1
|
Wang SN, Shi YC, Lin S, He HF. Particulate matter 2.5 accelerates aging: Exploring cellular senescence and age-related diseases. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116920. [PMID: 39208581 DOI: 10.1016/j.ecoenv.2024.116920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Exposure to Particulate matter 2.5 (PM2.5) accelerates aging, causing declines in tissue and organ function, and leading to diseases such as cardiovascular, neurodegenerative, and musculoskeletal disorders. PM2.5 is a major environmental pollutant and an exogenous pathogen in air pollution that is now recognized as an accelerator of human aging and a predisposing factor for several age-related diseases. In this paper, we seek to elucidate the mechanisms by which PM2.5 induces cellular senescence, such as genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, and mitochondrial dysfunction, and age-related diseases. Our goal is to increase awareness among researchers within the field of the toxicity of environmental pollutants and to advocate for personal and public health initiatives to curb their production and enhance population protection. Through these endeavors, we aim to promote longevity and health in older adults.
Collapse
Affiliation(s)
- Sheng-Nan Wang
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Yan-Chuan Shi
- Centre of Neurological and Metabolic Research, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China; Group of Neuroendocrinology, Garvan Institute of Medical Research, 384 Victoria St, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Australia
| | - Shu Lin
- Centre of Neurological and Metabolic Research, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China; Group of Neuroendocrinology, Garvan Institute of Medical Research, 384 Victoria St, Sydney, Australia.
| | - He-Fan He
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China.
| |
Collapse
|
2
|
Wang YL, Huang CCY, Zheng CM, Liu WC, Lee YH, Chiu HW. Polystyrene microplastic-induced extracellular vesicles cause kidney-related effects in the crosstalk between tubular cells and fibroblasts. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116098. [PMID: 38368757 DOI: 10.1016/j.ecoenv.2024.116098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/20/2024]
Abstract
Plastic waste accumulation and its degradation into microplastics (MPs) and nanoplastics (NPs) pose environmental concerns. Previous studies have indicated that polystyrene (PS)-MPs harm living animals. Extracellular vesicles (EVs) are associated with metabolic reprogramming and mitochondrial dysfunction in various kidney diseases. In this article, we evaluated how PS-MPs affected tubular cells and fibroblasts. The results demonstrated that PS-MPs increased EV production in human tubular cells and caused endoplasmic reticulum (ER) stress-related proteins without inducing inflammation-related proteins in human tubular cells. The uptake of PS-MPs and incubation with the conditioned medium of PS-MPs induced reactive oxygen species (ROS) production and ER stress-related proteins in fibroblast cells. The fibroblast cells treated with the conditioned medium of PS-MPs also increased the expression of fibrosis-related proteins. Our findings suggested that the expression of EV-related markers increased in tubular cells via Beclin 1 after PS-MP treatment. In addition, PS-MPs induced ROS production in vitro and in vivo. We found that PS-MPs also altered the expression of EV markers in urine, and CD63 expression was also increased in vitro and in vivo after PS-MP treatment. In conclusion, PS-MP-induced EVs lead to ER stress-related proteins, ROS production and fibrosis-related proteins in tubular cells and fibroblasts.
Collapse
Affiliation(s)
- Yung-Li Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Cathy Chia-Yu Huang
- Department of Life Sciences, National Central University, Taoyuan City, Taiwan
| | - Cai-Mei Zheng
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taiwan; TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, Taiwan
| | - Wen-Chih Liu
- Section of Nephrology, Department of Medicine, Antai Medical Care Corporation Antai Tian-Sheng Memorial Hospital, Pingtung, Taiwan; Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan; Department of Nursing, Meiho University, Pingtung, Taiwan
| | - Yu-Hsuan Lee
- Department of Cosmeceutics, China Medical University, Taichung, Taiwan
| | - Hui-Wen Chiu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, Taiwan; Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taiwan.
| |
Collapse
|
3
|
López-Granero C, Polyanskaya L, Ruiz-Sobremazas D, Barrasa A, Aschner M, Alique M. Particulate Matter in Human Elderly: Higher Susceptibility to Cognitive Decline and Age-Related Diseases. Biomolecules 2023; 14:35. [PMID: 38254635 PMCID: PMC10813119 DOI: 10.3390/biom14010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
This review highlights the significant impact of air quality, specifically particulate matter (PM), on cognitive decline and age-related diseases in the elderly. Despite established links to other pathologies, such as respiratory and cardiovascular illnesses, there is a pressing need for increased attention to the association between air pollution and cognitive aging, given the rising prevalence of neurocognitive disorders. PM sources are from diverse origins, including industrial activities and combustion engines, categorized into PM10, PM2.5, and ultrafine PM (UFPM), and emphasized health risks from both outdoor and indoor exposure. Long-term PM exposure, notably PM2.5, has correlated with declines in cognitive function, with a specific vulnerability observed in women. Recently, extracellular vesicles (EVs) have been explored due to the interplay between them, PM exposure, and human aging, highlighting the crucial role of EVs, especially exosomes, in mediating the complex relationship between PM exposure and chronic diseases, particularly neurological disorders. To sum up, we have compiled the pieces of evidence that show the potential contribution of PM exposure to cognitive aging and the role of EVs in mediating PM-induced cognitive impairment, which presents a promising avenue for future research and development of therapeutic strategies. Finally, this review emphasizes the need for policy changes and increased public awareness to mitigate air pollution, especially among vulnerable populations such as the elderly.
Collapse
Affiliation(s)
- Caridad López-Granero
- Department of Psychology and Sociology, University of Zaragoza, 44003 Teruel, Spain; (C.L.-G.); (D.R.-S.); (A.B.)
| | - Leona Polyanskaya
- Faculty of Psychology and Educational Sciences, University of Coimbra, 3000-115 Coimbra, Portugal;
- Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Diego Ruiz-Sobremazas
- Department of Psychology and Sociology, University of Zaragoza, 44003 Teruel, Spain; (C.L.-G.); (D.R.-S.); (A.B.)
| | - Angel Barrasa
- Department of Psychology and Sociology, University of Zaragoza, 44003 Teruel, Spain; (C.L.-G.); (D.R.-S.); (A.B.)
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Matilde Alique
- Departamento de Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares, 28871 Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| |
Collapse
|
4
|
Marchini T. Redox and inflammatory mechanisms linking air pollution particulate matter with cardiometabolic derangements. Free Radic Biol Med 2023; 209:320-341. [PMID: 37852544 DOI: 10.1016/j.freeradbiomed.2023.10.396] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/27/2023] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
Abstract
Air pollution is the largest environmental risk factor for disease and premature death. Among the different components that are present in polluted air, fine particulate matter below 2.5 μm in diameter (PM2.5) has been identified as the main hazardous constituent. PM2.5 mainly arises from fossil fuel combustion during power generation, industrial processes, and transportation. Exposure to PM2.5 correlates with enhanced mortality risk from cardiovascular diseases (CVD), such as myocardial infarction and stroke. Over the last decade, it has been increasingly suggested that PM2.5 affects CVD already at the stage of risk factor development. Among the multiple biological mechanisms that have been described, the interplay between oxidative stress and inflammation has been consistently highlighted as one of the main drivers of pulmonary, systemic, and cardiovascular effects of PM2.5 exposure. In this context, PM2.5 uptake by tissue-resident immune cells in the lung promotes oxidative and inflammatory mediators release that alter tissue homeostasis at remote locations. This pathway is central for PM2.5 pathogenesis and might account for the accelerated development of risk factors for CVD, including obesity and diabetes. However, transmission and end-organ mechanisms that explain PM2.5-induced impaired function in metabolic active organs are not completely understood. In this review, the main features of PM2.5 physicochemical characteristics related to PM2.5 ability to induce oxidative stress and inflammation will be presented. Hallmark and recent epidemiological and interventional studies will be summarized and discussed in the context of current air quality guidelines and legislation, knowledge gaps, and inequities. Lastly, mechanistic studies at the intersection between redox metabolism, inflammation, and function will be discussed, with focus on heart and adipose tissue alterations. By offering an integrated analysis of PM2.5-induced effects on cardiometabolic derangements, this review aims to contribute to a better understanding of the pathogenesis and potential interventions of air pollution-related CVD.
Collapse
Affiliation(s)
- Timoteo Marchini
- Vascular Immunology Laboratory, Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany; Universidad de Buenos Aires, CONICET, Instituto de Bioquímica y Medicina Molecular Prof. Alberto Boveris (IBIMOL), Facultad de Farmacia y Bioquímica, C1113AAD, Buenos Aires, Argentina.
| |
Collapse
|
5
|
Hicks E, Rogers NMK, Hendren CO, Kuehn MJ, Wiesner MR. Extracellular Vesicles and Bacteriophages: New Directions in Environmental Biocolloid Research. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16728-16742. [PMID: 37898880 PMCID: PMC11623402 DOI: 10.1021/acs.est.3c05041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
There is a long-standing appreciation among environmental engineers and scientists regarding the importance of biologically derived colloidal particles and their environmental fate. This interest has been recently renewed in considering bacteriophages and extracellular vesicles, which are each poised to offer engineers unique insights into fundamental aspects of environmental microbiology and novel approaches for engineering applications, including advances in wastewater treatment and sustainable agricultural practices. Challenges persist due to our limited understanding of interactions between these nanoscale particles with unique surface properties and their local environments. This review considers these biological particles through the lens of colloid science with attention given to their environmental impact and surface properties. We discuss methods developed for the study of inert (nonbiological) particle-particle interactions and the potential to use these to advance our understanding of the environmental fate and transport of extracellular vesicles and bacteriophages.
Collapse
Affiliation(s)
- Ethan Hicks
- Department of Civil & Environmental Engineering, Duke University, Durham, North Carolina 27708, United States
- Center for the Environmental Implications of Nanotechnology, Duke University, Durham, North Carolina 27708, United States
| | - Nicholas M K Rogers
- Department of Mechanical Engineering, Porter School of Earth and Environmental Studies, Tel Aviv University, Tel Aviv 69978, Israel
| | - Christine Ogilvie Hendren
- Center for the Environmental Implications of Nanotechnology, Duke University, Durham, North Carolina 27708, United States
- Research Institute for Environment, Energy and Economics, Appalachian State University, Boone, North Carolina 28608, United States
| | - Meta J Kuehn
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Mark R Wiesner
- Department of Civil & Environmental Engineering, Duke University, Durham, North Carolina 27708, United States
- Center for the Environmental Implications of Nanotechnology, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
6
|
Carberry CK, Bangma J, Koval L, Keshava D, Hartwell HJ, Sokolsky M, Fry RC, Rager JE. Extracellular Vesicles altered by a Per- and Polyfluoroalkyl Substance Mixture: In Vitro Dose-Dependent Release, Chemical Content, and MicroRNA Signatures involved in Liver Health. Toxicol Sci 2023; 197:kfad108. [PMID: 37851381 PMCID: PMC10823775 DOI: 10.1093/toxsci/kfad108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) have emerged as high priority contaminants due to their ubiquity and pervasiveness in the environment. Numerous PFAS co-occur across sources of drinking water, including areas of North Carolina (NC) with some detected concentrations above the Environmental Protection Agency's health advisory levels. While evidence demonstrates PFAS exposure induces harmful effects in the liver, the involvement of extracellular vesicles (EVs) as potential mediators of these effects has yet to be evaluated. This study set out to evaluate the hypothesis that PFAS mixtures induce dose-dependent release of EVs from liver cells, with exposures causing differential loading of microRNAs (miRNAs) and PFAS chemical signatures. To test this hypothesis, a defined PFAS mixture was prioritized utilizing data collected by the NC PFAS Testing Network. This mixture contained three substances, PFOS, PFOA, and PFHxA, selected based upon co-occurrence patterns and the inclusion of both short-chain (PFHxA) and long-chain (PFOA and PFOS) substances. HepG2 liver cells were exposed to equimolar PFAS, and secreted EVs were isolated from conditioned media and characterized for count and molecular content. Exposures induced a dose-dependent release of EVs carrying miRNAs that were differentially loaded upon exposure. These altered miRNA signatures were predicted to target mRNA pathways involved in hepatic fibrosis and cancer. Chemical concentrations of PFOS, PFOA, and PFHxA were also detected in both parent HepG2 cells and their released EVs, specifically within a 15-fold range after normalizing for protein content. This study therefore established EVs as novel biological responders and measurable endpoints for evaluating PFAS-induced toxicity.
Collapse
Affiliation(s)
- Celeste K Carberry
- The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jacqueline Bangma
- Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Lauren Koval
- The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Deepak Keshava
- The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Hadley J Hartwell
- The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Marina Sokolsky
- Center for Nanotechnology in Drug Delivery, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Rebecca C Fry
- The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- School of Medicine, Curriculum in Toxicology and Environmental Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Julia E Rager
- The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- School of Medicine, Curriculum in Toxicology and Environmental Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
7
|
D’Amico G, Santonocito R, Vitale AM, Scalia F, Marino Gammazza A, Campanella C, Bucchieri F, Cappello F, Caruso Bavisotto C. Air Pollution: Role of Extracellular Vesicles-Derived Non-Coding RNAs in Environmental Stress Response. Cells 2023; 12:1498. [PMID: 37296619 PMCID: PMC10252408 DOI: 10.3390/cells12111498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/17/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023] Open
Abstract
Air pollution has increased over the years, causing a negative impact on society due to the many health-related problems it can contribute to. Although the type and extent of air pollutants are known, the molecular mechanisms underlying the induction of negative effects on the human body remain unclear. Emerging evidence suggests the crucial involvement of different molecular mediators in inflammation and oxidative stress in air pollution-induced disorders. Among these, non-coding RNAs (ncRNAs) carried by extracellular vesicles (EVs) may play an essential role in gene regulation of the cell stress response in pollutant-induced multiorgan disorders. This review highlights EV-transported ncRNAs' roles in physiological and pathological conditions, such as the development of cancer and respiratory, neurodegenerative, and cardiovascular diseases following exposure to various environmental stressors.
Collapse
Affiliation(s)
- Giuseppa D’Amico
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
| | - Radha Santonocito
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
| | - Alessandra Maria Vitale
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Federica Scalia
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Antonella Marino Gammazza
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
| | - Claudia Campanella
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
| | - Fabio Bucchieri
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
| | - Francesco Cappello
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Celeste Caruso Bavisotto
- Section of Human Anatomy and Histology, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, 90133 Palermo, Italy; (G.D.); (R.S.); (A.M.V.); (F.S.); (A.M.G.); (C.C.); (F.B.); (F.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| |
Collapse
|
8
|
Carberry CK, Rager JE. The impact of environmental contaminants on extracellular vesicles and their key molecular regulators: A literature and database-driven review. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2023; 64:50-66. [PMID: 36502378 PMCID: PMC10798145 DOI: 10.1002/em.22522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Exposure to environmental chemicals is now well recognized as a significant factor contributing to the global burden of disease; however, there remain critical gaps in understanding the types of biological mechanisms that link environmental chemicals to adverse health outcomes. One type of mechanism that remains understudied involves extracellular vesicles (EVs), representing small cell-derived particles capable of carrying molecular signals such as RNAs, miRNAs, proteins, lipids, and chemicals through biological fluids and imparting beneficial, neutral, or negative effects on target cells. In fact, evidence is just now starting to grow that supports the role of EVs in various disease etiologies. This review aims to (1) Provide a landscape of the current understanding of the functional relationship between EVs and environmental chemicals; (2) Summarize current knowledge of EV regulatory processes including production, packaging, and release; and (3) Conduct a database-driven analysis of known chemical-gene interactions to predict and prioritize environmentally relevant chemicals that may impact EV regulatory genes and thus EV regulatory processes. This approach to predicting environmentally relevant chemicals that may alter EVs provides a novel method for evidence-based hypothesis generation for future studies evaluating the link between environmental exposures and EVs.
Collapse
Affiliation(s)
- Celeste K. Carberry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Julia E. Rager
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Curriculum in Toxicology and Environmental Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
9
|
Zhang Y, Liang F, Zhang D, Qi S, Liu Y. Metabolites as extracellular vesicle cargo in health, cancer, pleural effusion, and cardiovascular diseases: An emerging field of study to diagnostic and therapeutic purposes. Biomed Pharmacother 2023; 157:114046. [PMID: 36469967 DOI: 10.1016/j.biopha.2022.114046] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/19/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Extracellular vesicles (EVs) are highly diverse nanoscale membrane-bound structures released from different cell types into the extracellular environment. They play essential functions in cell signaling by transporting their cargo, such as proteins, RNA, DNA, lipids, metabolites, and small molecules, to recipient cells. It has recently been shown that EVs might modulate carcinogenesis by delivering cargo to recipient cells. Furthermore, recent discoveries revealed that changes in plasma-derived EV levels and cargo in subjects with metabolic diseases were documented by many researchers, suggesting that EVs might be a promising source of disease biomarkers. One of the cargos of EVs that has recently attracted the most attention is metabolites. The metabolome of these vesicles introduces a plethora of disease indicators; hence, examining the metabolomics of EVs detected in human biofluids would be an effective approach. On the other hand, metabolites have various roles in biological systems, including the production of energies, synthesizing macromolecules, and serving as signaling molecules and hormones. Metabolome rewiring in cancer and stromal cells is a characteristic of malignancy, but the current understanding of how this affects the metabolite composition and activity of tumor-derived EVs remains in its infancy. Since new findings and studies in the field of exosome biology and metabolism are constantly being published, it is likely that diagnostic and treatment techniques, including the use of exosome metabolites, will be launched in the coming years. Recent years have seen increased interest in the EV metabolome as a possible source for biomarker development. However, our understanding of the role of these molecules in health and disease is still immature. In this work, we have provided the latest findings regarding the role of metabolites as EV cargoes in the pathophysiology of diseases, including cancer, pleural effusion (PE), and cardiovascular disease (CVD). We also discussed the significance of metabolites as EV cargoes of microbiota and their role in host-microbe interaction. In addition, the latest findings on metabolites in the form of EV cargoes as biomarkers for disease diagnosis and treatment are presented in this study.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China
| | - Feng Liang
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China
| | - DuoDuo Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin Province 130021, People's Republic of China
| | - Shuang Qi
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China.
| | - Yan Liu
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China.
| |
Collapse
|
10
|
Ferrari L, Iodice S, Cantone L, Solazzo G, Dioni L, Hoxha M, Vicenzi M, Mozzoni P, Bergamaschi E, Persico N, Bollati V. Extracellular vesicles and their miRNA contents counterbalance the pro-inflammatory effect of air pollution during physiological pregnancy: A focus on Syncytin-1 positive vesicles. ENVIRONMENT INTERNATIONAL 2022; 169:107502. [PMID: 36095930 DOI: 10.1016/j.envint.2022.107502] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
The impact of exposure to respirable particulate matter (PM) during pregnancy is a growing concern, as several studies have associated increased risks of adverse pregnancy and birth outcomes, and impaired intrauterine growth with air pollution. The molecular mechanisms responsible for such effects are still under debate. Extracellular vesicles (EVs), which travel in body fluids and transfer microRNAs (miRNAs) between tissues (e.g., pulmonary environment and placenta), might play an important role in PM-induced risk. We sought to determine whether the levels of PM with aerodynamic diameters of ≤10 µm (PM10) and ≤2.5 µm (PM2.5) are associated with changes in plasmatic EV release and EV-miRNA content by investigating 518 women enrolled in the INSIDE study during the first trimester of pregnancy. In all models, we included both the 90-day averages of PM (long-term effects) and the differences between the daily estimate of PM and the 90-day average (short-term effects). Short-term PM10 and PM2.5 were associated with increased concentrations of all seven EV types that we assayed (positive for human antigen leukocyte G (HLA-G), Syncytin-1 (Sync-1), CD14, CD105, CD62e, CD61, or CD25 determinants), while long-term PM10 showed a trend towards decreased EV concentrations. Increased Sync-1 + EV levels were associated with the plasmatic decrease of sVCAM-1, but not of sICAM-1, which are circulating biomarkers of endothelial dysfunction. Thirteen EV-miRNAs were downregulated in response to long-term PM10 and PM2.5 variations, while seven were upregulated (p-value < 0.05, false discovery rate p-value (qFDR) < 0.1). Only one EV-miRNA (hsa-miR-221-3p) was downregulated after short-term variations. The identified PM-modulated EV-miRNAs exhibited putative roles in inflammation, gestational hypertension, and pre-eclampsia, as highlighted by miRNA target analysis. Our findings strongly support the hypothesis that EVs have an important role in modulating PM exposure effects during pregnancy, possibly through their miRNA cargo.
Collapse
Affiliation(s)
- Luca Ferrari
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy; Department of Preventive Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Simona Iodice
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Laura Cantone
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Giulia Solazzo
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Laura Dioni
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Mirjam Hoxha
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Marco Vicenzi
- Cardiovascular Disease Unit, Department of Internal Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Paola Mozzoni
- Department of Medicine and Surgery, Università degli Studi di Parma, Parma, Italy
| | - Enrico Bergamaschi
- Department of Public Health Sciences and Paediatrics, Università degli Studi di Torino, Torino, Italy
| | - Nicola Persico
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy; Department of Obstetrics and Gynecology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Valentina Bollati
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy; Department of Preventive Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|
11
|
Body Mass Index Modulates the Impact of Short-Term Exposure to Air Particulate Matter on High-Density Lipoprotein Function. Antioxidants (Basel) 2022; 11:antiox11101938. [PMID: 36290661 PMCID: PMC9598765 DOI: 10.3390/antiox11101938] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/19/2022] [Accepted: 09/24/2022] [Indexed: 11/21/2022] Open
Abstract
Air particulate matter (PM) exposure has been associated with increased cardiovascular risk, especially in obesity. By triggering inflammation and oxidative stress, PM could impact atheroprotection by high-density lipoproteins (HDL). The aim of the study was to assess the relationship between short-term exposure to PM and HDL function, and the modifying effect of body mass index (BMI). Daily exposures to PM10 and PM2.5 of 50 subjects with overweight/obesity and 41 healthy volunteers with BMI < 30 kg/m2 were obtained from fixed monitoring stations. HDL function was assessed as promotion of nitric oxide (NO) release by endothelial cells and reduction in cholesterol in macrophages. HDL-induced NO release progressively declined with the increase in BMI. No association was found between HDL function and PM exposure, but a modifying effect of BMI was observed. The positive association between PM10 exposure at day −1 and NO production found at normal BMI values was lost in participants with higher BMI. Similar results were obtained for the reduction in macrophage cholesterol. The loss of the compensatory response of HDL function to PM exposure at increasing BMI levels could contribute to the endothelial dysfunction induced by PM and help to explain the susceptibility of subjects with obesity to air pollution.
Collapse
|
12
|
Eckhardt CM, Baccarelli AA, Wu H. Environmental Exposures and Extracellular Vesicles: Indicators of Systemic Effects and Human Disease. Curr Environ Health Rep 2022; 9:465-476. [PMID: 35449498 PMCID: PMC9395256 DOI: 10.1007/s40572-022-00357-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2022] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW Environmental pollutants contribute to the pathogenesis of numerous diseases including chronic cardiovascular, respiratory, and neurodegenerative diseases, among others. Emerging evidence suggests that extracellular vesicles (EVs) may mediate the association of environmental exposures with chronic diseases. The purpose of this review is to describe the impact of common environmental exposures on EVs and their role in linking environmental pollutants to the pathogenesis of chronic systemic diseases. RECENT FINDINGS Common environmental pollutants including particulate matter, tobacco smoke, and chemical pollutants trigger the release of EVs from multiple systems in the body. Existing research has focused primarily on air pollutants, which alter EV production and release in the lungs and systemic circulation. Air pollutants also impact the selective loading of EV cargo including microRNA and proteins, which modify the cellular function in recipient cells. As a result, pollutant-induced EVs often contribute to a pro-inflammatory and pro-thrombotic milieu, which increases the risk of pollutant-related diseases including obstructive lung diseases, cardiovascular disease, neurodegenerative diseases, and lung cancer. Common environmental exposures are associated with multifaceted changes in EVs that lead to functional alterations in recipient cells and contribute to the pathogenesis of chronic systemic diseases. EVs may represent emerging targets for the prevention and treatment of diseases that stem from environmental exposures. However, novel research is required to expand our knowledge of the biological action of EV cargo, elucidate determinants of EV release, and fully understand the impact of environmental pollutants on human health.
Collapse
Affiliation(s)
- Christina M Eckhardt
- Division of Pulmonary, Allergy and Critical, Care Medicine, Department of Medicine, Columbia University Irving Medical Center, 630 West 168th Street, Floor 8, Suite 101, New York, NY, 10032, USA
| | - Andrea A Baccarelli
- Environmental Health Sciences Department, Columbia University Mailman School of Public Health, 630 West 168th Street, Room 16-416, New York, NY, 10032, USA
| | - Haotian Wu
- Environmental Health Sciences Department, Columbia University Mailman School of Public Health, 630 West 168th Street, Room 16-416, New York, NY, 10032, USA.
| |
Collapse
|
13
|
Indirect mediators of systemic health outcomes following nanoparticle inhalation exposure. Pharmacol Ther 2022; 235:108120. [PMID: 35085604 PMCID: PMC9189040 DOI: 10.1016/j.pharmthera.2022.108120] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 02/07/2023]
Abstract
The growing field of nanoscience has shed light on the wide diversity of natural and anthropogenic sources of nano-scale particulates, raising concern as to their impacts on human health. Inhalation is the most robust route of entry, with nanoparticles (NPs) evading mucociliary clearance and depositing deep into the alveolar region. Yet, impacts from inhaled NPs are evident far outside the lung, particularly on the cardiovascular system and highly vascularized organs like the brain. Peripheral effects are partly explained by the translocation of some NPs from the lung into the circulation; however, other NPs largely confined to the lung are still accompanied by systemic outcomes. Omic research has only just begun to inform on the complex myriad of molecules released from the lung to the blood as byproducts of pulmonary pathology. These indirect mediators are diverse in their molecular make-up and activity in the periphery. The present review examines systemic outcomes attributed to pulmonary NP exposure and what is known about indirect pathological mediators released from the lung into the circulation. Further focus was directed to outcomes in the brain, a highly vascularized region susceptible to acute and longer-term outcomes. Findings here support the need for big-data toxicological studies to understand what drives these health outcomes and better predict, circumvent, and treat the potential health impacts arising from NP exposure scenarios.
Collapse
|
14
|
Monti P, Solazzo G, Ferrari L, Bollati V. Extracellular Vesicles: Footprints of environmental exposures in the aging process? Curr Environ Health Rep 2021; 8:309-322. [PMID: 34743313 DOI: 10.1007/s40572-021-00327-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE OF THE REVIEW Extracellular vesicles (EVs) are nano-sized lipid particles that participate in intercellular signaling through the trafficking of bioactive molecules from parental cells to recipient ones. This well-orchestrated communication system is crucial for the organism to respond to external cues in a coordinated manner; indeed, environmental and lifestyle exposures can modify both EV number and content, with consequences on cellular metabolism and homeostasis. In particular, a growing body of evidence suggests that exposome-induced changes in EV profile could regulate the aging process, both at the cellular and organismal levels. Here, we provide an overview of the role played by ambient-induced EVs on aging and age-related diseases. Among the several environmental factors that can affect the communication network operated by EVs, we focused on air pollution, ultraviolet light, diet, and physical exercise. Moreover, we performed a miRNA target analysis, to support the role of EV-miRNA emerging from the literature in the context of aging. RECENT FINDINGS The overall emerging picture strongly supports a key regulatory role for EVs at the interface between external stimuli and cellular/organismal aging, thus providing novel insights into the molecular mechanisms linking a "healthy exposome" to well-being in old age. In addition, this knowledge will pave the way for research aimed at developing innovative antiaging strategies based on EVs.
Collapse
Affiliation(s)
- Paola Monti
- EPIGET Lab, Department of Clinical Sciences and Community Health, Università Degli Studi Di Milano, Milan, Italy
| | - Giulia Solazzo
- EPIGET Lab, Department of Clinical Sciences and Community Health, Università Degli Studi Di Milano, Milan, Italy
| | - Luca Ferrari
- EPIGET Lab, Department of Clinical Sciences and Community Health, Università Degli Studi Di Milano, Milan, Italy
| | - Valentina Bollati
- EPIGET Lab, Department of Clinical Sciences and Community Health, Università Degli Studi Di Milano, Milan, Italy. .,Occupational Health Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|
15
|
Long- and Short-Term Exposures to PM 10 Can Shorten Telomere Length in Individuals Affected by Overweight and Obesity. Life (Basel) 2021; 11:life11080808. [PMID: 34440552 PMCID: PMC8400348 DOI: 10.3390/life11080808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/04/2021] [Accepted: 08/08/2021] [Indexed: 11/16/2022] Open
Abstract
Reduced telomere length (TL) has been associated with increased risk of age-related diseases, most likely through oxidative stress and inflammation, which have also been claimed as mechanisms underlying health effects of air pollution exposure. We aimed to verify whether exposure to particulate matter with diameter ≤10 µm (PM10) affects TL. We recruited 1792 participants with overweight/obesity in Milan (Italy) in 2010-2015 who completed a structured questionnaire on sociodemographic data, gave a blood sample for TL measurement by real-time PCR, and were assigned air pollution and meteorological data of their residential address. In multivariate mixed-effects linear models (with a random intercept on PCR plate), we observed a -0.51% change in TL (95% confidence interval (CI): -0.98; -0.05)) per 10 µg/m3 increase in PM10 at the day of recruitment. A similar decreasing trend in TL was observed up to two weeks before withdrawal, with percentage changes as low as -1.53% (average exposure of the 12 days before recruitment). Mean annual exposure to PM10 was associated with -2.57% TL reduction (95%CI: -5.06; -0.08). By showing consistent associations between short- and long-term PM10 exposures and reduced TL, our findings shed light on the potential mechanisms responsible for the excess of age-related diseases associated with air pollution exposure.
Collapse
|
16
|
Skin biological responses to urban pollution in an ex vivo model. Toxicol Lett 2021; 348:85-96. [PMID: 34044057 DOI: 10.1016/j.toxlet.2021.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 04/20/2021] [Accepted: 05/21/2021] [Indexed: 12/15/2022]
Abstract
The skin epidermis is continuously exposed to external aggressions, including environmental pollution. The cosmetic industry must be able to offer dedicated products to fight the effects of pollutants on the skin. We set up an experimental model that exposed skin explants maintained in culture to a pollutant mixture. This mixture P representing urban pollution was designed on the basis of the French organization 'Air Parif' database. A chamber, called Pollubox®, was built to allow a controlled nebulization of P on the cultured human skin explants. We investigated ultrastructural morphology by transmission electron microscopy of high pressure frozen skin explants. A global transcriptomic analysis indicated that the pollutant mixture was able to induce relevant xenobiotic and antioxidant responses. Modulated detoxifying genes were further investigated by laser micro-dissection coupled to qPCR, and immunochemistry. Both approaches showed that P exposure correlated with overexpression of detoxifying genes and provoked skin physiological alterations down to the stratum basale. The model developed herein might be an efficient tool to study the effects of pollutants on skin as well as a powerful testing method to evaluate the efficacy of cosmetic products against pollution.
Collapse
|
17
|
Cattaneo A, Campo L, Iodice S, Spinazzè A, Olgiati L, Borghi F, Polledri E, Angelici L, Cavallo DM, Fustinoni S, Bollati V. Environmental and biological monitoring of personal exposure to air pollutants of adult people living in a metropolitan area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:144916. [PMID: 33636771 DOI: 10.1016/j.scitotenv.2020.144916] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/04/2020] [Accepted: 12/27/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Human exposure to air pollutants, and specifically to particulate matter (PM) and volatile organic compounds (VOCs), may pose a relevant risk on human health. AIM To evaluate the personal exposure of adults living and working in Milan (Italy) by environmental and biological monitoring. METHODS Personal exposure of 51 volunteer adults to PM2.5, PM2.5-10 and selected VOCs, including benzene, toluene, ethylbenzene, o-xylene, m + p-xylene, methyl tert-butyl ether, naphthalene, hexane, cyclohexane, heptane, and limonene was assessed along a 24-h period via personal cascade impactors and radial diffusive samplers. Urine spot samples were collected to investigate the corresponding urinary biomarkers. Time-activity patterns were filled in by participants to explore the performed activities. Multiple regression models were applied to investigate the association between personal exposure, biomarker levels, and tobacco smoke, traffic exposure, commuting mode, cooking activities, and personal characteristics. RESULTS Median personal exposure to PM2.5, PM2.5-10, benzene, toluene, ethylbenzene o-xylene, m + p-xylene, methyl tert-butyl ether, naphthalene, hexane, cyclohexane, heptane, and limonene were 36.1, 7.8, 2.3, 7.8, 2.1, 1.8, 4.7, 0.8, 0.3, 1.4, 2.5, 1.6, and 59.9 μg/m3, respectively. Median levels of urinary benzene, toluene, ethylbenzene o-xylene, m + p-xylene, naphthalene, hexane, and heptane were 78.0, 88.1, 21.5, 15.2, 43.9, 21.0, 11.0, and 22.5 ng/L, respectively. For personal exposure, multiple regression models explained up to 67% (PM2.5) and 61% (benzene) of variability, with major contribution from commuting mode and environmental exposure. For biological monitoring, multiple regression analysis explained up to 74% of urinary benzene, with a major contribution given by creatinine, and secondary contributions by commuting mode, personal exposure to airborne benzene and smoking. CONCLUSIONS Personal exposure to air pollutants was lower than that measured in the past in Milan. Personal exposure was mainly driven by traffic variables, while internal dose was mainly driven by personal characteristics and smoking habit.
Collapse
Affiliation(s)
- Andrea Cattaneo
- Department of Science and High Technology, Università degli Studi dell'Insubria, 22100 Como, Italy
| | - Laura Campo
- Environmental and Industrial Toxicology Unit Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy.
| | - Simona Iodice
- EPIGET Laboratory, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| | - Andrea Spinazzè
- Department of Science and High Technology, Università degli Studi dell'Insubria, 22100 Como, Italy
| | - Luca Olgiati
- Environmental and Industrial Toxicology Unit Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Francesca Borghi
- Department of Science and High Technology, Università degli Studi dell'Insubria, 22100 Como, Italy
| | - Elisa Polledri
- Environmental and Industrial Toxicology Unit Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Laura Angelici
- EPIGET Laboratory, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; Department of Epidemiology, Lazio Regional Health Service, ASL Roma 1, Roma, Italy
| | - Domenico Maria Cavallo
- Department of Science and High Technology, Università degli Studi dell'Insubria, 22100 Como, Italy
| | - Silvia Fustinoni
- Environmental and Industrial Toxicology Unit Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; EPIGET Laboratory, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| | - Valentina Bollati
- EPIGET Laboratory, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| |
Collapse
|
18
|
Comfort N, Cai K, Bloomquist TR, Strait MD, Ferrante AW, Baccarelli AA. Nanoparticle Tracking Analysis for the Quantification and Size Determination of Extracellular Vesicles. J Vis Exp 2021. [PMID: 33843938 DOI: 10.3791/62447] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The physiological and pathophysiological roles of extracellular vesicles (EVs) have become increasingly recognized, making the EV field a quickly evolving area of research. There are many different methods for EV isolation, each with distinct advantages and disadvantages that affect the downstream yield and purity of EVs. Thus, characterizing the EV prep isolated from a given source by a chosen method is important for interpretation of downstream results and comparison of results across laboratories. Various methods exist for determining the size and quantity of EVs, which can be altered by disease states or in response to external conditions. Nanoparticle tracking analysis (NTA) is one of the prominent technologies used for high-throughput analysis of individual EVs. Here, we present a detailed protocol for quantification and size determination of EVs isolated from mouse perigonadal adipose tissue and human plasma using a breakthrough technology for NTA representing major advances in the field. The results demonstrate that this method can deliver reproducible and valid total particle concentration and size distribution data for EVs isolated from different sources using different methods, as confirmed by transmission electron microscopy. The adaptation of this instrument for NTA will address the need for standardization in NTA methods to increase rigor and reproducibility in EV research.
Collapse
Affiliation(s)
- Nicole Comfort
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health;
| | - Kunheng Cai
- Department of Medicine, Naomi Berrie Diabetes Center, Columbia University
| | - Tessa R Bloomquist
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health
| | - Madeleine D Strait
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health
| | - Anthony W Ferrante
- Department of Medicine, Naomi Berrie Diabetes Center, Columbia University
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health;
| |
Collapse
|
19
|
Monti P, Iodice S, Tarantini L, Sacchi F, Ferrari L, Ruscica M, Buoli M, Vigna L, Pesatori AC, Bollati V. Effects of PM Exposure on the Methylation of Clock Genes in a Population of Subjects with Overweight or Obesity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:1122. [PMID: 33513987 PMCID: PMC7908270 DOI: 10.3390/ijerph18031122] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 12/19/2022]
Abstract
The expression of clock genes, regulating the synchronization of metabolic and behavioral processes with environmental light/dark cycles, is regulated by methylation and might be influenced by short-term exposure to airborne particulate matter (PM), especially in individuals that are hypersensitive to proinflammatory cues. The present study aimed to evaluate the effects of PM2.5 and PM10 on the methylation profile of the clock genes ARNTL, CLOCK, CRY1, CRY2, PER1, PER2, and PER3 in a population of 200 women with obesity. A significant association between PM10 exposure and the methylation of clock genes was found, namely, this was negative for PER2 gene and positive for the CLOCK, CRY1, CRY2, and PER3 genes. PM2.5 was negatively associated with methylation of PER2 gene and positively with methylation of CRY2 gene. Evidence was observed for effect modification from body mass index (BMI) regarding the PER1 gene: as PM2.5/10 increases, DNA methylation increases significantly for relatively low BMI values (BMI = 25), while it decreases in participants with severe obesity (BMI = 51). PM may therefore alter the epigenetic regulation of clock genes, possibly affecting circadian rhythms. Future studies are needed to clarify how alterations in clock gene methylation are predictive of disease development and how obesity can modulate the adverse health effects of PM.
Collapse
Affiliation(s)
- Paola Monti
- Department of Preventive Medicine, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (P.M.); (L.V.); (A.C.P.)
| | - Simona Iodice
- EPIGET—Epidemiology, Epigenetics and Toxicology Lab, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (S.I.); (L.T.); (F.S.); (L.F.)
| | - Letizia Tarantini
- EPIGET—Epidemiology, Epigenetics and Toxicology Lab, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (S.I.); (L.T.); (F.S.); (L.F.)
| | - Francesca Sacchi
- EPIGET—Epidemiology, Epigenetics and Toxicology Lab, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (S.I.); (L.T.); (F.S.); (L.F.)
| | - Luca Ferrari
- EPIGET—Epidemiology, Epigenetics and Toxicology Lab, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (S.I.); (L.T.); (F.S.); (L.F.)
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Massimiliano Buoli
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy;
- Department of Neurosciences and Mental Health, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Luisella Vigna
- Department of Preventive Medicine, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (P.M.); (L.V.); (A.C.P.)
- Center of Obesity and Work EASO Collaborating Centers for Obesity Management, 20122 Milan, Italy
| | - Angela Cecilia Pesatori
- Department of Preventive Medicine, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (P.M.); (L.V.); (A.C.P.)
- EPIGET—Epidemiology, Epigenetics and Toxicology Lab, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (S.I.); (L.T.); (F.S.); (L.F.)
| | - Valentina Bollati
- EPIGET—Epidemiology, Epigenetics and Toxicology Lab, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (S.I.); (L.T.); (F.S.); (L.F.)
| |
Collapse
|
20
|
Blood-derived extracellular vesicles isolated from healthy donors exposed to air pollution modulate in vitro endothelial cells behavior. Sci Rep 2020; 10:20138. [PMID: 33208829 PMCID: PMC7674466 DOI: 10.1038/s41598-020-77097-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 10/29/2020] [Indexed: 11/08/2022] Open
Abstract
The release of Extracellular Vesicles (EVs) into the bloodstream is positively associated with Particulate Matter (PM) exposure, which is involved in endothelial dysfunction and related to increased risk of cardiovascular disease. Obesity modifies the effects of PM exposure on heart rate variability and markers of inflammation, oxidative stress, and acute phase response. We isolated and characterized plasmatic EVs from six healthy donors and confirmed a positive association with PM exposure. We stratified for Body Mass Index (BMI) and observed an increased release of CD61+ (platelets) and CD105+ (endothelium) derived-EVs after high PM level exposure in Normal Weight subjects (NW) and no significant variations in Overweight subjects (OW). We then investigated the ability to activate endothelial primary cells by plasmatic EVs after both high and low PM exposure. NW-high-PM EVs showed an increased endothelial activation, measured as CD105+/CD62e+ (activated endothelium) EVs ratio. On the contrary, cells treated with OW-high-PM EVs showed reduced endothelial activation. These results suggest the ability of NW plasmatic EVs to communicate to endothelial cells and promote the crosstalk between activated endothelium and peripheral cells. However, this capacity was lost in OW subjects. Our findings contribute to elucidate the role of EVs in endothelial activation after PM exposure.
Collapse
|
21
|
Alkoussa S, Hulo S, Courcot D, Billet S, Martin PJ. Extracellular vesicles as actors in the air pollution related cardiopulmonary diseases. Crit Rev Toxicol 2020; 50:402-423. [DOI: 10.1080/10408444.2020.1763252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Stéphanie Alkoussa
- Unit of Environmental Chemistry and Interactions with Life, UCEIV EA4492, SFR Condorcet FR CNRS, University of Littoral Côte d’Opale, Dunkerque, France
| | - Sébastien Hulo
- IMPact of Environmental ChemicalS on Human Health, ULR 4483 - IMPECS, Univ. Lille, CHU Lille, Institut Pasteur de Lille, Lille, France
- Department of Occupational Health, Lille University Hospital, Lille, France
| | - Dominique Courcot
- Unit of Environmental Chemistry and Interactions with Life, UCEIV EA4492, SFR Condorcet FR CNRS, University of Littoral Côte d’Opale, Dunkerque, France
| | - Sylvain Billet
- Unit of Environmental Chemistry and Interactions with Life, UCEIV EA4492, SFR Condorcet FR CNRS, University of Littoral Côte d’Opale, Dunkerque, France
| | - Perrine J. Martin
- Unit of Environmental Chemistry and Interactions with Life, UCEIV EA4492, SFR Condorcet FR CNRS, University of Littoral Côte d’Opale, Dunkerque, France
| |
Collapse
|
22
|
Qin Y, Long L, Huang Q. Extracellular vesicles in toxicological studies: key roles in communication between environmental stress and adverse outcomes. J Appl Toxicol 2020; 40:1166-1182. [PMID: 32125006 DOI: 10.1002/jat.3963] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 02/15/2020] [Accepted: 02/15/2020] [Indexed: 12/11/2022]
Abstract
External stressors, especially environmental toxicants can disturb biological homeostasis and thus lead to adverse health effects. However, there is limited understanding of how cells directly exposed to stressors transmit the signals to cells indirectly in contact with stressors. Extracellular vesicles (EVs) are receiving increasing attention as signal transductors between various types of cells in organisms. Cargo in EVs, including RNAs, proteins, lipids, and other signal molecules can be transferred between cells and become critical determining factors of intercellular communication. EVs can be a powerful mediator of environmental stimuli. It has been shown that external stressors reshape the secretion of EVs, modify the composition of EVs, and thus influence the mediating function of EVs. These abnormal EVs can lead to dysfunction of recipient cells, and even the pathogenesis of diseases. In this review, we first summarized current knowledge about the responses of EVs to external stimuli, including chemicals and chemical mixtures. Then we explained how these altered EVs regulate signal pathways in recipient cells, thus mediating physio-pathological responses in detail. The most up-to-date evidence from molecular, cellular, animal and human levels was synthesized to systematically address the mediating roles of EVs. EVs can be regarded as a bridge to link external stressors and internal response. Further toxicological and molecular epidemiological studies are expected to provide further insight into the roles of EVs in toxicology. The gaps in the engulfment of toxicants into EVs are listed as the priority to be solved in future studies.
Collapse
Affiliation(s)
- Yifei Qin
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Li Long
- Health Management Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qiansheng Huang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| |
Collapse
|
23
|
Andres J, Smith LC, Murray A, Jin Y, Businaro R, Laskin JD, Laskin DL. Role of extracellular vesicles in cell-cell communication and inflammation following exposure to pulmonary toxicants. Cytokine Growth Factor Rev 2020; 51:12-18. [PMID: 31901309 PMCID: PMC7052797 DOI: 10.1016/j.cytogfr.2019.12.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 12/09/2019] [Indexed: 12/22/2022]
Abstract
Extracellular vesicles (EVs) have emerged as key regulators of cell-cell communication during inflammatory responses to lung injury induced by diverse pulmonary toxicants including cigarette smoke, air pollutants, hyperoxia, acids, and endotoxin. Many lung cell types, including epithelial cells and endothelial cells, as well as infiltrating macrophages generate EVs. EVs appear to function by transporting cargo to recipient cells that, in most instances, promote their inflammatory activity. Biologically active cargo transported by EVs include miRNAs, cytokines/chemokines, damage-associated molecular patterns (DAMPs), tissue factor (TF)s, and caspases. Findings that EVs are taken up by target cells such as macrophages, and that this leads to increased proinflammatory functioning provide support for their role in the development of pathologies associated with toxicant exposure. Understanding the nature of EVs responding to toxic exposures and their cargo may lead to the development of novel therapeutic approaches to mitigating lung injury.
Collapse
Affiliation(s)
- Jaclynn Andres
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, NJ 08854 USA
| | - Ley Cody Smith
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, NJ 08854 USA
| | - Alexa Murray
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, NJ 08854 USA
| | - Yang Jin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University, Boston, MA 02118 USA
| | - Rita Businaro
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Health, Rutgers University School of Public Health, Piscataway, NJ 08854 USA
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, NJ 08854 USA.
| |
Collapse
|
24
|
Mariani J, Favero C, Carugno M, Pergoli L, Ferrari L, Bonzini M, Cattaneo A, Pesatori AC, Bollati V. Nasal Microbiota Modifies the Effects of Particulate Air Pollution on Plasma Extracellular Vesicles. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17020611. [PMID: 31963616 PMCID: PMC7013854 DOI: 10.3390/ijerph17020611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 12/12/2022]
Abstract
Air pollution exposure has been linked to modifications of both extracellular vesicle (EV) concentration and nasal microbiota structure (NMB), which might act as the respiratory health gatekeeper. This study aimed to assess whether an unbalanced NMB could modify the effect of particulate matter (PM) exposure on plasmatic EV levels. Due to two different NMB taxonomical profiles characterized by a widely different relative abundance of the Moraxella genus, the enrolled population was stratified into Mor- (balanced NMB) and Mor+ (unbalanced NMB) groups (Moraxella genus's cut-off ≤25% and >25%, respectively). EV features were assessed by nanoparticle tracking analysis (NTA) and flow-cytometry (FC). Multivariable analyses were applied on EV outcomes to evaluate a possible association between PM10 and PM2.5 and plasmatic EV levels. The Mor- group revealed positive associations between PM levels and plasmatic CD105+ EVs (GMR = 4.39 p = 0.02) as for total EV count (GMR = 1.92 p = 0.02). Conversely, the Mor+ group showed a negative association between exposure and EV outcomes (CD66+ GMR = 0.004 p = 0.01; EpCAM+ GMR = 0.005 p = 0.01). Our findings provide an insight regarding how a balanced NMB may help to counteract PM exposure effects in terms of plasmatic EV concentration. Further research is necessary to understand the relationship between the host and the NMB to disentangle the mechanism exerted by inhaled pollutants in modulating EVs and NMB.
Collapse
Affiliation(s)
- Jacopo Mariani
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (J.M.); (C.F.); (M.C.); (L.P.); (L.F.); (M.B.); (A.C.P.)
| | - Chiara Favero
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (J.M.); (C.F.); (M.C.); (L.P.); (L.F.); (M.B.); (A.C.P.)
| | - Michele Carugno
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (J.M.); (C.F.); (M.C.); (L.P.); (L.F.); (M.B.); (A.C.P.)
| | - Laura Pergoli
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (J.M.); (C.F.); (M.C.); (L.P.); (L.F.); (M.B.); (A.C.P.)
| | - Luca Ferrari
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (J.M.); (C.F.); (M.C.); (L.P.); (L.F.); (M.B.); (A.C.P.)
| | - Matteo Bonzini
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (J.M.); (C.F.); (M.C.); (L.P.); (L.F.); (M.B.); (A.C.P.)
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Andrea Cattaneo
- Department of Science and High Technology, University of Insubria, 22100 Como, Italy;
| | - Angela Cecilia Pesatori
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (J.M.); (C.F.); (M.C.); (L.P.); (L.F.); (M.B.); (A.C.P.)
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Valentina Bollati
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (J.M.); (C.F.); (M.C.); (L.P.); (L.F.); (M.B.); (A.C.P.)
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Correspondence: ; Tel.: +39-02-503-20147
| |
Collapse
|
25
|
PULLIERO A, PERGOLI L, LA MAESTRA S, MICALE R, CAMOIRANO A, BOLLATI V, IZZOTTI A, DE FLORA S. Extracellular vesicles in biological fluids. A biomarker of exposure to cigarette smoke and treatment with chemopreventive drugs. JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2019; 60:E327-E336. [PMID: 31967089 PMCID: PMC6953455 DOI: 10.15167/2421-4248/jpmh2019.60.4.1284] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/25/2019] [Indexed: 02/06/2023]
Abstract
Extracellular vesicles (EVs) are released from cells and enter into body fluids thereby providing a toxicological mechanism of cell-cell communication. The present study aimed at assessing (a) the presence of EVs in mouse body fluids under physiological conditions, (b) the effect of exposure of mice to cigarette smoke for 8 weeks, and (c) modulation of smoke-related alterations by the nonsteroidal anti-inflammatory drug celecoxib, a selective cyclooxygenase-2 inhibitor. To this purpose, ICR (CD-1) mice were either unexposed or exposed to cigarette smoke, either treated or untreated with oral celecoxib. EVs, isolated from bronchoalveolar lavage fluid (BALF), blood serum, and urines, were analyzed by nanoparticle tracking analysis and flow cytometry. EVs baseline concentrations in BALF were remarkably high. Larger EVs were detected in urines. Smoking increased EVs concentrations but only in BALF. Celecoxib remarkably increased EVs concentrations in the blood serum of both male and female smoking mice. The concentration of EVs positive for EpCAM, a mediator of cell-cell adhesion in epithelia playing a role in tumorigenesis, was much higher in urines than in BALF, and celecoxib significantly decreased their concentration. Thus, the effects of smoke on EVs concentrations were well detectable in the extracellular environment of the respiratory tract, where they could behave as delivery carriers to target cells. Celecoxib exerted both protective mechanisms in the urinary tract and adverse systemic effects of likely hepatotoxic origin in smoke-exposed mice. Detection of EVs in body fluids may provide an early diagnostic tool and an end-point exploitable for preventive medicine strategies.
Collapse
Affiliation(s)
- A. PULLIERO
- Department of Health Sciences, University of Genoa, Italy
| | - L. PERGOLI
- EPIGET LAB, Department of Clinical Sciences and Community Health, University of Milan, Italy
| | - S. LA MAESTRA
- Department of Health Sciences, University of Genoa, Italy
| | - R.T. MICALE
- Department of Health Sciences, University of Genoa, Italy
| | - A. CAMOIRANO
- Department of Health Sciences, University of Genoa, Italy
| | - V. BOLLATI
- EPIGET LAB, Department of Clinical Sciences and Community Health, University of Milan, Italy
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Unit of Occupational Medicine, Milan, Italy
| | - A. IZZOTTI
- Department of Health Sciences, University of Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - S. DE FLORA
- Department of Health Sciences, University of Genoa, Italy
| |
Collapse
|
26
|
Zulueta A, Peli V, Dei Cas M, Colombo M, Paroni R, Falleni M, Baisi A, Bollati V, Chiaramonte R, Del Favero E, Ghidoni R, Caretti A. Inflammatory role of extracellular sphingolipids in Cystic Fibrosis. Int J Biochem Cell Biol 2019; 116:105622. [PMID: 31563560 DOI: 10.1016/j.biocel.2019.105622] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 12/13/2022]
Abstract
Ceramide is emerging as one of the players of inflammation in lung diseases. However, data on its inflammatory role in Cystic Fibrosis (CF) as part of the extracellular machinery driven by lung mesenchymal stem cells (MSCs)-derived extracellular vesicles (EVs) are missing. We obtained an in vitro model of CF-MSC by treating control human lung MSCs with a specific CFTR inhibitor. We characterized EVs populations derived from MSCs (ctr EVs) and CF-MSCs (CF-EVs) and analyzed their sphingolipid profile by LC-MS/MS. To evaluate their immunomodulatory function, we treated an in vitro human model of CF, with both EVs populations. Our data show that the two EVs populations differ for the average size, amount, and rate of uptake. CF-EVs display higher ceramide and dihydroceramide accumulation as compared to control EVs, suggesting the involvement of the de novo biosynthesis pathway in the parental CF-MSCs. Higher sphingomyelinase activity in CF-MSCs, driven by inflammation-induced ceramide accumulation, sustains the exocytosis of vesicles that export new formed pro-inflammatory ceramide. Our results suggest that CFTR dysfunction associates with an enhanced sphingolipid metabolism leading to the release of EVs that export the excess of pro-inflammatory Cer to the recipient cells, thus contributing to maintain the unresolved inflammatory status of CF.
Collapse
Affiliation(s)
- Aida Zulueta
- Biochemistry and Molecular Biology Lab., Health Sciences Department, University of Milan, Via A. di Rudinì, 8, Milan, Italy.
| | - Valeria Peli
- Biochemistry and Molecular Biology Lab., Health Sciences Department, University of Milan, Via A. di Rudinì, 8, Milan, Italy.
| | - Michele Dei Cas
- Biochemistry and Molecular Biology Lab., Health Sciences Department, University of Milan, Via A. di Rudinì, 8, Milan, Italy.
| | - Michela Colombo
- Laboratory of Experimental Medicine and Pathophysiology, Health Sciences Department, University of Milan, Via A. di Rudinì, 8, Milan, Italy; Haematopoietic Stem Cell Biology Laboratory, Medical Research Council(MRC) Weatherall Institute of Molecular Medicine (WIMM), University of Oxford, Oxford OX39DS, UK.
| | - Rita Paroni
- Biochemistry and Molecular Biology Lab., Health Sciences Department, University of Milan, Via A. di Rudinì, 8, Milan, Italy.
| | - Monica Falleni
- Pathology Division, Health Sciences Department, University of Milan, San Paolo Hospital Medical School, Via A. di Rudinì, 8, Milan, Italy.
| | - Alessandro Baisi
- Thoracic Surgery Unit, Health Sciences Department, University of Milan, San Paolo Hospital Medical School, Via A. di Rudinì, 8, Milan, Italy.
| | - Valentina Bollati
- EPIGET LAB, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.
| | - Raffaella Chiaramonte
- Laboratory of Experimental Medicine and Pathophysiology, Health Sciences Department, University of Milan, Via A. di Rudinì, 8, Milan, Italy.
| | - Elena Del Favero
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Fratelli Cervi 93, Milan, Italy.
| | - Riccardo Ghidoni
- Biochemistry and Molecular Biology Lab., Health Sciences Department, University of Milan, Via A. di Rudinì, 8, Milan, Italy.
| | - Anna Caretti
- Biochemistry and Molecular Biology Lab., Health Sciences Department, University of Milan, Via A. di Rudinì, 8, Milan, Italy.
| |
Collapse
|
27
|
Tobaldini E, Iodice S, Bonora R, Bonzini M, Brambilla A, Sesana G, Bollati V, Montano N. Out-of-hospital cardiac arrests in a large metropolitan area: synergistic effect of exposure to air particulates and high temperature. Eur J Prev Cardiol 2019; 27:513-519. [DOI: 10.1177/2047487319862063] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aims Air pollution and climate change are intrinsically linked to emerging hazards for global health. High air particulate matter (PM) levels may trigger out-of-hospital cardiac arrest (OHCA). High temperature could act synergistically with PM in determining OHCA. The aim of the present study was to investigate the effect of PM exposure alone, and in combination with temperature, on the risk of OHCA, in a large European metropolitan area with population >4 million. Methods We evaluated the association between short-term PM exposure, temperature, and the risk of OHCA over a two-year study period, allowing us to investigate 5761 events using a time-stratified case-crossover design combined with a distributed lag non-linear model. Results Higher risk of OHCA was associated with short-term exposure to PM10. The strongest association was experienced three days before the cardiac event where the estimated change in risk was 1.70% (0.48–2.93%) per 10 µg/m3 of PM. The cumulative exposure risk over the lags 0–6 was 8.5% (0.0–17.9%). We observed a joint effect of PM and temperature in triggering cardiac arrests, with a maximum effect of 14.9% (10.0–20.0%) increase, for high levels of PM before the cardiac event, in the presence of high temperature. Conclusion The present study helps to clarify the controversial role of PM as OHCA determinant. It also highlights the role of increased temperature as a key factor in triggering cardiac events. This evidence suggests that tackling both air pollution and climate change might have a relevant impact in terms of public health.
Collapse
Affiliation(s)
- Eleonora Tobaldini
- Department of Clinical Sciences and Community Health, University of Milan, Italy
- Department of Internal Medicine, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Simona Iodice
- Department of Clinical Sciences and Community Health, University of Milan, Italy
| | - Rodolfo Bonora
- Agenzia Regionale Emergenza Urgenza, Lombardia & ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Matteo Bonzini
- Department of Clinical Sciences and Community Health, University of Milan, Italy
- Department of Preventive Medicine, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Annamaria Brambilla
- Emergency Care Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Giovanni Sesana
- Agenzia Regionale Emergenza Urgenza, Lombardia & ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Valentina Bollati
- Department of Clinical Sciences and Community Health, University of Milan, Italy
- Department of Preventive Medicine, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Nicola Montano
- Department of Clinical Sciences and Community Health, University of Milan, Italy
- Department of Internal Medicine, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
28
|
Campagnolo D, Cattaneo A, Corbella L, Borghi F, Del Buono L, Rovelli S, Spinazzé A, Cavallo DM. In-vehicle airborne fine and ultra-fine particulate matter exposure: The impact of leading vehicle emissions. ENVIRONMENT INTERNATIONAL 2019; 123:407-416. [PMID: 30622065 DOI: 10.1016/j.envint.2018.12.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/30/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
Airborne particulate matter (PM) concentrations inside vehicle cabins are often extremely high compared to background levels. The present study was motivated by the fact that in the last few decades, the implementation of new emission standards has led to the reduction of vehicle particle emissions. This study addresses for the first time the relationship between leading vehicle (LV) emissions and in-cabin PM exposure levels in the immediately following vehicle (henceforth called the study vehicle - SV), with particular emphasis on the role of the LV's emission reduction technologies (e.g., diesel particulate filter-DPF) as an effective risk management measure. The study was performed using an instrumented study vehicle (always to be considered as the following vehicle) on a 26-km fixed route where 10 repeated tests were conducted during 60-minute trips. On-line monitoring of the fine 0.3-1 μm and 1-2.5 μm (PM0.3-1 and PM1-2.5) and ultra-fine particle (UFP) concentrations was performed inside the SV's car cabin with fixed ventilation settings (i.e., windows closed, air conditioning off, and recirculation fan off). Simultaneously, the license plate numbers of the LVs along the route were recorded to retrieve information pertaining to their fuel type and Euro emission standard category. The results clearly showed that the in-cabin PM levels were significantly affected by the LV's Euro emission standard. Regarding petrol-fuelled LVs, the median in-cabin particle exposure levels were statistically lower (e.g., -34% for PM0.3-1) when following vehicles with stricter emission standards (in particular, Euro 6) than when following a low-emission standard vehicle (i.e., Euro 0-2). Concerning diesel-fuelled LVs, a strong and significant decrease in the in-cabin median exposure levels (up to -62%, -44%, and -48% for UFPs, PM0.3-1, and PM1-2.5, respectively) was observed for recent-emission standards LVs (i.e., Euro 5-6) with respect to older-emission standard LVs (i.e., Euro 0-4). A specific analysis revealed that the in-cabin median exposure concentrations of PM were highly and significantly reduced by DPF-equipped LVs. For UFPs, this resulted in a 47% reduction compared to diesel-fuelled (non-DPF) LVs. For PM0.3-1, an approximate 80% reduction was observed compared to both petrol-fuelled and diesel-fuelled (non-DPF) LVs. For PM1-2.5, an approximate 38% reduction was observed compared to petrol-fuelled LVs and a 46% reduction compared to non-DPF LVs.
Collapse
Affiliation(s)
- Davide Campagnolo
- Department of Science and High Technology, Università degli Studi dell'Insubria, via Valleggio 11, 22100 Como, Italy.
| | - Andrea Cattaneo
- Department of Science and High Technology, Università degli Studi dell'Insubria, via Valleggio 11, 22100 Como, Italy
| | - Leonardo Corbella
- Department of Science and High Technology, Università degli Studi dell'Insubria, via Valleggio 11, 22100 Como, Italy
| | - Francesca Borghi
- Department of Science and High Technology, Università degli Studi dell'Insubria, via Valleggio 11, 22100 Como, Italy
| | - Luca Del Buono
- Department of Science and High Technology, Università degli Studi dell'Insubria, via Valleggio 11, 22100 Como, Italy
| | - Sabrina Rovelli
- Department of Science and High Technology, Università degli Studi dell'Insubria, via Valleggio 11, 22100 Como, Italy
| | - Andrea Spinazzé
- Department of Science and High Technology, Università degli Studi dell'Insubria, via Valleggio 11, 22100 Como, Italy
| | - Domenico M Cavallo
- Department of Science and High Technology, Università degli Studi dell'Insubria, via Valleggio 11, 22100 Como, Italy
| |
Collapse
|
29
|
Dolci M, Favero C, Bollati V, Campo L, Cattaneo A, Bonzini M, Villani S, Ticozzi R, Ferrante P, Delbue S. Particulate matter exposure increases JC polyomavirus replication in the human host. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 241:234-239. [PMID: 29857306 DOI: 10.1016/j.envpol.2018.05.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/17/2018] [Accepted: 05/14/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Human polyomaviruses (HPyVs) asymptomatically infect the human population during childhood and establish latency in the host. Viral reactivation and urinary excretion can occur when the immune system is impaired. Exposure to particulate air pollution, including the PM10/PM2.5 components, is a public health problem and has been linked to several disorders. Studies assessing the relationship between PM10/PM2.5 exposure and viral replication are lacking. OBJECTIVES To investigate the relationship between HPyVs viruria and PM10/PM2.5 exposures. METHODS Individual environmental exposure was assessed in 50 healthy adult volunteers using a chemical transport model (CTM) with a municipality resolution for daily PM10 and monitoring stations data for daily PM2.5 exposures. For each subject, a urine sample was collected, and HPyVs (JCPyV, BKPyV, MCPyV, HPyV6, HPyV7 and HPyV9) loads were determined. Zero-inflated negative binomial (ZINB) regression was used to model the count data, as it contained excessive zeros. Covariates were chosen by stepwise selection. RESULTS HPyVs DNA was detected in 54% (median:87.6*105 copies/ml) of the urine samples. JCPyV was the prevalent (48%, (median viral load:126*105 copies/ml). Considering the load of the most frequently measured HPyVs, JCPyV, in the count-part of the ZINB model, every unitary in PM measured 2 days before urine collection (PM Day -2) was associated with an increase in JCPyV load (PM10: +4.0%, p-value = 0.002; PM2.5: +3.6%, p-value = 0.005). In the zero-part, the significant predictor was the PM10 measured 5 days before urine collection (+3%, p-value = 0.03). CONCLUSIONS The environmental levels of PM10/PM2.5 increase the JCPyV viruria. Our findings emphasize the need for studies assessing the influence of air pollution exposure on the risk of viral reactivation.
Collapse
Affiliation(s)
- Maria Dolci
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via Carlo Pascal, 36, Milano, Italy
| | - Chiara Favero
- EPIGET - Epidemiology, Epigenetics and Toxicology Lab, Department of Clinical Sciences and Community Health, University of Milan, Via San Barnaba 8, Milano, Italy
| | - Valentina Bollati
- EPIGET - Epidemiology, Epigenetics and Toxicology Lab, Department of Clinical Sciences and Community Health, University of Milan, Via San Barnaba 8, Milano, Italy; Department of Preventive Medicine, Fondazione IRCSS Ca' Granda, Ospedale Maggiore Policlinico, Via San Barnaba 8, Milan, Italy
| | - Laura Campo
- Department of Preventive Medicine, Fondazione IRCSS Ca' Granda, Ospedale Maggiore Policlinico, Via San Barnaba 8, Milan, Italy
| | - Andrea Cattaneo
- Department of Science and High Technology, University of Insubria, Via Valleggio, 11, Como, Italy
| | - Matteo Bonzini
- EPIGET - Epidemiology, Epigenetics and Toxicology Lab, Department of Clinical Sciences and Community Health, University of Milan, Via San Barnaba 8, Milano, Italy; Department of Preventive Medicine, Fondazione IRCSS Ca' Granda, Ospedale Maggiore Policlinico, Via San Barnaba 8, Milan, Italy
| | - Sonia Villani
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via Carlo Pascal, 36, Milano, Italy
| | - Rosalia Ticozzi
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via Carlo Pascal, 36, Milano, Italy
| | - Pasquale Ferrante
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via Carlo Pascal, 36, Milano, Italy
| | - Serena Delbue
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via Carlo Pascal, 36, Milano, Italy.
| |
Collapse
|
30
|
Lung mesenchymal stem cells-derived extracellular vesicles attenuate the inflammatory profile of Cystic Fibrosis epithelial cells. Cell Signal 2018; 51:110-118. [PMID: 30076968 DOI: 10.1016/j.cellsig.2018.07.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/30/2018] [Accepted: 07/31/2018] [Indexed: 01/15/2023]
Abstract
BACKGROUND Mesenchymal stromal/stem cells (MSCs) are multi-potent non-hematopoietic stem cells, residing in most tissues including the lung. MSCs have been used in therapy of chronic inflammatory lung diseases such as Cystic Fibrosis (CF), asthma, and chronic obstructive pulmonary disease (COPD) but the main beneficial effects reside in the anti-inflammatory potential of the released extracellular vesicles (EVs). Recent reports demonstrate that EVs are effective in animal model of asthma, E.coli pneumonia, lung ischemia-reperfusion, and virus airway infection among others. Despite this growing literature, the EVs effects on CF are largely unexplored. METHODS We treated IB3-1 cells, an in vitro human model of CF, with EVs derived from human lung MSCs under basal and inflammatory conditions (TNFα stimulation). RESULTS We demonstrated here that treatment of IB3-1 CF cell line with EVs, down-regulates transcription and protein expression of pro-inflammatory cytokines such as IL-1β, IL-8, IL-6 under TNFα - stimulated conditions. EVs treatment upregulates the mRNA expression of PPARγ, a transcription factor controlling anti-inflammatory and antioxidant mechanisms via NF-kB and HO-1. Accordingly, NF-kB nuclear translocation is reduced resulting in impairment of the downstream inflammation cascade. In addition, the mRNA of HO-1 is enhanced together with the antioxidant defensive response of the cells. CONCLUSIONS We conclude that the anti-inflammatory and anti-oxidant efficacy of EVs derived from lung MSCs could be mediated by up-regulation of the PPARγ axis, whose down-stream effectors (NF-kB and HO-1) are well-known modulators of these pathways. GENERAL SIGNIFICANCE EVs could be a novel strategy to control the hyper-inflamed condition in Cystic Fibrosis.
Collapse
|
31
|
Benedikter BJ, Wouters EFM, Savelkoul PHM, Rohde GGU, Stassen FRM. Extracellular vesicles released in response to respiratory exposures: implications for chronic disease. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2018; 21:142-160. [PMID: 29714636 DOI: 10.1080/10937404.2018.1466380] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Extracellular vesicles (EV) are secreted signaling entities that enhance various pathological processes when released in response to cellular stresses. Respiratory exposures such as cigarette smoke and air pollution exert cellular stresses and are associated with an increased risk of several chronic diseases. The aim of this review was to examine the evidence that modifications in EV contribute to respiratory exposure-associated diseases. Publications were searched using PubMed and Google Scholar with the search terms (cigarette smoke OR tobacco smoke OR air pollution OR particulate matter) AND (extracellular vesicles OR exosomes OR microvesicles OR microparticles OR ectosomes). All original research articles were included and reviewed. Fifty articles were identified, most of which investigated the effect of respiratory exposures on EV release in vitro (25) and/or on circulating EV in human plasma (24). The majority of studies based their main observations on the relatively insensitive scatter-based flow cytometry of EV (29). EV induced by respiratory exposures were found to modulate inflammation (19), thrombosis (13), endothelial dysfunction (11), tissue remodeling (6), and angiogenesis (3). By influencing these processes, EV may play a key role in the development of cardiovascular diseases and chronic obstructive pulmonary disease and possibly lung cancer and allergic asthma. The current findings warrant additional research with improved methodologies to evaluate the contribution of respiratory exposure-induced EV to disease etiology, as well as their potential as biomarkers of exposure or risk and as novel targets for preventive or therapeutic strategies.
Collapse
Affiliation(s)
- Birke J Benedikter
- a Department of Medical Microbiology , NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center , Maastricht , The Netherlands
- b Department of Respiratory Medicine , NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center , Maastricht , The Netherlands
| | - Emiel F M Wouters
- b Department of Respiratory Medicine , NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center , Maastricht , The Netherlands
| | - Paul H M Savelkoul
- a Department of Medical Microbiology , NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center , Maastricht , The Netherlands
- c Department of Medical Microbiology & Infection Control , VU University Medical Center , Amsterdam , The Netherlands
| | - Gernot G U Rohde
- d Medical clinic I, Department of Respiratory Medicine , Goethe University Hospital , Frankfurt/Main , Germany
| | - Frank R M Stassen
- a Department of Medical Microbiology , NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center , Maastricht , The Netherlands
| |
Collapse
|
32
|
Mariani J, Favero C, Spinazzè A, Cavallo DM, Carugno M, Motta V, Bonzini M, Cattaneo A, Pesatori AC, Bollati V. Short-term particulate matter exposure influences nasal microbiota in a population of healthy subjects. ENVIRONMENTAL RESEARCH 2018; 162:119-126. [PMID: 29291434 DOI: 10.1016/j.envres.2017.12.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/13/2017] [Accepted: 12/17/2017] [Indexed: 05/06/2023]
Abstract
BACKGROUND Exposure to air pollutants, such as particulate matter (PM), represents a growing health problem. The aim of our study was to investigate whether PM could induce a dysbiosis in the nasal microbiota in terms of α-diversity and taxonomic composition. METHODS We investigated structure and characteristics of the microbiota of 40 healthy subjects through metabarcoding analysis of the V3-V4 regions of the 16s rRNA gene. Exposure to PM10 and PM2.5 was assessed with a personal sampler worn for 24h before sample collection (Day -1) and with measurements from monitoring stations (from Day -2 to Day -7). RESULTS We found an inverse association between PM10 and PM2.5 levels of the 3rd day preceding sampling (Day -3) and α-diversity indices (Chao1, Shannon and PD_whole_tree). Day -3 PM was inversely associated also with the majority of analyzed taxa, except for Moraxella, which showed a positive association. In addition, subjects showed different structural profiles identifying two groups: one characterized by an even community and another widely dominated by the Moraxella genus. CONCLUSIONS Our findings support the role of PM exposure in influencing microbiota and altering the normal homeostasis within the bacterial community. Whether these alterations could have a role in disease development and/or exacerbation needs further research.
Collapse
Affiliation(s)
- Jacopo Mariani
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy.
| | - Chiara Favero
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Andrea Spinazzè
- Department of Science and High Technology, University of Insubria, Como, Italy
| | | | - Michele Carugno
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Valeria Motta
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Matteo Bonzini
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Andrea Cattaneo
- Department of Science and High Technology, University of Insubria, Como, Italy
| | - Angela Cecilia Pesatori
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Valentina Bollati
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|
33
|
Pergoli L, Cantone L, Favero C, Angelici L, Iodice S, Pinatel E, Hoxha M, Dioni L, Letizia M, Albetti B, Tarantini L, Rota F, Bertazzi PA, Tirelli AS, Dolo V, Cattaneo A, Vigna L, Battaglia C, Carugno M, Bonzini M, Pesatori AC, Bollati V. Extracellular vesicle-packaged miRNA release after short-term exposure to particulate matter is associated with increased coagulation. Part Fibre Toxicol 2017; 14:32. [PMID: 28899404 PMCID: PMC5594543 DOI: 10.1186/s12989-017-0214-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 08/16/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Exposure to particulate matter (PM) is associated with increased incidence of cardiovascular disease and increased coagulation, but the molecular mechanisms underlying these associations remain unknown. Obesity may increase susceptibility to the adverse effects of PM exposure, exacerbating the effects on cardiovascular diseases. Extracellular vesicles (EVs), which travel in body fluids and transfer microRNAs (miRNAs) between tissues, might play an important role in PM-induced cardiovascular risk. We sought to determine whether the levels of PM with an aerodynamic diameter ≤ 10 μm (PM10) are associated with changes in fibrinogen levels, EV release, and the miRNA content of EVs (EV-miRNAs), investigating 1630 overweight/obese subjects from the SPHERE Study. RESULTS Short-term exposure to PM10 (Day before blood drawing) was associated with an increased release of EVs quantified by nanoparticle tracking analysis, especially EVs derived from monocyte/macrophage components (CD14+) and platelets (CD61+) which were characterized by flow cytometry. We first profiled miRNAs of 883 subjects by the QuantStudio™ 12 K Flex Real Time PCR System and the top 40 EV-miRNAs were validated through custom miRNA plates. Nine EV-miRNAs (let-7c-5p; miR-106a-5p; miR-143-3p; miR-185-5p; miR-218-5p; miR-331-3p; miR-642-5p; miR-652-3p; miR-99b-5p) were downregulated in response to PM10 exposure and exhibited putative roles in cardiovascular disease, as highlighted by integrated network analysis. PM10 exposure was significantly associated with elevated fibrinogen levels, and five of the nine downregulated EV-miRNAs were mediators between PM10 exposure and fibrinogen levels. CONCLUSIONS Research on EVs opens a new path to the investigation of the adverse health effects of air pollution exposure. EVs have the potential to act both as markers of PM susceptibility and as potential molecular mechanism in the chain of events connecting PM exposure to increased coagulation, which is frequently linked to exposure and CVD development.
Collapse
Affiliation(s)
- Laura Pergoli
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Via san Barnaba 8, 20122, Milan, Italy
| | - Laura Cantone
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Via san Barnaba 8, 20122, Milan, Italy
| | - Chiara Favero
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Via san Barnaba 8, 20122, Milan, Italy
| | - Laura Angelici
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Via san Barnaba 8, 20122, Milan, Italy
| | - Simona Iodice
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Unit of Occupational Medicine, Milan, Italy
| | - Eva Pinatel
- Institute for Biomedical Technologies (ITB), National Research Council (CNR), Segrate, Milan, Italy
| | - Mirjam Hoxha
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Via san Barnaba 8, 20122, Milan, Italy
| | - Laura Dioni
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Via san Barnaba 8, 20122, Milan, Italy
| | - Marilena Letizia
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Via san Barnaba 8, 20122, Milan, Italy
| | - Benedetta Albetti
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Via san Barnaba 8, 20122, Milan, Italy
| | - Letizia Tarantini
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Via san Barnaba 8, 20122, Milan, Italy
| | - Federica Rota
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Unit of Occupational Medicine, Milan, Italy
| | - Pier Alberto Bertazzi
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Via san Barnaba 8, 20122, Milan, Italy.,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Unit of Occupational Medicine, Milan, Italy
| | - Amedea Silvia Tirelli
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Unit of Occupational Medicine, Milan, Italy
| | - Vincenza Dolo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Andrea Cattaneo
- Department of Science and High Technology, University of Insubria, Como, Italy
| | - Luisella Vigna
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Unit of Occupational Medicine, Milan, Italy
| | - Cristina Battaglia
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20129, Milan, Italy
| | - Michele Carugno
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Via san Barnaba 8, 20122, Milan, Italy
| | - Matteo Bonzini
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Via san Barnaba 8, 20122, Milan, Italy.,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Unit of Occupational Medicine, Milan, Italy
| | - Angela Cecilia Pesatori
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Via san Barnaba 8, 20122, Milan, Italy.,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Unit of Occupational Medicine, Milan, Italy
| | - Valentina Bollati
- EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Via san Barnaba 8, 20122, Milan, Italy. .,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Unit of Occupational Medicine, Milan, Italy.
| |
Collapse
|