1
|
Chen C, Teyton A, Benmarhnia T. The temporal trend and disparity in short-term health impacts of fine particulate matter in California (2006-2019). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176543. [PMID: 39332732 DOI: 10.1016/j.scitotenv.2024.176543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/25/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
Most epidemiological studies assume that the relationship between short-term air pollution exposure and health outcomes is constant over time, which ignores potential changes in population composition and particulate matter emission sources. Limited studies have assessed changes in the relationship between fine particulate matter (PM2.5) and adverse health outcomes over time, with mixed results. Additionally, there is a need to identify which subgroups are disproportionately impacted over time by PM2.5-related health consequences. Therefore, we aimed to examine whether temporal trends exist in the relationships between daily PM2.5 exposure and circulatory and respiratory acute care utilization in California from 2006 to 2019. We further assessed whether certain subpopulations are more susceptible to PM2.5 exposure by demographic characteristics and extreme wildfire frequency. Daily PM2.5 concentrations estimated from a stacked ensemble model and daily cause-specific acute care utilization and demographic data from the California Department of Health Care Access and Information. We analyzed this relationship using modified two-stage Bayesian hierarchical models, where we first did not consider temporal trends, then stratified by two periods, and finally flexibly considered non-linear changes over time. Increases in circulatory (0.56 %; 95 % credible interval (CI): 0.17 %, 0.96 %) and respiratory acute care utilization risk (2.61 %; 95%CI: 2.29 %, 2.94 %) were found with every 10 μg/m3 increase in PM2.5 on the same day and previous two days. These risks were found to increase over time, where 0.13 % (95%CI: 0.02 %, 0.22 %) and 1.40 % (95%CI: 1.24 %, 1.54 %) increases were identified for circulatory and respiratory acute care utilizations, respectively, from the first (2006-2012) to second period (2013-2019). Differences by age, sex, race/ethnicity, and extreme wildfire frequency were noted. These findings confirm that air pollution guidelines should consider the dynamic nature of epidemiological dose-response and can provide insight for targeted air pollution control and adaptation policies designed to reduce PM2.5 exposure, particularly for the most susceptible subpopulations.
Collapse
Affiliation(s)
- Chen Chen
- Scripps Institution of Oceanography, University of California, San Diego, 8885 Biological Grade, La Jolla, CA 92037, United States of America.
| | - Anaïs Teyton
- Scripps Institution of Oceanography, University of California, San Diego, 8885 Biological Grade, La Jolla, CA 92037, United States of America; Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States of America; School of Public Health, San Diego State University, 5500 Campanile Dr, San Diego, CA 92182, United States of America
| | - Tarik Benmarhnia
- Scripps Institution of Oceanography, University of California, San Diego, 8885 Biological Grade, La Jolla, CA 92037, United States of America; Irset Institut de Recherche en Santé, Environnement et Travail, UMR-S 1085, Inserm, University of Rennes, EHESP, Rennes, France
| |
Collapse
|
2
|
Chivé C, Martίn-Faivre L, Eon-Bertho A, Alwardini C, Degrouard J, Albinet A, Noyalet G, Chevaillier S, Maisonneuve F, Sallenave JM, Devineau S, Michoud V, Garcia-Verdugo I, Baeza-Squiban A. Exposure to PM 2.5 modulate the pro-inflammatory and interferon responses against influenza virus infection in a human 3D bronchial epithelium model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123781. [PMID: 38492752 DOI: 10.1016/j.envpol.2024.123781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/29/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
Epidemiological studies showed a positive association between exposure to PM2.5 and the severity of influenza virus infection. However, the mechanisms by which PM2.5 can disrupt antiviral defence are still unclear. From this perspective, the objective of this study was to evaluate the effects of PM2.5 on antiviral signalling in the respiratory epithelium using the bronchial Calu-3 cell line grown at the air-liquid interface. Pre-exposure to PM2.5 before infection with the influenza virus was investigated, as well as a co-exposure. Although a physical interaction between the virus and the particles seems possible, no effect of PM2.5 on viral replication was observed during co-exposure, although a downregulation of IFN-β release was associated to PM2.5 exposure. However, pre-exposure slightly increased the viral nucleoprotein production and the pro-inflammatory response. Conversely, the level of the myxovirus resistance protein A (MxA), an interferon-stimulated gene (ISG) induced by IFN-β, was reduced. Therefore, these results suggest that pre-exposure to PM2.5 could alter the antiviral response of bronchial epithelial cells, increasing their susceptibility to viral infection.
Collapse
Affiliation(s)
- Chloé Chivé
- Université Paris Cité, Functional and Adaptive Biology Unit, UMR8251-CNRS, Paris, France; French Environment and Energy Management Agency 20, Avenue Du Grésillé - BP, 90406 49004, Angers, France
| | - Lydie Martίn-Faivre
- Université Paris Cité, Inflamex Excellence Laboratory, INSERM UMR-1152-PHERE, F-75018, Paris, France
| | - Alice Eon-Bertho
- Université Paris Cité, Functional and Adaptive Biology Unit, UMR8251-CNRS, Paris, France
| | - Christelle Alwardini
- Université Paris Cité, Functional and Adaptive Biology Unit, UMR8251-CNRS, Paris, France
| | - Jéril Degrouard
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405, Orsay, France
| | - Alexandre Albinet
- Institut National de L'Environnement Industriel et des Risques (INERIS), Parc Technologique Alata BP2, 60550, Verneuil en Halatte, France
| | - Gael Noyalet
- Université Paris Cité and Université Paris Est Créteil, CNRS, LISA, F-75013, Paris, France
| | - Servanne Chevaillier
- Université Paris Cité and Université Paris Est Créteil, CNRS, LISA, F-75013, Paris, France
| | - Franck Maisonneuve
- Université Paris Est Créteil and Université Paris Cité, CNRS, LISA, F-94010, Créteil, France
| | - Jean-Michel Sallenave
- Université Paris Cité, Inflamex Excellence Laboratory, INSERM UMR-1152-PHERE, F-75018, Paris, France
| | - Stéphanie Devineau
- Université Paris Cité, Functional and Adaptive Biology Unit, UMR8251-CNRS, Paris, France
| | - Vincent Michoud
- Université Paris Cité and Université Paris Est Créteil, CNRS, LISA, F-75013, Paris, France
| | - Ignacio Garcia-Verdugo
- Université Paris Cité, Inflamex Excellence Laboratory, INSERM UMR-1152-PHERE, F-75018, Paris, France.
| | - Armelle Baeza-Squiban
- Université Paris Cité, Functional and Adaptive Biology Unit, UMR8251-CNRS, Paris, France
| |
Collapse
|
3
|
Ścibor M, Balcerzak B, Galbarczyk A, Jasienska G. Associations between Daily Ambient Air Pollution and Pulmonary Function, Asthma Symptom Occurrence, and Quick-Relief Inhaler Use among Asthma Patients. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19084852. [PMID: 35457717 PMCID: PMC9028503 DOI: 10.3390/ijerph19084852] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 12/04/2022]
Abstract
Particulate matter (PM) is harmful to human health, especially for people with asthma. The goal of this study was to enhance the knowledge about the short-term effects of daily air concentrations of PM on health outcomes among asthma patients. The novelty of this study was the inclusion of a homogeneous group of patients (N = 300) with diagnosed and partly controlled asthma. Patients recorded their symptoms, asthma quick-relief inhaler use, and peak expiratory flow (PEF) measurements in a diary for two weeks. Data on particulate air pollution were obtained from stationary monitoring stations. We have shown that particulate pollutants (PM10 and PM2.5) are associated with significant deterioration of PEF and an increase in the frequency of early asthma symptoms, as well as asthma quick-relief inhaler use. These effects are observed not only on the day of exposure, but also on the following day. For public health practice, these results support the rationale for using peak-flow meters as necessary devices for proper asthma self-management and control, especially in locations where the air is polluted with particles. This may decrease the number of asthma patients seeking medical help.
Collapse
|
4
|
Gladson LA, Cromar KR, Ghazipura M, Knowland KE, Keller CA, Duncan B. Communicating respiratory health risk among children using a global air quality index. ENVIRONMENT INTERNATIONAL 2022; 159:107023. [PMID: 34920275 DOI: 10.1016/j.envint.2021.107023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Air pollution poses a serious threat to children's respiratory health around the world. Satellite remote-sensing technology and air quality models can provide pollution data on a global scale, necessary for risk communication efforts in regions without ground-based monitoring networks. Several large centers, including NASA, produce global pollution forecasts that may be used alongside air quality indices to communicate local, daily risk information to the public. Here we present a health-based, globally applicable air quality index developed specifically to reflect the respiratory health risks among children exposed to elevated outdoor air pollution. Additive, excess-risk air quality indices were developed using 51 different coefficients derived from time-series health studies evaluating the impacts of ambient fine particulate matter, nitrogen dioxide, and ozone on children's respiratory morbidity outcomes. A total of four indices were created which varied based on whether or not the underlying studies controlled for co-pollutants and in the adjustment of excess risks of individual pollutants. Combined with historical estimates of air pollution provided globally at a 25 × 25 km2 spatial resolution from the NASA's Goddard Earth Observing System composition forecast (GEOS-CF) model, each of these indices were examined in a global sample of 664 small and 140 large cities for study year 2017. Adjusted indices presented the most normal distributions of locally-scaled index values, which has been shown to improve associations with health risks, while indices based on coefficients controlling for co-pollutants had little effect on index performance. We provide the steps and resources need to apply our final adjusted index at the local level using freely-available forecasting data from the GEOS-CF model, which can provide risk communication information for cities around the world to better inform individual behavior modification to best protect children's respiratory health.
Collapse
Affiliation(s)
- Laura A Gladson
- Marron Institute of Urban Management, New York University, New York, USA; New York University Grossman School of Medicine, New York, NY, USA
| | - Kevin R Cromar
- Marron Institute of Urban Management, New York University, New York, USA; New York University Grossman School of Medicine, New York, NY, USA.
| | - Marya Ghazipura
- Marron Institute of Urban Management, New York University, New York, USA; New York University Grossman School of Medicine, New York, NY, USA
| | - K Emma Knowland
- Universities Space Research Association, Columbia, MD, USA; NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - Christoph A Keller
- Universities Space Research Association, Columbia, MD, USA; NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - Bryan Duncan
- NASA Goddard Space Flight Center, Greenbelt, MD, USA
| |
Collapse
|
5
|
Huang J, Yang X, Fan F, Hu Y, Wang X, Zhu S, Ren G, Wang G. Outdoor air pollution and the risk of asthma exacerbations in single lag0 and lag1 exposure patterns: a systematic review and meta-analysis. J Asthma 2021; 59:2322-2339. [PMID: 34809505 DOI: 10.1080/02770903.2021.2008429] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Objective: To synthesize evidence regarding the relationship between outdoor air pollution and risk of asthma exacerbations in single lag0 and lag1 exposure patterns.Methods: We performed a systematic literature search using PubMed, Embase, Cochrane Library, Web of Science, ClinicalTrials, China National Knowledge Internet, Chinese BioMedical, and Wanfang databases. Articles published until August 1, 2020 and the reference lists of the relevant articles were reviewed. Two authors independently evaluated the eligible articles and performed structured extraction of the relevant information. Pooled relative risks (RRs) and 95% confidence intervals (CIs) of lag0 and lag1 exposure patterns were estimated using random-effect models.Results: Eighty-four studies met the eligibility criteria and provided sufficient information for meta-analysis. Outdoor air pollutants were associated with increased risk of asthma exacerbations in both single lag0 and lag1 exposure patterns [lag0: RR (95% CI) (pollutants), 1.057(1.011, 1.103) (air quality index, AQI), 1.007 (1.005, 1.010) (particulate matter of diameter ≤ 2.5 μm, PM2.5), 1.009 (1.005, 1.012) (particulate matter of diameter, PM10), 1.010 (1.006, 1.014) (NO2), 1.030 (1.011, 1.048) (CO), 1.005 (1.002, 1.009) (O3); lag1:1.064(1.022, 1.106) (AQI), 1.005 (1.002, 1.008) (PM2.5), 1.007 (1.004, 1.011) (PM10), 1.008 (1.004, 1.012) (NO2), 1.025 (1.007, 1.042) (CO), 1.010 (1.006, 1.013) (O3)], except SO2 [lag0: RR (95% CI), 1.004 (1.000, 1.007); lag1: RR (95% CI), 1.003 (0.999, 1.006)]. Subgroup analyses revealed stronger effects in children and asthma exacerbations associated with other events (including symptoms, lung function changes, and medication use).Conclusion: Outdoor air pollution increases the asthma exacerbation risk in single lag0 and lag1 exposure patterns.Trial registration: PROSPERO, CRD42020204097. https://www.crd.york.ac.uk/.Supplemental data for this article is available online at https://doi.org/10.1080/02770903.2021.2008429 .
Collapse
Affiliation(s)
- Junjun Huang
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China
| | - Xiaoyu Yang
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China
| | - Fangfang Fan
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Yan Hu
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China
| | - Xi Wang
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China
| | - Sainan Zhu
- Department of Biostatistics, Peking University First Hospital, Beijing, China
| | - Guanhua Ren
- Department of Library, Peking University First Hospital, Beijing, China
| | - Guangfa Wang
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China
| |
Collapse
|
6
|
Razavi-Termeh SV, Sadeghi-Niaraki A, Choi SM. Effects of air pollution in Spatio-temporal modeling of asthma-prone areas using a machine learning model. ENVIRONMENTAL RESEARCH 2021; 200:111344. [PMID: 34015292 DOI: 10.1016/j.envres.2021.111344] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/27/2021] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
Industrialization and increasing urbanization have led to increased air pollution, which has a devastating effect on public health and asthma. This study aimed to model the spatial-temporal of asthma in Tehran, Iran using a machine learning model. Initially, a spatial database was created consisting of 872 locations of asthma children and six air pollution parameters, including carbon monoxide (CO), particulate matter (PM10 and PM2.5), nitrogen dioxide (NO2), sulfur dioxide (SO2), and ozone (O3) in four-seasons (spring, summer, autumn, and winter). Spatial-temporal modeling and mapping of asthma-prone areas were performed using a random forest (RF) model. For Spatio-temporal modeling and assessment, 70% and 30% of the dataset were used, respectively. The Spearman correlation and RF model findings showed that during different seasons, the PM2.5 parameter had the most important effect on asthma occurrence in Tehran. The assessment of the Spatio-temporal modeling of asthma using the receiver operating characteristic (ROC)-area under the curve (AUC) showed an accuracy of 0.823, 0.821, 0.83, and 0.827, respectively for spring, summer, autumn, and winter. According to the results, asthma occurs more often in autumn than in other seasons.
Collapse
Affiliation(s)
- Seyed Vahid Razavi-Termeh
- Geoinformation Tech. Center of Excellence, Faculty of Geodesy and Geomatics Engineering, K.N. Toosi University of Technology, Tehran, 19697, Iran.
| | - Abolghasem Sadeghi-Niaraki
- Geoinformation Tech. Center of Excellence, Faculty of Geodesy and Geomatics Engineering, K.N. Toosi University of Technology, Tehran, 19697, Iran; Dept. of Computer Science and Engineering, and Convergence Engineering for Intelligent Drone, Sejong University, Seoul, Republic of Korea.
| | - Soo-Mi Choi
- Dept. of Computer Science and Engineering, and Convergence Engineering for Intelligent Drone, Sejong University, Seoul, Republic of Korea.
| |
Collapse
|
7
|
Chen C, Warrington JA, Dominici F, Peng RD, Esty DC, Bobb JF, Bell ML. Temporal variation in association between short-term exposure to fine particulate matter and hospitalisations in older adults in the USA: a long-term time-series analysis of the US Medicare dataset. Lancet Planet Health 2021; 5:e534-e541. [PMID: 34390671 DOI: 10.1016/s2542-5196(21)00168-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 05/19/2021] [Accepted: 06/02/2021] [Indexed: 05/19/2023]
Abstract
BACKGROUND Short-term exposure to fine particulate matter (PM2·5) is associated with increased risk of hospital admissions and mortality, and health risks differ by the chemical composition of PM2·5. Policies to control PM2·5 could change its chemical composition and total mass concentration, leading to change in the subsequent health impact. However, there is little ence on whether associations between PM2·5 and health exhibit temporal variation. We investigated whether risks of hospitalisations from short-term exposure to PM2·5 varied over time in the USA. METHODS We did a time-series analysis using a national dataset comprising daily circulatory and respiratory hospitalisation rates of Medicare beneficiaries (age ≥65 years) and PM2·5 in 173 US counties from 1999 to 2016. We fitted modified quasi-Poisson models to estimate temporal trends of associations within a county, and pooled county-level estimates using Bayesian hierarchical modelling to generate an overall estimate. FINDINGS The study included 10 559 654 circulatory and 3 027 281 respiratory hospitalisations. We identified changes in the national average association between previous-day PM2·5 and respiratory hospitalisation over time, with a U-shape that is robust under stratification, linear, and non-linear models. The change in risk of respiratory hospitalisation per 10 μg/m3 increase in previous-day PM2·5 decreased from 0·75% (95% posterior credible interval 0·05 to 1·46) in 1999 to -0·28% (-0·79 to 0·23) in 2008, and then increased to 1·44% (0·00 to 2·91) in 2016. No statistically significant temporal change was observed for associations between same-day PM2·5 and circulatory hospitalisation. INTERPRETATION Hospitalisation risk from PM2·5 changes over time and has increased over the past 7 years in study, especially in northeastern USA. The temporal trend differs by cause of hospitalisation. This study emphasises the necessity of evaluating temporal heterogeneity in health impacts of PM2·5 and suggests caution in applying association estimates to a different time period. FUNDING US Environmental Protection Agency and Yale Institute for Biospheric Studies.
Collapse
Affiliation(s)
- Chen Chen
- School of the Environment, Yale University, New Haven, CT, USA.
| | - Jason A Warrington
- School of the Environment, Yale University, New Haven, CT, USA; School of Law, New York University, New York, USA
| | | | - Roger D Peng
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Daniel C Esty
- School of the Environment, Yale University, New Haven, CT, USA; Yale Law School, Yale University, New Haven, CT, USA
| | - Jennifer F Bobb
- Biostatistics Unit, Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Michelle L Bell
- School of the Environment, Yale University, New Haven, CT, USA
| |
Collapse
|
8
|
Yang X, Zhang Y, Zhan X, Xu X, Li S, Xu X, Ying S, Chen Z. Particulate matter exposure is highly correlated to pediatric asthma exacerbation. Aging (Albany NY) 2021; 13:17818-17829. [PMID: 34254951 PMCID: PMC8312457 DOI: 10.18632/aging.203281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 06/01/2021] [Indexed: 12/02/2022]
Abstract
Asthma is a heterogeneous disease in which environmental factors play an important role, and the effect of particulate matter (PM) on the occurrence and severity of asthma is drawing more attention. This study aims to identify the correlation between PM and pediatric asthma exacerbation and explore the potential mechanisms. The asthma visits data (N = 16,779,739) in a university-based tertiary children’s hospital from January 2013 to December 2017 were collected, and the relationship between asthma visits and local PM concentration was analyzed. For further study, we established a house dust mite (HDM)-induced allergic airway inflammation model with PM intervention. We detected a correlation between PM concentration and pediatric asthma visits, especially in children under 6 years old. The in vivo data showed that PM aggravated HDM-induced airway inflammation, and IL-33 neutralizing antibody exerted a protective role. Our study suggests that PM is a risk factor in promoting pediatric asthma exacerbation, in which IL-33 might be a promising target.
Collapse
Affiliation(s)
- Xin Yang
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China
| | - Yuanyuan Zhang
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China
| | - Xueqin Zhan
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China
| | - Xuchen Xu
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China
| | - Shuxian Li
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China
| | - Xuefeng Xu
- Department of Rheumatology Immunology and Allergy, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China
| | - Songmin Ying
- Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, Hangzhou 310009, China.,International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu 322000, China
| | - Zhimin Chen
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China
| |
Collapse
|
9
|
Kim M, Kim YM, Lee JY, Yang HK, Kim H, Ahn S, Baek SY, Kim J, Ahn K. Seasonal and monthly variation in peak expiratory flow rate in children with asthma. Asia Pac Allergy 2021; 11:e19. [PMID: 34007829 PMCID: PMC8103013 DOI: 10.5415/apallergy.2021.11.e19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/25/2021] [Indexed: 12/22/2022] Open
Abstract
Background Although understanding the seasonal patterns of asthma deterioration is important to prevent asthma exacerbation, previous approaches have limitations in evaluating the actual trend of asthma exacerbation. Objective This study aimed to evaluate the seasonal and monthly variations in the peak expiratory flow rate (PEFR) among children with asthma. Methods A total of 89 patients with asthma were enrolled between December 2012 and March 2015. The PEFR in the morning and evening was recorded daily, and the percentage change in PEFR from baseline was calculated. Generalized estimating equation models were constructed after adjusting for age, sex, body mass index, and sensitization to house dust mites or pollen. Results The PEFR records of 11,222 person-days showed a significant decrease in the morning and evening in autumn than in winter by -1.9% (95% confidence interval [CI], -3.73 to -0.15) and -2.1% (95% CI, -3.80 to -0.37), respectively. The morning PEFR was significantly lower in April, August, October, and December than in January with changes of -4.2% (95% CI, -7.08 to -1.23) in April, -3.1% (95% CI, -5.79 to -0.47) in August, -3.7% (95% CI, -6.09 to -1.21) in October, and -1.9% (95% CI, -3.62 to -0.12) in December. The percentage change of evening PEFR significantly decreased by -3.3% (95% CI, -6.38 to -0.25) in April and by -3.3% (95% CI, -5.56 to -1.07) in October. Conclusion The PEFR in children with asthma was lower in autumn than in winter. In terms of monthly patterns, the PEFR was significantly reduced in April and October than in January. These results can serve as a basis for preventing asthma exacerbations by developing seasonal or monthly management strategies for children with asthma.
Collapse
Affiliation(s)
- Minji Kim
- Department of Pediatrics, Chungnam National University Sejong Hospital, Sejong, Korea
| | - Young-Min Kim
- Environmental Health Center for Atopic Diseases, Samsung Medical Center, Seoul, Korea
| | - Ji Young Lee
- Department of Pediatrics, Hallym University Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon, Korea
| | - Hea-Kyoung Yang
- Department of Pediatrics, Oz Pediatrics Clinic, Yongin, Korea
| | - Hyunmi Kim
- Environmental Health Center for Atopic Diseases, Samsung Medical Center, Seoul, Korea
| | - Soohyun Ahn
- Department of Mathematics, Ajou University, Suwon, Korea
| | - Sun-Young Baek
- Statistics and Data Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea
| | - Jihyun Kim
- Environmental Health Center for Atopic Diseases, Samsung Medical Center, Seoul, Korea.,Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kangmo Ahn
- Environmental Health Center for Atopic Diseases, Samsung Medical Center, Seoul, Korea.,Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
10
|
Eupatilin Inhibits Reactive Oxygen Species Generation via Akt/NF-κB/MAPK Signaling Pathways in Particulate Matter-Exposed Human Bronchial Epithelial Cells. TOXICS 2021; 9:toxics9020038. [PMID: 33670750 PMCID: PMC7922545 DOI: 10.3390/toxics9020038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022]
Abstract
Background: Eupatilin is an active flavon extracted from the Artemisia species and has properties such as antioxidant, anti-inflammatory, and anti-cancer. We examined the effect of eupatilin using fine particulate matter (FPM) and human bronchial epithelial cell line (BEAS-2B) to confirm the potential of eupatilin as a therapeutic agent for respiratory diseases caused by FPM. Methods: Reactive oxygen species (ROS) levels were checked by flow cytometry to identify if FPM and eupatilin affect ROS production. Western blotting was performed to identify the mechanism of action of eupatilin in FPM-exposed BEAS-2B cells. Results: When cells were exposed to FPM above 12.5 μg/mL concentration for 24 h, ROS production increased significantly compared to the control. When eupatilin was added to cells exposed to FPM, the ROS level decreased proportionally with the eupatilin dose. The phosphorylation of Akt, NF-κB p65, and p38 MAPK induced by FPM was significantly reduced by eupatilin, respectively. Conclusion: FPM cause respiratory disease by producing ROS in bronchial epithelial cells. Eupatilin has been shown to inhibit ROS production through altering signaling pathways. The ROS inhibiting property of eupatilin can be exploited in FPM induced respiratory disorders.
Collapse
|
11
|
Kim NE, Lee S, Kim BY, Hwang AG, Shin JH, Yang HJ, Won S. The nationwide retrospective cohort study by Health Insurance Review and Assessment Service proves that asthma management decreases the exacerbation risk of asthma. Sci Rep 2021; 11:1442. [PMID: 33446854 PMCID: PMC7809363 DOI: 10.1038/s41598-021-81022-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 12/21/2020] [Indexed: 11/09/2022] Open
Abstract
Medical costs have recently increased in South Korea due to the rising rate of asthma. Primary clinics serve an important role in asthma management, as they are the first stop for patients presenting with symptoms. The Health Insurance Review and Assessment Service (HIRA) in South Korea has assessed asthma-management quality since 2013, but studies are lacking on whether these assessments have been performed properly and contribute toward reducing asthma exacerbations. Therefore, we investigated whether the HIRA’s quality assessments have decreased asthma exacerbations using national health insurance claims data from 2013 to 2017 of 83,375 primary-clinic and 15,931 tertiary-hospital patients with asthma. These patients were classified into four groups based on disease severity according to the monthly prescribed amount of asthma medication using K-means clustering. The associations between HIRA assessments and asthma exacerbation were analyzed using a generalized estimating equation. Our results showed that exacerbation odds gradually decreased as the HIRA assessments progressed, especially in the mild-severity group, and that exacerbation risk among patients with asthma decreased in the order of assessment grades: “Unsatisfactory,” “Satisfactory,” and “Tertiary.” Therefore, we may conclude that asthma exacerbations may decrease with high quality asthma management; appropriate quality assessment could be helpful in reducing asthma exacerbations.
Collapse
Affiliation(s)
- Nam-Eun Kim
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Korea
| | - Sanghun Lee
- Department of Medical Consilience, Graduate School of Dankook University, Jukjeon, Korea
| | - Bo Yeon Kim
- Healthcare Review and Assessment Committee, Health Insurance Review and Assessment Service, Wonju, Korea
| | - Ae Gi Hwang
- Chronic Disease Assessment Division, Health Insurance Review and Assessment Service, Wonju, Korea
| | - Ji Hyeon Shin
- Quality Assessment Management Division, Health Insurance Review and Assessment Service, Wonju, Korea
| | - Hyeon-Jong Yang
- SCH Biomedical Informatics Research Unit, Soonchunhyang University Seoul Hospital, Seoul, Korea. .,Pediatric Allergy and Respiratory Center, Department of Pediatrics, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, Seoul, Korea.
| | - Sungho Won
- Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Korea. .,Interdisciplinary Program of Bioinformatics, Seoul National University, Seoul, Korea. .,Institute of Health and Environment, Seoul National University, Seoul, Korea.
| |
Collapse
|
12
|
Bi J, D'Souza RR, Rich DQ, Hopke PK, Russell AG, Liu Y, Chang HH, Ebelt S. Temporal changes in short-term associations between cardiorespiratory emergency department visits and PM 2.5 in Los Angeles, 2005 to 2016. ENVIRONMENTAL RESEARCH 2020; 190:109967. [PMID: 32810677 PMCID: PMC7530030 DOI: 10.1016/j.envres.2020.109967] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 05/19/2023]
Abstract
BACKGROUND Emissions control programs targeting certain air pollution sources may alter PM2.5 composition, as well as the risk of adverse health outcomes associated with PM2.5. OBJECTIVES We examined temporal changes in the risk of emergency department (ED) visits for cardiovascular diseases (CVDs) and asthma associated with short-term increases in ambient PM2.5 concentrations in Los Angeles, California. METHODS Poisson log-linear models with unconstrained distributed exposure lags were used to estimate the risk of CVD and asthma ED visits associated with short-term increases in daily PM2.5 concentrations, controlling for temporal and meteorological confounders. The models were run separately for three predefined time periods, which were selected based on the implementation of multiple emissions control programs (EARLY: 2005-2008; MIDDLE: 2009-2012; LATE: 2013-2016). Two-pollutant models with individual PM2.5 components and the remaining PM2.5 mass were also considered to assess the influence of changes in PM2.5 composition on changes in the risk of CVD and asthma ED visits associated with PM2.5 over time. RESULTS The relative risk of CVD ED visits associated with a 10 μg/m3 increase in 4-day PM2.5 concentration (lag 0-3) was higher in the LATE period (rate ratio = 1.020, 95% confidence interval = [1.010, 1.030]) compared to the EARLY period (1.003, [0.996, 1.010]). In contrast, for asthma, relative risk estimates were largest in the EARLY period (1.018, [1.006, 1.029]), but smaller in the following periods. Similar temporal differences in relative risk estimates for CVD and asthma were observed among different age and season groups. No single component was identified as an obvious contributor to the changing risk estimates over time, and some components exhibited different temporal patterns in risk estimates from PM2.5 total mass, such as a decreased risk of CVD ED visits associated with sulfate over time. CONCLUSIONS Temporal changes in the risk of CVD and asthma ED visits associated with short-term increases in ambient PM2.5 concentrations were observed. These changes could be related to changes in PM2.5 composition (e.g., an increasing fraction of organic carbon and a decreasing fraction of sulfate in PM2.5). Other factors such as improvements in healthcare and differential exposure misclassification might also contribute to the changes.
Collapse
Affiliation(s)
- Jianzhao Bi
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| | - Rohan R D'Souza
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - David Q Rich
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA; Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA; Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Philip K Hopke
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, USA; Center for Air Resources Engineering and Science, Clarkson University, Potsdam, NY, USA
| | - Armistead G Russell
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Yang Liu
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Howard H Chang
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Stefanie Ebelt
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| |
Collapse
|
13
|
Wang C, Qi Y, Zhu G. Deep learning for predicting the occurrence of cardiopulmonary diseases in Nanjing, China. CHEMOSPHERE 2020; 257:127176. [PMID: 32497840 DOI: 10.1016/j.chemosphere.2020.127176] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/18/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
The efficiency of disease prevention and medical care service necessitated the prediction of incidence. However, predictive accuracy and power were largely impeded in a complex system including multiple environmental stressors and health outcome of which the occurrence might be episodic and irregular in time. In this study, we established four different deep learning (DL) models to capture inherent long-term dependencies in sequences and potential complex relationships among constituents by initiating with the original input into a representation at a higher abstract level. We collected 504,555 and 786,324 hospital outpatient visits of grouped categories of respiratory (RESD) and circulatory system disease (CCD), respectively, in Nanjing from 2013 through 2018. The matched observations in time-series that might pose risk to cardiopulmonary health involved conventional air pollutants concentrations and metrological conditions. The results showed that a well-trained network architecture built upon long short-term memory block and a working day enhancer achieved optimal performance by three quantitative statistics, i.e., 0.879 and 0.902 of Nash-Sutcliffe efficiency, 0.921% and 0.667% of percent bias, and 0.347 and 0.312 of root mean square error-standard deviation ratio for RESD and CCD hospital visits, respectively. We observed the non-linear association of nitrogen dioxide and ambient air temperature with CCD hospital visits. Furthermore, these two environmental stressors were identified as the most sensitive predictive variables, and exerted synergetic effect for two health outcomes, particular in winter season. Our study indicated that high-quality surveillance data of atmospheric environments could provide novel opportunity for anticipating temporal trend of cardiopulmonary health outcomes based on DL model.
Collapse
Affiliation(s)
- Ce Wang
- School of Energy and Environment, Southeast University, Nanjing, 210096, China; State Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, 210096, PR China.
| | - Yi Qi
- School of Architecture and Urban Planning, Nanjing University, No. 22, Hankoulu Road, Nanjing, 210093, PR China.
| | - Guangcan Zhu
- School of Energy and Environment, Southeast University, Nanjing, 210096, China; State Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, 210096, PR China.
| |
Collapse
|
14
|
Sotty J, Kluza J, De Sousa C, Tardivel M, Anthérieu S, Alleman LY, Canivet L, Perdrix E, Loyens A, Marchetti P, Lo Guidice JM, Garçon G. Mitochondrial alterations triggered by repeated exposure to fine (PM 2.5-0.18) and quasi-ultrafine (PM 0.18) fractions of ambient particulate matter. ENVIRONMENT INTERNATIONAL 2020; 142:105830. [PMID: 32585499 DOI: 10.1016/j.envint.2020.105830] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
Nowadays ambient particulate matter (PM) levels still regularly exceed the guideline values established by World Health Organization in most urban areas. Numerous experimental studies have already demonstrated the airway toxicity of the fine fraction of PM (FP), mainly triggered by oxidative stress-induced airway inflammation. However, only few studies have actually paid close attention to the ultrafine fraction of PM (UFP), which is likely to be more easily internalized in cells and more biologically reactive. Mitochondria are major endogenous sources of reactive oxygen species (ROS) through oxidative metabolism, and coordinate many critical cellular signaling processes. Mitochondria have been often studied in the context of PM toxicity and generally associated with apoptosis activation. However, little is known about the underlying adaptation mechanisms that could occur following exposure at sub-apoptotic doses of ambient PM. Here, normal human bronchial epithelial BEAS-2B cells were acutely or repeatedly exposed to relatively low doses (5 µg.cm-2) of FP (PM2.5-0.18) or quasi-UFP (Q-UFP; PM0.18) to better access the critical changes in mitochondrial morphology, functions, and dynamics. No significant cytotoxicity nor increase of apoptotic events were reported for any exposure. Mitochondrial membrane potential (ΔΨm) and intracellular ATP content were also not significantly impaired. After cell exposure to sub-apoptotic doses of FP and notably Q-UFP, oxidative phosphorylation was increased as well as mitochondrial mass, resulting in increased production of mitochondrial superoxide anion. Given this oxidative boost, the NRF2-ARE signaling pathway was significantly activated. However, mitochondrial dynamic alterations in favor of accentuated fission process were observed, in particular after Q-UFP vs FP, and repeated vs acute exposure. Taken together, these results supported mitochondrial quality control and metabolism dysfunction as an early lung underlying mechanism of toxicity, thereby leading to accumulation of defective mitochondria and enhanced endogenous ROS generation. Therefore, these features might play a key role in maintaining PM-induced oxidative stress and inflammation within lung cells, which could dramatically contribute to the exacerbation of inflammatory chronic lung diseases. The prospective findings of this work could also offer new insights into the physiopathology of lung toxicity, arguably initiate and/or exacerbate by acutely and rather repeated exposure to ambient FP and mostly Q-UFP.
Collapse
Affiliation(s)
- J Sotty
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPECS, 59000 Lille, France
| | - J Kluza
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut de Recherche contre le Cancer de Lille, UMR 9020-UMR-S 1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000 Lille, France
| | - C De Sousa
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPECS, 59000 Lille, France
| | - M Tardivel
- Univ. Lille, BioImaging Centre Lille-Nord de France (BICeL), 59000, Lille, France
| | - S Anthérieu
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPECS, 59000 Lille, France
| | - L-Y Alleman
- IMT Lille Douai, Univ. Lille, SAGE - Département Sciences de l'Atmosphère et Génie de l'Environnement, 59000 Lille, France
| | - L Canivet
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPECS, 59000 Lille, France
| | - E Perdrix
- IMT Lille Douai, Univ. Lille, SAGE - Département Sciences de l'Atmosphère et Génie de l'Environnement, 59000 Lille, France
| | - A Loyens
- University of Lille, Inserm, CHU Lille, UMR-S 1172 - Lille Neuroscience & Cognition, 59000 Lille, France
| | - P Marchetti
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut de Recherche contre le Cancer de Lille, UMR 9020-UMR-S 1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, 59000 Lille, France
| | - J-M Lo Guidice
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPECS, 59000 Lille, France
| | - G Garçon
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPECS, 59000 Lille, France.
| |
Collapse
|
15
|
Park KH, Sim DW, Lee SC, Moon S, Choe E, Shin H, Kim SR, Lee JH, Park HH, Huh D, Park JW. Effects of Air Purifiers on Patients with Allergic Rhinitis: a Multicenter, Randomized, Double-Blind, and Placebo-Controlled Study. Yonsei Med J 2020; 61:689-697. [PMID: 32734732 PMCID: PMC7393300 DOI: 10.3349/ymj.2020.61.8.689] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/17/2020] [Accepted: 07/03/2020] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Exposure to particulate matter (PM) is a well-known risk factor in the triggering and exacerbation of allergic airway disease. Indoor environments, where people spend most of their time, are of utmost importance. To assess the effects of air purifiers [equipped with high-efficiency particulate air (HEPA) filters] on allergic rhinitis (AR) in adult patients, we performed a multicenter, randomized, double-blind, and placebo-controlled study. MATERIALS AND METHODS Patients with house dust mite (HDM)-induced AR were randomly assigned to either active or mockup (placebo) air-purification groups. Two air purifiers (placed in living room and bedroom) were operated for 6 weeks in each home environment. The primary study endpoint was to achieve improvement in AR symptoms and medication scores. Secondary endpoints were to achieve improvement in the quality of life (QoL) and visual analog scale (VAS) scores, as well as in the indoor (bedroom and living room) concentrations of PM2.5 and PM10. RESULTS After 6 weeks of air purifier use, medication scores improved significantly in the active (vs. placebo) group, although subjective measures (symptoms, VAS, and QoL scores) did not differ. Bedroom PM2.5 concentrations initially exceeded living room or outdoor levels, but declined (by up to 51.8%) following active purifier operation. Concentrations of PM2.5 in living room and PM10 in bedroom and living room were also significantly reduced through active purification. CONCLUSION The use of air purifiers with HEPA filters significantly reduced medication requirements for patients with HDM-induced AR and significantly lowered indoor PM2.5 concentrations, regardless of room placement. Active intervention to reduce household air pollutants may help improve allergic airway disease (clinicaltrials.gov NCT03313453).
Collapse
Affiliation(s)
- Kyung Hee Park
- Division of Allergy and Immunology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea
| | - Da Woon Sim
- Division of Allergy and Immunology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Division of Allergy, Asthma, and Clinical Immunology; Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Sang Chul Lee
- Division of Allergy and Immunology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea
| | - Sunyoung Moon
- Air Care Advanced R&D, Home Appliance & Air Solution Company, LG Electronics, Seoul, Korea
| | - Eunju Choe
- Division of Allergy and Immunology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Hyejung Shin
- Biostatistics Collaboration Unit, Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Korea
| | - Sung Ryeol Kim
- Division of Allergy and Immunology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea
| | - Jae Hyun Lee
- Division of Allergy and Immunology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea
| | - Hyung Ho Park
- Air Care Advanced R&D, Home Appliance & Air Solution Company, LG Electronics, Seoul, Korea
| | - Deok Huh
- Air Care Advanced R&D, Home Appliance & Air Solution Company, LG Electronics, Seoul, Korea
| | - Jung Won Park
- Division of Allergy and Immunology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute of Allergy, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
16
|
Bergmann S, Li B, Pilot E, Chen R, Wang B, Yang J. Effect modification of the short-term effects of air pollution on morbidity by season: A systematic review and meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 716:136985. [PMID: 32044481 DOI: 10.1016/j.scitotenv.2020.136985] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 01/15/2020] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
Studies of the health effects of air pollution have traditionally controlled for ambient temperature as a confounder, and vice versa. However, season might be an important factor contributing to adverse health effects of air pollution. Given the current inconsistencies in results of previous studies on the effect modification of air pollution on morbidity by season, a systematic review and meta-analysis was conducted to synthesize the current evidence on effects of season on air pollution and morbidity. The electronic databases including PubMed, Web of Science, Embase, CNKI, and Wanfang were used to identify papers published up to the 30st of November in 2019. We identified 4284 articles, after screening, eighty papers met the inclusion criteria. Significant effect modification of CO, O3, SO2 and NO2 on morbidity by season was observed, with corresponding ratio of relative risk of 1.0009 (95% CI: 1.0001-1.0018), 1.0080 (95% CI: 1.0021-1.0138), 0.9828 (95% CI: 0.9697-0.9962) and 0.9896 (95% CI: 0.9824-0.9968), respectively. Season significantly modified the effect of CO on pneumonia, the effect of SO2 on cardiovascular disease, the effect of PM10 on stroke, and the effect of O3 on stroke, asthma and pneumonia. The effect modifications of air pollution by season were similar among males and females, while the effect estimates seem to be higher among children under 18 years old and the elderly aged 75 or over. Further research is needed to better understand the mechanisms underlying the seasonal variance of the effect of air pollutants on morbidity.
Collapse
Affiliation(s)
- Stéphanie Bergmann
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Bixia Li
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Eva Pilot
- Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Renchao Chen
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Boguang Wang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, 511443, China
| | - Jun Yang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou, 511443, China.
| |
Collapse
|
17
|
Use of Tracer Elements for Estimating Community Exposure to Marcellus Shale Development Operations. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17061837. [PMID: 32178331 PMCID: PMC7143288 DOI: 10.3390/ijerph17061837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/24/2020] [Accepted: 03/04/2020] [Indexed: 12/31/2022]
Abstract
Since 2009, unconventional natural gas development (UNGD) has significantly increased in Appalachia's Marcellus Shale formation. Elevations of fine particulate matter <2.5 µm (PM2.5), have been documented in areas surrounding drilling operations during well stimulation. Furthermore, many communities are experiencing increased industrial activities and probable UNGD air pollutant exposures. Recent studies have associated UNGD emissions with health effects based on distances from well pads. In this study, PM2.5 filter samples were collected on an active gas well pad in Morgantown, West Virginia, and three locations downwind during hydraulic stimulation. Fine particulate samples were analyzed for major and trace elements. An experimental source identification model was developed to determine which elements appeared to be traceable downwind of the UNGD site and whether these elements corresponded to PM2.5 measurements. Results suggest that 1) magnesium may be useful for detecting the reach of UNGD point source emissions, 2) complex surface topographic and meteorological conditions in the Marcellus Shale region could be modeled and confounding sources discounted, and 3) well pad emissions may be measurable at distances of at least 7 km. If shown to be more widely applicable, future tracer studies could enhance epidemiological studies showing health effects of UNGD-associated emissions at ≥15 km.
Collapse
|
18
|
Kim H, Kim H, Lee JT. Effect of air pollutant emission reduction policies on hospital visits for asthma in Seoul, Korea; Quasi-experimental study. ENVIRONMENT INTERNATIONAL 2019; 132:104954. [PMID: 31400599 DOI: 10.1016/j.envint.2019.104954] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/20/2019] [Accepted: 06/21/2019] [Indexed: 06/10/2023]
Abstract
To improve air quality and reduce adverse health effects due to air pollutants, Seoul metropolitan government has introduced emission reduction policies in Seoul metropolitan area since 2007. As a result, air quality in Seoul has improved. However, no study has reported whether emission reduction policies have affected respiratory morbidities in Korea. Thus, we aimed to assess an association between air pollutant emissions and ambient concentrations, and the effect of implemented emission reduction policies on asthma. The population of Daejeon, one of the metropolitan cities in Korea other than Seoul was used as a reference population to adjust for possible long-term background trend. Trends of air pollutant emissions, ambient concentrations, and hospital visit rates in Seoul and Daejeon were evaluated using descriptive statistics. To evaluate the possible beneficial effect of air pollutant emission reduction policies implemented since 2007 on hospital visits for asthma in Seoul, we conducted interrupted time-series analysis. As a result, we found evidence for the association between emission reductions and reduced ambient concentrations. Trends in hospital visit rates for asthma, which were previously increasing in Seoul, have decreased since the implementation of the policies. Prevented hospital visits cases for asthma in the total population and younger population (0-18 years) were estimated as 500,000 (11.3% of hospital visit cases if there was no intervention) cases and 320,000 (15.5% of hospital visit cases if there was no intervention) cases, respectively in Seoul. Our study provides evidence for the possible beneficial effect of emission reduction policies on hospital visits for asthma.
Collapse
Affiliation(s)
- Hyomi Kim
- BK21PLUS Program in 'Embodiment: Health -Society Interaction', Department of Public Health Science, Graduate School, Korea University, Seoul, Republic of Korea
| | - Honghyok Kim
- BK21PLUS Program in 'Embodiment: Health -Society Interaction', Department of Public Health Science, Graduate School, Korea University, Seoul, Republic of Korea
| | - Jong-Tae Lee
- BK21PLUS Program in 'Embodiment: Health -Society Interaction', Department of Public Health Science, Graduate School, Korea University, Seoul, Republic of Korea; Department of Environmental Health, Korea University, Seoul, Republic of Korea; School of Health Policy and Management, College of Health Science, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
19
|
Jung M, Cho D, Shin K. The Impact of Particulate Matter on Outdoor Activity and Mental Health: A Matching Approach. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16162983. [PMID: 31431004 PMCID: PMC6720839 DOI: 10.3390/ijerph16162983] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/28/2019] [Accepted: 08/13/2019] [Indexed: 12/31/2022]
Abstract
Exposure to air pollution affects human activity and health. Particularly, in Asian countries, the influence of particulate matter on humans has received wide attention. However, there is still a lack of research about the effects of particulate matter on human outdoor activities and mental health. Therefore, we aimed to explore the association between exposure to particulate matter with a diameter of less than 10 µm (PM10) and outdoor activity along with mental health in South Korea where issues caused by particulate matter increasingly have social and economic impacts. We examined this relationship by combining the physical and habitual factors of approximately 100,000 people in 2015 from the Korean National Health Survey. To measure each individual’s exposure to particulate matter, we computed the total hours exposed to a high PM10 concentration (>80 μg/m3) in a given district one month before the survey was conducted. After dividing all districts into six groups according to the exposed level of the high PM10, we applied the propensity score-weighting method to control for observable background characteristics. We then estimated the impact of the high PM10 on outdoor activity and mental health between the weighted individuals in each group. Our main findings suggest that the impact of PM10 on outdoor activity and stress shows an inverted-U shaped function, which is counterintuitive. Specifically, both outdoor activity and stress levels tend to be worsened when the exposure time to a high PM10 (>80 μg/m3) was more than 20 h. Related policy implications are discussed.
Collapse
Affiliation(s)
- Miyeon Jung
- College of Business, Korea Advanced Institute of Science and Technology, 85 Hoegiro Dongdaemoon-gu, Seoul 02455, Korea
| | - Daegon Cho
- College of Business, Korea Advanced Institute of Science and Technology, 85 Hoegiro Dongdaemoon-gu, Seoul 02455, Korea.
| | - Kwangsoo Shin
- Department of Bio-Medical Convergence, College of Medicine, Chungbuk National University, 1 Chungdae-ro, Seowin-gu, Cheongju-si 28644, Korea
| |
Collapse
|
20
|
Caminati M, Vianello A, Ricci G, Festi G, Bellamoli R, Longhi S, Crivellaro M, Marcer G, Monai M, Andretta M, Bovo C, Senna G. Trends and determinants of Emergency Room admissions for asthma: A retrospective evaluation in Northeast Italy. World Allergy Organ J 2019; 12:100046. [PMID: 31320967 PMCID: PMC6612754 DOI: 10.1016/j.waojou.2019.100046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 04/18/2019] [Accepted: 06/10/2019] [Indexed: 01/21/2023] Open
Abstract
Background Asthma still represents a cause of death and hospital admissions worldwide. Our study aimed at analyzing the trend of Emergency Room (ER) asthma admissions in Northeast Italy in order to investigate the relevance of specific patient-related determinants and environmental triggers (pollens, mold spores, and pollutants). Methods Retrospective data from admissions for asthma exacerbations registered between the years 2013 and 2015 in two main ERs in Northeast Italy were collected. Data about patients' age, sex and nationality were recorded. Classification of disease severity followed the current Italian ER triage scoring system (white: no need for emergency treatment; green: need for fast treatment; yellow: severe condition; red: life-threatening condition). Data on pollen/mold spore counts and pollutants were analyzed. Results Overall, 1745 ER admissions for asthma were registered, with a persistent and significant increase year by year. A slight prevalence of females and patients over 50 years old was observed. Immigrants accounted for 32%, 36% and 26% of admissions respectively in 2013, 2014 and 2015. The prevalence of immigrants' admissions was significantly higher when comparing the relative ratio of immigrant populations/Italian nationals (p < 0.05). The admissions were coded as follows: white, 6.30%; green, 35.36%; yellow, 39.37%; red, 18.97%. People aged ≥50 years were more frequently admitted with a red code, but the trend was not statistically significant (p = 0,0815). By contrast, amongst immigrants there was a higher prevalence of white and green codes observed in comparison with Italian nationals. Grass pollen peak and PM10 high levels represented environmental determinants of ER admissions increase. Conclusions The increasing rate of asthma-related ER admissions highlights the need for implementing asthma control strategies. Investigating the traits of patients referring to ER for asthma exacerbations, as well as environmental-related determinants, may help in identifying at-risk individuals and in orienting preventive strategies accordingly. Immigrants represent the most vulnerable sub-population, and their potential difficulties in accessing treatments and health services should be specifically addressed. Overall, implementing patient education in order to improve treatment adherence, as well as providing an asthma action plan to every asthmatic patient, continue to be the most urgent needs.
Collapse
Affiliation(s)
- Marco Caminati
- Asthma Center and Allergy Unit, Verona University and General Hospital, Verona, Italy.,Department of Medicine, University of Verona, Verona, Italy
| | - Andrea Vianello
- Respiratory Pathophysiology Division, University-City Hospital of Padua, Padua, Italy
| | - Giorgio Ricci
- Emergency Department, Clinical Toxicology Unit, Verona University and General Hospital, Verona, Italy
| | - Giuliana Festi
- Respiratory Unit and Asthma Center, Verona University and General Hospital, Verona, Italy
| | - Roberto Bellamoli
- Asthma Center and Allergy Unit, Verona University and General Hospital, Verona, Italy
| | - Sofia Longhi
- Asthma Center and Allergy Unit, Verona University and General Hospital, Verona, Italy
| | - Mariangiola Crivellaro
- Allergy Service, Department of Medicine and Public Health, University of Padua, Padua, Italy
| | - Guido Marcer
- Respiratory Unit and Asthma Center, Verona University and General Hospital, Verona, Italy
| | - Marco Monai
- Meteorological Service, Veneto Regional Agency for Environment Protection and Prevention, Padua, Italy
| | | | - Chiara Bovo
- Medical Direction, Verona University and General Hospital, Verona, Italy
| | - Gianenrico Senna
- Asthma Center and Allergy Unit, Verona University and General Hospital, Verona, Italy
| |
Collapse
|
21
|
Wu J, Zhong T, Zhu Y, Ge D, Lin X, Li Q. Effects of particulate matter (PM) on childhood asthma exacerbation and control in Xiamen, China. BMC Pediatr 2019; 19:194. [PMID: 31196028 PMCID: PMC6563520 DOI: 10.1186/s12887-019-1530-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 05/08/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The short-term effects of particulate matter (PM) exposure on childhood asthma exacerbation and disease control rate is not thoroughly assessed in Chinese population yet. The previous toxic effects of PM exposure are either based on long-term survey or experimental data from cell lines or mouse models, which also needs to be validated by real-world evidences. METHODS We evaluated the short-term effects of PM exposure on asthma exacerbation in a Chinese population of 3106 pediatric outpatientsand disease control rate (DCR) in a population of 3344 children using case-crossover design. All the subjects enrolled are non-hospitalized outpatients. All data for this study were collected from the electronic health record (EHR) in the period between January 1, 2016 and June 30, 2018 in Xiamen, China. RESULTS We found that exposure to PM2.5 and PM10 within the past two weeks was significantly associated with elevated risk of exacerbation (OR = 1.049, p < 0.001 for PM2.5and OR = 1.027, p < 0.001 for PM10). In addition, exposure to PM10 was associated with decreased DCR (OR = 0.976 for PM10, p < 0.001). CONCLUSIONS Our results suggest that exposure to both PM10 and PM2.5 has significant short-term effects on childhood asthma exacerbation and DCR, which serves as useful epidemiological parameters for clinical management of asthma risk in the sensitive population.
Collapse
Affiliation(s)
- Jinzhun Wu
- Department of Pediatrics, the First Affiliated Hospital of Xiamen University, No.55 Zhenhai Road, Xiamen, 361003 China
| | - Taoling Zhong
- National Institute for Data Science in Health and Medicine, School of Medicine, Xiamen University, South Xiang’an Road, Xiamen, 361102 China
| | - Yu Zhu
- Department of Pediatrics, the First Affiliated Hospital of Xiamen University, No.55 Zhenhai Road, Xiamen, 361003 China
| | - Dandan Ge
- Department of Pediatrics, the First Affiliated Hospital of Xiamen University, No.55 Zhenhai Road, Xiamen, 361003 China
| | - Xiaoliang Lin
- Department of Pediatrics, the First Affiliated Hospital of Xiamen University, No.55 Zhenhai Road, Xiamen, 361003 China
| | - Qiyuan Li
- Department of Pediatrics, the First Affiliated Hospital of Xiamen University, No.55 Zhenhai Road, Xiamen, 361003 China
- National Institute for Data Science in Health and Medicine, School of Medicine, Xiamen University, South Xiang’an Road, Xiamen, 361102 China
| |
Collapse
|
22
|
Agache I, Miller R, Gern JE, Hellings PW, Jutel M, Muraro A, Phipatanakul W, Quirce S, Peden D. Emerging concepts and challenges in implementing the exposome paradigm in allergic diseases and asthma: a Practall document. Allergy 2019; 74:449-463. [PMID: 30515837 DOI: 10.1111/all.13690] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 11/27/2018] [Indexed: 12/21/2022]
Abstract
Exposome research can improve the understanding of the mechanistic connections between exposures and health to help mitigate adverse health outcomes across the life span. The exposomic approach provides a risk profile instead of single predictors and thus is particularly applicable to allergic diseases and asthma. Under the PRACTALL collaboration between the European Academy of Allergy and Clinical Immunology (EAACI) and the American Academy of Allergy, Asthma, and Immunology (AAAAI), we evaluated the current concepts and the unmet needs on the role of the exposome in allergic diseases and asthma.
Collapse
Affiliation(s)
- Ioana Agache
- Faculty of Medicine; Transylvania University; Brasov Romania
| | - Rachel Miller
- Columbia University Medical Center; New York New York
| | - James E. Gern
- School of Medicine and Public Health; University of Wisconsin; Madison Wisconsin
| | - Peter W. Hellings
- Department of Otorhinolaryngology; University Hospitals Leuven; Leuven Belgium
- Department of Otorhinolaryngology; Academic Medical Center; Amsterdam The Netherlands
| | - Marek Jutel
- Wroclaw Medical University; Wrocław Poland
- ALL-MED Medical Research Institute; Wroclaw Poland
| | - Antonella Muraro
- Food Allergy Referral Centre; Department of Woman and Child Health; Padua University hospital; Padua Italy
| | - Wanda Phipatanakul
- Harvard Medical School; Boston Children's Hospital; Boston Massachusetts
| | - Santiago Quirce
- Department of Allergy; Hospital La Paz Institute for Health Research and CIBER of Respiratory Diseases (CIBERES); Madrid Spain
| | - David Peden
- UNC School of Medicine; Chapel Hill North Carolina
| |
Collapse
|
23
|
Jin Y, Zhu M, Guo Y, Foreman D, Feng F, Duan G, Wu W, Zhang W. Fine particulate matter (PM 2.5) enhances FcεRI-mediated signaling and mast cell function. Cell Signal 2019; 57:102-109. [PMID: 30707930 DOI: 10.1016/j.cellsig.2019.01.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 01/20/2019] [Accepted: 01/28/2019] [Indexed: 12/30/2022]
Abstract
Persistent exposure to ambient fine particulate matter (PM2.5) can exacerbate allergic diseases in humans. Mast cells play an important role in allergic inflammation in peripheral tissues, such as skin, mucosa, and lung. Engagement of the high-affinity Fc receptor leads to mast cell degranulation, releasing a variety of highly active mediators including histamine, leukotrienes, and inflammatory cytokines. How PM2.5 exposure affects mast cell activation and function remains largely unknown. To characterize the effect of PM2.5 on mast cells, we used bone marrow-derived mast cells (BMMCs) to examine whether PM2.5 affected FcεRI-mediated signaling, cytokine production, and degranulation. Exposure to high doses of PM2.5 caused pronounced apoptosis and death of BMMCs. In contrast, exposure to low doses of PM2.5 enhanced mast cell degranulation and FcεRI-mediated cytokine production. Further analysis showed that PM2.5 treatment increased Syk activation and subsequently phosphorylation of its substrates including LAT, PLC-γ1, and SLP-76. Moreover, PM2.5 treatment led to activation of the PI3K and MAPK pathways. Intriguingly, water-soluble fraction of PM2.5 were found responsible for the enhancement of FcεRI-mediated signaling, mast cell degranulation, and cytokine production. Our data suggest that PM2.5, mainly water-soluble fraction of PM2.5, could affect mast cell activation through enhancing FcεRI-mediated signaling.
Collapse
Affiliation(s)
- Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, People's Republic of China; Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Minghua Zhu
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Yanli Guo
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Daniel Foreman
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Feifei Feng
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, People's Republic of China.
| | - Weidong Wu
- Department of Occupational and Environmental Health, School of Public Health, Xinxiang Medical University, Xinxiang 453003, People's Republic of China..
| | - Weiguo Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, People's Republic of China; Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
24
|
Li R, Zhou R, Zhang J. Function of PM2.5 in the pathogenesis of lung cancer and chronic airway inflammatory diseases. Oncol Lett 2018; 15:7506-7514. [PMID: 29725457 DOI: 10.3892/ol.2018.8355] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 02/28/2018] [Indexed: 12/14/2022] Open
Abstract
Previous research has identified that air pollution is associated with various respiratory diseases, but few studies have investigated the function served by particulate matter 2.5 (PM2.5) in these diseases. PM2.5 is known to cause epigenetic and microenvironmental alterations in lung cancer, including tumor-associated signaling pathway activation mediated by microRNA dysregulation, DNA methylation, and increased levels of cytokines and inflammatory cells. Autophagy and apoptosis of tumor cells may also be detected in lung cancer associated with PM2.5 exposure. A number of mechanisms are involved in triggering and aggravating asthma and COPD, including PM2.5-induced cytokine release and oxidative stress. The present review is an overview of the underlying molecular mechanisms of PM2.5-induced pathogenesis in lung cancer and chronic airway inflammatory diseases.
Collapse
Affiliation(s)
- Ruyi Li
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Rui Zhou
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Jiange Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| |
Collapse
|
25
|
Kim EA. Particulate Matter (Fine Particle) and Urologic Diseases. Int Neurourol J 2017; 21:155-162. [PMID: 28954465 PMCID: PMC5636961 DOI: 10.5213/inj.1734954.477] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 09/08/2017] [Indexed: 12/28/2022] Open
Abstract
Particulate matter (PM) has been found to damage vital body organs, including the lungs and heart, through vascular damage and oxidative stress. Recently, renal function and chronic urologic diseases have also been found to be related to PM. To investigate this, we reviewed the characteristics of PM related to renal toxicity, including recent studies on the associations of urologic diseases with PM. PM can include constituents that cause renal toxicity, such as lead, cadmium, arsenic, and crystalline silica, which result in renal tubular or interstitial damage. Since 2008, 7 studies have evaluated the renal effects of PM. Two prospective cohort studies and a quantitative study of consecutive patients showed that PM may be related to decreased renal function, as shown by the estimated glomerular filtration rate of diseased or aged participants. Two cross-sectional studies found an association between PM and chronic kidney disease. One of those studies identified the specific renal diseases of immunoglobulin A nephropathy and membranous nephropathy. Two studies that analyzed renal cancer and PM showed no evidence that renal cancer is related to PM. Nine studies were evaluated regarding the relationship of bladder and prostate cancer with PM. The evidence for an association of PM with bladder and prostate cancer is still inconclusive. Although some recently published studies have shown a significant relationship, the causal relationship is not clear. Further well-designed studies on specific renal diseases are required.
Collapse
Affiliation(s)
- Eun-A Kim
- Occupational Safety and Health Research Institute, Korea Occupational Safety and Health Agency, Ulsan, Korea
| |
Collapse
|