1
|
Dewi F, Sim LP, Ng SY, Leung HW, Ng WT, Shin RYC, Mester Z, Teo TL. Certified reference material for inorganic contaminants in insect protein. Anal Bioanal Chem 2025; 417:2703-2715. [PMID: 40064672 DOI: 10.1007/s00216-025-05815-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 04/17/2025]
Abstract
The growing interest in insect protein as an alternative to conventional protein sources is driven by the need for sustainable options with low environmental impact. While insect-based proteins provide significant nutritional benefits, ensuring their safety requires robust analytical methods and access to reliable matrix-matched certified reference materials. Currently, the availability of such materials for assessing inorganic and organic contaminants in insect proteins is limited. This paper outlines the innovative methodologies used to produce an incurred cricket powder reference material for inorganic contaminants (arsenic, cadmium, chromium, mercury, lead, arsenic species) and selenium. It details the careful selection of appropriate contaminant levels introduced through insect feed, feeding regimens, and the production of a certified reference material in compliance with ISO 17034 standard. In the development of the material, a pioneering approach was adopted, integrating tailored feed formulations for insects within controlled farming environments. Through meticulous trials, these techniques achieved satisfactory bioaccumulation of contaminants, enabling the consistent production of high-quality incurred insect protein suitable for use as quality control samples and for method development and validation of methods. The assignment of reference values for these materials was carried out using high-accuracy methods, ensuring metrological traceability with associated measurement uncertainties. The scarcity of insect-based reference materials has posed a challenge to guaranteeing the safety and quality of insect-based proteins. Hence, the development of these reference materials plays a crucial role in instilling confidence among consumers and regulatory bodies in the evolving landscape of the insect protein industry.
Collapse
Affiliation(s)
- Fransiska Dewi
- Chemical Metrology Laboratory, Chemical Metrology Division, Applied Sciences Group, Health Sciences Authority, 1 Science Park Road, #01-05/06, The Capricorn, Singapore Science Park II, Singapore, 117528, Singapore.
| | - Lay Peng Sim
- Chemical Metrology Laboratory, Chemical Metrology Division, Applied Sciences Group, Health Sciences Authority, 1 Science Park Road, #01-05/06, The Capricorn, Singapore Science Park II, Singapore, 117528, Singapore
| | - Sin Yee Ng
- Chemical Metrology Laboratory, Chemical Metrology Division, Applied Sciences Group, Health Sciences Authority, 1 Science Park Road, #01-05/06, The Capricorn, Singapore Science Park II, Singapore, 117528, Singapore
| | - Ho Wah Leung
- Chemical Metrology Laboratory, Chemical Metrology Division, Applied Sciences Group, Health Sciences Authority, 1 Science Park Road, #01-05/06, The Capricorn, Singapore Science Park II, Singapore, 117528, Singapore
| | - Wan Ting Ng
- Chemical Metrology Laboratory, Chemical Metrology Division, Applied Sciences Group, Health Sciences Authority, 1 Science Park Road, #01-05/06, The Capricorn, Singapore Science Park II, Singapore, 117528, Singapore
| | - Richard Y C Shin
- Chemical Metrology Laboratory, Chemical Metrology Division, Applied Sciences Group, Health Sciences Authority, 1 Science Park Road, #01-05/06, The Capricorn, Singapore Science Park II, Singapore, 117528, Singapore
| | - Zoltan Mester
- National Research Council Canada, Montreal Road, Ottawa, ON, 1200, Canada
| | - Tang Lin Teo
- Chemical Metrology Laboratory, Chemical Metrology Division, Applied Sciences Group, Health Sciences Authority, 1 Science Park Road, #01-05/06, The Capricorn, Singapore Science Park II, Singapore, 117528, Singapore
| |
Collapse
|
2
|
Pisconte JN, Vega CM, Sayers CJ, Sevillano-Ríos CS, Pillaca M, Quispe E, Tejeda V, Ascorra C, Silman MR, Fernandez LE. Elevated mercury exposure in bird communities inhabiting Artisanal and Small-Scale Gold Mining landscapes of the southeastern Peruvian Amazon. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:472-483. [PMID: 38363482 DOI: 10.1007/s10646-024-02740-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/05/2024] [Indexed: 02/17/2024]
Abstract
Artisanal and Small-Scale Gold Mining (ASGM) represents a significant source of anthropogenic mercury emissions to the environment, with potentially severe implications for avian biodiversity. In the Madre de Dios department of the southern Peruvian Amazon, ASGM activities have created landscapes marred by deforestation and post-mining water bodies (mining ponds) with notable methylation potential. While data on Hg contamination in terrestrial wildlife remains limited, this study measures Hg exposure in several terrestrial bird species as bioindicators. Total Hg (THg) levels in feathers from birds near water bodies, including mining ponds associated with ASGM areas and oxbow lakes, were analyzed. Our results showed significantly higher Hg concentrations in birds from ASGM sites with mean ± SD of 3.14 ± 7.97 µg/g (range: 0.27 to 72.75 µg/g, n = 312) compared to control sites with a mean of 0.47 ± 0.42 µg/g (range: 0.04 to 1.89 µg/g, n = 52). Factors such as trophic guilds, ASGM presence, and water body area significantly influenced feather Hg concentrations. Notably, piscivorous birds exhibited the highest Hg concentration (31.03 ± 25.25 µg/g, n = 12) exceeding known concentrations that affect reproductive success, where one measurement of Chloroceryle americana (Green kingfisher; 72.7 µg/g) is among the highest ever reported in South America. This research quantifies Hg exposure in avian communities in Amazonian regions affected by ASGM, highlighting potential risks to regional bird populations.
Collapse
Affiliation(s)
- Jessica N Pisconte
- Centro de Innovación Científica Amazónica (CINCIA), Puerto Maldonado, Madre de Dios, 17000, Perú.
| | - Claudia M Vega
- Centro de Innovación Científica Amazónica (CINCIA), Puerto Maldonado, Madre de Dios, 17000, Perú
- Sabin Center for Environment and Sustainability, and Department of Biology, Wake Forest University, Winston-, Salem, NC, 27106, USA
| | - Christopher J Sayers
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 90095, USA
| | | | - Martin Pillaca
- Centro de Innovación Científica Amazónica (CINCIA), Puerto Maldonado, Madre de Dios, 17000, Perú
| | - Edwin Quispe
- Centro de Innovación Científica Amazónica (CINCIA), Puerto Maldonado, Madre de Dios, 17000, Perú
| | - Vania Tejeda
- World Wildlife Fund-Peru, Trinidad Moran 853, Lima 14, Lima, Peru
| | - Cesar Ascorra
- Centro de Innovación Científica Amazónica (CINCIA), Puerto Maldonado, Madre de Dios, 17000, Perú
| | - Miles R Silman
- Centro de Innovación Científica Amazónica (CINCIA), Puerto Maldonado, Madre de Dios, 17000, Perú
- Sabin Center for Environment and Sustainability, and Department of Biology, Wake Forest University, Winston-, Salem, NC, 27106, USA
| | - Luis E Fernandez
- Centro de Innovación Científica Amazónica (CINCIA), Puerto Maldonado, Madre de Dios, 17000, Perú
- Sabin Center for Environment and Sustainability, and Department of Biology, Wake Forest University, Winston-, Salem, NC, 27106, USA
- Department of Global Ecology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| |
Collapse
|
3
|
Li S, Li Z, Wu M, Zhou Y, Tang W, Zhong H. Mercury transformations in algae, plants, and animals: The occurrence, mechanisms, and gaps. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168690. [PMID: 38000748 DOI: 10.1016/j.scitotenv.2023.168690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023]
Abstract
Mercury (Hg) is a global pollutant showing potent toxicity to living organisms. The transformations of Hg are critical to global Hg cycling and Hg exposure risks, considering Hg mobilities and toxicities vary depending on Hg speciation. Though currently well understood in ambient environments, Hg transformations are inadequately explored in non-microbial organisms. The primary drivers of in vivo Hg transformations are far from clear, and the impacts of these processes on global Hg cycling and Hg associated health risks are not well understood. This hinders a comprehensive understanding of global Hg cycling and the effective mitigation of Hg exposure risks. Here, we focused on Hg transformations in non-microbial organisms, particularly algae, plants, and animals. The process of Hg oxidation/reduction and methylation/demethylation in organisms were reviewed since these processes are the key transformations between the dominant Hg species, i.e., elemental Hg (Hg0), divalent inorganic Hg (IHgII), and methylmercury (MeHg). By summarizing the current knowledge of Hg transformations in organisms, we proposed the potential yet overlooked drivers of these processes, along with potential challenges that hinder a full understanding of in vivo Hg transformations. Knowledge summarized in this review would help achieve a comprehensive understanding of the fate and toxicity of Hg in organisms, providing a basis for predicting Hg cycles and mitigating human exposure.
Collapse
Affiliation(s)
- Shouying Li
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210023, China
| | - Zhuoran Li
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210023, China
| | - Mengjie Wu
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210023, China
| | - Yang Zhou
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210023, China
| | - Wenli Tang
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210023, China.
| | - Huan Zhong
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210023, China.
| |
Collapse
|
4
|
Rebolloso Hernández CA, Vallejo Pérez MR, Razo Soto I, Díaz-Barriga Martínez F, Yáñez LC. Mercury entomotoxicology. CHEMOSPHERE 2023; 311:136965. [PMID: 36280115 DOI: 10.1016/j.chemosphere.2022.136965] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/03/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Mercury is an industrial pollutant of global concern. Currently entomofauna is disappearing and chemical pollution is one cause, however, it is unknown whether mercury is an additional threat. Therefore, it is necessary to know the entomotoxicology of mercury. The aim of the present work was to perform a comprehensive literature review on the entomotoxicology of mercury. The toxicokinetics and toxicity of mercury in insects, the participation of insects in the mercury cycle and the fact that this element is a threat to entomofauna are characterized. Insects can be exposed to mercury through ingestion, tracheal respiration, and gill respiration. Organic forms of mercury are better absorbed, bioaccumulated and distributed than inorganic forms. In addition, insects can biotransform mercury, for example, by methylating it. Metal elimination occurs through feces, eggs and exuvia. Toxicity molecular mechanisms include oxidative stress, enzymatic disruptions, alterations in the metabolism of neurotransmitters and proteins, genotoxicity, cell death and unbalances in the energetic state. Moreover, mercury affects lipid, germ, and gut cells, causes deformations, disturbs development, reproduction, behavior, and locomotion, besides to alters insect populations and communities. In terrestrial ecosystems, entomofauna participate in the mercury cycle by bioaccumulating mercury from soil and air, predating, being predated and decomposing organic matter. In aquatic ecosystems insects participate by accumulating mercury from water and sediment, predating, being predated and transporting it to terrestrial ecosystems when they emerge as winged adults. There are still information gaps that need to be addressed.
Collapse
Affiliation(s)
- Carlos Alberto Rebolloso Hernández
- Programa Multidisciplinario de Posgrado en Ciencias Ambientales, Universidad Autónoma de San Luis Potosí, Avenida Manuel Nava No. 201, CP 78210, Zona Universitaria, San Luis Potosí, SLP, Mexico.
| | - Moisés Roberto Vallejo Pérez
- CONACYT, Coordinación para la Innovación y Aplicación de la Ciencia y Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, Avenida Sierra Leona No. 550, CP 78210, Colonia Lomas Segunda Sección, San Luis Potosí, SLP, Mexico
| | - Israel Razo Soto
- Facultad de Ingeniería, Universidad Autónoma de San Luis Potosí, Avenida Manuel Nava No. 304, CP 78210, Zona Universitaria, San Luis Potosí, SLP, Mexico
| | - Fernando Díaz-Barriga Martínez
- Facultad de Medicina-Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Universidad Autónoma de San Luis Potosí, Avenida Sierra Leona No. 550, CP 78210, Colonia Lomas Segunda Sección, San Luis Potosí, SLP, Mexico
| | - Leticia Carrizales Yáñez
- Facultad de Medicina-Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Universidad Autónoma de San Luis Potosí, Avenida Sierra Leona No. 550, CP 78210, Colonia Lomas Segunda Sección, San Luis Potosí, SLP, Mexico
| |
Collapse
|
5
|
Gao Z, Zheng W, Li Y, Liu Y, Wu M, Li S, Li P, Liu G, Fu X, Wang S, Wang F, Cai Y, Feng X, Gu B, Zhong H, Yin Y. Mercury transformation processes in nature: Critical knowledge gaps and perspectives for moving forward. J Environ Sci (China) 2022; 119:152-165. [PMID: 35934460 DOI: 10.1016/j.jes.2022.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
The transformation of mercury (Hg) in the environment plays a vital role in the cycling of Hg and its risk to the ecosystem and human health. Of particular importance are Hg oxidation/reduction and methylation/demethylation processes driven or mediated by the dynamics of light, microorganisms, and organic carbon, among others. Advances in understanding those Hg transformation processes determine our capacity of projecting and mitigating Hg risk. Here, we provide a critical analysis of major knowledge gaps in our understanding of Hg transformation in nature, with perspectives on approaches moving forward. Our analysis focuses on Hg transformation processes in the environment, as well as emerging methodology in exploring these processes. Future avenues for improving the understanding of Hg transformation processes to protect ecosystem and human health are also explored.
Collapse
Affiliation(s)
- Zhiyuan Gao
- Centre for Earth Observation Science, and Department of Environment and Geography, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Wang Zheng
- Institute of Surface-Earth System Science, Tianjin University, Tianjin 300192, China
| | - Yanbin Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Yurong Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Mengjie Wu
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210023, China
| | - Shouying Li
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210023, China
| | - Ping Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Guangliang Liu
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Xuewu Fu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Shuxiao Wang
- School of Environment and State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Feiyue Wang
- Centre for Earth Observation Science, and Department of Environment and Geography, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Yong Cai
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Baohua Gu
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Huan Zhong
- School of the Environment, Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210023, China; Environmental and Life Sciences Program (EnLS), Trent University, Peterborough, Ontario K9L 0G2, Canada.
| | - Yongguang Yin
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
6
|
Mercury-methylating bacteria are associated with copepods: A proof-of-principle survey in the Baltic Sea. PLoS One 2020; 15:e0230310. [PMID: 32176728 PMCID: PMC7075563 DOI: 10.1371/journal.pone.0230310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 02/26/2020] [Indexed: 01/08/2023] Open
Abstract
Methylmercury (MeHg) is a potent neurotoxin that biomagnifies in marine food webs. Inorganic mercury (Hg) methylation is conducted by heterotrophic bacteria inhabiting sediment or settling detritus, but endogenous methylation by the gut microbiome of animals in the lower food webs is another possible source. We examined the occurrence of the bacterial gene (hgcA), required for Hg methylation, in the guts of dominant zooplankters in the Northern Baltic Sea. A qPCR assay targeting the hgcA sequence in three main clades (Deltaproteobacteria, Firmicutes and Archaea) was used in the field-collected specimens of copepods (Acartia bifilosa, Eurytemora affinis, Pseudocalanus acuspes and Limnocalanus macrurus) and cladocerans (Bosmina coregoni maritima and Cercopagis pengoi). All copepods were found to carry hgcA genes in their gut microbiome, whereas no amplification was recorded in the cladocerans. In the copepods, hgcA genes belonging to only Deltaproteobacteria and Firmicutes were detected. These findings suggest a possibility that endogenous Hg methylation occurs in zooplankton and may contribute to seasonal, spatial and vertical MeHg variability in the water column and food webs. Additional molecular and metagenomics studies are needed to identify bacteria carrying hgcA genes and improve their quantification in microbiota.
Collapse
|
7
|
Corrêa MG, Bittencourt LO, Nascimento PC, Ferreira RO, Aragão WAB, Silva MCF, Gomes-Leal W, Fernandes MS, Dionizio A, Buzalaf MR, Crespo-Lopez ME, Lima RR. Spinal cord neurodegeneration after inorganic mercury long-term exposure in adult rats: Ultrastructural, proteomic and biochemical damages associated with reduced neuronal density. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 191:110159. [PMID: 31962214 DOI: 10.1016/j.ecoenv.2019.110159] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/28/2019] [Accepted: 12/31/2019] [Indexed: 06/10/2023]
Abstract
Mercury chloride (HgCl2) is a chemical pollutant widely found in the environment. This form of mercury is able to promote several damages to the Central Nervous System (CNS), however the effects of HgCl2 on the spinal cord, an important pathway for the communication between the CNS and the periphery, are still poorly understood. The aim of this work was to investigate the effects of HgCl2 exposure on spinal cord of adult rats. For this, animals were exposed to a dose of 0.375 mg/kg/day, for 45 days. Then, they were euthanized, the spinal cord collected and we investigated the mercury concentrations in medullary parenchyma and the effects on oxidative biochemistry, proteomic profile and tissue structures. Our results showed that exposure to this metal promoted increased levels of Hg in the spinal cord, impaired oxidative biochemistry by triggering oxidative stress, mudulated antioxidant system proteins, energy metabolism and myelin structure; as well as caused disruption in the myelin sheath and reduction in neuronal density. Despite the low dose, we conclude that prolonged exposure to HgCl2 triggers biochemical changes and modulates the expression of several proteins, resulting in damage to the myelin sheath and reduced neuronal density in the spinal cord.
Collapse
Affiliation(s)
- Márcio Gonçalves Corrêa
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Para, Belém, PA, Brazil
| | - Leonardo Oliveira Bittencourt
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Para, Belém, PA, Brazil
| | - Priscila Cunha Nascimento
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Para, Belém, PA, Brazil
| | - Railson Oliveira Ferreira
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Para, Belém, PA, Brazil
| | - Walessa Alana Bragança Aragão
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Para, Belém, PA, Brazil
| | - Marcia Cristina Freitas Silva
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Para, Belém, PA, Brazil
| | - Walace Gomes-Leal
- Laboratory of Experimental Neuroprotection and Neuroregeneration, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Mileni Silva Fernandes
- Department of Biological Sciences, Bauru Dental School, University of São Paulo, Bauru, SP, Brazil
| | - Aline Dionizio
- Department of Biological Sciences, Bauru Dental School, University of São Paulo, Bauru, SP, Brazil
| | - Marília Rabelo Buzalaf
- Department of Biological Sciences, Bauru Dental School, University of São Paulo, Bauru, SP, Brazil
| | - Maria Elena Crespo-Lopez
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Para, Belém, PA, Brazil
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Para, Belém, PA, Brazil.
| |
Collapse
|
8
|
Influence of Macrophyte and Gut Microbiota on Mercury Contamination in Fish: A Microcosms Study. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10041500] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The freshwater lakes of southwestern France are subject to the development of invasive macrophytes which are associated with mercury (Hg) contamination of the food web. The aim of this study was to determine the bioavailability of methylmercury (MeHg) produced by plant roots in aquatic ecosystems. A microcosm experiment was performed using isotopically enriched inorganic Hg at environmental concentrations (1 µg 199IHg·L−1). For all conditions, total Hg in fish as well as Hg species associated with different compartments (water, sediments, plant roots, fish) were analyzed by gas chromatography-inductively coupled plasma-mass spectrometry (GC-ICP-MS). In addition, sediment, plants, and fish gut microbiota were studied by MiSEQ sequencing. Some strains were isolated and tested for their ability to methylate Hg. The results revealed 199MeHg production in plant roots and the presence of this form in fish (tissues and gut), highlighting a MeHg trophic transfer. Moreover, methylator bacteria were identified from the gut contents of the fish when they were in the presence of plants. Some of them were related to bacteria found in the plant roots. On the basis of these results, the transfer of MeHg and bacteria from plants to fish is highlighted; in addition, Hg methylation is strongly suspected in the fish gut, potentially increasing the Hg bioaccumulation.
Collapse
|
9
|
Sanders CW, Pacifici K, Hess GR, Olfenbuttel C, DePerno CS. Metal contamination of river otters in North Carolina. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:146. [PMID: 31993757 DOI: 10.1007/s10661-020-8106-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
Aquatic apex predators are vulnerable to environmental contaminants due to biomagnification. North American river otter (Lontra canadensis) populations should be closely monitored across their range due to point and nonpoint pollution sources. Nonetheless, no information exists on environmental contaminants in the North Carolina otter population. Metals and metalloids occur naturally across the landscape, are essential for cellular function, and become toxic when concentrated unnaturally. We conducted our study across the three Furbearer Management Units (FMU) and 14 river basins of North Carolina. We determined the concentrations of arsenic, cadmium, calcium, cobalt, copper, iron, lead, magnesium, manganese, mercury, molybdenum, selenium, thallium, and zinc in liver and kidney samples from 317 otters harvested from 2009 to 2016. Arsenic, lead, and thallium samples were tested at levels below the limit of detection. With the exception of cadmium, we detected all other elements at higher levels in the liver compared with the kidney. Specifically, cadmium, cobalt, copper, iron, magnesium, manganese, mercury, molybdenum, and zinc levels differed by tissue type analyzed. Most element concentrations remained stable or increased with otter age. We detected higher levels of mercury and selenium in the Lower Pee Dee and Cape Fear river basins. River basins within the Mountain FMU were higher in cadmium, copper, iron, lead, and zinc, whereas the Coastal Plain FMU was lower in cobalt and manganese. None of the elements occurred at toxic levels. Our research establishes baseline concentration levels for North Carolina, which will benefit future monitoring efforts and provide insight into future changes in the otter population.
Collapse
Affiliation(s)
- Charles W Sanders
- Fisheries, Wildlife, & Conservation Biology Program, Department of Forestry and Environmental Resources, College of Natural Resources, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Krishna Pacifici
- Fisheries, Wildlife, & Conservation Biology Program, Department of Forestry and Environmental Resources, College of Natural Resources, North Carolina State University, Raleigh, NC, 27695, USA
| | - George R Hess
- Fisheries, Wildlife, & Conservation Biology Program, Department of Forestry and Environmental Resources, College of Natural Resources, North Carolina State University, Raleigh, NC, 27695, USA
| | - Colleen Olfenbuttel
- Surveys and Research Program, Wildlife Management Division, North Carolina Wildlife Resources Commission, Pittsboro, NC, 27312, USA
| | - Christopher S DePerno
- Fisheries, Wildlife, & Conservation Biology Program, Department of Forestry and Environmental Resources, College of Natural Resources, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
10
|
Diouf M, Sillam-Dussès D, Alphonse V, Frechault S, Miambi E, Mora P. Mercury species in the nests and bodies of soil-feeding termites, Silvestritermes spp. (Termitidae, Syntermitinae), in French Guiana. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:113064. [PMID: 31479810 DOI: 10.1016/j.envpol.2019.113064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/13/2019] [Accepted: 08/15/2019] [Indexed: 06/10/2023]
Abstract
Mercury pollution is currently a major public health concern, given the adverse effects of mercury on wildlife and humans. Soil plays an essential role in speciation of mercury and its global cycling, while being a habitat for a wide range of terrestrial fauna. Soil fauna, primarily soil-feeding taxa that are in intimate contact with soil pollutants are key contributors in the cycling of soil mercury and might provide relevant indications about soil pollution. We studied the enrichment of various mercury species in the nests and bodies of soil-feeding termites Silvestritermes spp. in French Guiana. Soil-feeding termites are the only social insects using soil as both shelter and food and are major decomposers of organic matter in neotropical forests. Nests of S. minutus were depleted in total and mobile mercury compared to nearby soil. In contrast, they were enriched 17 times in methylmercury. The highest concentrations of methylmercury were found in body of both studied termite species, with mean bioconcentration factors of 58 for S. minutus and 179 for S. holmgreni relative to the soil. The assessment of the body distribution of methylmercury in S. minutus showed concentrations of 221 ng g-1 for the guts and even higher for the gut-free carcasses (683 ng g-1), suggesting that methylmercury is not confined to the gut where it was likely produced, but rather stored in various tissues. This enrichment in the most toxic form of Hg in termites may be of concern on termite predators and the higher levels in the food chain that may be endangered through prey-to-predator transfers and bioaccumulation. Soil-feeding termites appear to be promising candidates as bio-indicators of mercury pollution in soils of neotropical rainforest ecosystems.
Collapse
Affiliation(s)
- Michel Diouf
- Faculté des Sciences et Technologie, Université Paris Est Créteil, Département ECOEVO, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES, Paris), 61 avenue du Général de Gaulle, 94010 Créteil Cedex, France.
| | - David Sillam-Dussès
- Université Paris 13 - Sorbonne Paris Cité, Laboratoire d'Ethologie Expérimentale et Comparée, 99 avenue Jean-Baptiste Clément, 93430 Villetaneuse, France
| | - Vanessa Alphonse
- Faculté des Sciences et Technologie, Université Paris Est Créteil, Laboratoire Eau, Environnement, Systèmes Urbains (LEESU), UMR-MA 102, 61 avenue du Général de Gaulle, 94010 Créteil Cedex, France
| | - Sophie Frechault
- Faculté des Sciences et Technologie, Université Paris Est Créteil, Département ECOEVO, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES, Paris), 61 avenue du Général de Gaulle, 94010 Créteil Cedex, France
| | - Edouard Miambi
- Faculté des Sciences et Technologie, Université Paris Est Créteil, Département ECOEVO, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES, Paris), 61 avenue du Général de Gaulle, 94010 Créteil Cedex, France
| | - Philippe Mora
- Faculté des Sciences et Technologie, Université Paris Est Créteil, Département ECOEVO, Institut d'Ecologie et des Sciences de l'Environnement de Paris (iEES, Paris), 61 avenue du Général de Gaulle, 94010 Créteil Cedex, France
| |
Collapse
|
11
|
Queipo-Abad S, González PR, Martínez-Morillo E, Davis WC, García Alonso JI. Concentration of mercury species in hair, blood and urine of individuals occupationally exposed to gaseous elemental mercury in Asturias (Spain) and its comparison with individuals from a control group formed by close relatives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 672:314-323. [PMID: 30959298 DOI: 10.1016/j.scitotenv.2019.03.367] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/22/2019] [Accepted: 03/23/2019] [Indexed: 06/09/2023]
Abstract
Between November 19th, 2012 and December 3rd, 2012, 50 workers were intoxicated with gaseous Hg in San Juan de Nieva (Asturias, Spain) during the maintenance of a heat exchanger of a zinc manufacturer. We have quantified the concentration of methylmercury (MeHg), ethylmercury (EtHg) and Hg(II) in blood, hair and urine samples of those individuals taken three years after the accident. Blood, hair and urine of their closest relatives were also analyzed to assess whether the mercury burden present in the intoxicated individuals was due to the occupational exposure or to environmental or lifestyle-related factors. The determination of the mercury species in the samples was carried out applying multiple spiking Isotope Dilution GC-ICP-MS. This procedure corrects for possible interconversion reactions between the Hg species during the sample preparation procedure. Linear correlations were observed for both groups when plotting MeHg in blood vs MeHg in hair, and MeHg in hair vs Hg (II) in urine. The concentrations of Hg species in the intoxicated individuals were not significantly different from those obtained in the control group except for MeHg in blood. Significantly higher levels of MeHg in blood were obtained in some of the intoxicated individuals who had not consumed fish or seafood since the accident. A different correlation between MeHg in hair and MeHg in blood was obtained for these individuals compared to the control group who showed a hair-to-blood ratio consistent with the reported value for people exposed to Hg via fish consumption. Our results suggest that ingested MeHg followed the same pathway of deposition in hair in exposed and non-exposed individuals. However, the exposed individuals with high MeHg levels in blood showed a significantly different extent of MeHg deposition in hair compared to the control group.
Collapse
Affiliation(s)
- Silvia Queipo-Abad
- Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería, 8, 33006 Oviedo, Spain
| | - Pablo Rodríguez González
- Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería, 8, 33006 Oviedo, Spain.
| | - Eduardo Martínez-Morillo
- Service of Clinical Biochemistry, Laboratory of Medicine, Central University Hospital of Asturias (HUCA), 33011 Oviedo, Spain
| | - W Clay Davis
- Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - José Ignacio García Alonso
- Department of Physical and Analytical Chemistry, University of Oviedo, Julián Clavería, 8, 33006 Oviedo, Spain
| |
Collapse
|
12
|
Zhang BB, Liu YM, Hu AL, Xu SF, Fan LD, Cheng ML, Li C, Wei LX, Liu J. HgS and Zuotai differ from HgCl 2 and methyl mercury in intestinal Hg absorption, transporter expression and gut microbiome in mice. Toxicol Appl Pharmacol 2019; 379:114615. [PMID: 31175882 DOI: 10.1016/j.taap.2019.114615] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/28/2019] [Accepted: 06/04/2019] [Indexed: 02/07/2023]
Abstract
Mercury (Hg) is generally considered as a toxic metal; yet the biological outcomes of Hg-containing compounds are highly dependent upon their chemical forms. We hypothesize that mercury sulfide (HgS) is different from HgCl2 and methylmercury (MeHg) in producing intestinal Hg absorption and disruption of gut microbiome. To test this hypothesis, mice were given orally with HgS (α-HgS, 30 mg/kg), Zuotai (β-HgS, 30 mg/kg), HgCl2 (33.6 mg/kg, equivalent Hg as HgS), or MeHg (3.1 mg/kg, 1/10 Hg as HgS) for 7 days. Accumulation of Hg in the duodenum and ileum after HgCl2 (30-40 fold) and MeHg (10-15 fold) was higher than HgS and Zuotai (~2-fold). HgCl2 and MeHg decreased intestinal intake peptide transporter-1 and Ost-β, and increased ileal bile acid binding protein and equilibrative nucleoside transporter-1. The efflux transporters ATP-binding cassette sub-family C member-4 (Abcc4), Abcg2, Abcg5/8, and Abcb1b were increased by HgCl2 and to a lesser extent by MeHg, while HgS and Zuotai had minimal effects. Bacterial DNA was extracted and subjected to 16S rDNA sequencing. Operational taxonomic unit (OTU) results showed that among the 10 phyla, HgS increased Firmicutes, Proteobacteria, while HgCl2 increased Bacteroidetes, Cyanobacteria and decreased Firmicutes; among the 79 families, HgS increased Rikenellaceae, Lactobacillaceae, Helicobacteraceae, and decreased Prevotellaceae, while HgCl2 increased Odoribacteraceae, Porphyromonadaceae, and decreased Lactobacillaceae; among the 232 genus/species, HgS and Zuotai affected gut microbiome quite differently from HgCl2 and MeHg. qPCR analysis with 16S rRNA confirmed sequencing results. Thus, chemical forms of mercury are a major determinant for intestinal Hg accumulation, alterations in transporters and disruption of microbiome.
Collapse
Affiliation(s)
- Bin-Bin Zhang
- Key Lab for Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine, Zunyi Medical College, Zunyi 563000, China
| | - Yong-Mei Liu
- Department of Infectious Diseases, Hospital Affiliated to Guizhou Medical University, No. 4 Beijing Road, Guiyang, Guizhou 550004, China
| | - An-Ling Hu
- Key Lab for Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine, Zunyi Medical College, Zunyi 563000, China
| | - Shang-Fu Xu
- Key Lab for Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine, Zunyi Medical College, Zunyi 563000, China
| | - Li-Da Fan
- Department of Infectious Diseases, Hospital Affiliated to Guizhou Medical University, No. 4 Beijing Road, Guiyang, Guizhou 550004, China
| | - Ming-Liang Cheng
- Department of Infectious Diseases, Hospital Affiliated to Guizhou Medical University, No. 4 Beijing Road, Guiyang, Guizhou 550004, China
| | - Cen Li
- Qinghai Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| | - Li-Xin Wei
- Qinghai Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| | - Jie Liu
- Key Lab for Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine, Zunyi Medical College, Zunyi 563000, China.
| |
Collapse
|
13
|
Li H, Lin X, Zhao J, Cui L, Wang L, Gao Y, Li B, Chen C, Li YF. Intestinal Methylation and Demethylation of Mercury. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 102:597-604. [PMID: 30515547 DOI: 10.1007/s00128-018-2512-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 11/30/2018] [Indexed: 05/20/2023]
Abstract
Mercury (Hg) is a global pollutant, which is linked with different diseases. The methylation of Hg and demethylation of methylmercury (MeHg) in the environment were extensively studied and summarized; however, the transformation of Hg in the intestine is less presented. In this review, the research progress and the perspectives on the intestinal transformation of Hg were discussed. Studies found that MeHg could be formed when exposed to inorganic Hg by the gut microbiota in aquatic organisms, terrestrial invertebrates, and mammals, etc. hgcAB genes could be used as indicators for predicting Hg methylation potential. In vitro studies using fecal specimen, intestinal contents, and the isolated intestinal microbes confirmed the intestinal demethylation of MeHg. The investigation on the effects of Hg exposure to the abundance and diversity of intestinal microbes and their metabolites could shed light on the mechanism of the toxicity of Hg, especially the neurotoxicity of MeHg, which deserves further study.
Collapse
Affiliation(s)
- Hong Li
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, HKU-IHEP Joint Laboratory on Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoying Lin
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, HKU-IHEP Joint Laboratory on Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiating Zhao
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, HKU-IHEP Joint Laboratory on Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Liwei Cui
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, HKU-IHEP Joint Laboratory on Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Liming Wang
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, HKU-IHEP Joint Laboratory on Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuxi Gao
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, HKU-IHEP Joint Laboratory on Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Bai Li
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, HKU-IHEP Joint Laboratory on Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunying Chen
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100191, China
| | - Yu-Feng Li
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, HKU-IHEP Joint Laboratory on Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
14
|
Girard C, Charette T, Leclerc M, Shapiro BJ, Amyot M. Cooking and co-ingested polyphenols reduce in vitro methylmercury bioaccessibility from fish and may alter exposure in humans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 616-617:863-874. [PMID: 29096961 DOI: 10.1016/j.scitotenv.2017.10.236] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/21/2017] [Accepted: 10/22/2017] [Indexed: 06/07/2023]
Abstract
Fish consumption is a major pathway for mercury exposure in humans. Current guidelines and risk assessments assume that 100% of methylmercury (MeHg) in fish is absorbed by the human body after ingestion. However, a growing body of literature suggests that this absorption rate may be overestimated. We used an in vitro digestion method to measure MeHg bioaccessibility in commercially-purchased fish, and investigated the effects of dietary practices on MeHg bioaccessibility. Cooking had the greatest effect, decreasing bioaccessibility on average to 12.5±5.6%. Polyphenol-rich beverages also significantly reduced bioaccessibility to 22.7±3.8% and 28.6±13.9%, for green and black tea respectively. We confirmed the suspected role of polyphenols in tea as being a driver of MeHg's reduced bioaccessibility, and found that epicatechin, epigallocatechin gallate, rutin and cafeic acid could individually decrease MeHg bioaccessibility by up to 55%. When both cooking and polyphenol-rich beverage treatments were combined, only 1% of MeHg remained bioaccessible. These results call for in vivo validation, and suggest that dietary practices should be considered when setting consumer guidelines for MeHg. More realistic risk assessments could promote consumption of fish as a source of fatty acids, which can play a protective role against cardiovascular disease.
Collapse
Affiliation(s)
- Catherine Girard
- Center for Northern Studies (CEN), Département de Sciences Biologiques, Université de Montréal, 90 Vincent-d'Indy, Montreal H2V2S9, Canada
| | - Tania Charette
- ÉcoLac, Département de Sciences Biologiques, Université de Montréal, 90 Vincent-d'Indy, Montreal H2V2S9, Canada; Groupe de Recherche Interuniversitaire en Limnologie et en Environnement Aquatique (GRIL), Département de Sciences Biologiques, Université de Montréal, 90 Vincent-d'Indy, Montreal H2V2S9, Canada
| | - Maxime Leclerc
- ÉcoLac, Département de Sciences Biologiques, Université de Montréal, 90 Vincent-d'Indy, Montreal H2V2S9, Canada; Groupe de Recherche Interuniversitaire en Limnologie et en Environnement Aquatique (GRIL), Département de Sciences Biologiques, Université de Montréal, 90 Vincent-d'Indy, Montreal H2V2S9, Canada
| | - B Jesse Shapiro
- Groupe de Recherche Interuniversitaire en Limnologie et en Environnement Aquatique (GRIL), Département de Sciences Biologiques, Université de Montréal, 90 Vincent-d'Indy, Montreal H2V2S9, Canada
| | - Marc Amyot
- Center for Northern Studies (CEN), Département de Sciences Biologiques, Université de Montréal, 90 Vincent-d'Indy, Montreal H2V2S9, Canada; ÉcoLac, Département de Sciences Biologiques, Université de Montréal, 90 Vincent-d'Indy, Montreal H2V2S9, Canada; Groupe de Recherche Interuniversitaire en Limnologie et en Environnement Aquatique (GRIL), Département de Sciences Biologiques, Université de Montréal, 90 Vincent-d'Indy, Montreal H2V2S9, Canada.
| |
Collapse
|
15
|
Eagles-Smith CA, Silbergeld EK, Basu N, Bustamante P, Diaz-Barriga F, Hopkins WA, Kidd KA, Nyland JF. Modulators of mercury risk to wildlife and humans in the context of rapid global change. AMBIO 2018; 47:170-197. [PMID: 29388128 PMCID: PMC5794686 DOI: 10.1007/s13280-017-1011-x] [Citation(s) in RCA: 213] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Environmental mercury (Hg) contamination is an urgent global health threat. The complexity of Hg in the environment can hinder accurate determination of ecological and human health risks, particularly within the context of the rapid global changes that are altering many ecological processes, socioeconomic patterns, and other factors like infectious disease incidence, which can affect Hg exposures and health outcomes. However, the success of global Hg-reduction efforts depends on accurate assessments of their effectiveness in reducing health risks. In this paper, we examine the role that key extrinsic and intrinsic drivers play on several aspects of Hg risk to humans and organisms in the environment. We do so within three key domains of ecological and human health risk. First, we examine how extrinsic global change drivers influence pathways of Hg bioaccumulation and biomagnification through food webs. Next, we describe how extrinsic socioeconomic drivers at a global scale, and intrinsic individual-level drivers, influence human Hg exposure. Finally, we address how the adverse health effects of Hg in humans and wildlife are modulated by a range of extrinsic and intrinsic drivers within the context of rapid global change. Incorporating components of these three domains into research and monitoring will facilitate a more holistic understanding of how ecological and societal drivers interact to influence Hg health risks.
Collapse
Affiliation(s)
| | - Ellen K. Silbergeld
- Johns Hopkin Bloomberg School of Public Health, 615 N. Wolfe Street, E6644, Baltimore, MD 21205 USA
| | - Niladri Basu
- McGill University, 204-CINE Building, Montreal, QC H9X 3V9 Canada
| | - Paco Bustamante
- University of La Rochelle, laboratory of Littoral Environment and Societies, Littoral Environnement et Sociétés (LIENSs), LIENSs UMR 7266 CNRS-Université de La Rochelle, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | - Fernando Diaz-Barriga
- Center for Applied Research in Environment and Health at, Universidad Autonoma de San Luis Potosi, Avenida Venustiano Carranza No. 2405, Col Lomas los Filtros Código Postal, 78214 San Luis Potosí, SLP Mexico
| | - William A. Hopkins
- Department of Fish and Wildlife Conservation, 310 West Campus Drive Virginia Tech, Cheatham Hall, Room 106 (MC 0321), Blacksburg, VA 24061 USA
| | - Karen A. Kidd
- Department of Biology & School of Geography and Earth Sciences, McMaster University, 1280 Main Street W., Hamilton, ON L8S 4K1 Canada
| | - Jennifer F. Nyland
- Department of Biological Sciences, 1101 Camden Ave, Salisbury, MD 21801 USA
| |
Collapse
|
16
|
Álvarez CR, Jiménez-Moreno M, Bernardo FJG, Martín-Doimeadios RCR, Nevado JJB. Using species-specific enriched stable isotopes to study the effect of fresh mercury inputs in soil-earthworm systems. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 147:192-199. [PMID: 28843190 DOI: 10.1016/j.ecoenv.2017.08.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 07/29/2017] [Accepted: 08/04/2017] [Indexed: 06/07/2023]
Abstract
The fate of mercury (Hg) in the soil-earthworm system is still far from being fully understood, especially regarding recurrent and challenging questions about the importance of the reactivity of exogenous Hg species. Thus, to predict the potential effect of Hg inputs in terrestrial ecosystems, it is necessary to evaluate separately the reactivity of the endogenous and exogenous Hg species and, for this purpose, the use of enriched stable isotope tracers is a promising tool. In the present work, earthworms (Lumbricus terrestris) were exposed to historically Hg contaminated soils from the Almadén mining district, Spain. The soils were either non-spiked, which contain only endogenous or native Hg naturally occurring in the soil, or spiked with isotopically enriched inorganic Hg (199IHg), representing exogenous or spiked Hg apart from the native one. The differential reactivity of endogenous and exogenous Hg in the soil conditioned the processes of methylation, mobilization, and assimilation of inorganic Hg by earthworms. Both endogenous and exogenous Hg species also behave distinctly regarding their bioaccumulation in earthworms, as suggested by the bioaccumulation factors, being the endogenous methylmercury (MeHg) the species more readily bioaccumulated by earthworms and in a higher extent. To the best of our knowledge, this work demonstrates for the first time the potential of enriched stable isotopes to study the effects of fresh Hg inputs in soil-earthworm systems. The findings of this work can be taken as a case study on the dynamics of Hg species in complex terrestrial systems and open a new door for future experiments.
Collapse
Affiliation(s)
- C Rodríguez Álvarez
- Department of Analytical Chemistry and Food Technology, Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, E-45071 Toledo, Spain
| | - M Jiménez-Moreno
- Department of Analytical Chemistry and Food Technology, Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, E-45071 Toledo, Spain
| | - F J Guzmán Bernardo
- Department of Analytical Chemistry and Food Technology, Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, E-45071 Toledo, Spain
| | - R C Rodríguez Martín-Doimeadios
- Department of Analytical Chemistry and Food Technology, Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, E-45071 Toledo, Spain.
| | - J J Berzas Nevado
- Department of Analytical Chemistry and Food Technology, Faculty of Chemistry, University of Castilla-La Mancha, E-16071 Ciudad Real, Spain
| |
Collapse
|