample mean 0.4209. CONCLUSION In conclusion, the exposure level in the locations tested are both below 60% of the highest limit set by ICNIRP (International Commision on Non-Ionizing Radiation Protection) regarding sensitive land use.
Collapse
Affiliation(s)
- Yiannis Kiouvrekis
- Faculty of Medicine University of Thessaly, Larissa, Greece; University of West Attica, Department of BioMedical Sciences, Athens, Greece; University of Nicosia, Nicosia, Cyprus.
| | - Georgios Manios
- Faculty of Medicine University of Thessaly, Larissa, Greece.
| | | | - Georgios Gourzoulidis
- Faculty of Medicine University of Thessaly, Larissa, Greece; Research and Measurements Center of OHS Hazardous Agents, OHS Directorate, Hellenic Ministry of Labor, Athens, Greece.
| | | |
Collapse
|
15
|
Ramirez-Vazquez R, Arabasi S, Al-Taani H, Sbeih S, Gonzalez-Rubio J, Escobar I, Arribas E. Georeferencing of Personal Exposure to Radiofrequency Electromagnetic Fields from Wi-Fi in a University Area. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E1898. [PMID: 32183369 PMCID: PMC7142519 DOI: 10.3390/ijerph17061898] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/07/2020] [Accepted: 03/09/2020] [Indexed: 12/13/2022]
Abstract
In the last two decades, due to the development of the information society, the massive increase in the use of information technologies, including the connection and communication of multiple electronic devices, highlighting Wi-Fi networks, as well as the emerging technological advances of 4G and 5G (new-generation mobile phones that will use 5G), have caused a significant increase in the personal exposure to Radiofrequency Electromagnetic Fields (RF-EMF), and as a consequence, increasing discussions about the possible adverse health effects. The main objective of this study was to measure the personal exposure to radiofrequency electromagnetic fields from the Wi-Fi in the university area of German Jordanian University (GJU) and prepare georeferenced maps of the registered intensity levels and to compare them with the basic international restrictions. Spot measurements were made outside the university area at German Jordanian University. Measurements were made in the whole university area and around two buildings. Two Satimo EME SPY 140 (Brest, France) personal exposimeters were used, and the measurements were performed in the morning and afternoon, and on weekends and weekdays. The total average personal exposure to RF-EMF from the Wi-Fi band registered in the three study areas and in the four days measured was 28.82 μW/m2. The average total exposure from the Wi-Fi band registered in the ten measured points of the university area of GJU was 22.97 μW/m2, the one registered in the eight measured points of building H was 34.48 μW/m2, and the one registered in the eight points of building C was 29.00 μW/m2. The maximum average values registered in the campus of GJU are below the guidelines allowed by International Commission on Non-ionizing Radiation Protection (ICNIRP). The measurement protocol used in this work has been applied in measurements already carried out in Spain and Mexico, and it is applicable in university areas of other countries.
Collapse
Affiliation(s)
- Raquel Ramirez-Vazquez
- Applied Physics Department, Faculty of Computer Science, Engineering, University of Castilla-La Mancha, Avda. de España s/n, Campus Universitario, 02071 Albacete, Spain; (R.R.-V.); (I.E.)
| | - Sameer Arabasi
- School of Basic Sciences and Humanities, German Jordanian University, Amman Madaba Street, P.O. Box 35247, Amman 11180, Jordan; (S.A.); (H.A.-T.); (S.S.)
| | - Hussein Al-Taani
- School of Basic Sciences and Humanities, German Jordanian University, Amman Madaba Street, P.O. Box 35247, Amman 11180, Jordan; (S.A.); (H.A.-T.); (S.S.)
| | - Suhad Sbeih
- School of Basic Sciences and Humanities, German Jordanian University, Amman Madaba Street, P.O. Box 35247, Amman 11180, Jordan; (S.A.); (H.A.-T.); (S.S.)
| | - Jesus Gonzalez-Rubio
- Medical Science Department, School of Medicine, University of Castilla-La Mancha, C/ Almansa 14, 02071 Albacete, Spain;
| | - Isabel Escobar
- Applied Physics Department, Faculty of Computer Science, Engineering, University of Castilla-La Mancha, Avda. de España s/n, Campus Universitario, 02071 Albacete, Spain; (R.R.-V.); (I.E.)
| | - Enrique Arribas
- Applied Physics Department, Faculty of Computer Science, Engineering, University of Castilla-La Mancha, Avda. de España s/n, Campus Universitario, 02071 Albacete, Spain; (R.R.-V.); (I.E.)
| |
Collapse
|
16
|
Najera A, Ramirez-Vazquez R, Arribas E, Gonzalez-Rubio J. Comparison of statistic methods for censored personal exposure to RF-EMF data. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:77. [PMID: 31897614 DOI: 10.1007/s10661-019-8021-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
Several studies have characterized personal exposure to RF-EMF, which allows possible effects on health to be studied. All equipment has a detection limit, below which we obtain nondetects or censored data. This problem is a challenge for researchers as it makes the analysis of such data complex. We suggest reconsidering the statistical protocols of the nondetects analysis by comparing four different methods. Three of them substitute censored data using different approaches: regression on order of statistics (ROS) to simulate data below the detection limit (Method 1), substituting nondetect values by the detection limit divided by 2 (Method 2), a naïve calculation (Method 3) using the detection limit as a valid measurement. The fourth method consists of considering censored data to be missing values (Method 4). This article examines how these methods affect the quantification of personal exposure. We considered data from 14 frequency bands from FM to WiMax measured in Albacete (Spain) for 76 days every 10 s by a personal exposimeter (PEM) Satimo EME Spy 140.Methods 3 and 2 gave similar mean and median values to Method 1, but both underestimated the mean values when high nondetects records occurred, which conditioned the physical description of the real situation. The mean values calculated by Method 4 differed from those obtained by Method 1 but were similar when the percentage of nondetects was below 20%.Our comparison suggests that nondetects can be neglected when the percentage of censored data is low to provide a more realistic physical situation.
Collapse
Affiliation(s)
- Alberto Najera
- Faculty of Medicine, University of Castilla-La Mancha, Albacete, Spain
| | | | - Enrique Arribas
- Department of Applied Physics, University of Castilla-La Mancha, Albacete, Spain
| | | |
Collapse
|
17
|
Jalilian H, Eeftens M, Ziaei M, Röösli M. Public exposure to radiofrequency electromagnetic fields in everyday microenvironments: An updated systematic review for Europe. ENVIRONMENTAL RESEARCH 2019; 176:108517. [PMID: 31202043 DOI: 10.1016/j.envres.2019.05.048] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 06/09/2023]
Abstract
Communication technologies are rapidly changing and this may affect public exposure to radiofrequency electromagnetic fields (RF-EMF). This systematic review of literature aims to update a previous review on public everyday RF-EMF exposure in Europe, which covered publications until 2015. From 144 eligible records identified by means of a systematic search in PubMed, Embase and Web of Knowledge databases, published between May 2015 and 1 July 2018, 26 records met the inclusion criteria. We extracted quantitative data on public exposure in different indoors, outdoors and transport environments. The data was descriptively analyzed with respect to the exposure patterns between different types of environments. Mean RF-EMF exposure in homes, schools and offices were between 0.04 and 0.76 V/m. Mean outdoor exposure values ranged from 0.07 to 1.27 V/m with downlink signals from mobile phone base stations being the most relevant contributor. RF-EMF levels tended to increase with increasing urbanity. Levels in public transport (bus, train and tram) and cars were between 0.14 and 0.69 V/m. The highest levels, up to 1.97 V/m, were measured in public transport stations with downlink as the most relevant contributor. In line with previous studies, RF-EMF exposure levels were highest in the transportation systems followed by outdoor and private indoor environments. This review does not indicate a noticeable increase in everyday RF-EMF exposure since 2012 despite increasing use of wireless communication devices.
Collapse
Affiliation(s)
- Hamed Jalilian
- Department of Occupational Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marloes Eeftens
- Swiss Tropical and Public Health Institute, Socinstrasse 57, P.O. Box, CH-4002, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Mansour Ziaei
- School of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Martin Röösli
- Swiss Tropical and Public Health Institute, Socinstrasse 57, P.O. Box, CH-4002, Basel, Switzerland; University of Basel, Basel, Switzerland
| |
Collapse
|
18
|
Auger N, Bilodeau-Bertrand M, Marcoux S, Kosatsky T. Residential exposure to electromagnetic fields during pregnancy and risk of child cancer: A longitudinal cohort study. ENVIRONMENTAL RESEARCH 2019; 176:108524. [PMID: 31226625 DOI: 10.1016/j.envres.2019.108524] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/09/2019] [Accepted: 06/05/2019] [Indexed: 05/20/2023]
Abstract
OBJECTIVE We assessed whether exposure to electromagnetic fields during pregnancy increases the risk of childhood cancer. METHODS We studied a retrospective cohort of 784,944 newborns in Quebec, Canada between 2006 and 2016 who were followed for cancer one decade after birth. The exposures were residential distance to the nearest high voltage power transformer station and transmission line. We determined the incidence of childhood cancer, and estimated hazard ratios and 95% confidence intervals (CI) in Cox proportional hazards regression models adjusted for maternal and birth characteristics. RESULTS There were 1114 incident cases of cancer during 4,647,472 person-years of follow-up. Residential proximity to transformer stations was associated with a somewhat greater risk of cancer, but there was no association with transmission lines. Compared with 200 m, a distance of 80 m from a transformer station was associated with a hazard ratio of 1.08 (95% CI 0.98, 1.20) for any cancer, 1.04 (95% CI 0.88, 1.23) for hematopoietic cancer, and 1.11 (95% CI 0.99, 1.25) for solid tumours. CONCLUSIONS Residential proximity to transformer stations is associated with a borderline risk of childhood cancer, but the absence of an association with transmission lines suggests no causal link.
Collapse
Affiliation(s)
- Nathalie Auger
- University of Montreal Hospital Research Centre, 900 Saint-Denis, Montreal, Quebec, Canada; Institut national de santé publique du Québec, 190 Cremazie Blvd E., Montreal, Quebec, Canada; School of Public Health, University of Montreal, 1301 Sherbrooke E., Montreal, Quebec, Canada.
| | | | - Sophie Marcoux
- School of Public Health, University of Montreal, 1301 Sherbrooke E., Montreal, Quebec, Canada
| | - Tom Kosatsky
- National Collaborating Centre for Environmental Health, British Columbia Centre for Disease Control, 601 West Broadway, Vancouver, British Columbia, Canada
| |
Collapse
|
19
|
Ramirez-Vazquez R, Gonzalez-Rubio J, Arribas E, Najera A. Personal RF-EMF exposure from mobile phone base stations during temporary events. ENVIRONMENTAL RESEARCH 2019; 175:266-273. [PMID: 31146098 DOI: 10.1016/j.envres.2019.05.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND In recent years, radiofrequency electromagnetic fields (RF-EMF) exposure has increased owing to new communication technologies. Simultaneously, increased exposure to RF-EMF has led to society's growing concern about the possible effects they may have on human health. Many studies have described personal RF-EMF exposure by using personal exposimeters to know a population's daily exposure to mobile phone base stations and to other sources whose installations tend to be permanent. Nonetheless during special events like concerts or fairs, where many people gather, permanent installations might not suffice to cover demand. So telephone companies install temporary stations for these events, and modify the exposure pattern of these areas or populations. OBJECTIVE To study if installing temporary antennae for large events, and high concentrations of mobile phones, modify the exposure pattern compared to usual situations. METHODS Personal RF-EMF exposure from mobile phones (uplink) and mobile phone base stations (downlink) installed at the 2017 Albacete Fair (Spain) was recorded. Between 7 and 17 September, more than 2,500,000 people visited this Fair. Measurements were taken by two Satimo EME SPY 140 personal exposimeters, placed one each side of a research team member's waist. These exposimeters were programmed to take measurements every 4 s at different time of day; morning, afternoon and night; and in several places, around the Fair Enclosure (zones Ejidos and Paseo) and inside the enclosure (Interior). These measurements were repeated on a weekday, at the weekend and the day after the Fair ended after temporary base stations had been removed. They were also taken for 1 h in all three zones, for each time of day; that is, 9 h were recorded for each study day. RESULTS The mean RF-EMF recorded exposure from base stations (downlink-DL) on the days the Fair opened (morning, afternoon and night) for the three studied zones was 791.8 μW/m2, while the exposure produced by mobile phones (uplink-UL) was 59.0 μW/m2. These values were 391.2 μW/m2 (DL) and 10.3 μW/m2 (UL) a few days after the event ended. In study zones Ejidos and Paseo, both outside, the highest mean exposure was recorded at the weekend as 1494.1 and 848.1 μW/m2 respectively. For the Interior zone, the mean value recorded during the Fair was 354.8 μW/m2. These values contrast with those recorded in the three zones after the event ended: 556.37 (Ejidos), 144.1 (Paseo); 473.21 μW/m2 (Interior). The fact that the mean exposure recorded at Interior was slightly higher after the Fair could be due to signal shielding by so many people. The reduction in exposure in Paseo after the Fair was outstanding, probably due to the antennae being placed on low towers. Major differences were also found in the RF-EMF exposure from UL. In this case, the weekend values taken during the Fair were between 28.2 μW/m2 at Interior (weekday) and 98.1 μW/m2 at Ejidos (weekend), which dropped to 5.5 at Paseo after the Fair, to 11.7 μW/m2 at Interior and to 13.6 μW/m2 at Ejidos. CONCLUSIONS Installing mobile phone base stations, and a dense public using mobile phones, imply a significant increase in personal RF-EMF exposure compared to that recorded during normal periods in the same area. However, the recorded measurements were below legally established limits.
Collapse
Affiliation(s)
| | - Jesus Gonzalez-Rubio
- Medical Sciences, University: University of Castilla-La Mancha, Albacete, Spain.
| | - Enrique Arribas
- Applied Physics, University of Castilla-La Mancha, Albacete Spain.
| | - Alberto Najera
- Medical Sciences, University of Castilla-La Mancha, Albacete, Spain.
| |
Collapse
|
20
|
Iyare RN, Volskiy V, Vandenbosch GAE. Study of the electromagnetic exposure from mobile phones in a city like environment: The case study of Leuven, Belgium. ENVIRONMENTAL RESEARCH 2019; 175:402-413. [PMID: 31154230 DOI: 10.1016/j.envres.2019.05.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
A measuring campaign for the assessment of electromagnetic exposure levels from mobile phones in the city center of Leuven, Belgium, has been carried out. The main objective of the assessment is to study the dependency of the exposure of the user by his own mobile phone in terms of location in the city (very close to base stations and at randomly selected locations). The measurements were performed in both public and private areas in 60 outdoor and 60 indoor locations in Leuven. The campaign was focused on GSM 900 mobile communications. The results show that the exposure is considerably higher for indoor environments compared to outdoor environments, and at the randomly chosen locations compared to locations very close to base stations. However, the most important observation is that the average outdoor exposure in Leuven of the user of a mobile phone is about 8 times higher than the average outdoor exposure by base stations. Indoors, this factor rises to about 30.
Collapse
Affiliation(s)
- Rachel Nkem Iyare
- ESAT-TELEMIC, Telecommunications and Microwaves, Electrical Engineering (ESAT), Katholieke Universiteit (KU) Leuven, Kasteelpark Arenberg 10, box 2444, 3001, Heverlee, Belgium.
| | - Vladimir Volskiy
- ESAT-TELEMIC, Telecommunications and Microwaves, Electrical Engineering (ESAT), Katholieke Universiteit (KU) Leuven, Kasteelpark Arenberg 10, box 2444, 3001, Heverlee, Belgium
| | - Guy A E Vandenbosch
- ESAT-TELEMIC, Telecommunications and Microwaves, Electrical Engineering (ESAT), Katholieke Universiteit (KU) Leuven, Kasteelpark Arenberg 10, box 2444, 3001, Heverlee, Belgium
| |
Collapse
|
21
|
Comment on "The Use of Pulsed Electromagnetic Fields to Promote Bone Responses to Biomaterials In Vitro and In Vivo". Int J Biomater 2019; 2019:2593205. [PMID: 31354827 PMCID: PMC6633868 DOI: 10.1155/2019/2593205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 05/08/2019] [Indexed: 02/08/2023] Open
|
22
|
Ramirez-Vazquez R, Gonzalez-Rubio J, Arribas E, Najera A. Characterisation of personal exposure to environmental radiofrequency electromagnetic fields in Albacete (Spain) and assessment of risk perception. ENVIRONMENTAL RESEARCH 2019; 172:109-116. [PMID: 30782530 DOI: 10.1016/j.envres.2019.02.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 01/18/2019] [Accepted: 02/11/2019] [Indexed: 05/16/2023]
Abstract
In the last decades, exposure to radiofrequency electromagnetic fields (RF-EMF) has substantially increased as new wireless technologies have been introduced. Society has become more concerned about the possible effects of RF-EMF on human health in parallel to the increase in their exposure. The appearance of personal exposimeters opens up wide-ranging research possibilities. Despite studies having characterised personal exposure to RF-EMF, part of the population is still worried, to the extent that psychogenic diseases ("nocebo" effect) appear, and patients suffer. It could be interesting to share personal exposure results with the population to better understand and promote public health. The main objective was to characterise personal exposure to environmental RF-EMF in Albacete (166,000 inhabitants, SE Spain), and assess the effect of sharing the results of the study on participants' risk perception. Measurements were taken by a personal Satimo EME SPY 140 exposimeter, which was programmed every 10 s for 24 h. To measure personal exposure to RF-EMF, we worked with 75 volunteers. Their personal exposure, 14 microenvironments in the city, e.g., home, outdoors, work, etc., and possible time differences were analysed. After participating in the study, 35 participants completed a questionnaire about their RF-EMF risk perception, which was also answered by a control sample to compare the results (N = 36). The total average exposure of 14 bands was 37.7 μW/m2, and individual ranges fell between 0.2 μW/m2, recorded in TV4&5, and a maximum of 264.7 μW/m2 in DECT. For Friday, we recorded a mean of 53.9 μW/m2 as opposed to 23.4 μW/m2 obtained on Saturday. The recorded night-time value was 27.5 μW/m2 versus 43.8 μW/m2 recorded in the daytime. The mean personal exposure value also showed differences between weekdays and weekend days, with 39.7 μW/m2 and 26.9 μW/m2, respectively. The main source that contributed to the mean total personal exposure was enhanced cordless telecommunications (DECT) with 50.2%, followed by mobile phones with 18.4% and mobile stations with 11.0% (GSM, DCS and UMTS), while WiFi signals gave 12.5%. In the analysed microenvironments, the mean exposure of homes and workplaces was 34.3 μW/m2 and 55.2 μW/m2, respectively. Outdoors, the mean value was 34.2 μW/m2 and the main sources were DECT, WiFi and mobile phone stations, depending on the place. The risk perception analysis found that 54% of the participants perceived that RF-EMF were less dangerous than before participating in the study, while 43% reported no change in their perceptions. Only 9% of the volunteers who received information about their measurements after the study assessed the possible RF-EMF risk with a value over or equal to 4 (on a scale from 1 to 5) versus 39% of the non-participant controls. We conclude that personal exposure to RF-EMF fell well below the limits recommended by ICNIRP and showed wide temporal and spatial variability. The main exposure sources were DECT, followed by mobile phones and WiFi. Sharing exposure results with participants lowered their risk perception.
Collapse
Affiliation(s)
| | | | - Enrique Arribas
- Applied Physics, University of Castilla-La Mancha, Albacete, Spain.
| | - Alberto Najera
- Medical Sciences, University of Castilla-La Mancha, Albacete, Spain.
| |
Collapse
|
23
|
Arribas E, Ramirez-Vazquez R, Escobar I. Comment on "Wi-Fi is an important threat to human health". ENVIRONMENTAL RESEARCH 2018; 167:639. [PMID: 30173116 DOI: 10.1016/j.envres.2018.08.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 08/23/2018] [Indexed: 06/08/2023]
Affiliation(s)
- Enrique Arribas
- Applied Physics Department, Faculty of Computer Science Engineering, University of Castilla-La Mancha, Avda de España s/n, Campus Universitario, 02071 Albacete, Spain.
| | - Raquel Ramirez-Vazquez
- Applied Physics Department, Faculty of Computer Science Engineering, University of Castilla-La Mancha, Avda de España s/n, Campus Universitario, 02071 Albacete, Spain
| | - Isabel Escobar
- Applied Physics Department, Faculty of Computer Science Engineering, University of Castilla-La Mancha, Avda de España s/n, Campus Universitario, 02071 Albacete, Spain
| |
Collapse
|
24
|
Gallastegi M, Huss A, Santa-Marina L, Aurrekoetxea JJ, Guxens M, Birks LE, Ibarluzea J, Guerra D, Röösli M, Jiménez-Zabala A. Children's exposure assessment of radiofrequency fields: Comparison between spot and personal measurements. ENVIRONMENT INTERNATIONAL 2018; 118:60-69. [PMID: 29803802 DOI: 10.1016/j.envint.2018.05.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 05/06/2018] [Accepted: 05/13/2018] [Indexed: 06/08/2023]
Abstract
INTRODUCTION Radiofrequency (RF) fields are widely used and, while it is still unknown whether children are more vulnerable to this type of exposure, it is essential to explore their level of exposure in order to conduct adequate epidemiological studies. Personal measurements provide individualized information, but they are costly in terms of time and resources, especially in large epidemiological studies. Other approaches, such as estimation of time-weighted averages (TWAs) based on spot measurements could simplify the work. OBJECTIVES The aims of this study were to assess RF exposure in the Spanish INMA birth cohort by spot measurements and by personal measurements in the settings where children tend to spend most of their time, i.e., homes, schools and parks; to identify the settings and sources that contribute most to that exposure; and to explore if exposure assessment based on spot measurements is a valid proxy for personal exposure. METHODS When children were 8 years old, spot measurements were conducted in the principal settings of 104 participants: homes (104), schools and their playgrounds (26) and parks (79). At the same time, personal measurements were taken for a subsample of 50 children during 3 days. Exposure assessment based on personal and on spot measurements were compared both in terms of mean exposures and in exposure-dependent categories by means of Bland-Altman plots, Cohen's kappa and McNemar test. RESULTS Median exposure levels ranged from 29.73 (in children's bedrooms) to 200.10 μW/m2 (in school playgrounds) for spot measurements and were higher outdoors than indoors. Median personal exposure was 52.13 μW/m2 and median levels of assessments based on spot measurements ranged from 25.46 to 123.21 μW/m2. Based on spot measurements, the sources that contributed most to the exposure were FM radio, mobile phone downlink and Digital Video Broadcasting-Terrestrial, while indoor and personal sources contributed very little (altogether <20%). Similar distribution was observed with personal measurements. There was a bias proportional to power density between personal measurements and estimates based on spot measurements, with the latter providing higher exposure estimates. Nevertheless, there were no systematic differences between those methodologies when classifying subjects into exposure categories. Personal measurements of total RF exposure showed low to moderate agreement with home and bedroom spot measurements and agreed better, though moderately, with TWA based on spot measurements in the main settings where children spend time (homes, schools and parks; Kappa = 0.46). CONCLUSIONS Exposure assessment based on spot measurements could be a feasible proxy to rank personal RF exposure in children population, providing that all relevant locations are being measured.
Collapse
Affiliation(s)
- Mara Gallastegi
- BIODONOSTIA Health Research Institute, Dr. Begiristain Pasealekua, San Sebastian 20014, Spain; University of the Basque Country (UPV/EHU), Preventative Medicine and Public Health Department, Faculty of Medicine, Leioa 48940, Spain.
| | - Anke Huss
- Institute for Risk Assessment Sciences (IRAS), Division Environmental Epidemiology, Utrecht University, Yalelaan 2, 3584, CM, Utrecht, The Netherlands
| | - Loreto Santa-Marina
- BIODONOSTIA Health Research Institute, Dr. Begiristain Pasealekua, San Sebastian 20014, Spain; Public Health Division of Gipuzkoa, Basque Government, 4 Av. de Navarra, San Sebastian 20013, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Juan J Aurrekoetxea
- BIODONOSTIA Health Research Institute, Dr. Begiristain Pasealekua, San Sebastian 20014, Spain; University of the Basque Country (UPV/EHU), Preventative Medicine and Public Health Department, Faculty of Medicine, Leioa 48940, Spain; Public Health Division of Gipuzkoa, Basque Government, 4 Av. de Navarra, San Sebastian 20013, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Mònica Guxens
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029 Madrid, Spain; ISGlobal, C/Doctor Aiguader 88, 08003 Barcelona, Spain; Pompeu Fabra University, C/Doctor Aiguader 88, 08003 Barcelona, Spain; Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Centre-Sophia Children's Hospital, PO Box 2060, 3000, CB, Rotterdam, The Netherlands
| | - Laura Ellen Birks
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029 Madrid, Spain; ISGlobal, C/Doctor Aiguader 88, 08003 Barcelona, Spain; Pompeu Fabra University, C/Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Jesús Ibarluzea
- BIODONOSTIA Health Research Institute, Dr. Begiristain Pasealekua, San Sebastian 20014, Spain; Public Health Division of Gipuzkoa, Basque Government, 4 Av. de Navarra, San Sebastian 20013, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029 Madrid, Spain; University of the Basque Country UPV-EHU, Faculty of Psychology, Tolosa hiribidea 70, 20018 San Sebastian, Spain
| | - David Guerra
- University of the Basque Country (UPV/EHU), Communications Engineering Department, Faculty of Engineering, Alameda Urquijo, Bilbao 48013, Spain
| | - Martin Röösli
- Swiss Tropical and Public Health Institute, Socinstrasse 57, Basel 4002, Switzerland; University of Basel, Basel, Switzerland
| | - Ana Jiménez-Zabala
- BIODONOSTIA Health Research Institute, Dr. Begiristain Pasealekua, San Sebastian 20014, Spain; Public Health Division of Gipuzkoa, Basque Government, 4 Av. de Navarra, San Sebastian 20013, Spain
| |
Collapse
|
25
|
de Miguel-Bilbao S, Blas J, Ramos V. Effective Analysis of Human Exposure Conditions with Body-worn Dosimeters in the 2.4 GHz Band. J Vis Exp 2018. [PMID: 29781983 PMCID: PMC6101059 DOI: 10.3791/56525] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
A well-defined experimental procedure is put forward to evaluate maximum exposure conditions in a worst-case scenario whilst avoiding the uncertainties caused by the use of personal exposimeters (PEMs) as measuring devices: the body shadow effect (BSE), the limited sensitivity range, and the non-identification of the radiation source. An upper bound for exposure levels to EMF in several indoor enclosures has been measured and simulated. The frequency used for the study is 2.4 GHz, as it is the most commonly used band in indoor communications. Although recorded values are well below the International Commission for Non-Ionizing Radiation Protection (ICNIRP) reference levels, there is a particular need to provide reliable exposure levels within particularly sensitive environments. In terms of electromagnetic field (EMF) exposure, limits established in national and international standards for health protection have been set for unperturbed exposure conditions; that is, for real and objective exposure data that have not been altered in any way.
Collapse
Affiliation(s)
| | - Juan Blas
- Signal Theory and Communications, and Telematic Engineering Department, Universidad de Valladolid
| | - Victoria Ramos
- Telemedicine and e-Health Research Unit, Instituto de Salud Carlos III
| |
Collapse
|
26
|
Gonzalez-Rubio J, Arribas E, Ramirez-Vazquez R, Najera A. Response to the comments on "Radiofrequency electromagnetic fields and some cancers of unknown etiology: An ecological study" by J. Gonzalez-Rubio, E. Arribas, R. Ramirez-Vazquez and A. Najera. Science of the Total Environment 599-600 (2017) 834-843. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 612:368-369. [PMID: 28858746 DOI: 10.1016/j.scitotenv.2017.08.152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 08/11/2017] [Accepted: 08/15/2017] [Indexed: 06/07/2023]
Affiliation(s)
| | - Enrique Arribas
- Applied Physics, University of Castilla-La Mancha, Albacete, Spain.
| | | | - Alberto Najera
- Medical Sciences, University of Castilla-La Mancha, Albacete, Spain.
| |
Collapse
|
27
|
Gonzalez-Rubio J, Arribas E, Ramirez-Vazquez R, Najera A. Radiofrequency electromagnetic fields and some cancers of unknown etiology: An ecological study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 599-600:834-843. [PMID: 28499231 DOI: 10.1016/j.scitotenv.2017.05.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 05/02/2017] [Indexed: 06/07/2023]
Abstract
Simultaneously with the increase of Radiofrequency Electromagnetic Fields (RF-EMF) in recent decades, there has been increasing concern about their potential relation with the etiology of several tumors. At this time, the techniques of spatial data analysis jointly with the study of the personal exposure to these fields offer a new approach to the problem. This paper presents the results of a preliminary epidemiological study, combining Epidemiology, Statistics and Geographical Information Systems (GIS), in which we analyzed the correlation between exposure to RF-EMF in the city of Albacete (166,000 inhabitants, southeast Spain) and the incidence of several cancers with unspecific causes (lymphomas, and brain tumors). We used statistical tools to analyze the spatial point patterns and aggregate data with the aim to study the spatial randomness and to determine the zones with the highest incidence from 95 tumors studied (65 lymphomas, 12 gliomas and 18 meningiomas). We also perform a correlation (Spearman) study between the personal exposure to RF-EMF in 14 frequency bands, recorded by an EME Spy 140 (Satimo) exposimeter in the city's administrative regions, and the incidence of the tumors registered from January 2012 to May 2015. The studied cancer cases have a random spatial distribution inside the city. On the other hand, and by means of an ecological study, we verified that the exposure to RF-EMF registered in the city of Albacete shows little correlation with the incidence of the studied tumors (gliomas (ρ=0.15), meningiomas (ρ=0.19) and lymphomas (ρ=-0.03)). The proposed methodology inaugurates an unexplored analysis path in this field.
Collapse
Affiliation(s)
- Jesus Gonzalez-Rubio
- Department of Medical Sciences, University of Castilla-La Mancha, Albacete, Spain.
| | - Enrique Arribas
- Department of Applied Physics, University of Castilla-La Mancha, Albacete, Spain.
| | | | - Alberto Najera
- Department of Applied Physics, University of Castilla-La Mancha, Albacete, Spain.
| |
Collapse
|
28
|
Bielsa-Fernández P, Rodríguez-Martín B. [Association between radiation from mobile phones and tumour risk in adults]. GACETA SANITARIA 2017; 32:81-91. [PMID: 28411874 DOI: 10.1016/j.gaceta.2016.10.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 10/13/2016] [Accepted: 10/18/2016] [Indexed: 01/08/2023]
Abstract
OBJECTIVE To synthesize and analyse systematic reviews, case-control studies, cohort studies and meta-analysis that investigate the association between exposure to radiofrequency from mobile phones and the appearance of tumours in adults. METHODS A systematic search was conducted in Scopus, Web of Science, The Cochrane Library, Medline and Cinahl of articles published in English and Spanish between January 2005 and February 2016 that analyse the risk of tumour associated with exposure to radiofrequency from mobile phones in adults. The recommendations of the PRISMA Declaration were followed, and the quality of the articles was analysed with the AMSTAR tool and the Newcastle-Ottawa Scale. RESULTS 1034 studies were found, fourteen of which were included. Most studies agree that it is not possible to determine a relationship in the short term, although long-term (over 10 years) radiofrequency emitted by mobile phones can cause tumour effects, with an increased risk by ipsilateral exposure and latency. CONCLUSIONS Although radiofrequency from mobile phones has tumour effects on humans, the available scientific evidence is not robust. More rigorous follow-up studies with larger sample sizes and broader periods are necessary to learn more about the long-term effects.
Collapse
Affiliation(s)
- Patricia Bielsa-Fernández
- Departamento de Enfermería y Fisioterapia, Facultad de Terapia Ocupacional, Logopedia y Enfermería, Universidad de Castilla-La Mancha, Talavera de la Reina (Toledo), España
| | - Beatriz Rodríguez-Martín
- Departamento de Enfermería y Fisioterapia, Facultad de Terapia Ocupacional, Logopedia y Enfermería, Universidad de Castilla-La Mancha, Talavera de la Reina (Toledo), España; Centro de Estudios Sociosanitarios, Universidad de Castilla-La Mancha, Cuenca, España.
| |
Collapse
|
29
|
Hardell L, Carlberg M, Koppel T, Hedendahl L. High radiofrequency radiation at Stockholm Old Town: An exposimeter study including the Royal Castle, Supreme Court, three major squares and the Swedish Parliament. Mol Clin Oncol 2017; 6:462-476. [PMID: 28413651 PMCID: PMC5374933 DOI: 10.3892/mco.2017.1180] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 01/30/2017] [Indexed: 12/23/2022] Open
Abstract
Exposure to radiofrequency (RF) radiation was classified as a possible human carcinogen, Group 2B, by the International Agency for Research on Cancer at WHO in 2011. The exposure pattern is changing due to the rapid development of technology. Outdoor RF radiation level was measured during five tours in Stockholm Old Town in April, 2016 using the EME Spy 200 exposimeter with 20 predefined frequencies. The results were based on 10,437 samples in total. The mean level of the total RF radiation was 4,293 µW/m2 (0.4293 µW/cm2). The highest mean levels were obtained for global system for mobile communications (GSM) + universal mobile telecommunications system (UMTS) 900 downlink and long-term evolution (LTE) 2600 downlink (1,558 and 1,265 µW/m2, respectively). The town squares displayed highest total mean levels, with the example of Järntorget square with 24,277 µW/m2 (min 257, max 173,302 µW/m2). These results were in large contrast to areas with lowest total exposure, such as the Supreme Court, with a mean level of 404 µW/m2 (min 20.4, max 4,088 µW/m2). In addition, measurements in the streets surrounding the Royal Castle were lower than the total for the Old Town, with a mean of 756 µW/m2 (min 0.3, max 50,967 µW/m2). The BioInitiative 2012 Report defined the scientific benchmark for possible health risks as 30–60 µW/m2. Our results of outdoor RF radiation exposure at Stockholm Old Town are significantly above that level. The mean exposure level at Järntorget square was 405-fold higher than 60 µW/m2. Our results were below the reference level on 10,000,000 µW/m2 established by the International Commission on Non-Ionizing Radiation Protection (ICNIRP), which, however, are less credible, as they do not take non-thermal effects into consideration and are not based on sound scientific evaluation. Our highest measured mean level at Järntorget was 0.24% of the ICNIRP level. A number of studies have found adverse, non-thermal (no measurable temperature increase) health effects far below the ICNIRP guidelines.
Collapse
Affiliation(s)
- Lennart Hardell
- Department of Oncology, Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden
| | - Michael Carlberg
- Department of Oncology, Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden
| | - Tarmo Koppel
- Department of Labour Environment and Safety, Tallinn University of Technology, 19086 Tallinn, Estonia
| | - Lena Hedendahl
- Independent Environment and Health Research Luleå, SE-972 53 Luleå, Sweden
| |
Collapse
|