1
|
Zeng HX, Meng WJ, Zeng QG, Wei J, Liu LS, Wu QZ, Zhao B, Oudin A, Yang M, Jalava P, Dong GH, Zeng XW. Long-term effects of PM 2.5 constituents on childhood attention deficit hyperactivity disorder: evidence from a large population-based study in the Pearl River Delta Region, China. ENVIRONMENTAL RESEARCH 2025; 277:121641. [PMID: 40250580 DOI: 10.1016/j.envres.2025.121641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 04/08/2025] [Accepted: 04/16/2025] [Indexed: 04/20/2025]
Abstract
BACKGROUND Evidence linking fine particulate matter (PM2.5) constituents to childhood attention deficit hyperactivity disorder (ADHD) was limited. OBJECTIVES To investigate the individual and joint effects of exposure to PM2.5 constituents on ADHD. METHODS We conducted a large population-based survey involving 110,818 school children aged 6-18 years across six cities in the Pearl River Delta region, China. The three-year average concentrations of PM2.5 constituents (black carbon (BC), organic matter (OM), sulfate, nitrate, and ammonium) were estimated using the ChinaHighAirPollutants dataset. Parents completed an ADHD checklist using the Diagnostic and Statistical Manual of Mental Disorders-IV criteria. The individual and joint associations between PM2.5 components and ADHD were estimated using generalized linear mixed models and the quantile g-computation regression model, respectively. RESULTS The exposure-response relationships between PM2.5 constituents and ADHD primarily exhibited a nonlinear pattern. Compared with the lowest tertile, the highest tertiles of PM2.5 and its components were linked to greater odds for ADHD (e.g., the adjusted odds ratio (OR) was 1.37 (95 % confidential interval (CI): 1.27, 1.47) for PM2.5, 1.51 (95 %CI: 1.40, 1.63) for OM, 1.29 (95 %CI: 1.20, 1.39) for BC, and 1.20 (95 %CI:1.08, 1.34) for sulfate). Similar positive associations were observed between BC and sulfate exposure and ADHD subtypes. Moreover, joint exposure to PM2.5 components was associated with ADHD (OR = 1.14, 95 % CI:1.10, 1.18), with OM and BC contributing more to the observed associations. CONCLUSIONS These findings highlight the varying contributions of PM2.5 constituents to ADHD and underscore the importance of reducing specific PM2.5 component emissions to mitigate the burden of PM2.5-associated neurodevelopmental diseases.
Collapse
Affiliation(s)
- Hui-Xian Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wen-Jie Meng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qing-Guo Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
| | - Lu-Sheng Liu
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qi-Zhen Wu
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Bin Zhao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing, 100084, China
| | - Anna Oudin
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Mo Yang
- Department of Environmental and Biological Science, University of Eastern Finland, Kuopio, Finland
| | - Pasi Jalava
- Department of Environmental and Biological Science, University of Eastern Finland, Kuopio, Finland
| | - Guang-Hui Dong
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiao-Wen Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
2
|
Morrel J, Dong M, Rosario MA, Cotter DL, Bottenhorn KL, Herting MM. A systematic review of air pollution exposure and brain structure and function during development. ENVIRONMENTAL RESEARCH 2025; 275:121368. [PMID: 40073924 PMCID: PMC12086053 DOI: 10.1016/j.envres.2025.121368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 03/06/2025] [Accepted: 03/09/2025] [Indexed: 03/14/2025]
Abstract
OBJECTIVES Air pollutants are known neurotoxicants. In this updated systematic review, we evaluate new evidence since our 2019 systematic review on the effect of outdoor air pollution exposure on childhood and adolescent brain structure and function as measured by magnetic resonance imaging (MRI). METHODS Using PubMed, Web of Science, and Scopus we conducted an updated literature search and systematic review of articles published through January 2025, using key terms for air pollution and functional and/or structural MRI. Two raters independently screened all articles using Covidence and implemented the risk of bias instrument for systematic reviews used to inform the World Health Organization Global Air Quality Guidelines. RESULTS We identified 29 relevant papers, and 20 new studies met our inclusion criteria. Including six studies from our 2019 review, the 26 publications to date include study populations from the United States, Netherlands, Spain, and United Kingdom. Studies investigated exposure periods spanning pregnancy through early adolescence, and estimated air pollutant exposure levels via personal monitoring, geospatial residential estimates, or school courtyard monitors. Brain MRI occurred when children were on average 6-14.7 years old; however, one study assessed newborns. Several MRI modalities were leveraged, including structural morphology, diffusion tensor imaging, restriction spectrum imaging, arterial spin labeling, magnetic resonance spectroscopy, as well as resting-state and task-based functional MRI. Air pollutants were associated with widespread brain differences, although the magnitude and direction of findings are largely inconsistent, making it difficult to draw strong conclusions. CONCLUSION Prenatal and childhood exposure to outdoor air pollution is associated with structural and functional brain variations. Compared to our initial 2019 review comprised of only cross-sectional studies, the current literature now includes longitudinal studies and more advanced neuroimaging methods. Further research is needed to clarify the effects of developmental timing, along with the downstream implications of outdoor air pollution exposure on children's cognitive and mental health.
Collapse
Affiliation(s)
- Jessica Morrel
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA; Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Michelle Dong
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Michael A Rosario
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Devyn L Cotter
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA; Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Katherine L Bottenhorn
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA; Department of Psychology, Florida International University, Miami, FL, USA
| | - Megan M Herting
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Chauhan R, Dande S, Hood DB, Chirwa SS, Langston MA, Grady SK, Dojcsak L, Tabatabai M, Wilus D, Valdez RB, Al-Hamdan MZ, Im W, McCallister M, Alcendor DJ, Mouton CP, Ramesh A. Particulate matter 2.5 (PM 2.5) - associated cognitive impairment and morbidity in humans and animal models: a systematic review. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2025; 28:233-263. [PMID: 39827081 DOI: 10.1080/10937404.2025.2450354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Particulate matter with an aerodynamic diameter of less than 2.5 µm (PM2.5) is one of the criteria air pollutants that (1) serve as an essential carrier of airborne toxicants arising from combustion-related events including emissions from industries, automobiles, and wildfires and (2) play an important role in transient to long-lasting cognitive dysfunction as well as several other neurological disorders. A systematic review was conducted to address differences in study design and various biochemical and molecular markers employed to elucidate neurological disorders in PM2.5 -exposed humans and animal models. Out of 340,068 scientific publications screened from 7 databases, 312 studies were identified that targeted the relationship between exposure to PM2.5 and cognitive dysfunction. Equivocal evidence was identified from pre-clinical (animal model) and human studies that PM2.5 exposure contributes to dementia, Parkinson disease, multiple sclerosis, stroke, depression, autism spectrum disorder, attention deficit hyperactivity disorder, and neurodevelopment. In addition, there was substantial evidence from human studies that PM2.5 also was associated with Alzheimer's disease, anxiety, neuropathy, and brain tumors. The role of exposome in characterizing neurobehavioral anomalies and opportunities available to leverage the neuroexposome initiative for conducting longitudinal studies is discussed. Our review also provided some areas that warrant consideration, one of which is unraveling the role of microbiome, and the other role of climate change in PM2.5 exposure-induced neurological disorders.
Collapse
Affiliation(s)
- Ritu Chauhan
- Department of Biochemistry, Cancer Biology, Neuroscience & Toxicology, School of Medicine, Meharry Medical College, Nashville, TN, USA
| | - Susmitha Dande
- Department of Family and Community Medicine, School of Medicine, Meharry Medical College, Nashville, TN, USA
| | - Darryl B Hood
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, USA
| | - Sanika S Chirwa
- Department of Biochemistry, Cancer Biology, Neuroscience & Toxicology, School of Medicine, Meharry Medical College, Nashville, TN, USA
| | - Michael A Langston
- Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN, USA
| | - Stephen K Grady
- Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN, USA
| | - Levente Dojcsak
- Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN, USA
| | - Mohammad Tabatabai
- Department of Public Health, School of Global Health, Meharry Medical College, Nashville, TN, USA
| | - Derek Wilus
- Department of Public Health, School of Global Health, Meharry Medical College, Nashville, TN, USA
| | - R Burciaga Valdez
- Agency for Healthcare Research and Quality, Department of Health and Human Services, Washington, DC, USA
| | - Mohammad Z Al-Hamdan
- National Center for Computational Hydroscience and Engineering (NCCHE) and Department of Civil Engineering and Department of Geology and Geological Engineering, School of Engineering, University of Mississippi, Oxford, MS, USA
| | - Wansoo Im
- Department of Public Health, School of Global Health, Meharry Medical College, Nashville, TN, USA
| | - Monique McCallister
- Department of Biological Sciences, College of Life & Physical Sciences, Tennessee State University, Nashville, TN, USA
| | - Donald J Alcendor
- Department of Microbiology, Immunology and Physiology, Center for AIDS Health Disparities Research, School of Medicine, Meharry Medical College, Nashville, TN, USA
| | - Charles P Mouton
- Department of Family Medicine, John Sealy School of Medicine, The University of Texas Medical Branch, Galveston, TX, USA
| | - Aramandla Ramesh
- Department of Biochemistry, Cancer Biology, Neuroscience & Toxicology, School of Medicine, Meharry Medical College, Nashville, TN, USA
| |
Collapse
|
4
|
He WT, Huang JW, Zhang YT, Trevathan E, Qian Z, Boyd R, Elliott M, Lin LZ, Gui ZH, Liu RQ, Hu LW, Dong GH. Chlorinated paraffins exposure in particulate matter increase the risk of attention-deficit/hyperactivity disorder symptoms in children and adolescents. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 373:126120. [PMID: 40157481 DOI: 10.1016/j.envpol.2025.126120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 03/14/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025]
Abstract
Chlorinated paraffins (CPs), widely distributed environmental and industrial pollutants, have been linked to impaired neurodevelopment. However, evidence for this potential association between CP exposure and the risk of Attention-Deficit Hyperactivity Disorder (ADHD) and subtypes is lacking. To investigate this possible association between chlorinated paraffins exposure and the risk of ADHD and its subtypes in children and adolescents, a large cross-sectional study was conducted in the Pearl River Delta (PRD) in China involving 122,965 completed questionnaires. Particle matters <2.5 μm (PM2.5) samples and PM2.5-bound short-chain CPs (SCCPs), medium-chain CPs (MCCPs), and long-chain CPs (LCCPs) in the PRD were collected and detected. Generalized linear mixed models (GLMM) and restricted cubic spline (RCS) models were used to estimate the association between CP exposure and ADHD symptoms and subtypes, as well as dose-response relationships. Quantile g-computation models (qgcomp) were performed to explore further the joint effects of a mixture of CPs exposure on ADHD symptoms and subtypes. A total of 7139 participants (5.8 %) were diagnosed with ADHD. GLMM analysis found that an interquartile range (IQR) increase in ∑CP concentrations was associated with the risk of ADHD after adjusting the covariates, and the odds ratio and corresponding 95 % confidence interval was 1.57 (1.54, 1.61). The RCS model showed a monotone-increased dose-response association between CP exposure and ADHD symptoms. Qgcomp model analysis indicated that SCCPs and MCCPs were the major contributors to the risk of ADHD symptoms. Furthermore, girls exhibited a significantly higher risk of developing ADHD and it subtypes compared to boys following exposure to CPs. Above all, our findings suggest that PM2.5-bound CP exposure may increase the risk of ADHD symptoms and subtypes, and provide novel evidence for atmospheric environmental risk factors for ADHD.
Collapse
Affiliation(s)
- Wan-Ting He
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Jing-Wen Huang
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yun-Ting Zhang
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Edwin Trevathan
- Vanderbilt Institute for Global Health, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Zhengmin Qian
- Department of Epidemiology and Biostatistics, College for Public Health & Social Justice, Saint Louis University, Saint Louis, MO 63104, USA
| | - Ri'enna Boyd
- George Warren Brown School of Social Work, Washington University in Saint Louis, Saint Louis, MO 63105, USA
| | - Michael Elliott
- Department of Epidemiology and Biostatistics, College for Public Health & Social Justice, Saint Louis University, Saint Louis, MO 63104, USA
| | - Li-Zi Lin
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhao-Huan Gui
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ru-Qing Liu
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Li-Wen Hu
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Guang-Hui Dong
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
5
|
Mazahir FA, Shukla A, Albastaki NA. The association of particulate matter PM 2.5 and nitrogen oxides from ambient air pollution and mental health of children and young adults- a systematic review. REVIEWS ON ENVIRONMENTAL HEALTH 2025:reveh-2024-0120. [PMID: 40074563 DOI: 10.1515/reveh-2024-0120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/06/2025] [Indexed: 03/14/2025]
Abstract
INTRODUCTION The developing brain, especially vulnerable during neuroplastic phases, is influenced by environmental and genetic factors. Understanding the impacts of air pollution on children's and young adults' mental health is an emerging research field. CONTENT This review systematically examines the adverse associations of ambient air pollutants on mental health. A database search using Scopus, EMBASE, Global Health, and PsycINFO included articles from 2013 onwards, following PRISMA guidelines. Of the 787 identified articles, 62 met the inclusion criteria. Quality was assessed using the EPHPP tool, and Best Evidence Synthesis (BES) evaluated the findings. SUMMARY The review found 36 associations between ambient air pollutants and adverse mental health outcomes across seven life-course exposure periods. Strong evidence linked early-life PM2.5 and NO2 exposures to Autism Spectrum Disorder (ASD) and childhood exposures to Attention Deficit Hyperactivity Disorder (ADHD). Significant, though inconsistent, associations were found between air pollutants and cognitive impairments, anxiety, depression, self-harm, and other behavioral problems. The heterogeneity of exposure limits and lack of experimental studies hinder causal assessment. OUTLOOK Compelling evidence links early-life and childhood exposure to PM2.5 and NO2 with ASD and ADHD. These findings highlight the need for public health policy changes and further research to explore these associations comprehensively.
Collapse
Affiliation(s)
- Fatima A Mazahir
- Pediatric Department, Al Jalila Children's Specialty Hospital, Dubai Academic Health Corporation (Dubai Health), Dubai, United Arab Emirates
| | - Ankita Shukla
- University of Sharjah, Sharjah, United Arab Emirates
| | - Najwa A Albastaki
- Public Health Department- Dubai Health Authority, Dubai, United Arab Emirates
| |
Collapse
|
6
|
Li N, Zhao J, Zhou F. The burden of attention deficit hyperactivity disorder and incidence rate forecast in China from 1990 to 2021. Front Psychiatry 2025; 16:1532156. [PMID: 40099143 PMCID: PMC11911341 DOI: 10.3389/fpsyt.2025.1532156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/13/2025] [Indexed: 03/19/2025] Open
Abstract
Objective To analyze the temporal trends and future projections of attention-deficit/hyperactivity disorder (ADHD) burden among children and adolescents in China from 1990 to 2021, and to identify age-, period-, and cohort-specific drivers of disease progression. Methods Using data from the Global Burden of Disease Study 2021, we conducted joinpoint regression to detect trend transitions in ADHD incidence and age-standardized rates. Age-period-cohort (APC) modeling was applied to disentangle the effects of age, calendar period, and birth cohort on disease burden. Projections up to 2046 were generated using demographic forecasts from the GBD 2017 population database. Results Crude ADHD prevalence declined by 21.17% (2168.055 to 1723.307 per 100,000), yet age-standardized prevalence increased by 9.86% (AAPC=0.272%, 95%CI:0.173-0.372, P<0.001). Similarly, age-standardized DALY rates rose by 10.15% (AAPC=0.262%, 95%CI:0.160-0.364,P<0.001), with females showing faster growth than males (AAPC for DALY: 0.294% vs. 0.229%,P<0.001). Adolescents aged 10-14 years bore the highest burden, with prevalence (5,727.28/100,000) and DALY rates (70.55/100,000) twice the global average. APC projections indicated a peak incidence in 2029 for this age group, linked to cohort effects from China's "Double Reduction" education policy and rising digital exposure. Conclusion China faces a rising ADHD burden driven by sociodemographic transitions and diagnostic advancements. Targeted interventions-particularly for adolescents and females-are urgently needed. Strengthening school-based screening, integrating AI-driven diagnostic tools, and prioritizing mental health in national policies could mitigate long-term impacts. These findings underscore the necessity of dynamic surveillance systems to address ADHD's evolving epidemiology in transitioning societies.
Collapse
Affiliation(s)
- Ningyu Li
- First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
- School of Nursing, Xinxiang Medical University, Xinxiang, Henan, China
| | - Junqiang Zhao
- First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
- School of Medical Imaging, Xinxiang Medical University, Xinxiang, Henan, China
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang, China
- Henan Engineering Research Center of Medical Virtual Reality (VR) Intelligent Sensing Feedback, Xinxiang, China
| | - Fujun Zhou
- Department of Pediatric Rehabilitation, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
7
|
Xia Y, Vieira VM. The association between neighborhood environment, prenatal exposure to alcohol and tobacco, and structural brain development. Front Hum Neurosci 2025; 19:1531803. [PMID: 40041111 PMCID: PMC11876420 DOI: 10.3389/fnhum.2025.1531803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/06/2025] [Indexed: 03/06/2025] Open
Abstract
Prenatal alcohol and tobacco exposure affects child brain development. Less is known about how neighborhood environment (built, institutional, and social) may be associated with structural brain development and whether prenatal exposure to alcohol or tobacco may modify this relationship. The current study aimed to examine whether neighborhood environment is associated with brain volume at age 9-11, and whether prenatal exposure to alcohol or tobacco modifies this relationship. Baseline data from Adolescent Brain and Cognitive Development (ABCD) study was analyzed (N = 7,887). Neighborhood environment was characterized by 10 variables from the linked external dataset. Prenatal alcohol and tobacco exposures were dichotomized based on the developmental history questionnaire. Bilateral volumes of three regions of interests (hippocampal, parahippocampal, and entorhinal) were examined as outcomes. High residential area deprivation was associated with smaller right hippocampal volume. Prenatal alcohol exposure was associated with larger volume in left parahippocampal and hippocampal regions, while prenatal tobacco exposure was associated with smaller volumes in bilateral parahippocampal, right entorhinal, and right hippocampal regions. In children without prenatal tobacco exposure, high residential area deprivation was associated with smaller right hippocampal volumes. In contrast, neighborhood environment was not significantly associated with brain volumes in children with prenatal tobacco exposure. In summary, neighborhood environment plays a role in child brain development. This relationship may differ by prenatal tobacco exposure. Future studies on prenatal tobacco exposure may need to consider how postnatal neighborhood environment interacts with the teratogenic effect.
Collapse
Affiliation(s)
- Yingjing Xia
- Joe C. Wen School of Population and Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, Irvine, CA, United States
| | | |
Collapse
|
8
|
Al-Gailani L, Al-Kaleel A. The Relationship Between Prenatal, Perinatal, and Postnatal Factors and ADHD: The Role of Nutrition, Diet, and Stress. Dev Psychobiol 2024; 66:e70004. [PMID: 39508433 DOI: 10.1002/dev.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 10/14/2024] [Accepted: 10/25/2024] [Indexed: 11/15/2024]
Abstract
Attention-Deficit Hyperactive Disorder (ADHD) is a neurobehavioral syndrome affecting children aged 6-17 with symptoms manifesting before age 12. ADHD presents heterogeneously and is associated with various psychiatric disorders. The cause remains elusive, but genetic and environmental factors, brain region maturation delays, and neurotransmitter dysregulation are implicated. Effective treatment requires a multi-disciplinary approach, primarily involving pharmacological and behavioral intervention. Stimulants like methylphenidate and amphetamines are first-line medications, but non-stimulants may be considered for some patients. However, stimulants face challenges related to misuse, dependence, and long-term tolerability issues. The etiology of ADHD involved genetic predisposition, environmental influences, and prenatal, perinatal, and postnatal factors. Prenatal causes encompass maternal diet, alcohol consumption, viral infections, and stress. Postnatal factors include head trauma, meningitis, toxin, nutritional deficiencies, as well as iodine deficiency and hypothyroidism. The gut microbiome's role in ADHD is emerging, influencing neurodevelopment through microbiota-gut-brain axis. Understanding these diverse etiological factors is essential for comprehensive ADHD management.
Collapse
Affiliation(s)
- Lubna Al-Gailani
- Faculty of Medicine, Cyprus International University, Nicosia, Cyprus
| | - Ali Al-Kaleel
- Faculty of Medicine, Cyprus International University, Nicosia, Cyprus
| |
Collapse
|
9
|
Ahmad S, K G N, Mani Babu A, Ranjan R, Kumar P. Association Between Ambient Air Pollution and Attention-Deficit/Hyperactivity Disorder (ADHD) in Children: A Systematic Review and Meta-Analysis. Cureus 2024; 16:e71527. [PMID: 39544605 PMCID: PMC11562299 DOI: 10.7759/cureus.71527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2024] [Indexed: 11/17/2024] Open
Abstract
The objective of this systematic review and meta-analysis was to assess the association between postnatal exposure to ambient air pollutants (particulate matter (PM)2.5, PM10, nitrogen dioxide (NO2)) and the risk of attention-deficit/hyperactivity disorder (ADHD) in children. Observational studies, including cohort, case-control, and cross-sectional designs, that examined the relationship between postnatal exposure to ambient air pollution and ADHD in children were included, while studies focusing on prenatal exposure or unrelated neurodevelopmental outcomes were excluded. A comprehensive search of databases including PubMed, Web of Science, Embase, and Ovid, last updated in May 2024, was conducted. The risk of bias in the selected studies was assessed using the Joanna Briggs Institute (JBI) critical appraisal tools, with discrepancies resolved through discussion among four reviewers. A meta-analysis was performed, synthesizing results using hazard ratios (HR), odds ratios (OR), and risk ratios (RR) as effect sizes. Random effects models were applied in most analyses due to the expected variability between studies, while fixed effects models were employed where only two studies were available. A total of 25 studies were included, with sample sizes ranging from 174 to 35,103 children. The studies were conducted in different countries and varied in their design and pollutant exposure measurement methods. The meta-analysis demonstrated a significant association between PM2.5 exposure and ADHD, with moderate heterogeneity (I² = 74.2%). PM10 exposure was also significantly associated with ADHD, and the heterogeneity was reduced to 34.94% after excluding an influential outlier. NO2 exposure similarly showed a significant association with ADHD, with low heterogeneity (I² = 0%). Due to the limited number of studies per pollutant (ranging from two to six), publication bias was not assessed. Despite the significant findings, there were limitations, including moderate to high heterogeneity among studies and the small number of studies per pollutant, which restricted the ability to assess publication bias and impacted the robustness of the results. Differences in exposure measurement methods and study designs also contributed to variability in the findings. Nonetheless, the evidence suggests that postnatal exposure to ambient air pollutants, particularly PM2.5, PM10, and NO2, is significantly associated with an increased risk of ADHD in children. These results underscore the importance of conducting further large-scale, high-quality studies to explore these associations in greater depth and to elucidate the mechanisms underlying the link between air pollution and ADHD.
Collapse
Affiliation(s)
- Shamshad Ahmad
- Community and Family Medicine, All India Institute of Medical Sciences, Patna, Patna, IND
| | - Naveen K G
- Community and Family Medicine, All India Institute of Medical Sciences, Patna, Patna, IND
| | - Arun Mani Babu
- Community and Family Medicine, All India Institute of Medical Sciences, Patna, Patna, IND
| | - Rajeev Ranjan
- Psychiatry, All India Institute of Medical Sciences, Patna, Patna, IND
| | - Pragya Kumar
- Community and Family Medicine, All India Institute of Medical Sciences, Patna, Patna, IND
| |
Collapse
|
10
|
Morrel J, Dong M, Rosario MA, Cotter DL, Bottenhorn KL, Herting MM. A Systematic Review of Air Pollution Exposure and Brain Structure and Function during Development. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.13.24313629. [PMID: 39314970 PMCID: PMC11419233 DOI: 10.1101/2024.09.13.24313629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Objectives Air pollutants are known neurotoxicants. In this updated systematic review, we evaluate new evidence since our 2019 systematic review on the effect of outdoor air pollution exposure on childhood and adolescent brain structure and function as measured by magnetic resonance imaging (MRI). Methods Using PubMed and Web of Science, we conducted an updated literature search and systematic review of articles published through March 2024, using key terms for air pollution and functional and/or structural MRI. Two raters independently screened all articles using Covidence and implemented the risk of bias instrument for systematic reviews informing the World Health Organization Global Air Quality Guidelines. Results We identified 222 relevant papers, and 14 new studies met our inclusion criteria. Including six studies from our 2019 review, the 20 publications to date include study populations from the United States, Netherlands, Spain, and United Kingdom. Studies investigated exposure periods spanning pregnancy through early adolescence, and estimated air pollutant exposure levels via personal monitoring, geospatial residential estimates, or school courtyard monitors. Brain MRI occurred when children were on average 6-14.7 years old; however, one study assessed newborns. Several MRI modalities were leveraged, including structural morphology, diffusion tensor imaging, restriction spectrum imaging, arterial spin labeling, magnetic resonance spectroscopy, as well as resting-state and task-based functional MRI. Air pollutants were associated with widespread brain differences, although the magnitude and direction of findings are largely inconsistent, making it difficult to draw strong conclusions. Conclusion Prenatal and childhood exposure to outdoor air pollution is associated with structural and functional brain variations. Compared to our initial 2019 review, publications doubled-an increase that testifies to the importance of this public health issue. Further research is needed to clarify the effects of developmental timing, along with the downstream implications of outdoor air pollution exposure on children's cognitive and mental health.
Collapse
Affiliation(s)
- Jessica Morrel
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Michelle Dong
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Michael A. Rosario
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Devyn L. Cotter
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Katherine L. Bottenhorn
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
- Department of Psychology, Florida International University, Miami, FL, USA
| | - Megan M. Herting
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
11
|
Zhao J, He T, Wang F, Liu W. Association of prenatal and postnatal exposure to air pollution with clinically diagnosed attention deficit hyperactivity disorder: a systematic review. Front Public Health 2024; 12:1396251. [PMID: 38855453 PMCID: PMC11157082 DOI: 10.3389/fpubh.2024.1396251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/14/2024] [Indexed: 06/11/2024] Open
Abstract
Attention deficit hyperactivity disorder (ADHD), a prevalent neurodevelopmental disorder in children, originates from a multifaceted interplay of genetic, neurological, and environmental factors. Recent studies have increasingly concentrated on environmental determinants, notably air pollution, and their impact on the risk of developing ADHD. Additionally, previous research has often conflated clinically diagnosed ADHD cases with instances of mere ADHD-like symptoms, a methodology that can introduce bias and obscure the true relationship between environmental factors and ADHD. To address this oversight, our systematic review meticulously investigates the relationship between both prenatal and postnatal exposures to particular air pollutants and strictly clinically diagnosed ADHD. Our comprehensive review encompassed 801 studies from PubMed, Cochrane Library, Web of Science, and Embase databases, out of which eight met our rigorous inclusion criteria. The Newcastle-Ottawa Scale (NOS) was utilized to gauge quality and bias. Our review found substantiated the connection between prenatal exposure to PM2.5 and NOx and a heightened risk of ADHD, while exposure to PM10 during the prenatal stage was not associated with ADHD. These findings hint at varied health impacts from different particulate matters and the prospect of gender-specific susceptibilities to such exposures. We also identified an association between postnatal exposure to PM2.5, PM10, and NO2 and an increased ADHD risk, underlining the potential neurodevelopmental harms from early exposure to these pollutants. These relationships, seemingly intricate and potentially dose-dependent, underscore the need for more detailed scrutiny. The unique value of our review is in its detailed exploration of the association between specific air pollution exposures and clinically diagnosed ADHD. Our findings offer much-needed clarity in this complex domain and emphasize the importance of future research to standardize exposure and outcome metrics, probe potential mechanisms, and reduce bias and heterogeneity.
Collapse
Affiliation(s)
- Jinzhu Zhao
- Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianyi He
- Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Wang
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Wei Liu
- Department of Public Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
12
|
Aschner M, Martins AC, Oliveira-Paula GH, Skalny AV, Zaitseva IP, Bowman AB, Kirichuk AA, Santamaria A, Tizabi Y, Tinkov AA. Manganese in autism spectrum disorder and attention deficit hyperactivity disorder: The state of the art. Curr Res Toxicol 2024; 6:100170. [PMID: 38737010 PMCID: PMC11088232 DOI: 10.1016/j.crtox.2024.100170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/27/2024] [Accepted: 04/23/2024] [Indexed: 05/14/2024] Open
Abstract
The objective of the present narrative review was to synthesize existing clinical and epidemiological findings linking manganese (Mn) exposure biomarkers to autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD), and to discuss key pathophysiological mechanisms of neurodevelopmental disorders that may be affected by this metal. Existing epidemiological data demonstrated both direct and inverse association between Mn body burden and ASD, or lack of any relationship. In contrast, the majority of studies revealed significantly higher Mn levels in subjects with ADHD, as well as direct relationship between Mn body burden with hyperactivity and inattention scores in children, although several studies reported contradictory results. Existing laboratory studies demonstrated that impaired attention and hyperactivity in animals following Mn exposure was associated with dopaminergic dysfunction and neuroinflammation. Despite lack of direct evidence on Mn-induced neurobiological alterations in patients with ASD and ADHD, a plethora of studies demonstrated that neurotoxic effects of Mn overexposure may interfere with key mechanisms of pathogenesis inherent to these neurodevelopmental disorders. Specifically, Mn overload was shown to impair not only dopaminergic neurotransmission, but also affect metabolism of glutamine/glutamate, GABA, serotonin, noradrenaline, thus affecting neuronal signaling. In turn, neurotoxic effects of Mn may be associated with its ability to induce oxidative stress, apoptosis, and neuroinflammation, and/or impair neurogenesis. Nonetheless, additional detailed studies are required to evaluate the association between environmental Mn exposure and/or Mn body burden and neurodevelopmental disorders at a wide range of concentrations to estimate the potential dose-dependent effects, as well as environmental and genetic factors affecting this association.
Collapse
Affiliation(s)
- Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Airton C. Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | | | - Anatoly V. Skalny
- Department of Medical Elementology, and Department of Human Ecology and Bioelementology, Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russia
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow 119435, Russia
| | - Irina P. Zaitseva
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl 150003, Russia
| | - Aaron B. Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907-2051, USA
| | - Anatoly A. Kirichuk
- Department of Medical Elementology, and Department of Human Ecology and Bioelementology, Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russia
| | - Abel Santamaria
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
- Laboratorio de Nanotecnología y Nanomedicina, Departamento de Cuidado de la Salud, Universidad Autónoma Metropolitana-Xochimilco, Mexico City 04960, Mexico
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC 20059, USA
| | - Alexey A. Tinkov
- Department of Medical Elementology, and Department of Human Ecology and Bioelementology, Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russia
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow 119435, Russia
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl 150003, Russia
| |
Collapse
|
13
|
Chen WJ, Rector-Houze AM, Guxens M, Iñiguez C, Swartz MD, Symanski E, Ibarluzea J, Valentin A, Lertxundi A, González-Safont L, Sunyer J, Whitworth KW. Susceptible windows of prenatal and postnatal fine particulate matter exposures and attention-deficit hyperactivity disorder symptoms in early childhood. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168806. [PMID: 38016567 PMCID: PMC12040439 DOI: 10.1016/j.scitotenv.2023.168806] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 11/30/2023]
Abstract
Few prior studies have explored windows of susceptibility to fine particulate matter (PM2.5) in both the prenatal and postnatal periods and children's attention-deficit/hyperactivity disorder (ADHD) symptoms. We analyzed data from 1416 mother-child pairs from the Spanish INMA (INfancia y Medio Ambiente) Study (2003-2008). Around 5 years of age, teachers reported the number of ADHD symptoms (i.e., inattention, hyperactivity/impulsivity) using the ADHD Diagnostic and Statistical Manual of Mental Disorders. Around 7 years of age, parents completed the Conners' Parent Rating Scales, from which we evaluated the ADHD index, cognitive problems/inattention, hyperactivity, and oppositional subscales, reported as age- and sex-standardized T-scores. Daily residential PM2.5 exposures were estimated using a two-stage random forest model with temporal back-extrapolation and averaged over 1-week periods in the prenatal period and 4-week periods in the postnatal period. We applied distributed lag non-linear models within the Bayesian hierarchical model framework to identify susceptible windows of prenatal or postnatal exposure to PM2.5 (per 5-μg/m3) for ADHD symptoms. Models were adjusted for relevant covariates, and cumulative effects were reported by aggregating risk ratios (RRcum) or effect estimates (βcum) across adjacent susceptible windows. A similar susceptible period of exposure to PM2.5 (1.2-2.9 and 0.9-2.7 years of age, respectively) was identified for hyperactivity/impulsivity symptoms assessed ~5 years (RRcum = 2.72, 95% credible interval [CrI] = 1.98, 3.74) and increased hyperactivity subscale ~7 years (βcum = 3.70, 95% CrI = 2.36, 5.03). We observed a susceptibility period to PM2.5 on risk of hyperactivity/impulsivity symptoms ~5 years in gestational weeks 16-22 (RRcum = 1.36, 95% CrI = 1.22, 1.52). No associations between PM2.5 exposure and other ADHD symptoms were observed. We report consistent evidence of toddlerhood as a susceptible window of PM2.5 exposure for hyperactivity in young children. Although mid-pregnancy was identified as a susceptible period of exposure on hyperactivity symptoms in preschool-aged children, this association was not observed at the time children were school-aged.
Collapse
Affiliation(s)
- Wei-Jen Chen
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Alison M Rector-Houze
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX, USA; Department of Biostatistics and Data Science, The University of Texas Health Science Center at Houston (UTHealth) School of Public Health, Houston, TX, USA
| | - Mònica Guxens
- Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; ISGlobal, Barcelona, Spain; Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Centre (Erasmus MC), Rotterdam, the Netherlands
| | - Carmen Iñiguez
- Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Department of Statistics and Operational Research, Universitat de València, València, Spain; Epidemiology and Environmental Health Joint Research Unit, The Foundation for the Promotion of Health and Biomedical Research of Valencia Region (FISABIO), Universitat Jaume I-Universitat de València, València, Spain
| | - Michael D Swartz
- Department of Biostatistics and Data Science, The University of Texas Health Science Center at Houston (UTHealth) School of Public Health, Houston, TX, USA
| | - Elaine Symanski
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX, USA; Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - Jesús Ibarluzea
- Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Group of Environmental Epidemiology and Child Development, Biodonostia Health Research Institute, San Sebastian, Spain; Ministry of Health of the Basque Government, Sub-Directorate for Public Health and Addictions of Gipuzkoa, 20013 San Sebastian, Spain; Faculty of Psychology, Universidad del País Vasco (UPV/EHU), San Sebastian, Spain
| | - Antonia Valentin
- Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; ISGlobal, Barcelona, Spain
| | - Aitana Lertxundi
- Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Group of Environmental Epidemiology and Child Development, Biodonostia Health Research Institute, San Sebastian, Spain; Department of Preventive Medicine and Public Health, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Llúcia González-Safont
- Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Epidemiology and Environmental Health Joint Research Unit, The Foundation for the Promotion of Health and Biomedical Research of Valencia Region (FISABIO), Universitat Jaume I-Universitat de València, València, Spain; Nursing and Chiropody Faculty of Valencia University, Valencia, Spain
| | - Jordi Sunyer
- Spanish Consortium for Research and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; ISGlobal, Barcelona, Spain
| | - Kristina W Whitworth
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX, USA; Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
14
|
Khorrami Z, Pourkhosravani M, Karamoozian A, Jafari-Khounigh A, Akbari ME, Rezapour M, Khorrami R, Taghavi-Shahri SM, Amini H, Etemad K, Khanjani N. Ambient air pollutants and breast cancer stage in Tehran, Iran. Sci Rep 2024; 14:3873. [PMID: 38365800 PMCID: PMC10873290 DOI: 10.1038/s41598-024-53038-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/27/2024] [Indexed: 02/18/2024] Open
Abstract
This study aimed to examine the impacts of single and multiple air pollutants (AP) on the severity of breast cancer (BC). Data of 1148 diagnosed BC cases (2008-2016) were obtained from the Cancer Research Center and private oncologist offices in Tehran, Iran. Ambient PM10, SO2, NO, NO2, NOX, benzene, toluene, ethylbenzene, m-xylene, p-xylene, o-xylene, and BTEX data were obtained from previously developed land use regression models. Associations between pollutants and stage of BC were assessed by multinomial logistic regression models. An increase of 10 μg/m3 in ethylbenzene, o-xylene, m-xylene, and 10 ppb of NO corresponded to 10.41 (95% CI 1.32-82.41), 4.07 (1.46-11.33), 2.89 (1.08-7.73) and 1.08 (1.00-1.15) increase in the odds of stage I versus non-invasive BC, respectively. Benzene (OR, odds ratio = 1.16, 95% CI 1.01-1.33) and o-xylene (OR = 1.18, 1.02-1.38) were associated with increased odds of incidence of BC stages III & IV versus non-invasive stages. BC stage I and stage III&IV in women living in low SES areas was associated with significantly higher levels of benzene, ethylbenzene, o-xylene, and m-xylene. The highest multiple-air-pollutants quartile was associated with a higher odds of stage I BC (OR = 3.16) in patients under 50 years old. This study provides evidence that exposure to AP is associated with increased BC stage at diagnosis, especially under premenopause age.
Collapse
Affiliation(s)
- Zahra Khorrami
- Ophthalmic Epidemiology Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Pourkhosravani
- Department of Geography and Urban Planning, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Ali Karamoozian
- Modeling in Health Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Jafari-Khounigh
- Road Traffic Injury Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Maysam Rezapour
- Department of Paramedicine, Amol School of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran
| | - Reihaneh Khorrami
- Student Research Committee, Jahrom University of Medical Sciences, Jahrom, Iran
| | | | - Heresh Amini
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Institute for Climate Change, Environmental Health and Exposomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Koorosh Etemad
- Cancer Research Center (CRC), Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Narges Khanjani
- Department of Medical Education, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA.
| |
Collapse
|
15
|
Sabour S, Harzand-Jadidi S, Jafari-Khounigh A, Zarea Gavgani V, Sedaghat Z, Alavi N. The association between ambient air pollution and migraine: a systematic review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:271. [PMID: 38363415 DOI: 10.1007/s10661-024-12376-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/15/2024] [Indexed: 02/17/2024]
Abstract
Some studies have shown the effect of air pollution on migraine. However, it needs to be confirmed in larger-scale studies, as scientific evidence is scarce regarding the association between air pollution and migraine. Therefore, this systematic review aims to determine whether there are associations between outdoor air pollution and migraine. A literature search was performed in Scopus, Medline (via PubMed), EMBASE, and Web of Science. A manual search for resources and related references was also conducted to complete the search. All observational studies investigating the association between ambient air pollution and migraine, with inclusion criteria, were entered into the review. Fourteen out of 1417 identified articles met the inclusion criteria and entered the study. Among the gaseous air pollutants, there was a correlation between exposure to nitrogen dioxide (NO2) (78.3% of detrimental relationships) and carbon monoxide (CO) (68.0% of detrimental relationships) and migraine, but no apparent correlation has been found for sulfur dioxide (SO2) (21.2% of detrimental relationships) and ozone (O3) (55.2% of detrimental relationships). In the case of particulate air pollutants, particulate matter with a diameter of 10 μm or less (PM10) (76.0% of detrimental relationships) and particulate matter with a diameter of 2.5 μm or less (PM2.5) (61.3% of detrimental relationships) had relationships with migraine. In conclusion, exposure to NO2, CO, PM10, and PM2.5 is associated with migraine headaches, while no conclusive evidence was found to confirm the correlation between O3 and SO2 with migraine. Further studies with precise methodology are recommended in different cities around the world for all pollutants with an emphasis on O3 and SO2.
Collapse
Affiliation(s)
- Siamak Sabour
- Safety Promotions and Injury Prevention Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
- Department of Clinical Epidemiology, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Sepideh Harzand-Jadidi
- Road Traffic Injury Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Jafari-Khounigh
- Road Traffic Injury Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Vahideh Zarea Gavgani
- Tabriz Health Services Management Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Sedaghat
- Department of Epidemiology, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nadali Alavi
- Department of Environmental Health Engineering, School of Public Health and Safety, Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
López-Granero C, Polyanskaya L, Ruiz-Sobremazas D, Barrasa A, Aschner M, Alique M. Particulate Matter in Human Elderly: Higher Susceptibility to Cognitive Decline and Age-Related Diseases. Biomolecules 2023; 14:35. [PMID: 38254635 PMCID: PMC10813119 DOI: 10.3390/biom14010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
This review highlights the significant impact of air quality, specifically particulate matter (PM), on cognitive decline and age-related diseases in the elderly. Despite established links to other pathologies, such as respiratory and cardiovascular illnesses, there is a pressing need for increased attention to the association between air pollution and cognitive aging, given the rising prevalence of neurocognitive disorders. PM sources are from diverse origins, including industrial activities and combustion engines, categorized into PM10, PM2.5, and ultrafine PM (UFPM), and emphasized health risks from both outdoor and indoor exposure. Long-term PM exposure, notably PM2.5, has correlated with declines in cognitive function, with a specific vulnerability observed in women. Recently, extracellular vesicles (EVs) have been explored due to the interplay between them, PM exposure, and human aging, highlighting the crucial role of EVs, especially exosomes, in mediating the complex relationship between PM exposure and chronic diseases, particularly neurological disorders. To sum up, we have compiled the pieces of evidence that show the potential contribution of PM exposure to cognitive aging and the role of EVs in mediating PM-induced cognitive impairment, which presents a promising avenue for future research and development of therapeutic strategies. Finally, this review emphasizes the need for policy changes and increased public awareness to mitigate air pollution, especially among vulnerable populations such as the elderly.
Collapse
Affiliation(s)
- Caridad López-Granero
- Department of Psychology and Sociology, University of Zaragoza, 44003 Teruel, Spain; (C.L.-G.); (D.R.-S.); (A.B.)
| | - Leona Polyanskaya
- Faculty of Psychology and Educational Sciences, University of Coimbra, 3000-115 Coimbra, Portugal;
- Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Diego Ruiz-Sobremazas
- Department of Psychology and Sociology, University of Zaragoza, 44003 Teruel, Spain; (C.L.-G.); (D.R.-S.); (A.B.)
| | - Angel Barrasa
- Department of Psychology and Sociology, University of Zaragoza, 44003 Teruel, Spain; (C.L.-G.); (D.R.-S.); (A.B.)
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Matilde Alique
- Departamento de Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares, 28871 Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| |
Collapse
|
17
|
Pham KCT, Chiew KS. The impact of air pollution on neurocognitive development: Adverse effects and health disparities. Dev Psychobiol 2023; 65:e22440. [PMID: 38010305 PMCID: PMC10683861 DOI: 10.1002/dev.22440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 09/30/2023] [Accepted: 10/21/2023] [Indexed: 11/29/2023]
Abstract
Air pollution is recognized as a major public health concern. The number of deaths related to ambient air pollution has increased in recent years and is projected to continue rising. Additionally, both short- and long-term air pollution exposure has been linked with deleterious effects on neurocognitive function and development. While air pollution poses as a threat to everyone, people of color and individuals of lower socioeconomic status are often exposed to elevated levels of air pollution as a function of systemic racism and classism. Further, given additional disparities in access to healthcare and other compounding stressors, adverse effects of air pollution on neurocognitive health are exacerbated among individuals who hold marginalized identities-making effects both less likely to be detected and treated. This review examines evidence of the effects of air pollution on neurocognitive development across the lifespan and incorporates an environmental justice perspective to highlight disparities in air pollution exposure across race and socioeconomic status. Last, upon the reviewed evidence, limitations of past research and recommendations for policy are discussed.
Collapse
Affiliation(s)
- Kim-Chi T Pham
- Department of Psychology, University of Denver, Denver, Colorado, USA
| | - Kimberly S Chiew
- Department of Psychology, University of Denver, Denver, Colorado, USA
| |
Collapse
|
18
|
Chaulagain A, Lyhmann I, Halmøy A, Widding-Havneraas T, Nyttingnes O, Bjelland I, Mykletun A. A systematic meta-review of systematic reviews on attention deficit hyperactivity disorder. Eur Psychiatry 2023; 66:e90. [PMID: 37974470 PMCID: PMC10755583 DOI: 10.1192/j.eurpsy.2023.2451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/29/2023] [Accepted: 08/31/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND There are now hundreds of systematic reviews on attention deficit hyperactivity disorder (ADHD) of variable quality. To help navigate this literature, we have reviewed systematic reviews on any topic on ADHD. METHODS We searched MEDLINE, PubMed, PsycINFO, Cochrane Library, and Web of Science and performed quality assessment according to the Joanna Briggs Institute Manual for Evidence Synthesis. A total of 231 systematic reviews and meta-analyses met the eligibility criteria. RESULTS The prevalence of ADHD was 7.2% for children and adolescents and 2.5% for adults, though with major uncertainty due to methodological variation in the existing literature. There is evidence for both biological and social risk factors for ADHD, but this evidence is mostly correlational rather than causal due to confounding and reverse causality. There is strong evidence for the efficacy of pharmacological treatment on symptom reduction in the short-term, particularly for stimulants. However, there is limited evidence for the efficacy of pharmacotherapy in mitigating adverse life trajectories such as educational attainment, employment, substance abuse, injuries, suicides, crime, and comorbid mental and somatic conditions. Pharmacotherapy is linked with side effects like disturbed sleep, reduced appetite, and increased blood pressure, but less is known about potential adverse effects after long-term use. Evidence of the efficacy of nonpharmacological treatments is mixed. CONCLUSIONS Despite hundreds of systematic reviews on ADHD, key questions are still unanswered. Evidence gaps remain as to a more accurate prevalence of ADHD, whether documented risk factors are causal, the efficacy of nonpharmacological treatments on any outcomes, and pharmacotherapy in mitigating the adverse outcomes associated with ADHD.
Collapse
Affiliation(s)
- Ashmita Chaulagain
- Centre for Research and Education in Forensic Psychiatry, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Ingvild Lyhmann
- Centre for Research and Education in Forensic Psychiatry, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Anne Halmøy
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Tarjei Widding-Havneraas
- Centre for Research and Education in Forensic Psychiatry, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Olav Nyttingnes
- Centre for Research and Education in Forensic Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Ingvar Bjelland
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Arnstein Mykletun
- Centre for Research and Education in Forensic Psychiatry, Haukeland University Hospital, Bergen, Norway
- Division for Health Services, Norwegian Institute of Public Health, Oslo, Norway
- Department of Community Medicine, UiT – The Arctic University of Norway, Tromsø, Norway
- Centre for Work and Mental Health, Nordland Hospital, Bodø, Norway
| |
Collapse
|
19
|
Subiza-Pérez M, García-Baquero G, Fernández-Somoano A, Guxens M, González L, Tardón A, Dadvand P, Estarlich M, de Castro M, McEachan RRC, Ibarluzea J, Lertxundi N. Residential green and blue spaces and working memory in children aged 6-12 years old. Results from the INMA cohort. Health Place 2023; 84:103136. [PMID: 37871446 DOI: 10.1016/j.healthplace.2023.103136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/25/2023]
Abstract
Availability of green and blue spaces in the area of residence has been related to various health outcomes during childhood, including neurodevelopment. Some studies have shown that children living in greener and/or bluer areas score better on cognitive tasks although the evidence is inconsistent. These protective effects are hypothesized to occur in part through reductions in air pollution exposure and odds of attention-deficit/hyperactivity disorder (ADHD). This study analysed the effects of residential green and blue spaces on working memory of children in the Spanish INfancia y Medio Ambiente (INMA) birth cohort and the potential joint mediating role of air pollution and ADHD. The study samples were composed of 1738 six-to eight-year-olds (M = 7.53, SD = 0.68, 49% female) and 1449 ten-to twelve-year-olds (M = 11.18, SD = 0.69, 50% female) living in Asturias, Gipuzkoa, Sabadell or Valencia, Spain. Individual Normalized Difference Vegetation Index (NDVI) values in 100-, 300- and 500-m buffers and availability of green and blue spaces >5000 m2 in 300-m buffers were calculated using Geographic Information Systems software. Individual NO2 values for the home environment were estimated using ESCAPE's land use regression models. ADHD diagnosis was reported by participants' parents via a questionnaire. Working memory was measured with numbers and colours (in the younger group only) N-back tests (2- and 3-back d'). Mixed-effects models informed of the beneficial effects of NDVI in a 300-m buffer on numerical working memory in the younger sample although the results were not consistent for all d' scores considered and failed to detect significant effects through the candidate mediators. Availability of major blue spaces did not predict working memory performance. Provision of green spaces may play a role in children's working memory but further research is required.
Collapse
Affiliation(s)
- Mikel Subiza-Pérez
- Department of Clinical and Health Psychology and Research Methods, University of the Basque Country UPV/EHU, Avenida Tolosa 70, 20018, Donostia-San Sebastián, Spain; Bradford Institute for Health Research, Temple Bank House, Bradford Royal Infirmary, Duckworth Lane, BD9 6RJ, Bradford, UK; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, c/ Monforte de Lemos 3-5, Madrid, 280, Spain; Biogipuzkoa Health Research Institute, Group of Environmental Epidemiology and Child Development, Paseo Doctor Begiristain s/n, 20014, Donostia- San Sebastián, Spain.
| | - Gonzalo García-Baquero
- Biogipuzkoa Health Research Institute, Group of Environmental Epidemiology and Child Development, Paseo Doctor Begiristain s/n, 20014, Donostia- San Sebastián, Spain; Faculty of Biology, University of Salamanca, Avda Licenciado Méndez Nieto s/n, 37007, Salamanca, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33001, Oviedo, Spain.
| | - Ana Fernández-Somoano
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, c/ Monforte de Lemos 3-5, Madrid, 280, Spain; Unidad de Epidemiología Molecular Del Cáncer, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Departamento de Medicina, Universidad de Oviedo, 33006, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33001, Oviedo, Spain.
| | - Mónica Guxens
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, c/ Monforte de Lemos 3-5, Madrid, 280, Spain; ISGlobal, Barcelona, Spain; Pompeu Fabra University, Barcelona, Spain; Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands.
| | - Llucia González
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, c/ Monforte de Lemos 3-5, Madrid, 280, Spain; University of Valencia, Avda Menéndez Pelayo, 19, 46010, Valencia, Spain; Joint Research Unit in Epidemiology, Environment and Health, FISABIO-University of Valencia-Universitat Jaume I, Valencia, Spain.
| | - Adonina Tardón
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, c/ Monforte de Lemos 3-5, Madrid, 280, Spain; Unidad de Epidemiología Molecular Del Cáncer, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Departamento de Medicina, Universidad de Oviedo, 33006, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33001, Oviedo, Spain.
| | - Payam Dadvand
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, c/ Monforte de Lemos 3-5, Madrid, 280, Spain; ISGlobal, Barcelona, Spain; Pompeu Fabra University, Barcelona, Spain.
| | - Marisa Estarlich
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, c/ Monforte de Lemos 3-5, Madrid, 280, Spain; University of Valencia, Avda Menéndez Pelayo, 19, 46010, Valencia, Spain; Joint Research Unit in Epidemiology, Environment and Health, FISABIO-University of Valencia-Universitat Jaume I, Valencia, Spain.
| | - Montserrat de Castro
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, c/ Monforte de Lemos 3-5, Madrid, 280, Spain; ISGlobal, Barcelona, Spain; Pompeu Fabra University, Barcelona, Spain.
| | - Rosemary R C McEachan
- Bradford Institute for Health Research, Temple Bank House, Bradford Royal Infirmary, Duckworth Lane, BD9 6RJ, Bradford, UK.
| | - Jesús Ibarluzea
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, c/ Monforte de Lemos 3-5, Madrid, 280, Spain; Biogipuzkoa Health Research Institute, Group of Environmental Epidemiology and Child Development, Paseo Doctor Begiristain s/n, 20014, Donostia- San Sebastián, Spain; Ministry of Health of the Basque Government, 20013, Donostia-San Sebastián, Spain; Faculty of Psychology, University of the Basque Country UPV/EHU, Avenida Tolosa 70, 20018, Donostia-San Sebastián, Spain.
| | - Nerea Lertxundi
- Department of Clinical and Health Psychology and Research Methods, University of the Basque Country UPV/EHU, Avenida Tolosa 70, 20018, Donostia-San Sebastián, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, c/ Monforte de Lemos 3-5, Madrid, 280, Spain; Biogipuzkoa Health Research Institute, Group of Environmental Epidemiology and Child Development, Paseo Doctor Begiristain s/n, 20014, Donostia- San Sebastián, Spain.
| |
Collapse
|
20
|
Rosi E, Crippa A, Pozzi M, De Francesco S, Fioravanti M, Mauri M, Molteni M, Morello L, Tosti L, Metruccio F, Clementi E, Nobile M. Exposure to environmental pollutants and attention-deficit/hyperactivity disorder: an overview of systematic reviews and meta-analyses. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:111676-111692. [PMID: 37828261 PMCID: PMC10643318 DOI: 10.1007/s11356-023-30173-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023]
Abstract
Although heritability estimates suggest a role for genetic components, environmental risk factors have been described as relevant in the etiology of attention deficit/hyperactivity disorder (ADHD). Several studies have investigated the role of toxicological pollution, i.e., air pollution, heavy metals, POPs, and phthalates. Clear evidence for association of ADHD and environmental factors has not been provided yet. To answer this, we have assessed all available systematic reviews and meta-analyses that focused on the association between pollutant exposure and either ADHD diagnosis or symptoms. More than 1800 studies were screened of which 14 found eligible. We found evidence of a significant role for some pollutants, in particular heavy metals and phthalates, in the increased risk of developing ADHD symptoms. However, at the current stage, data from existing literature also do not allow to weight the role of the different environmental pollutants. We also offer a critical examination of the reviews/meta-analyses and provide indications for future studies in this field. PROSPERO registration: CRD42022341496.
Collapse
Affiliation(s)
- Eleonora Rosi
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, Via Don Luigi Monza 20, Bosisio Parini (LC), 23842, Lecco, Italy.
| | - Alessandro Crippa
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, Via Don Luigi Monza 20, Bosisio Parini (LC), 23842, Lecco, Italy
| | - Marco Pozzi
- Scientific Institute IRCCS E. Medea, Bosisio Parini, Lecco, Italy
| | - Stefano De Francesco
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, Via Don Luigi Monza 20, Bosisio Parini (LC), 23842, Lecco, Italy
- Sigmund Freud University, Sigmund Freud University of Milan, 20143, Milan, Italy
| | - Mariachiara Fioravanti
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, Via Don Luigi Monza 20, Bosisio Parini (LC), 23842, Lecco, Italy
- University of Milano-Bicocca, Milan, Italy
| | - Maddalena Mauri
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, Via Don Luigi Monza 20, Bosisio Parini (LC), 23842, Lecco, Italy
| | - Massimo Molteni
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, Via Don Luigi Monza 20, Bosisio Parini (LC), 23842, Lecco, Italy
| | - Luisa Morello
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, Via Don Luigi Monza 20, Bosisio Parini (LC), 23842, Lecco, Italy
- Sigmund Freud University, Sigmund Freud University of Milan, 20143, Milan, Italy
| | - Luca Tosti
- Pharmacovigilance & Clinical Research Unit and International Centre for Pesticides & Health Risk Prevention, Department of Biomedical and Clinical Sciences, "Luigi Sacco" University Hospital, Università degli Studi di Milano, Milan, Italy
| | - Francesca Metruccio
- Pharmacovigilance & Clinical Research Unit and International Centre for Pesticides & Health Risk Prevention, Department of Biomedical and Clinical Sciences, "Luigi Sacco" University Hospital, Università degli Studi di Milano, Milan, Italy
| | - Emilio Clementi
- Scientific Institute IRCCS E. Medea, Bosisio Parini, Lecco, Italy
- Pharmacovigilance & Clinical Research Unit and International Centre for Pesticides & Health Risk Prevention, Department of Biomedical and Clinical Sciences, "Luigi Sacco" University Hospital, Università degli Studi di Milano, Milan, Italy
| | - Maria Nobile
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, Via Don Luigi Monza 20, Bosisio Parini (LC), 23842, Lecco, Italy
| |
Collapse
|
21
|
Tokuda N, Ishikawa R, Yoda Y, Araki S, Shimadera H, Shima M. Association of air pollution exposure during pregnancy and early childhood with children's cognitive performance and behavior at age six. ENVIRONMENTAL RESEARCH 2023; 236:116733. [PMID: 37507042 DOI: 10.1016/j.envres.2023.116733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/21/2023] [Accepted: 07/23/2023] [Indexed: 07/30/2023]
Abstract
BACKGROUND The impact of air pollution on neurodevelopment in children has attracted much attention in recent times. We aim to clarify the association between prenatal and postnatal air pollutant exposure and children's cognitive performance and behavior at age six. METHODS This study was conducted based on a birth cohort study in Japan. Children's intelligence quotient (IQ) was assessed using the Wechsler Intelligence Scale for Children and a score <85 was deemed as low intelligence. A score ≥60 on the Child Behavior Checklist indicated behavioral problems. Exposure to outdoor fine particulate matter (PM2.5) during pregnancy and early childhood was estimated using a spatiotemporal model, while indoor concentrations of air pollutants inside subjects' homes were measured for a week when the child was of ages 1.5 and 3. The associations of exposure to air pollution during pregnancy and after childbirth with cognitive performance and behavior were analyzed using logistic regression models. RESULTS The estimated exposure to outdoor PM2.5 during pregnancy and early childhood was not associated with decreased cognitive performance. However, exposure during the first trimester, 0-1 and 3-5 years of age was associated with children's externalizing problems (odds ratios (ORs) were 2.77 [95% confidence interval (CI): 1.05-7.29], 1.66 [95%CI: 1.05-2.62], and 1.80 [95%CI: 1.19-2.74] per interquartile range (IQR) increase, respectively). Exposure to indoor PM2.5 and coarse particles after childbirth was associated with lower full scale IQ (ORs were 1.46 [95%CI: 1.03-2.08] and 1.85 [95%CI: 1.12-3.07] per IQR increase, respectively). However, some inverse associations were also observed. CONCLUSIONS These results suggest associations between prenatal and postnatal exposure to outdoor air pollution and behavioral problems, and between indoor air pollution after childbirth and cognitive performance at age six. However, the effects of exposure to outdoor PM2.5 during pregnancy on cognitive performance were not observed.
Collapse
Affiliation(s)
- Narumi Tokuda
- Department of Public Health, School of Medicine, Hyogo Medical University, Nishinomiya, 663-8501, Japan; Hyogo Regional Center for the Japan Environment and Children's Study, Hyogo Medical University, Nishinomiya, 663-8501, Japan
| | - Rina Ishikawa
- Hyogo Regional Center for the Japan Environment and Children's Study, Hyogo Medical University, Nishinomiya, 663-8501, Japan
| | - Yoshiko Yoda
- Department of Public Health, School of Medicine, Hyogo Medical University, Nishinomiya, 663-8501, Japan
| | - Shin Araki
- Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
| | - Hikari Shimadera
- Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
| | - Masayuki Shima
- Department of Public Health, School of Medicine, Hyogo Medical University, Nishinomiya, 663-8501, Japan; Hyogo Regional Center for the Japan Environment and Children's Study, Hyogo Medical University, Nishinomiya, 663-8501, Japan.
| |
Collapse
|
22
|
Ibarluzea J, Subiza-Pérez M, Arregi A, Molinuevo A, Arranz-Freijo E, Sánchez-de Miguel M, Jiménez A, Andiarena A, Santa-Marina L, Lertxundi A. Association of maternal prenatal urinary fluoride levels with ADHD symptoms in childhood. ENVIRONMENTAL RESEARCH 2023; 235:116705. [PMID: 37479215 DOI: 10.1016/j.envres.2023.116705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/17/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023]
Abstract
BACKGROUND Health concerns about the potential impact of exposure to fluoride via drinking water (DW) on neuropsychological development include behavioral outcomes such as ADHD. OBJECTIVE We aimed to examine the association between prenatal maternal urinary fluoride and symptoms associated with attention-deficit/hyperactivity disorder (ADHD) at the age of 8 and 11 years. METHOD Data from 255 to 236 mother-child pairs from the "Infancia y Medio Ambiente" (INMA) birth cohort (Gipuzkoa; Spain) with maternal urinary F adjusted for creatinine (MUFcr) during pregnancy (first and third trimester) and child assessments of ADHD-like symptoms reported by Conners' Rating Scales-Revised at age of 8 and 11 years was available. Clinical approach was also used: cut off criteria (T > 66). Multiple linear regression models were fitted when outcomes were analyzed as continuous, and logistic regression models when the outcomes were analyzed with a categorical clinical approach. Covariates related to maternal characteristics, birth outcomes, childhood, quality of family context and biomarkers of neuro-toxicants were used. RESULTS No association was found between MUFcr levels during pregnancy and cognitive problems-inattention, hyperactivity or ADHD index score of symptoms at 8 or 11 years. When results were analyzed from the perspective of a clinical approach, at the age of 11 years, there were significant inverse association between MUFcr and being categorized as a cognitive problems-inattention case. ORs were also indicative of a lower risk, although not significant, for ADHD index at age 11. Sensitivity analyses, taking into consideration quality of family context or the levels of other toxicants during pregnancy showed similar results. CONCLUSIONS Higher levels of MUFcr in pregnant women were associated with a lower risk of cognitive problems-inattention at 11 years. These findings are inconsistent with those from previous studies and indicate the need for other population-based studies to confirm or overturn these results.
Collapse
Affiliation(s)
- Jesús Ibarluzea
- Ministry of Health of the Basque Government, Sub-Directorate for Public Health and Addictions of Gipuzkoa, 20013, San Sebastián, Spain; Faculty of Psychology of the University of the Basque Country (UPV-EHU), 20018, San Sebastian, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029, Madrid, Spain; Biodonostia Health Research Institute, Environmental Epidemiology and Child Development Group, 20014, San Sebastian, Spain
| | - Mikel Subiza-Pérez
- Faculty of Psychology of the University of the Basque Country (UPV-EHU), 20018, San Sebastian, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029, Madrid, Spain; Biodonostia Health Research Institute, Environmental Epidemiology and Child Development Group, 20014, San Sebastian, Spain; Bradford Institute for Health Research, Temple Bank House, Bradford Royal Infirmary, BD9 6RJ, Bradford, United Kingdom
| | - Ane Arregi
- Faculty of Psychology of the University of the Basque Country (UPV-EHU), 20018, San Sebastian, Spain; Biodonostia Health Research Institute, Environmental Epidemiology and Child Development Group, 20014, San Sebastian, Spain.
| | - Amaia Molinuevo
- Biodonostia Health Research Institute, Environmental Epidemiology and Child Development Group, 20014, San Sebastian, Spain
| | - Enrique Arranz-Freijo
- Faculty of Psychology of the University of the Basque Country (UPV-EHU), 20018, San Sebastian, Spain; Biodonostia Health Research Institute, Environmental Epidemiology and Child Development Group, 20014, San Sebastian, Spain
| | - Manuel Sánchez-de Miguel
- Faculty of Psychology of the University of the Basque Country (UPV-EHU), 20018, San Sebastian, Spain; Biodonostia Health Research Institute, Environmental Epidemiology and Child Development Group, 20014, San Sebastian, Spain
| | - Ana Jiménez
- Ministry of Health of the Basque Government, Sub-Directorate for Public Health and Addictions of Gipuzkoa, 20013, San Sebastián, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029, Madrid, Spain; Biodonostia Health Research Institute, Environmental Epidemiology and Child Development Group, 20014, San Sebastian, Spain
| | - Ainara Andiarena
- Faculty of Psychology of the University of the Basque Country (UPV-EHU), 20018, San Sebastian, Spain; Biodonostia Health Research Institute, Environmental Epidemiology and Child Development Group, 20014, San Sebastian, Spain
| | - Loreto Santa-Marina
- Ministry of Health of the Basque Government, Sub-Directorate for Public Health and Addictions of Gipuzkoa, 20013, San Sebastián, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029, Madrid, Spain; Biodonostia Health Research Institute, Environmental Epidemiology and Child Development Group, 20014, San Sebastian, Spain
| | - Aitana Lertxundi
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029, Madrid, Spain; Biodonostia Health Research Institute, Environmental Epidemiology and Child Development Group, 20014, San Sebastian, Spain; Faculty of Medicine and Nursery of the University of the Basque Country (UPV/EHU), 48940, Leioa, Spain
| |
Collapse
|
23
|
Trombley J. Fine particulate matter exposure and pediatric mental health outcomes: An integrative review. J Nurs Scholarsh 2023; 55:977-1007. [PMID: 36941765 DOI: 10.1111/jnu.12888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 02/13/2023] [Accepted: 02/28/2023] [Indexed: 03/23/2023]
Abstract
INTRODUCTION Climate change is expected to worsen air pollution globally, which contributes to a multitude of negative health outcomes in humans. AIM The purpose of this integrative review is to examine the relationship between exposure to fine particulate matter (PM2.5 ) and mental health outcomes in children and adolescents. METHODS This review utilized Whittemore and Knafl's methodology for conducting an integrative review. After a thorough search of the literature, 17 articles were selected for this review and evaluated utilizing the Johns Hopkins Evidence Based Practice Appraisal Tool. RESULTS Of the 17 articles, all were quantitative observational study designs. The studies were then synthesized into four outcome themes. These themes included emergent and general psychiatric outcomes, neurodevelopmental disorders, stress and anxiety, and depression. DISCUSSION The strongest evidence supports a possible correlation between PM2.5 exposure and adolescent mental health outcomes, although there were some studies that contradicted these associations. While research on this topic is in its early stages, more needs to be conducted to determine causality with any of the associations presented to improve generalizability of the findings. IMPLICATIONS FOR PRACTICE Nurses must be aware of and part of the solution to address climate change and resulting air pollution, as it is a potentially significant threat to children's mental health in the 21st century.
Collapse
Affiliation(s)
- Janna Trombley
- University of Massachusetts Lowell, Lowell, Massachusetts, USA
| |
Collapse
|
24
|
Li Y, Xie T, Cardoso Melo RD, de Vries M, Lakerveld J, Zijlema W, Hartman CA. Longitudinal effects of environmental noise and air pollution exposure on autism spectrum disorder and attention-deficit/hyperactivity disorder during adolescence and early adulthood: The TRAILS study. ENVIRONMENTAL RESEARCH 2023; 227:115704. [PMID: 36940817 DOI: 10.1016/j.envres.2023.115704] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/02/2023] [Accepted: 03/15/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND Exposure to ambient noise and air pollution may affect the manifestation and severity of Autism Spectrum Disorder (ASD) and Attention-Deficit/Hyperactivity Disorder (ADHD). However, evidence is limited, and most studies solely assessed environmental exposures during pregnancy and early childhood. OBJECTIVE To examine the longitudinal effects of ambient noise and air pollutants on ASD and ADHD symptom severity during adolescence and early adulthood. METHODS Using a longitudinal design, we included 2750 children between 10 and 12 years old from the TRacking Adolescents' Individual Lives Survey (TRAILS) in the Netherlands, who were assessed in 6 waves from 2001 to 2017. ASD was measured by the Children's Social Behavior Questionnaire and the Adult Social Behavior Questionnaire. ADHD was measured by Child Behavior Checklist and the Adult Behavior Checklist. Ambient noise and air pollution exposures, including Ozone (O3), soot, sulfur dioxide (SO2), nitrogen dioxide (NO2), particulate matter 2.5 (PM2.5), and PM10 were modeled at the residential level according to standardized protocols. The longitudinal associations between exposures and symptom outcomes were examined using linear mixed models. RESULTS We found evidence that higher levels of exposure to PM were associated with more severe ASD and ADHD symptoms. This association decreased over time. We did not observe any other consistent associations of noise or other air pollutants with ASD and ADHD severity. CONCLUSION The current study provides evidence for the negative impact of PM on ASD and ADHD symptoms. We did not find evidence of the negative health impact of other air pollutants and noise exposures on ASD or ADHD symptoms. Our study adds more evidence on the presence of associations between PM air pollution and neurodevelopmental diseases among adolescents and young adults.
Collapse
Affiliation(s)
- Yiran Li
- University of Groningen, University Medical Center Groningen, Interdisciplinary Center Psychopathology and Emotion Regulation, Department of Psychiatry, Groningen, Netherlands.
| | - Tian Xie
- University of Groningen, University Medical Center Groningen, Interdisciplinary Center Psychopathology and Emotion Regulation, Department of Psychiatry, Groningen, Netherlands.
| | - Raniere Dener Cardoso Melo
- University of Groningen, University Medical Center Groningen, Interdisciplinary Center Psychopathology and Emotion Regulation, Department of Psychiatry, Groningen, Netherlands
| | - Maaike de Vries
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, Netherlands; University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
| | - Jeroen Lakerveld
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam, Netherlands
| | - Wilma Zijlema
- The Barcelona Institute for Global Health (ISGlobal), Doctor Aiguader 88, 08003, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Doctor Aiguader 88, 08003, Barcelona, Spain; CIBER Epidemiolo'gıa y Salud Pública (CIBERESP), Melchor Fernandez ' Almagro, 3-5, 28029, Madrid, Spain
| | - Catharina A Hartman
- University of Groningen, University Medical Center Groningen, Interdisciplinary Center Psychopathology and Emotion Regulation, Department of Psychiatry, Groningen, Netherlands
| |
Collapse
|
25
|
Kaur S, Morales-Hidalgo P, Arija V, Canals J. Prenatal Exposure to Air Pollutants and Attentional Deficit Hyperactivity Disorder Development in Children: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20085443. [PMID: 37107725 PMCID: PMC10138804 DOI: 10.3390/ijerph20085443] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/24/2023] [Accepted: 04/03/2023] [Indexed: 05/11/2023]
Abstract
Up to 9.5% of the world's population is diagnosed with attention deficit/hyperactivity disorder (ADHD), making it one of the most common childhood disorders. Air pollutants could be considered an environmental risk condition for ADHD, but few studies have specifically investigated the effect of prenatal exposure. The current paper reviews the studies conducted on the association between prenatal air pollutants (PM, NOx, SO2, O3, CO and PAH) and ADHD development in children. From the 890 studies searched through PubMed, Google Scholar, Scopus, and Web of Science, 15 cohort studies met the inclusion criteria. NOS and WHO guidelines were used for quality and risk of bias assessment. The accumulative sample was 589,400 of children aged 3-15 years. Most studies reported an association between ADHD symptoms and prenatal PAH and PM exposure. Data available on NO2 and SO2 were inconsistent, whereas the effect of CO/O3 is barely investigated. We observed heterogeneity through an odd ratio forest plot, and discrepancies in methodologies across the studies. Eight of the fifteen studies were judged to be of moderate risk of bias in the outcome measurement. In a nutshell, future studies should aim to minimize heterogeneity and reduce bias by ensuring a more representative sample, standardizing exposure and outcome assessments.
Collapse
Affiliation(s)
- Sharanpreet Kaur
- Nutrition and Mental Health (NUTRISAM) Research Group, Universitat Rovira i Virgili, 43201 Reus, Spain; (S.K.); (P.M.-H.); (V.A.)
- Research Center for Behavior Assessment (CRAMC), Department of Psychology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Paula Morales-Hidalgo
- Nutrition and Mental Health (NUTRISAM) Research Group, Universitat Rovira i Virgili, 43201 Reus, Spain; (S.K.); (P.M.-H.); (V.A.)
- Research Center for Behavior Assessment (CRAMC), Department of Psychology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
- Department of Psychology and Education Studies, Universitat Oberta de Catalunya (UOC), 08018 Barcelona, Spain
- University Research Institute on Sustainablility, Climate Change and Energy Transition (IU-RESCAT) Universitat Rovira i Virgili, 43003 Tarragona, Spain
| | - Victoria Arija
- Nutrition and Mental Health (NUTRISAM) Research Group, Universitat Rovira i Virgili, 43201 Reus, Spain; (S.K.); (P.M.-H.); (V.A.)
- University Research Institute on Sustainablility, Climate Change and Energy Transition (IU-RESCAT) Universitat Rovira i Virgili, 43003 Tarragona, Spain
- Department of Basic Medical Sciences, Universitat Rovira i Virgili, 43002 Reus, Spain
| | - Josefa Canals
- Nutrition and Mental Health (NUTRISAM) Research Group, Universitat Rovira i Virgili, 43201 Reus, Spain; (S.K.); (P.M.-H.); (V.A.)
- Research Center for Behavior Assessment (CRAMC), Department of Psychology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
- University Research Institute on Sustainablility, Climate Change and Energy Transition (IU-RESCAT) Universitat Rovira i Virgili, 43003 Tarragona, Spain
- Correspondence:
| |
Collapse
|
26
|
Choi YJ, Cho J, Hong YC, Lee DW, Moon S, Park SJ, Lee KS, Shin CH, Lee YA, Kim BN, Kaminsky Z, Kim JI, Lim YH. DNA methylation is associated with prenatal exposure to sulfur dioxide and childhood attention-deficit hyperactivity disorder symptoms. Sci Rep 2023; 13:3501. [PMID: 36859453 PMCID: PMC9977725 DOI: 10.1038/s41598-023-29843-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 02/10/2023] [Indexed: 03/03/2023] Open
Abstract
Epigenetic influence plays a role in the association between exposure to air pollution and attention deficit hyperactivity disorder (ADHD); however, research regarding sulfur dioxide (SO2) is scarce. Herein, we investigate the associations between prenatal SO2 exposure and ADHD rating scale (ARS) at ages 4, 6 and 8 years repeatedly in a mother-child cohort (n = 329). Whole blood samples were obtained at ages 2 and 6 years, and genome-wide DNA methylation (DNAm) was analyzed for 51 children using the Illumina Infinium HumanMethylation BeadChip. We analyzed the associations between prenatal SO2 exposure and DNAm levels at ages 2 and 6, and further investigated the association between the DNAm and ARS at ages 4, 6 and 8. Prenatal SO2 exposure was associated with ADHD symptoms. From candidate gene analysis, DNAm levels at the 6 CpGs at age 2 were associated with prenatal SO2 exposure levels. Of the 6 CpGs, cg07583420 (INS-IGF2) was persistently linked with ARS at ages 4, 6 and 8. Epigenome-wide analysis showed that DNAm at 6733 CpG sites were associated with prenatal SO2 exposure, of which 58 CpGs involved in Notch signalling pathway were further associated with ARS at age 4, 6 and 8 years, persistently. DNAm at age 6 was not associated with prenatal SO2 exposure. Changes in DNAm levels associated with prenatal SO2 exposure during early childhood are associated with increases in ARS in later childhood.
Collapse
Affiliation(s)
- Yoon-Jung Choi
- National Cancer Center Graduate School of Cancer Science and Policy, Goyang, Republic of Korea.,Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Environmental Health Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jinwoo Cho
- Department of Statistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yun-Chul Hong
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Environmental Health Center, Seoul National University College of Medicine, Seoul, Republic of Korea.,Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Dong-Wook Lee
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Environmental Health Center, Seoul National University College of Medicine, Seoul, Republic of Korea.,Public Healthcare Center, Seoul National University Hospital, Seoul, Republic of Korea
| | - Sungji Moon
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Soo Jin Park
- Department of Surgery, Wonkwang University Sanbon Hospital, Gunpo, Republic of Korea
| | - Kyung-Shin Lee
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Environmental Health Center, Seoul National University College of Medicine, Seoul, Republic of Korea.,Public Health Research Institute, National Medical Center, Seoul, Republic of Korea
| | - Choong Ho Shin
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Young Ah Lee
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Bung-Nyun Kim
- Division of Children and Adolescent Psychiatry, Department of Psychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Zachary Kaminsky
- Institute of Mental Health Research, University of Ottawa, Ottawa, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada.,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Johanna Inhyang Kim
- Department of Psychiatry, Hanyang University Medical Center, 222-1 Wangsimni-Ro, Seongdong-Gu, Seoul, 04763, Republic of Korea.
| | - Youn-Hee Lim
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea. .,Section of Environmental Epidemiology, Department of Public Health, University of Copenhagen, Østerster Farimagsgade 5, 1014, København K, Copenhagen, Denmark.
| |
Collapse
|
27
|
Wylie AC, Short SJ. Environmental Toxicants and the Developing Brain. Biol Psychiatry 2023; 93:921-933. [PMID: 36906498 DOI: 10.1016/j.biopsych.2023.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
Early life represents the most rapid and foundational period of brain development and a time of vulnerability to environmental insults. Evidence indicates that greater exposure to ubiquitous toxicants like fine particulate matter (PM2.5), manganese, and many phthalates is associated with altered developmental, physical health, and mental health trajectories across the lifespan. Whereas animal models offer evidence of their mechanistic effects on neurological development, there is little research that evaluates how these environmental toxicants are associated with human neurodevelopment using neuroimaging measures in infant and pediatric populations. This review provides an overview of 3 environmental toxicants of interest in neurodevelopment that are prevalent worldwide in the air, soil, food, water, and/or products of everyday life: fine particulate matter (PM2.5), manganese, and phthalates. We summarize mechanistic evidence from animal models for their roles in neurodevelopment, highlight prior research that has examined these toxicants with pediatric developmental and psychiatric outcomes, and provide a narrative review of the limited number of studies that have examined these toxicants using neuroimaging with pediatric populations. We conclude with a discussion of suggested directions that will move this field forward, including the incorporation of environmental toxicant assessment in large, longitudinal, multimodal neuroimaging studies; the use of multidimensional data analysis strategies; and the importance of studying the combined effects of environmental and psychosocial stressors and buffers on neurodevelopment. Collectively, these strategies will improve ecological validity and our understanding of how environmental toxicants affect long-term sequelae via alterations to brain structure and function.
Collapse
Affiliation(s)
- Amanda C Wylie
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Frank Porter Graham Child Development Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Sarah J Short
- Department of Educational Psychology, University of Wisconsin-Madison, Madison, Wisconsin; Center for Health Minds, University of Wisconsin-Madison, Madison, Wisconsin.
| |
Collapse
|
28
|
Zhou P, Zhang W, Xu YJ, Liu RQ, Qian Z, McMillin SE, Bingheim E, Lin LZ, Zeng XW, Yang BY, Hu LW, Chen W, Chen G, Yu Y, Dong GH. Association between long-term ambient ozone exposure and attention-deficit/hyperactivity disorder symptoms among Chinese children. ENVIRONMENTAL RESEARCH 2023; 216:114602. [PMID: 36265606 DOI: 10.1016/j.envres.2022.114602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/05/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Although ozone exposure has neurological toxicity, it remains unclear whether it was associated with an increased risk of attention-deficit/hyperactivity disorders (ADHD) among childhood. METHODS We matched the four-year average ozone concentration with questionnaire data for 35,103 children aged 3-12 years from seven cities in Liaoning, China, 2012-2013. Using mixed-effect logistic regression models, we assessed the association of ozone concentration with multiple ADHD indicators using the Conners Abbreviated Symptom Questionnaire (C-ASQ), including explicit attention-deficit/hyperactivity symptoms (ADHD; score ≥15), attention-deficit/hyperactivity disorder tendencies (ADHD-T; 11 ≤ score ≤14), and attention-deficit/hyperactivity problems (ADHP; score ≥11). Results were also stratified by sociodemongraphics. RESULTS After adjusting for covariates, we found that each interquartile range (IQR) increase in ozone concentration was associated with an increased risk of ADHD, ADHD-T, and ADHP (P < 0.001) with an odds ratio of 1.12 (95% confidence interval, 1.04-1.21), 1.08 (1.03-1.13), and 1.09 (1.05-1.14), respectively. Additionally, we found greater effect estimates in children who reported longer exercise time (vs those with limited exercise time) with odds ratio of 1.18 (1.07-1.31) vs 1.06 (0.96-1.17) for ADHD, 1.13 (1.06-1.21) vs 1.03 (0.96-1.10) for ADHD-T, and 1.15 (1.08-1.21) vs 1.04 (0.98-1.10) for ADHP. Non-breastfed children were also shown to be more vulnerable to ADHD with an odds ratio of 1.22 (1.09-1.36) compared with 1.06 (0.96-1.16) among the rest. CONCLUSIONS Long-term ozone exposure may be associated with increased ADHD among children. Additional studies are needed to validate our findings and support policies and interventions to address this growing public health concern.
Collapse
Affiliation(s)
- Peien Zhou
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment; Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Wangjian Zhang
- Department of Biostatistics, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yu-Jie Xu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment; Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Ru-Qing Liu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment; Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Zhengmin Qian
- Department of Epidemiology and Biostatistics, College for Public Health & Social Justice, Saint Louis University, Saint Louis, MO 63104, USA
| | | | - Elizabeth Bingheim
- Department of Epidemiology and Biostatistics, College for Public Health & Social Justice, Saint Louis University, Saint Louis, MO 63104, USA
| | - Li-Zi Lin
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment; Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xiao-Wen Zeng
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment; Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Bo-Yi Yang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment; Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Li-Wen Hu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment; Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Wen Chen
- Department of Toxicology, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Gongbo Chen
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment; Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, 510655, China.
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment; Department of Occupational and Environmental Health, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
29
|
Ling-Fei K, Xiao-Juan R, Pan Y, Tuo Q, Xiao-Hui Z, Yu-Tong K, Bo C, Wen-Ling S, Tian-Le G, Cai T. The influence of Hyssopus cuspidatus Boriss extract on lipid mediators metabolism network in asthmatic mice. Front Pharmacol 2023; 14:1066643. [PMID: 36937885 PMCID: PMC10017864 DOI: 10.3389/fphar.2023.1066643] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Current drugs do not provide an absolute cure or modify the course of asthma. Hyssopus cuspidatus Boriss extract (SXCF) has been used as Uyghur medicine for several years to treat bronchial asthma. However, very limited research has been conducted on the therapeutic mechanisms of SXCF. Disruptions in the metabolic network of lipid mediators (LMs) are closely linked to the development of asthma. Here, we explored the therapeutic mechanism of SXCF in asthma based on the metabolic network of LMs, aiming to contribute to the understanding of SXCF in asthma treatment at the molecular level. The UHPLC-MRM strategy was used for the quantitative detection of LMs in the lung tissue and in the peripheral circulatory system (serum). ELISA was used to detect IgE in serum and cytokines in BALF. The lung tissue sections were stained with H&E to observe the infiltration of inflammatory cells, and behavioural changes in mice were observed and recorded throughout the animal experiment. In contrast to the asthma group, the opposite result was observed in the SXCF groups, where the perturbed LMs metabolic network was partly restored in a dose-dependent manner with a significant elevation of anti-inflammatory metabolites, while pro-inflammatory lipids were decreased. As significant downregulation of IgE and pro-inflammatory cytokines was observed, IgE and cytokines analysis also supported the anti-inflammatory effects of SXCF. It was also noticed that SXCF treatment reduced the number of coughs and decreased the inflammatory cell infiltration around the bronchus in mice. These results suggested that SXCF has a significant ameliorative effect on ovalbumin (OVA)-induced asthma. The modulation of LMs is a possible underlying mechanism of the SXCF effects.
Collapse
Affiliation(s)
- Kong Ling-Fei
- State key laboratory Coal resources and Safe Mining, China University of Mining and Technology-Beijing, Beijing, China
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing, China
| | - Rong Xiao-Juan
- Xinjiang Institute of Material Medica, Urumqi, China
- *Correspondence: Rong Xiao-Juan, ; Tie Cai,
| | - Yan Pan
- State key laboratory Coal resources and Safe Mining, China University of Mining and Technology-Beijing, Beijing, China
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing, China
| | - Qin Tuo
- State key laboratory Coal resources and Safe Mining, China University of Mining and Technology-Beijing, Beijing, China
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing, China
| | - Zhang Xiao-Hui
- State Key laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Kang Yu-Tong
- Xinjiang Institute of Material Medica, Urumqi, China
| | - Cheng Bo
- Xinjiang Institute of Material Medica, Urumqi, China
| | - Su Wen-Ling
- Xinjiang Institute of Material Medica, Urumqi, China
| | - Gao Tian-Le
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tie Cai
- State key laboratory Coal resources and Safe Mining, China University of Mining and Technology-Beijing, Beijing, China
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing, China
- *Correspondence: Rong Xiao-Juan, ; Tie Cai,
| |
Collapse
|
30
|
Shang M, Tang M, Xue Y. Neurodevelopmental toxicity induced by airborne particulate matter. J Appl Toxicol 2023; 43:167-185. [PMID: 35995895 DOI: 10.1002/jat.4382] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 11/08/2022]
Abstract
Airborne particulate matter (PM), the primary component associated with health risks in air pollution, can negatively impact human health. Studies have shown that PM can enter the brain by inhalation, but data on the exact quantity of particles that reach the brain are unknown. Particulate matter exposure can result in neurotoxicity. Exposure to PM poses a greater health risk to infants and children because their nervous systems are not fully developed. This review paper highlights the association between PM and neurodevelopmental toxicity (NDT). Exposure to PM can induce oxidative stress and inflammation, potentially resulting in blood-brain barrier damage and increased susceptibility to development of neurodevelopmental disorders (NDD), such as autism spectrum disorders and attention deficit disorders. In addition, human and animal exposure to PM can induce microglia activation and epigenetic alterations and alter the neurotransmitter levels, which may increase risks for development of NDD. However, the systematic comparisons of the effects of PM on NDD at different ages of exposure are deficient. The elucidation of PM exposure risks and NDT in children during the early developmental stages are of great importance. The synthesis of current research may help to identify markers and mechanisms of PM-induced neurodevelopmental toxicity, allowing for the development of strategies to prevent permanent damage of developing brain.
Collapse
Affiliation(s)
- Mengting Shang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Yuying Xue
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
31
|
Fan HC, Chen CM, Tsai JD, Chiang KL, Tsai SCS, Huang CY, Lin CL, Hsu CY, Chang KH. Association between Exposure to Particulate Matter Air Pollution during Early Childhood and Risk of Attention-Deficit/Hyperactivity Disorder in Taiwan. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192316138. [PMID: 36498210 PMCID: PMC9740780 DOI: 10.3390/ijerph192316138] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 05/23/2023]
Abstract
(1) Background: Recently, a growing number of studies have provided evidence to suggest a strong correlation between air pollution exposure and attention-deficit/hyperactivity disorder (ADHD). In this study, we assessed the relationship between early-life exposure to particulate matter (PM)10, PM2.5, and ADHD; (2) Methods: The National Health Insurance Research Database (NHIRD) contains the medical records, drug information, inspection data, etc., of the people of Taiwan, and, thus, could serve as an important research resource. Air pollution data were based on daily data from the Environmental Protection Administration Executive Yuan, R.O.C. (Taiwan). These included particulate matter (PM2.5 and PM10). The two databases were merged according to the living area of the insured and the location of the air quality monitoring station; (3) Results: The highest levels of air pollutants, including PM2.5 (adjusted hazard ratio (aHR) = 1.79; 95% confidence interval (CI) = 1.58-2.02) and PM10 (aHR = 1.53; 95% CI = 1.37-1.70), had a significantly higher risk of ADHD; (4) Conclusions: As such, measures for air quality control that meet the WHO air quality guidelines should be strictly and uniformly implemented by Taiwanese government authorities.
Collapse
Affiliation(s)
- Hueng-Chuen Fan
- Department of Pediatrics, Tungs’ Taichung Metroharbor Hospital, Wuchi, Taichung 435, Taiwan
- Department of Rehabilitation, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli 356, Taiwan
- Department of Life Sciences, Agricultural Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| | - Chuan-Mu Chen
- The iEGG and Animal Biotechnology Center, and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Ph.D. Program in Translational Medicine, Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
- Rong Hsing Research Center for Translational Medicine, College of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| | - Jeng-Dau Tsai
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Kuo-Liang Chiang
- Department of Pediatric Neurology, Kuang-Tien General Hospital, Taichung 433, Taiwan
- Department of Nutrition, Hungkuang University, Taichung 433, Taiwan
| | - Stella Chin-Shaw Tsai
- Ph.D. Program in Translational Medicine, Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
- Rong Hsing Research Center for Translational Medicine, College of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
- Department of Otolaryngology, Tungs’ Taichung MetroHarbor Hospital, Taichung 435, Taiwan
| | - Ching-Ying Huang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
| | - Cheng-Li Lin
- Management Office for Health Data, China Medical University Hospital, Taichung 404, Taiwan
| | - Chung Y. Hsu
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung 404, Taiwan
| | - Kuang-Hsi Chang
- Ph.D. Program in Translational Medicine, Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
- Department of Medical Research, Tungs’ Taichung MetroHarbor Hospital, Taichung 435, Taiwan
- Center for General Education, China Medical University, Taichung 404, Taiwan
- General Education Center, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli 356, Taiwan
| |
Collapse
|
32
|
Wodtke GT, Ard K, Bullock C, White K, Priem B. Concentrated poverty, ambient air pollution, and child cognitive development. SCIENCE ADVANCES 2022; 8:eadd0285. [PMID: 36449613 PMCID: PMC9710878 DOI: 10.1126/sciadv.add0285] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 10/14/2022] [Indexed: 06/14/2023]
Abstract
Why does growing up in a poor neighborhood impede cognitive development? Although a large volume of evidence indicates that neighborhood poverty negatively affects child outcomes, little is known about the mechanisms that might explain these effects. In this study, we outline and test a theoretical model of neighborhood effects on cognitive development that highlights the mediating role of early life exposure to neurotoxic air pollution. To evaluate this model, we analyze data from a national sample of American infants matched with information on their exposure to more than 50 different pollutants known or suspected to harm the central nervous system. Integrating methods of causal inference with supervised machine learning, we find that living in a high-poverty neighborhood increases exposure to many different air toxics during infancy, that it reduces cognitive abilities measured later at age 4 by about one-tenth of a standard deviation, and that about one-third of this effect can be attributed to disparities in air quality.
Collapse
Affiliation(s)
- Geoffrey T. Wodtke
- Department of Sociology, University of Chicago, Social Science Research Building, 1126 E. 59th Street, Chicago, IL 60637, USA
| | - Kerry Ard
- School of Environment and Natural Resources, The Ohio State University, Kottman Hall, 2021 Coffey Road, Columbus, OH 43210, USA
| | - Clair Bullock
- School of Environment and Natural Resources, The Ohio State University, Kottman Hall, 2021 Coffey Road, Columbus, OH 43210, USA
| | - Kailey White
- Department of Sociology, University of Chicago, Social Science Research Building, 1126 E. 59th Street, Chicago, IL 60637, USA
| | - Betsy Priem
- Department of Sociology, University of Chicago, Social Science Research Building, 1126 E. 59th Street, Chicago, IL 60637, USA
| |
Collapse
|
33
|
Shim JI, Byun G, Lee JT. Exposure to Particulate Matter as a Potential Risk Factor for Attention-Deficit/Hyperactivity Disorder in Korean Children and Adolescents (KNHANES 2008-2018). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13966. [PMID: 36360844 PMCID: PMC9656513 DOI: 10.3390/ijerph192113966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Many epidemiological studies have suggested that air pollution adversely affects neurodevelopment in children; however, evidence is still lacking. This study aimed to determine the association between particulate matter (PM) exposure and attention-deficit/hyperactivity disorder (ADHD) in children and adolescents. Data were obtained from the Korean National Health and Nutrition Examination Survey 2008-2018. Outcomes were defined from parental reports of ever doctor-diagnosed ADHD, and ADHD cases were matched to non-cases with 1:10 age-sex matching. Individual exposure levels were assigned according to each study participant's administrative address during the year of diagnosis. Multivariate logistic regression models were used to estimate odds ratios (ORs) and 95% confidence intervals (CIs). After age-sex matching at a 1:10 ratio, the final study participants comprised 1,120 children aged 6-19 years old. A unit increase in the PM10 concentration was significantly associated with ADHD (OR, 1.44; 95% CI, 1.02-2.02 per 10 µg/m3). The association with ADHD was stronger at higher quartiles than in the lower quartiles of PM10 exposure; however, it was not statistically significant. Our results suggested that long-term PM10 exposure was associated with increased ADHD in children and adolescents. Children diagnosed with ADHD suffer from a variety of social activity and have a significant economic burden. Therefore, it is considered an important role to find out the effects of environmental risk factors, including air pollution, on children and adolescents. This may also help to increase the body of knowledge in this field and to stimulate further research.
Collapse
Affiliation(s)
- Jung-Im Shim
- Department of Public Health Science, Graduate School, Korea University, Seoul 02841, Korea
- Division of Healthcare Technology Assessment Research, National Evidence-Based Healthcare Collaborating Agency, Seoul 04933, Korea
| | - Garam Byun
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, Korea
| | - Jong-Tae Lee
- Department of Public Health Science, Graduate School, Korea University, Seoul 02841, Korea
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, Korea
| |
Collapse
|
34
|
Hawkey AB, Piatos P, Holloway Z, Boyda J, Koburov R, Fleming E, Di Giulio RT, Levin ED. Embryonic exposure to benzo[a]pyrene causes age-dependent behavioral alterations and long-term metabolic dysfunction in zebrafish. Neurotoxicol Teratol 2022; 93:107121. [PMID: 36089172 PMCID: PMC9679953 DOI: 10.1016/j.ntt.2022.107121] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 01/21/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAH) are products of incomplete combustion which are ubiquitous pollutants and constituents of harmful mixtures such as tobacco smoke, petroleum and creosote. Animal studies have shown that these compounds exert developmental toxicity in multiple organ systems, including the nervous system. The relative persistence of or recovery from these effects across the lifespan remain poorly characterized. These studies tested for persistence of neurobehavioral effects in AB* zebrafish exposed 5-120 h post-fertilization to a typical PAH, benzo[a]pyrene (BAP). Study 1 evaluated the neurobehavioral effects of a wide concentration range of BAP (0.02-10 μM) exposures from 5 to 120 hpf during larval (6 days) and adult (6 months) stages of development, while study 2 evaluated neurobehavioral effects of BAP (0.3-3 μM) from 5 to 120 hpf across four stages of development: larval (6 days), adolescence (2.5 months), adulthood (8 months) and late adulthood (14 months). Embryonic BAP exposure caused minimal effects on larval motility, but did cause neurobehavioral changes at later points in life. Embryonic BAP exposure led to nonmonotonic effects on adolescent activity (0.3 μM hyperactive, Study 2), which attenuated with age, as well as startle responses (0.2 μM enhanced, Study 1) at 6 months of age. Similar startle changes were also detected in Study 2 (1.0 μM), though it was observed that the phenotype shifted from reduced pretap activity to enhanced posttap activity from 8 to 14 months of age. Changes in the avoidance (0.02-10 μM, Study 1) and approach (reduced, 0.3 μM, Study 2) of aversive/social cues were also detected, with the latter attenuating from 8 to 14 months of age. Fish from study 2 were maintained into aging (18 months) and evaluated for overall and tissue-specific oxygen consumption to determine whether metabolic processes in the brain and other target organs show altered function in late life based on embryonic PAH toxicity. BAP reduced whole animal oxygen consumption, and overall reductions in total basal, mitochondrial basal, and mitochondrial maximum respiration in target organs, including the brain, liver and heart. The present data show that embryonic BAP exposure can lead to neurobehavioral impairment across the life-span, but that these long-term risks differentially emerge or attenuate as development progresses.
Collapse
Affiliation(s)
- Andrew B Hawkey
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Perry Piatos
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Zade Holloway
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Jonna Boyda
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Reese Koburov
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Elizabeth Fleming
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | | | - Edward D Levin
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA; Nicholas School of the Environment, Duke University, Durham, NC, USA.
| |
Collapse
|
35
|
Castagna A, Mascheroni E, Fustinoni S, Montirosso R. Air pollution and neurodevelopmental skills in preschool- and school-aged children: A systematic review. Neurosci Biobehav Rev 2022; 136:104623. [PMID: 35331818 DOI: 10.1016/j.neubiorev.2022.104623] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/18/2022] [Accepted: 03/12/2022] [Indexed: 12/12/2022]
Abstract
Early life exposure to air pollution has been associated with neurodevelopmental disorders. Emerging evidence are highlighting a possible impact of air pollution on typically developing children. Thirty papers were included in this review to systematically evaluate the association between air pollutants exposure in prenatal and/or postnatal periods and specific neurodevelopmental skills (i.e. intellective functioning, memory and learning, attention and executive functions, verbal language, numeric ability and motor and/or sensorimotor functions) in preschool- and school-age children. Detrimental effects of air pollutants on children's neurodevelopmental skills were observed, although they do not show clinically relevant performance deficits. The most affected domains were global intellective functioning and attention/executive functions. The pollutants that seem to represent the greatest risk are PM2.5, NO₂ and PAHs. Prenatal exposure is primarily associated with child neurodevelopment at pre-school and school ages. Early exposure to air pollutants is related to adverse neurodevelopmental outcomes in the general population of children. Further research is needed to support stronger conclusions.
Collapse
Affiliation(s)
- Annalisa Castagna
- 0-3 Center for the at-Risk Infant, Scientific Institute IRCCS "Eugenio Medea", Bosisio Parini, Lecco, Italy
| | - Eleonora Mascheroni
- 0-3 Center for the at-Risk Infant, Scientific Institute IRCCS "Eugenio Medea", Bosisio Parini, Lecco, Italy
| | - Silvia Fustinoni
- EPIGET - Epidemiology, Epigenetics, and Toxicology Lab, Department of Clinical Sciences and Com-munity Health, Università degli Studi di Milano, Milano, Italy; Environmental and Industrial Toxicology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Rosario Montirosso
- 0-3 Center for the at-Risk Infant, Scientific Institute IRCCS "Eugenio Medea", Bosisio Parini, Lecco, Italy.
| |
Collapse
|
36
|
Han J, Zhang S, Jiang B, Wang J, Ge X, Wu B, Zhang S, Wang D. Sesquiterpene lactones from Xanthium sibiricum Patrin alleviate asthma by modulating the Th1/Th2 balance in a murine model. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:154032. [PMID: 35263672 DOI: 10.1016/j.phymed.2022.154032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Asthma is a complex airway disease involving a variety of cells and cytokines. Xanthium sibiricum Patrin ex Widder (X. sibiricum) is a traditional Chinese medicine for various immune diseases, especially allergic rhinitis and asthma. Sesquiterpene lactones are the main bioactive and most abundant constituent, and are characteristic component of the plant. We explore whether sesquiterpene lactones from X. sibiricum (SL-XS) is the main active constitute for its anti-asthma activity. PURPOSE In the present study, SL-XS was isolated, the major compounds were isolated and identified in extract of SL-XS, and the anti-asthma activity of SL-XS was validated in vivo. METHODS SL-XS was isolated by a standard phytochemical method. The structures of major sesquiterpene lactones were identified by NMR and LC-MS spectra. The contents of major SL-XS were analyzed by HPLC. The anti-asthma effect of SL-XS was evaluated in a house dust mite (HDM)-induced mouse model. RESULTS The sesquiterpene lactones were isolated from X. sibiricum, and five major constituents i.e., 8‑epi-xanthatin-1β, 5β-epoxide (1), tomentosin (2), 8‑epi-xanthatin (3), 2‑epi-xanthumin (4) and sibiriolide B (5) were identified from SL-XS. Oral administration of SL-XS dose-dependently ameliorated airway inflammation and remodeling in HDM-challenged asthma mouse model. Furthermore, SL-XS treatment inhibited the upregulation of proinflammatory and Th2 cytokines, while reversed the downregulation of Th1 related cytokines. In addition, SL-XS regulated the balance between T-bet and GATA-3. Moreover, SL-XS inhibited the upregulation of JAK1, p-JAK1, JAK2, p-JAK2, JAK3, p-JAK3 and p-STAT6 in HDM-challenged mice. CONCLUSION The sesquiterpene lactones including five major constituents may be the main anti-asthma active constituent of X. sibiricum. SL-XS exerted its anti-asthma effect by modulating the Th1/Th2 balance via the JAK/STAT signaling pathway.
Collapse
Affiliation(s)
- Jing Han
- School of pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Siwang Zhang
- School of pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Baoping Jiang
- School of pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jingwen Wang
- Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Xiaojing Ge
- School of pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Bingrong Wu
- School of pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Sen Zhang
- School of pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Dongsheng Wang
- Department of orthopedics, Jinling Hospital, School of medicine, Nanjing University, Nanjing 210002, Jiangsu, China.
| |
Collapse
|
37
|
Moore S, Paalanen L, Melymuk L, Katsonouri A, Kolossa-Gehring M, Tolonen H. The Association between ADHD and Environmental Chemicals-A Scoping Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:2849. [PMID: 35270544 PMCID: PMC8910189 DOI: 10.3390/ijerph19052849] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/16/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023]
Abstract
The role of environmental chemicals in the etiology of attention deficit hyperactivity disorder (ADHD) has been of interest in recent research. This scoping review aims to summarize known or possible associations between ADHD and environmental exposures to substances selected as priority chemicals of the European Human Biomonitoring Initiative (HBM4EU). Literature searches were performed in PubMed to identify relevant publications. Only meta-analyses and review articles were included, as they provide more extensive evidence compared to individual studies. The collected evidence indicated that lead (Pb), phthalates and bisphenol A (BPA) are moderately to highly associated with ADHD. Limited evidence exists for an association between ADHD and polycyclic aromatic hydrocarbons (PAHs), flame retardants, mercury (Hg), and pesticides. The evidence of association between ADHD and cadmium (Cd) and per- and polyfluoroalkyl substances (PFASs) based on the identified reviews was low but justified further research. The methods of the individual studies included in the reviews and meta-analyses covered in the current paper varied considerably. Making precise conclusions in terms of the strength of evidence on association between certain chemicals and ADHD was not straightforward. More research is needed for stronger evidence of associations or the lack of an association between specific chemical exposures and ADHD.
Collapse
Affiliation(s)
- Sonja Moore
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare (THL), 00271 Helsinki, Finland; (S.M.); (H.T.)
- Institute of Public Health and Clinical Nutrition, Kuopio Campus, University of Eastern Finland (UEF), 70210 Kuopio, Finland
| | - Laura Paalanen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare (THL), 00271 Helsinki, Finland; (S.M.); (H.T.)
| | - Lisa Melymuk
- RECETOX, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic;
| | | | | | - Hanna Tolonen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare (THL), 00271 Helsinki, Finland; (S.M.); (H.T.)
| |
Collapse
|
38
|
Yuchi W, Brauer M, Czekajlo A, Davies HW, Davis Z, Guhn M, Jarvis I, Jerrett M, Nesbitt L, Oberlander TF, Sbihi H, Su J, van den Bosch M. Neighborhood environmental exposures and incidence of attention deficit/hyperactivity disorder: A population-based cohort study. ENVIRONMENT INTERNATIONAL 2022; 161:107120. [PMID: 35144157 DOI: 10.1016/j.envint.2022.107120] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 01/23/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Emerging studies have associated low greenspace and high air pollution exposure with risk of child attention deficit/hyperactivity disorder (ADHD). Population-based studies are limited, however, and joint effects are rarely evaluated. We investigated associations of ADHD incidence with greenspace, air pollution, and noise in a population-based birth cohort. METHODS We assembled a cohort from administrative data of births from 2000 to 2001 (N ∼ 37,000) in Metro Vancouver, Canada. ADHD was identified by hospital records, physician visits, and prescriptions. Cox proportional hazards models were applied to assess associations between environmental exposures and ADHD incidence adjusting for available covariates. Greenspace was estimated using vegetation percentage derived from linear spectral unmixing of Landsat imagery. Fine particulate matter (PM2.5) and nitrogen dioxide (NO2) were estimated using land use regression models; noise was estimated using a deterministic model. Exposure period was from birth until the age of three. Joint effects of greenspace and PM2.5 were analysed in two-exposure models and by categorizing values into quintiles. RESULTS During seven-year follow-up, 1217 ADHD cases were diagnosed. Greenspace was associated with lower incidence of ADHD (hazard ratio, HR: 0.90 [0.81-0.99] per interquartile range increment), while PM2.5 was associated with increased incidence (HR: 1.11 [1.06-1.17] per interquartile range increment). NO2 (HR: 1.01 [0.96, 1.07]) and noise (HR: 1.00 [0.95, 1.05]) were not associated with ADHD. There was a 50% decrease in the HR for ADHD in locations with the lowest PM2.5 and highest greenspace exposure, compared to a 62% increase in HR in locations with the highest PM2.5 and lowest greenspace exposure. Effects of PM2.5 were attenuated by greenspace in two-exposure models. CONCLUSIONS We found evidence suggesting environmental inequalities where children living in greener neighborhoods with low air pollution had substantially lower risk of ADHD compared to those with higher air pollution and lower greenspace exposure.
Collapse
Affiliation(s)
- Weiran Yuchi
- School of Population and Public Health, Faculty of Medicine, The University of British Columbia, 2206 East Mall, Vancouver, British Columbia, Canada
| | - Michael Brauer
- School of Population and Public Health, Faculty of Medicine, The University of British Columbia, 2206 East Mall, Vancouver, British Columbia, Canada
| | - Agatha Czekajlo
- Department of Forest Resource Management, Faculty of Forestry, The University of British Columbia, 2424 Main Mall, Vancouver, Canada
| | - Hugh W Davies
- School of Population and Public Health, Faculty of Medicine, The University of British Columbia, 2206 East Mall, Vancouver, British Columbia, Canada
| | - Zoë Davis
- Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, 2424 Main Mall, Vancouver, Canada
| | - Martin Guhn
- School of Population and Public Health, Faculty of Medicine, The University of British Columbia, 2206 East Mall, Vancouver, British Columbia, Canada
| | - Ingrid Jarvis
- Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, 2424 Main Mall, Vancouver, Canada
| | - Michael Jerrett
- Fielding School of Public Health, University of California at Los Angeles, 650 Charles E. Young Drive South, Los Angeles, CA, the United States
| | - Lorien Nesbitt
- Department of Forest Resource Management, Faculty of Forestry, The University of British Columbia, 2424 Main Mall, Vancouver, Canada
| | - Tim F Oberlander
- School of Population and Public Health, Faculty of Medicine, The University of British Columbia, 2206 East Mall, Vancouver, British Columbia, Canada; Department of Pediatrics, The University of British Columbia, 4480 Oak St. Vancouver, Canada
| | - Hind Sbihi
- School of Population and Public Health, Faculty of Medicine, The University of British Columbia, 2206 East Mall, Vancouver, British Columbia, Canada; BC Centre for Disease Control, Vancouver, Canada
| | - Jason Su
- School of Public Health, University of California at Berkeley, 2121 Berkeley Way West, Berkeley, CA, the United States
| | - Matilda van den Bosch
- School of Population and Public Health, Faculty of Medicine, The University of British Columbia, 2206 East Mall, Vancouver, British Columbia, Canada; Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, 2424 Main Mall, Vancouver, Canada; ISGlobal, Parc de Recerca Biomèdica de Barcelona, Doctor Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra, Plaça de la Mercè, 10-12, 08002 Barcelona, Spain; Centro de Investigación Biomédica en Red Instituto de Salud Carlos III, Calle de Melchor Fernández Almagro, 3, 28029, Madrid, Spain.
| |
Collapse
|
39
|
Zhang M, Wang C, Zhang X, Song H, Li Y. Association between exposure to air pollutants and attention-deficit hyperactivity disorder (ADHD) in children: a systematic review and meta-analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:207-219. [PMID: 32248699 DOI: 10.1080/09603123.2020.1745764] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Recent studies have reached mixed conclusions regarding the association between exposure to air pollutants and attention-deficit hyperactivity disorder (ADHD). We performed systematic review and meta-analysis to determine whether air pollutants were risk factors for the development of ADHD in children. We systematically searched databases for all relevant studies up to 2 July 2019. Together, the studies indicated that exposure to PAHs (risk ratio (RR): 0.98, 95% confidence interval (CI): 0.82-1.17), NOx (RR: 1.04, 95% CI: 0.94-1.15), and PM (RR: 1.11, 95% CI: 0.93-1.33) did not have any material relationship with an increased risk of ADHD. Heterogeneity of study data was low (I2: 2.7%, P = 0.409) for studies examining PAHs, but was substantial for NOx and PM (I2: 68.4%, P = 0.007 and I2: 60.1%, P = 0.014, respectively). However, these results should be interpreted with caution since the number of epidemiological studies investigating this issue were limited.
Collapse
Affiliation(s)
- Mengjie Zhang
- Department of Children, Adolescents and Women Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Changhong Wang
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Xinxin Zhang
- Department of Children, Adolescents and Women Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Huiling Song
- Department of Children, Adolescents and Women Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yan Li
- Department of Children, Adolescents and Women Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
- School of Physical Education (Main Campus), Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
40
|
Markevych I, Orlov N, Grellier J, Kaczmarek-Majer K, Lipowska M, Sitnik-Warchulska K, Mysak Y, Baumbach C, Wierzba-Łukaszyk M, Soomro MH, Compa M, Izydorczyk B, Skotak K, Degórska A, Bratkowski J, Kossowski B, Domagalik A, Szwed M. NeuroSmog: Determining the Impact of Air Pollution on the Developing Brain: Project Protocol. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 19:310. [PMID: 35010570 PMCID: PMC8744611 DOI: 10.3390/ijerph19010310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/08/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Exposure to airborne particulate matter (PM) may affect neurodevelopmental outcomes in children. The mechanisms underlying these relationships are not currently known. We aim to assess whether PM affects the developing brains of schoolchildren in Poland, a country characterized by high levels of PM pollution. Children aged from 10 to 13 years (n = 800) are recruited to participate in this case-control study. Cases (children with attention deficit hyperactivity disorder (ADHD)) are being recruited by field psychologists. Population-based controls are being sampled from schools. The study area comprises 18 towns in southern Poland characterized by wide-ranging levels of PM. Comprehensive psychological assessments are conducted to assess cognitive and social functioning. Participants undergo structural, diffusion-weighted, task, and resting-state magnetic resonance imaging (MRI). PM concentrations are estimated using land use regression models, incorporating information from air monitoring networks, dispersion models, and characteristics of roads and other land cover types. The estimated concentrations will be assigned to the prenatal and postnatal residential and preschool/school addresses of the study participants. We will assess whether long-term exposure to PM affects brain function, structure, and connectivity in healthy children and in those diagnosed with ADHD. This study will provide novel, in-depth understanding of the neurodevelopmental effects of PM pollution.
Collapse
Affiliation(s)
- Iana Markevych
- Institute of Psychology, Jagiellonian University, Ingardena 6, 30-060 Krakow, Poland; (I.M.); (N.O.); (J.G.); (Y.M.); (C.B.); (M.W.-Ł.); (M.H.S.); (M.C.); (B.I.)
| | - Natasza Orlov
- Institute of Psychology, Jagiellonian University, Ingardena 6, 30-060 Krakow, Poland; (I.M.); (N.O.); (J.G.); (Y.M.); (C.B.); (M.W.-Ł.); (M.H.S.); (M.C.); (B.I.)
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, De Crespigny Park, London SE5 8AF, UK
| | - James Grellier
- Institute of Psychology, Jagiellonian University, Ingardena 6, 30-060 Krakow, Poland; (I.M.); (N.O.); (J.G.); (Y.M.); (C.B.); (M.W.-Ł.); (M.H.S.); (M.C.); (B.I.)
- European Centre of Environment and Human Health, University of Exeter Medical School, Royal Cornwall Hospital, Truro, Cornwall TR1 3HD, UK
| | - Katarzyna Kaczmarek-Majer
- Institute of Environmental Protection-National Research Institute, Krucza 5/11d, 00-548 Warsaw, Poland; (K.K.-M.); (K.S.); (A.D.); (J.B.)
- Systems Research Institute, Polish Academy of Sciences, Newelska 6, 01-447 Warsaw, Poland
| | - Małgorzata Lipowska
- Faculty of Management and Social Communication, Institute of Applied Psychology, Jagiellonian University, Łojasiewicza 4, 30-348 Krakow, Poland; (M.L.); (K.S.-W.)
- Institute of Psychology, University of Gdansk, Bażyńskiego 4, 80-952 Gdansk, Poland
| | - Katarzyna Sitnik-Warchulska
- Faculty of Management and Social Communication, Institute of Applied Psychology, Jagiellonian University, Łojasiewicza 4, 30-348 Krakow, Poland; (M.L.); (K.S.-W.)
| | - Yarema Mysak
- Institute of Psychology, Jagiellonian University, Ingardena 6, 30-060 Krakow, Poland; (I.M.); (N.O.); (J.G.); (Y.M.); (C.B.); (M.W.-Ł.); (M.H.S.); (M.C.); (B.I.)
| | - Clemens Baumbach
- Institute of Psychology, Jagiellonian University, Ingardena 6, 30-060 Krakow, Poland; (I.M.); (N.O.); (J.G.); (Y.M.); (C.B.); (M.W.-Ł.); (M.H.S.); (M.C.); (B.I.)
- ENIANO GmbH, Schwanthalerstraße 73, 80336 Munich, Germany
| | - Maja Wierzba-Łukaszyk
- Institute of Psychology, Jagiellonian University, Ingardena 6, 30-060 Krakow, Poland; (I.M.); (N.O.); (J.G.); (Y.M.); (C.B.); (M.W.-Ł.); (M.H.S.); (M.C.); (B.I.)
| | - Munawar Hussain Soomro
- Institute of Psychology, Jagiellonian University, Ingardena 6, 30-060 Krakow, Poland; (I.M.); (N.O.); (J.G.); (Y.M.); (C.B.); (M.W.-Ł.); (M.H.S.); (M.C.); (B.I.)
| | - Mikołaj Compa
- Institute of Psychology, Jagiellonian University, Ingardena 6, 30-060 Krakow, Poland; (I.M.); (N.O.); (J.G.); (Y.M.); (C.B.); (M.W.-Ł.); (M.H.S.); (M.C.); (B.I.)
| | - Bernadetta Izydorczyk
- Institute of Psychology, Jagiellonian University, Ingardena 6, 30-060 Krakow, Poland; (I.M.); (N.O.); (J.G.); (Y.M.); (C.B.); (M.W.-Ł.); (M.H.S.); (M.C.); (B.I.)
- Faculty of Management and Social Communication, Institute of Applied Psychology, Jagiellonian University, Łojasiewicza 4, 30-348 Krakow, Poland; (M.L.); (K.S.-W.)
| | - Krzysztof Skotak
- Institute of Environmental Protection-National Research Institute, Krucza 5/11d, 00-548 Warsaw, Poland; (K.K.-M.); (K.S.); (A.D.); (J.B.)
| | - Anna Degórska
- Institute of Environmental Protection-National Research Institute, Krucza 5/11d, 00-548 Warsaw, Poland; (K.K.-M.); (K.S.); (A.D.); (J.B.)
| | - Jakub Bratkowski
- Institute of Environmental Protection-National Research Institute, Krucza 5/11d, 00-548 Warsaw, Poland; (K.K.-M.); (K.S.); (A.D.); (J.B.)
| | - Bartosz Kossowski
- Laboratory of Brain Imaging, Nencki Institute for Experimental Biology, Pasteur 3, 02-093 Warsaw, Poland;
| | - Aleksandra Domagalik
- Brain Imaging Core Facility, Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland;
| | - Marcin Szwed
- Institute of Psychology, Jagiellonian University, Ingardena 6, 30-060 Krakow, Poland; (I.M.); (N.O.); (J.G.); (Y.M.); (C.B.); (M.W.-Ł.); (M.H.S.); (M.C.); (B.I.)
| |
Collapse
|
41
|
Araya F, Stingone JA, Claudio L. Inequalities in Exposure to Ambient Air Neurotoxicants and Disparities in Markers of Neurodevelopment in Children by Maternal Nativity Status. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18147512. [PMID: 34299963 PMCID: PMC8304619 DOI: 10.3390/ijerph18147512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/02/2021] [Accepted: 06/30/2021] [Indexed: 12/14/2022]
Abstract
Exposure levels to environmental pollutants vary significantly among different populations. These inequities in exposure to hazardous air pollutants (HAP) among different populations can contribute to disparities in neurodevelopmental outcomes. The aim of this study was to determine if exposure to HAP varies by maternal nativity status, a demographic marker often overlooked in the study of health disparities. We also assessed if those inequalities in exposure levels are associated with neurodevelopmental measures in young children. To do this, we obtained data from the Early Childhood Longitudinal Study-Birth cohort (ECLS-B), a nationally representative sample of children born in the U.S. in the year 2001 (n = 4750). Bayley’s Short Form-Research Edition (BSF-R) was used to measure cognitive development at 2 years of age. Using residential location at nine months of age, participants were assigned exposures to ten HAPs identified as potentially neurotoxic. Linear regression models were used to assess the joint effect of maternal nativity status and HAP exposure on neurodevelopment. Results showed inequities in exposure levels to ten different HAPs among the populations, as approximately 32% of children of foreign-born mothers were exposed to high levels of HAPs, compared to 21% of children born to U.S.-born mothers. Adjusting for socioeconomic factors, both isophorone exposure (a marker of industrial pollution) (−0.04, 95% CI, −0.12, 0.04) and maternal nativity status (−0.17, 95% CI, −0.27, −0.06) were independently associated with lower standardized BSF-R mental scores in children. Interaction between nativity status and isophorone was not statistically significant, but the change in mental scores associated with isophorone exposure was greater in children of foreign-born mothers compared to children of U.S.-born mothers (−0.12, vs. −0.03, p = 0.2). In conclusion, exposure to HAPs within the highest quartile was more commonly found among children of foreign-born mothers as compared to children of US-born mothers, indicating inequities in pollutant exposure by nativity status within urban populations. Exposures associated with nativity status may negatively contribute to children’s neurodevelopment.
Collapse
|
42
|
Yang M, Li LY, Qin XD, Ye XY, Yu S, Bao Q, Sun L, Wang ZB, Bloom MS, Jalava P, Hu LW, Yu HY, Zeng XW, Yang BY, Dong GH, Li CW. Perfluorooctanesulfonate and perfluorooctanoate exacerbate airway inflammation in asthmatic mice and in vitro. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 766:142365. [PMID: 33601665 DOI: 10.1016/j.scitotenv.2020.142365] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/18/2020] [Accepted: 09/09/2020] [Indexed: 05/14/2023]
Abstract
Emerging evidence suggests associations between Perfluoroalkyl substances (PFASs) exposure and asthma, but the findings are inconsistent. The current study sought to investigate whether perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) could contribute to asthma exacerbation and to clarify the underlying biological mechanisms. The objectives are a) to determine whether PFOS or PFOA could aggravate the mouse asthma and pulmonary inflammation b) to investigate whether PFOS and PFOA regulate the balance of Th1/Th2 through the JAK-STAT signaling pathway and aggravated asthma. Ovalbumin (OVA) induced asthmatic mice were exposed to PFOS or PFOA by gavage. PFOS and PFOA serum level and toxicity in organs were assessed; and the impacts on respiratory symptoms, lung tissue pathology, T helper cell (Th2) response, and STAT6 pathway activity were also evaluated. In vitro Jurkat cells were used to study the mechanisms of PFOS and PFOA mediated Th1 and Th2 responses. Both PFOS and PFOA exacerbated lung tissue inflammation (greater number of eosinophils and mucus hyperproduction), upregulated Th2 cytokine production (IL-4 and IL-13), and promoted Th2 cells and STAT6 activation. Furthermore, PFOS and PFOA enhanced the Th2 response in Jurkat cells via STAT6 activation; and the effect of PFOS exposure on GATA-3, IL-4 and IFN-γ was blocked after the expression of STAT6 was suppressed in Jurkat cells, however, the effects of PFOA exposure were only partially blocked. PFOS and PFOA aggravated inflammation among OVA-induced asthmatic mice, by promoting the Th2 response in lymphocytes and disturbing the balance of Th1/Th2 through the JAK-STAT signaling pathway.
Collapse
Affiliation(s)
- Mo Yang
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Li-Yue Li
- Guangzhou Key Laboratory of Otorhinolaryngology, Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiao-Di Qin
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xiao-Yan Ye
- Guangzhou Key Laboratory of Otorhinolaryngology, Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shu Yu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Qing Bao
- Guangzhou Key Laboratory of Otorhinolaryngology, Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lin Sun
- Guangzhou Key Laboratory of Otorhinolaryngology, Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhi-Bin Wang
- Department of Environmental Health Sciences, Laboratory of Human Environmental Epigenomes, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, USA
| | - Michael S Bloom
- Departments of Environmental Health Sciences and Epidemiology & Biostatistics, University at Albany School of Public Health, Albany, USA
| | - Pasi Jalava
- Department of Environmental and Biological Science, University of Eastern Finland, Kuopio, Finland
| | - Li-Wen Hu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Hong-Yao Yu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xiao-Wen Zeng
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Bo-Yi Yang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| | - Chun-Wei Li
- Guangzhou Key Laboratory of Otorhinolaryngology, Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
43
|
Abstract
Pregnancy and early childhood are periods with high plasticity in neurological development. Environmental perturbations during these sensitive windows can have lifelong developmental consequences. This review summarizes key findings relevant to the effects of air pollution on neurological development. Mounting evidence suggests that exposure to air pollution, both during pregnancy and childhood, is associated with childhood developmental outcomes ranging from changes in brain structures to subclinical deficits in developmental test scores, and, ultimately, developmental disorders such as attention-deficit/hyperactivity disorders or autism spectrum disorders. Although the biological mechanisms of effects remain to be elucidated, multiple pathways are probably involved and include oxidative stress, inflammation, and/or endocrine disruption. Given the alarming global increase in developmental disorders in recent years, and increased human exposures to pollution, it is critical to reduce personal and community-level exposures through tight collaboration of interdisciplinary and multi-level bodies including community partners, physicians, industry partners, policy makers, public health practitioners, and researchers. WHAT THIS PAPER ADDS: Exposure to air pollution is associated with a range of childhood developmental complications. Biological mechanisms may include oxidative stress, inflammation, and endocrine disruption.
Collapse
Affiliation(s)
- Sandie Ha
- Department of Public Health, School of Social Sciences, Humanities and Arts, Health Science Research Institute, University of California, Merced, CA, USA
| |
Collapse
|
44
|
Pasqual E, Boussin F, Bazyka D, Nordenskjold A, Yamada M, Ozasa K, Pazzaglia S, Roy L, Thierry-Chef I, de Vathaire F, Benotmane MA, Cardis E. Cognitive effects of low dose of ionizing radiation - Lessons learned and research gaps from epidemiological and biological studies. ENVIRONMENT INTERNATIONAL 2021; 147:106295. [PMID: 33341586 DOI: 10.1016/j.envint.2020.106295] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/02/2020] [Accepted: 10/20/2020] [Indexed: 06/12/2023]
Abstract
The last decades have seen increased concern about the possible effects of low to moderate doses of ionizing radiation (IR) exposure on cognitive function. An interdisciplinary group of experts (biologists, epidemiologists, dosimetrists and clinicians) in this field gathered together in the framework of the European MELODI workshop on non-cancer effects of IR to summarise the state of knowledge on the topic and elaborate research recommendations for future studies in this area. Overall, there is evidence of cognitive effects from low IR doses both from biology and epidemiology, though a better characterization of effects and understanding of mechanisms is needed. There is a need to better describe the specific cognitive function or diseases that may be affected by radiation exposure. Such cognitive deficit characterization should consider the human life span, as effects might differ with age at exposure and at outcome assessment. Measurements of biomarkers, including imaging, will likely help our understanding on the mechanism of cognitive-related radiation induced deficit. The identification of loci of individual genetic susceptibility and the study of gene expression may help identify individuals at higher risk. The mechanisms behind the radiation induced cognitive effects are not clear and are likely to involve several biological pathways and different cell types. Well conducted research in large epidemiological cohorts and experimental studies in appropriate animal models are needed to improve the understanding of radiation-induced cognitive effects. Results may then be translated into recommendations for clinical radiation oncology and imaging decision making processes.
Collapse
Affiliation(s)
- Elisa Pasqual
- Barcelona Institute for Global Health (ISGlobal), Campus Mar, Barcelona Biomedical Research Park (PRBB), Dr Aiguader 88, 08003 Barcelona, Spain; University Pompeu Fabra, Barcelona, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Carlos III Institute of Health, Madrid, Spain.
| | - François Boussin
- Université de Paris and Université Paris-Saclay, Inserm, LRP/iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, F-92265 Fontenay-aux-Roses, France
| | - Dimitry Bazyka
- National Research Center for Radiation Medicine, 53 Illenko str., Kyiv, Ukraine
| | - Arvid Nordenskjold
- Department of Clinical Neuroscience, Division of Neurology, Karolinska Institutet, Stockholm, Sweden
| | - Michiko Yamada
- Department of Clinical Studies, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Kotaro Ozasa
- Department of Epidemiology, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Simonetta Pazzaglia
- Laboratory of Biomedical Technologies, ENEA CR-Casaccia, Via Anguillarese 301, 00123 Rome, Italy
| | - Laurence Roy
- Department for Research on the Biological and Health Effects of Ionising Radiation. Institut of Radiation Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - Isabelle Thierry-Chef
- Barcelona Institute for Global Health (ISGlobal), Campus Mar, Barcelona Biomedical Research Park (PRBB), Dr Aiguader 88, 08003 Barcelona, Spain; University Pompeu Fabra, Barcelona, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Carlos III Institute of Health, Madrid, Spain
| | - Florent de Vathaire
- Radiation Epidemiology Teams, INSERM Unit 1018, University Paris Saclay, Gustave Roussy, 94800 Villejuif, France
| | | | - Elisabeth Cardis
- Barcelona Institute for Global Health (ISGlobal), Campus Mar, Barcelona Biomedical Research Park (PRBB), Dr Aiguader 88, 08003 Barcelona, Spain; University Pompeu Fabra, Barcelona, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Carlos III Institute of Health, Madrid, Spain
| |
Collapse
|
45
|
Schmengler H, Cohen D, Tordjman S, Melchior M. Autism Spectrum and Other Neurodevelopmental Disorders in Children of Immigrants: A Brief Review of Current Evidence and Implications for Clinical Practice. Front Psychiatry 2021; 12:566368. [PMID: 33815159 PMCID: PMC8012490 DOI: 10.3389/fpsyt.2021.566368] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 02/24/2021] [Indexed: 12/12/2022] Open
Abstract
Children of immigrants may have higher neurodevelopmental risks than those of non-immigrant populations. Yet, some evidence suggests that this group may receive late diagnosis, and therefore miss beneficial early interventions. Clinicians may misattribute symptoms of disorders to other social, behavioral or language problems. Likewise, there might be cultural differences in parents' likelihood of perceiving or reporting first developmental concerns to clinicians. Population-based standardized screening may play an important role in addressing ethnic inequalities in the age at diagnosis, although further research focusing on cross-cultural use is necessary. Once children are diagnosed, clinicians may rely on culturally sensitive procedures (translation services, cultural mediators) to increase the accessibility of interventions and improve adherence among immigrant families. In this brief review, we provide an overview about what is currently known about the epidemiology and risk factors of neurodevelopmental disorders, paying special attention to autism spectrum disorder (ASD), in children of immigrants and suggest the necessity of population-based screening and culturally sensitive care.
Collapse
Affiliation(s)
- Heiko Schmengler
- INSERM U1136, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Sorbonne Université, Paris, France.,École des Hautes Études en Santé Publique, Rennes, France.,Department of Interdisciplinary Social Science, Utrecht Centre for Child and Adolescent Studies, Utrecht University, Utrecht, Netherlands
| | - David Cohen
- Department of Child and Adolescent Psychiatry, Reference Centre for Rare Psychiatric Diseases, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique Hôpitaux de Paris, Sorbonne Université, Paris, France.,Institute for Intelligent Systems and Robotics, CNRS UMR 7222, Sorbonne Université, Paris, France
| | - Sylvie Tordjman
- Pôle Hospitalo-Universitaire de Psychiatrie de l'Enfant et de l'Adolescent, Université de Rennes 1 and Centre Hospitalier Guillaume-Régnier, Rennes, France.,Integrative Neuroscience and Cognition Center, CNRS UMR 8002 and University of Paris, Paris, France
| | - Maria Melchior
- INSERM U1136, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Sorbonne Université, Paris, France
| |
Collapse
|
46
|
Park J, Sohn JH, Cho SJ, Seo HY, Hwang IU, Hong YC, Kim KN. Association between short-term air pollution exposure and attention-deficit/hyperactivity disorder-related hospital admissions among adolescents: A nationwide time-series study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115369. [PMID: 32810816 DOI: 10.1016/j.envpol.2020.115369] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 07/31/2020] [Accepted: 08/01/2020] [Indexed: 06/11/2023]
Abstract
Long-term air pollution exposure has been suggested to increase the risk of attention-deficit/hyperactivity disorder (ADHD). However, the association between short-term air pollution exposure and ADHD-related outcomes is still unknown. We investigated the associations between short-term exposure to particulate matter with an aerodynamic diameter ≤10 μm (PM10), nitrogen oxide (NO2), and sulfur dioxide (SO2) and hospital admissions with a principal diagnosis of ADHD among adolescents (age 10-19 years) in 16 regions of the Republic of Korea from 2013 to 2015. We estimated the region-specific relative risks (RRs) and 95% confidence intervals (CIs) from quasi-Poisson regressions adjusted for potential confounders, considering single-day and moving average lag. Consequently, we performed meta-analyses to pool the region-specific estimates. The risks of ADHD-related hospital admissions were increased in the single-day and moving average lag models for PM10 (largest association for lag 1 in the single-day lag model, RR = 1.12, 95% CI: 1.05, 1.20; lag 0-2 in the moving average lag model, RR = 1.17, 95% CI: 1.07, 1.27), NO2 (lag 3, RR = 1.47, 95% CI: 1.25, 1.73; lag 1-3, RR = 1.68, 95% CI: 1.38, 2.04), and SO2 (lag 1, RR = 1.27, 95% CI: 1.14, 1.41; lag 1-3, RR = 1.29, 95% CI: 1.12, 1.49). The associations were similar between boys and girls, but they were stronger among adolescents aged 15-19 years than those aged 10-14 years for NO2 and SO2. In conclusion, the results indicate that short-term exposure to PM10, NO2, and SO2 may be a risk factor for the exacerbation of ADHD symptoms, leading to hospitalization.
Collapse
Affiliation(s)
- Jiyoon Park
- Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ji Hoon Sohn
- Division of Public Health and Preventive Medicine, Seoul National University Hospital, Seoul, Republic of Korea; Department of Psychiatry and Behavioral Science, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sung Joon Cho
- Department of Psychiatry, Kangbuk Samsung Hospital, Seoul, Republic of Korea
| | - Hwa Yeon Seo
- Division of Public Health and Preventive Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Il-Ung Hwang
- Division of Public Health and Preventive Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yun-Chul Hong
- Division of Public Health and Preventive Medicine, Seoul National University Hospital, Seoul, Republic of Korea; Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Kyoung-Nam Kim
- Division of Public Health and Preventive Medicine, Seoul National University Hospital, Seoul, Republic of Korea; Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
47
|
Ragab MM, Eid EM, Badr NH. Effect of Demographic Factors on Quality of Life in Children with ADHD under Atomoxetine Treatment: 1-Year Follow-up. JOURNAL OF CHILD SCIENCE 2020. [DOI: 10.1055/s-0040-1717104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractAttention-deficit hyperactivity disorder (ADHD) is the most common psychiatric disorder in children and adolescents. Symptoms of ADHD and its treatment can impact an individual's quality of life (QoL). The present study aimed to evaluate the effect of atomoxetine treatment, demographic characteristics, and seasonal variation on QoL in children with a recent diagnosis of ADHD and their parents. The present study included a cohort of 200 children diagnosed with ADHD. In addition to the recruited children, one of their parents was included in the study. ADHD symptoms were assessed using Conners' Parent Rating Scale. QoL of the participants was assessed with the PedsQL, while parents' QoL was evaluated using the World Health Organization Quality of Life questionnaire (WHOQOL-Bref). There was significant improvement in pediatric and parental QoL after treatment with atomoxetine. Significant factors related to better QoL in the participants included spring season, above average Conner's score, male sex, and rural residence. However, after using multivariate regression analysis, only patients' sex and Conner's score were significant predictors of pediatric QoL at the end of treatment with atomoxetine. Medical treatment significantly improved QoL in children with ADHD and their parents. Level of improvement was affected by patients' sex and ADHD severity.
Collapse
Affiliation(s)
- Moustafa M. Ragab
- Public Health Department, Institute of Environmental Studies and Researches, Ain Shams University, Cairo, Egypt
| | - Ehab M. Eid
- Public Health Department, Faculty of Postgraduate Childhood Studies, Ain Shams University, Cairo, Egypt
| | - Nahla H. Badr
- Public Health Department, Faculty of Postgraduate Childhood Studies, Ain Shams University, Cairo, Egypt
| |
Collapse
|
48
|
Prenatal PM 2.5 exposure and behavioral development in children from Mexico City. Neurotoxicology 2020; 81:109-115. [PMID: 32950567 DOI: 10.1016/j.neuro.2020.09.036] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/06/2020] [Accepted: 09/14/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Childhood exposure to air pollution has been linked with maladaptive cognitive development; however, less is known about the association between prenatal fine particulate matter (PM2.5) exposure and childhood behavior. OBJECTIVES Our aim was to assess the association between prenatal PM2.5 exposure and behavioral development in 4-6 year old children residing in Mexico City. METHODS We used data from 539 mother-child pairs enrolled in a prospective birth cohort in Mexico City. We estimated daily PM2.5 exposure using a 1 km2 satellite-based exposure model and averaged over each trimester of pregnancy. We assessed childhood behavior at 4-6 years of age using the parent-completed Behavioral Assessment Scale for Children (BASC-2) composite scores and subscales. We used linear regression models to estimate change in BASC-2 T-scores with trimester specific 5-μg/m3 increases in PM2.5. All models were mutually adjusted for PM2.5 exposures during the other trimesters, maternal factors including age, education, socioeconomic status, depression, and IQ, child's age at study visit, and season. We additionally assessed sex-specific effects by including an interaction term between PM2.5 and sex. RESULTS Higher first trimester PM2.5 exposure was associated with reduced Adaptive Skills scores (β: -1.45, 95% CI: -2.60, -0.30). Lower scores on the Adaptive Skills composite score and subscales indicate poorer functioning. For PM2.5 exposure during the first trimester, decrements were consistent across adaptive subscale scores including Adaptability (β: -1.51, 95% CI: -2.72, -0.30), Social Skills (β: -1.63, 95% CI: -2.90, -0.36), and Functional Communication (β: -1.21, 95% CI: -2.21, -0.21). The association between 1st trimester PM2.5 and depression was stronger in males than females (β for males: 1.52, 95% CI: -0.41, 3.45; β for females: -0.13, 95% CI: -1.99, 1.72; p-int: 0.07). CONCLUSIONS Exposure to PM2.5 during early pregnancy may be associated with impaired behavioral development in children, particularly for measures of adaptive skills. These results suggest that air pollution impacts behavioral domains as well as cognition, and that the timing of exposure may be critical.
Collapse
|
49
|
Ding F, Peng W, Peng YK, Liu BQ. Elucidating the potential neurotoxicity of chiral phenthoate: Molecular insight from experimental and computational studies. CHEMOSPHERE 2020; 255:127007. [PMID: 32416396 DOI: 10.1016/j.chemosphere.2020.127007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
Chiral organophosphorus pollutants are existed ubiquitously in the ecological environment, but the enantioselective toxicities of these nerve agents to humans and their molecular bases have not been fully elucidated. Using experimental and computational approaches, this story was to explore the neurotoxic response process of the target acetylcholinesterase (AChE) to chiral phenthoate and further decipher the microscopic mechanism of such toxicological effect at the enantiomeric level. The results showed that the toxic reaction of AChE with chiral phenthoate exhibited significant enantioselectivity, and (R)-phenthoate (K=1.486 × 105 M-1) has a bioaffinity for the nerve enzyme nearly three times that of (S)-phenthoate (K=4.503 × 104 M-1). Dynamic research outcomes interpreted the wet experiments, and the inherent conformational flexibility of the target enzyme has a great influence on the enantioselective neurotoxicological action processes, especially reflected in the conformational changes of the three key loop regions (i.e. residues His-447, Gly-448, and Tyr-449; residues Gly-122, Phe-123, and Tyr-124; and residues Thr-75, Leu-76, and Tyr-77) around the reaction patch. This was supported by the quantitative results of conformational studies derived from circular dichroism spectroscopy (α-helix: 34.7%→30.2%/31.6%; β-sheet: 23.6%→19.5%/20.7%; turn: 19.2%→22.4%/21.9%; and random coil: 22.5%→27.9%/25.8%). Meanwhile, via analyzing the modes of toxic action and free energies, we can find that (R)-phenthoate has a strong inhibitory effect on the enzymatic activity of AChE, as compared with (S)-phenthoate, and electrostatic energy (-23.79/-17.77 kJ mol-1) played a critical role in toxicological reactions. These points were the underlying causes of chiral phenthoate displaying different degrees of enantioselective neurotoxicity.
Collapse
Affiliation(s)
- Fei Ding
- Department of Environmental Science and Engineering, School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, No. 126 Yanta Road, Yanta District, Xi'an, 710054, China
| | - Wei Peng
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Yu-Kui Peng
- Center for Food Quality Supervision, Inspection & Testing, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, 712100, China
| | - Bing-Qi Liu
- Department of Agricultural Chemistry, Qingdao Agricultural University, Qingdao, 266109, China
| |
Collapse
|
50
|
Rezaei Kalantary R, Jaffarzadeh N, Rezapour M, Hesami Arani M. Association between exposure to polycyclic aromatic hydrocarbons and attention deficit hyperactivity disorder in children: a systematic review and meta-analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:11531-11540. [PMID: 32124297 DOI: 10.1007/s11356-020-08134-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 02/17/2020] [Indexed: 06/10/2023]
Abstract
Some studies have shown that exposure to polycyclic aromatic hydrocarbons (PAHs) is a dangerous factor for attention deficit hyperactivity disorder (ADHD). This systematic review and meta-analysis aimed to clarify this relationship, and to collect and analyze all the relevant evidences in published reports of epidemiologic studies. PubMed, Science Direct, Web of Science, Scopus, and Google Scholar databases were searched through September 31, 2018. The study quality was evaluated using the Newcastle-Ottawa Scale. Moreover, fixed- and random-effect models were used. The data in this meta-analysis were presented as adjusted odds ratio (AOR). From 959 articles, six articles were included in the systematic review, and for meta-analysis, one study (that was not AOR) was excluded. The participants included in the studies were 2799 with the age range of 5-15 years old, and 93.6% were living in America. Four of the studies were placed in one group, due to having a common author (Perera). Moreover, a significant association was found between PAH exposure and ADHD in these studies (odds ratio = 2.57, 95% CI = 1.75-3.78); however, in all studies, there was no significant association between PAH exposure and ADHD for children (overall odds ratio = 1.99, 95% CI = 0.96-4.11) with low heterogeneity (I2 = 28.73%; P value < 0.001). This study provided a systematic review and meta-analytic evidence for the association between PAH exposure and ADHD by a small number of studies. Further research study can be conducted in various countries. Graphical Abstract.
Collapse
Affiliation(s)
- Roshanak Rezaei Kalantary
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
| | | | - Maysam Rezapour
- School of Nursing and Midwifery Amol, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohsen Hesami Arani
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran.
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran.
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|