1
|
Ran S, Li W, Yang Z, Zhang J, Chen Z, Jia G, Lin Q, Zeng HC, Yang Y, Zhang Z, Gao Y, Chen L, Wei S, Tian F, Lin H, Chen Y. In vitro and in vivo evidence on the association of pregnant PM 2.5 exposure with preterm birth and potential role of placental miRNA-21 regulating TLR4/NF-κB and activating NLRP3 inflammasome. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138376. [PMID: 40288320 DOI: 10.1016/j.jhazmat.2025.138376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/13/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
Ambient PM2.5 has been associated with preterm birth (PTB); however, the mechanism has not been elucidated. A birth cohort study, pregnant mouse models, and HTR-8/SVneo cells were conducted to achieve the study objectives. We observed 9833 (6.6 %) PTBs among the participants, the median gestational week (GW) is 39.25. Cox model and accelerated failure time model revealed that each 10 μg/m3 increase in PM2.5 was associated with an elevated risk of PTB during the entirety of pregnancy (hazard ratio and 95 % confidence interval [HR 95 %CI) was 1.15 (1.07, 1.24)], and reduced gestational week by 1.6 % (ETR: 0.984, 95 % CI: 0.976-0.992). In animal model, we found a shorter gestational day in PM2.5 exposure group than filtered air group, miRNA-sequencing analysis revealed that miRNA-21a-5p was significantly down-regulated in the PM2.5 group (p < 0.05), GO and KEGG analysis indicated that TLR4/NF-κB was involved in the process of PM2.5 shortening pregnancy. Western blot showed that PM2.5 exposure increased TLR4, NF-κB, and NLRP3 inflammasome in vivo and vitro. BAY11-7082 and miRNA-21 mimic inhibited the PM2.5-activated TLR4/NF-κB signaling pathway and NLRP3 inflammasome. This study provides evidence on the potential molecular mechanism of miRNA-21-5p/TLR4/NF-κB signaling pathway in PM2.5-induced inflammatory response leading to PTB through NLRP3 inflammasome.
Collapse
Affiliation(s)
- Shanshan Ran
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Wenxue Li
- Department of Toxicology, Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Zijun Yang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jingyi Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Zhangjian Chen
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Guang Jia
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Qingmei Lin
- Foshan Women and Children Hospital Affiliated to Guangdong Medical University, Foshan 528315, China
| | - Huai-Cai Zeng
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Zhiyuan Road, Lingui District, Guilin 541199, China
| | - Yin Yang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Zilong Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yonggui Gao
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Lan Chen
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Shengtao Wei
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Fei Tian
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Hualiang Lin
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| | - Yuming Chen
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
2
|
Desye B, Berihun G, Geto AK, Berhanu L, Daba C. Exposure to ambient air pollutions and its association with adverse birth outcomes: a systematic review and meta-analysis of epidemiological studies. Front Public Health 2024; 12:1488028. [PMID: 39606063 PMCID: PMC11600733 DOI: 10.3389/fpubh.2024.1488028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024] Open
Abstract
Introduction Air pollution is a significant global public health concern. However, there is a lack of updated and comprehensive evidence regarding the association between exposure to ambient air pollution and adverse birth outcomes (preterm birth, low birth weight, and stillbirth). Furthermore, the existing evidence is highly inconsistent. Therefore, this study aims to estimate the overall association between ambient air pollution and adverse birth outcomes. Methods In this study, initially a total of 79,356 articles were identified. Finally, a total of 49 articles were included. We conducted compressive literature searches using various databases, including PubMed, Scientific Direct, HINARI, and Google Scholar. Data extraction was performed using Microsoft Excel, and the data were exported to STATA 17 software for analysis. We used the Joanna Briggs Institute's quality appraisal tool to ensure the quality of the included studies. A random effects model was employed to estimate the pooled prevalence. Publication bias was assessed using funnel plots and Egger's regression test. Results In this study, the pooled prevalence of at least one adverse birth outcome was 7.69% (95% CI: 6.70-8.69), with high heterogeneity (I 2 = 100%, p-value < 0.001). In this meta-analysis, high pooled prevalence was found in preterm birth (6.36%), followed by low birth weights (5.07%) and stillbirth (0.61%). Exposure to PM2.5 (≤10 μg/m3) throughout the entire pregnancy, PM2.5 (≤10 μg/m3) in the first trimester, PM10 (>10 μg/m3) during the entire pregnancy, and O3 (≤10 μg/m3) during the entire pregnancy increased the risk of preterm birth by 4% (OR = 1.04, 95% CI: 1.03-1.05), 5% (OR = 1.05, 95% CI: 1.01-1.09), 49% (OR = 1.49, 95% CI: 1.41-1.56), and 5% (OR = 1.05, 95% CI: 1.04-1.07), respectively. For low birth weight, exposure to PM2.5 (≤10 μg/m3) and PM2.5 (>10 μg/m3) throughout the entire pregnancy was associated with an increased risk of 13% (OR = 1.13, 95% CI: 1.05-1.21) and 28% (OR = 1.28, 95% CI: 1.23-1.33), respectively. Conclusion This study highlighted a significant association between ambient air pollution and adverse birth outcomes. Therefore, it is crucial to implement a compressive public health intervention. Systematic review registration The review protocol was registered with the record ID of CRD42024578630.
Collapse
Affiliation(s)
- Belay Desye
- Department of Environmental Health, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Gete Berihun
- Department of Environmental Health, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Abebe Kassa Geto
- Department of Nursing and Midwifery, Dessie Health Science College, Dessie, Ethiopia
| | - Leykun Berhanu
- Department of Environmental Health, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Chala Daba
- Department of Environmental Health, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| |
Collapse
|
3
|
Requia WJ, Moore JP, Yang J. Air pollution exposure during pregnancy and preterm birth in Brazil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117116. [PMID: 39357377 DOI: 10.1016/j.ecoenv.2024.117116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/13/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
Ambient air pollution is a significant environmental risk factor for adverse pregnancy outcomes, including preterm birth. However, the impact of different pollutants across various regions and trimesters of pregnancy has not been fully investigated in Brazil. This study aimed to examine the associations between exposure to PM2.5, NO2, and O3 during different trimesters of pregnancy and the risk of preterm birth across five regions of Brazil. We used logistic regression models to estimate the odds ratios (OR) of preterm birth associated with PM2.5, NO2, and O3 adjusting for potential confounders such as maternal age, education, and socioeconomic status. Our study included over 9.9 million live births from 2001 to 2018, with data obtained from the Ministry of Health in Brazil. On average, for each 1-μg/m3 increase in PM2.5, we estimated a 0.26 % (95 % CI: 0.08-0.44 %) increase in the risk of preterm birth nationally in the first trimester. For NO2, each 1ppb increase was associated with a percentage increase in preterm birth risk of 7.26 % (95 % CI: 4.77-9.74 %) in the first trimester, 8.05 % (95 % CI: 5.73-10.38 %) in the second trimester, and 7.48 % (95 % CI: 5.25-9.72 %) in the third trimester. For O3, each 1ppb increase was associated with a percentage increase in preterm birth risk of 1.24 % (95 % CI: 0.29-2.18 %) in the first trimester, 1.51 % (95 % CI: 0.60-2.41 %) in the second trimester, and 0.72 % (95 % CI: -0.18-1.62 %) in the third trimester. This study highlights the significant impact of ambient air pollution on preterm birth risk in Brazil, with significant regional variations. Our findings underscore the need for targeted public health interventions to mitigate the effects of air pollution on pregnancy outcomes, particularly in the most affected regions.
Collapse
Affiliation(s)
- Weeberb J Requia
- Center for Environment and Public Health Studies, School of Public Policy and Government, Fundação Getúlio Vargas, Brasília, Distrito Federal, Brazil
| | - Julia Placido Moore
- Center for Environment and Public Health Studies, School of Public Policy and Government, Fundação Getúlio Vargas, Brasília, Distrito Federal, Brazil
| | - Jun Yang
- School of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
4
|
Lu C, Deng W, Qiao Z, Sun W, Yang W, Liu Z, Wang F. Childhood Helicobacter pylori infection: Impacts of environmental exposures and parental stress. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135584. [PMID: 39182294 DOI: 10.1016/j.jhazmat.2024.135584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/14/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Helicobacter pylori infection (HPI) is extremely common in the world, particularly in less developed areas, but the primary causes of childhood HPI are unspecified. OBJECTIVES To determine the influences of exposure to home environmental factors (HEFs), outdoor air pollutants (OAPs), and parental stress (PS), as well as their interactions on children's HPI. METHODS We implemented a retrospective cohort study with 8689 preschoolers from nine districts at Changsha, China, was conducted using questionnaires to collect data of health and HEFs. Temperature and OAPs data were collected from ten and eight monitoring stations, individually. Temperature and OAPs exposures were calculated for all home addresses using the inversed distance weighted (IDW) model. Multiple logistic regression analysis was carried out to determine the separate and combined impacts of HEFs, OAPs, and PS on HPI. RESULTS Children's HPI was significantly associated with exposure to moisture-specific indoor allergens in one-year preceding conception, gestation, and first year, smoke-specific air pollution throughout life, and plant-specific allergens in previous year. Outdoor exposures to CO in the 7th-9th month before conception, as well as PM2.5 in the second trimester and previous year, were associated with HPI, with ORs (95 % CIs) of 1.22 (1.05-1.41), 1.23 (1.03-1.46), and 1.33 (1.14-1.55). Parents' socioeconomic and psychological stress indicators were positively related to HPI. High socioeconomic indicators and psychological stresses increased the roles of indoor renovation and moisture indicators as well as outdoor SO2, PM2.5 and O3 on children's HPI over their entire lives. Parental psychological stress interacts with indoor renovation-specific air pollution, moisture- and plant-specific allergens, as well as outdoor traffic-related air pollution on HPI, during a critical time window in early life. CONCLUSIONS Indoor and outdoor air pollutants, as well as allergens, separately and interactively exert important effects on childhood HPI, lending support to the "(pre-) fetal origin of HPI" hypothesis.
Collapse
Affiliation(s)
- Chan Lu
- XiangYa School of Public Health, Central South University, Changsha 410013, China; FuRong Laboratory, Changsha 410078, Hunan, China; Hunan Provincial Key Laboratory of Low Carbon Healthy Building, Central South University, Changsha 410083, China.
| | - Wen Deng
- XiangYa School of Public Health, Central South University, Changsha 410013, China
| | - Zipeng Qiao
- XiangYa School of Public Health, Central South University, Changsha 410013, China
| | - Wenying Sun
- XiangYa School of Public Health, Central South University, Changsha 410013, China
| | - Wenhui Yang
- Hunan Provincial Maternal and Child Health Care Hospital, Changsha 410008, China
| | - Zijing Liu
- Xiangcheng District Center for Disease Control and Prevention, Suzhou 215131, China
| | - Faming Wang
- Centre for Molecular Biosciences and Non-communicable Diseases Research, Xi'an University of Science and Technology, Xi'an 710054, China
| |
Collapse
|
5
|
Aziz N, Stafoggia M, Stephansson O, Roos N, Kovats S, Chersich M, Filippi V, Part C, Nakstad B, Hajat S, Ljungman P, de Bont J. Association between ambient air pollution a week prior to delivery and preterm birth using a nationwide study in Sweden. Int J Hyg Environ Health 2024; 262:114443. [PMID: 39159527 DOI: 10.1016/j.ijheh.2024.114443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND Air pollution exposure has been linked with increased risk of preterm birth, which is one of the leading causes of infant mortality. Limited studies have attempted to explore these associations in low-polluted areas. In this study, we aimed to assess the association between short-term exposure to ambient air pollution and preterm birth in Sweden. METHOD In this population-based study we included preterm births between 2014 and 2019 from the Swedish Pregnancy Register. We applied a spatiotemporal model to estimate daily levels of particulate matter <2.5 μm (PM2.5), PM < 10 μm (PM10), nitrogen dioxide (NO2), and ozone (O3) at the residential address of each participant. We applied a time-stratified case-crossover design with conditional logistic regression analysis to estimate odds ratios (OR) of preterm birth per 10 μg/m3 (PM10, NO2, O3) and 5 μg/m3 (PM2.5) increase in air pollution exposure at 0-6-day lag. Two-pollutant models were applied to evaluate the independent association of each exposure on preterm birth. We also stratified by maternal characteristics to identify potential effect modifiers. RESULTS 28,216 (4.5%) preterm births were included. An increase in O3 exposure was associated with increased odds of preterm birth [OR = 1.06 per 10 μg/m3 (95% CI, 1.02; 1.10]. PM2.5 and PM10 were not significantly associated with preterm birth, and NO2 displayed a negative nonlinear association with preterm birth. We did not observe any notable effect modification, but we found suggestive larger associations between O3 and preterm birth when stratifying by male sex, spontaneous delivery, and spring season. CONCLUSIONS Increased O3 exposure one week before delivery was associated with an increased risk of preterm birth in Sweden, a country with levels of air pollution below the current World Health Organization air quality guidelines. Increases in O3 levels with climate change make these findings especially concerning.
Collapse
Affiliation(s)
- Nabeel Aziz
- Institute of Environmental Medicine, Karolinska Institutet, Sweden
| | - Massimo Stafoggia
- Institute of Environmental Medicine, Karolinska Institutet, Sweden; Department of Epidemiology, Lazio Region Health Service, ASL Roma 1, Italy
| | - Olof Stephansson
- Department of Women's Health, Division of Obstetrics, Karolinska University Hospital, Stockholm, Sweden; Department of Obstetrics and Gynecology, Karolinska University Hospital, Solna, Sweden
| | - Nathalie Roos
- Department of Women's Health, Division of Obstetrics, Karolinska University Hospital, Stockholm, Sweden; Department of Obstetrics and Gynecology, Karolinska University Hospital, Solna, Sweden
| | - Sari Kovats
- Department of Public Health, Environments and Society, London School of Hygiene and Tropical Medicine, UK
| | - Matthew Chersich
- Wits Reproductive Health and HIV Institute, Faculty of Health Science, University of the Witwatersrand, South Africa
| | - Veronique Filippi
- Department of Public Health, Environments and Society, London School of Hygiene and Tropical Medicine, UK; Faculty of Epidemiology and Population Health, Department of Infectious Diseases (International Health), Maternal and Newborn Health Group, LSHTM, UK
| | - Cherie Part
- Department of Public Health, Environments and Society, London School of Hygiene and Tropical Medicine, UK
| | - Britt Nakstad
- Department of Paediatric and Adolescent Health, University of Botswana, Botswana; Division of Paediatric and Adolescent Medicine, Institute of Clinical Medicine, University of Oslo, Norway
| | - Shakoor Hajat
- Department of Public Health, Environments and Society, London School of Hygiene and Tropical Medicine, UK
| | - Petter Ljungman
- Institute of Environmental Medicine, Karolinska Institutet, Sweden; Department of Cardiology, Danderyd Hospital, Sweden
| | - Jeroen de Bont
- Institute of Environmental Medicine, Karolinska Institutet, Sweden.
| |
Collapse
|
6
|
Gu J, Li J, Liu L, Cao M, Tian X, Wang Z, He J. Exploring the association between atmospheric pollutants and preterm birth risk in a river valley city. Front Public Health 2024; 12:1415028. [PMID: 39118970 PMCID: PMC11306079 DOI: 10.3389/fpubh.2024.1415028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/15/2024] [Indexed: 08/10/2024] Open
Abstract
Objective To investigate the association between exposure to atmospheric pollutants and preterm birth in a river valley-type city and its critical exposure windows. Methods A retrospective cohort study was used to collect data from the medical records of preterm and full-term deliveries in two hospitals in urban areas of a typical river valley-type city from January 2018 to December 2019. A total of 7,288 cases were included in the study with general information such as pregnancy times, the number of cesarean sections, occupation, season of conception and regularity of the menstrual cycle. And confounding factors affecting preterm birth were inferred using the chi-square test. The effects of exposure to each pollutant, including particulate matter 2.5 (PM2.5), particulate matter 10 (PM10), nitrogen dioxide (NO2), sulfur dioxide (SO2), carbon monoxide (CO) and ozone (O3), during pregnancy on preterm birth and the main exposure windows were explored by establishing a logistic regression model with pollutants introduced as continuous variables. Results Maternal age, pregnancy times, number of births, number of cesarean sections, season of conception, complications diseases, comorbidities diseases, hypertension disorder of pregnancy and neonatal low birth weight of the newborn were significantly different between preterm and term pregnant women. Logistic regression analysis after adjusting for the above confounders showed that the risk of preterm birth increases by 0.9, 0.6, 2.4% in T2 and by 1.0, 0.9, 2.5% in T3 for each 10 μg/m3 increase in PM2.5, PM10, NO2 concentrations, respectively. The risk of preterm birth increases by 4.3% in T2 for each 10 μg/m3 increase in SO2 concentrations. The risk of preterm birth increases by 123.5% in T2 and increases by 188.5% in T3 for each 10 mg/m3 increase in CO concentrations. Conclusion Maternal exposure to PM2.5, PM10, NO2, CO was associated with increased risk on preterm birth in mid-pregnancy (T2) and late pregnancy (T3), SO2 exposure was associated with increased risk on preterm birth in mid-pregnancy (T2).
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jinwei He
- Medical School of Yan’an University, Yan’an, China
| |
Collapse
|
7
|
Li J, Gu J, Liu L, Cao M, Wang Z, Tian X, He J. The relationship between air pollutants and preterm birth and blood routine changes in typical river valley city. BMC Public Health 2024; 24:1677. [PMID: 38915004 PMCID: PMC11197378 DOI: 10.1186/s12889-024-19140-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/13/2024] [Indexed: 06/26/2024] Open
Abstract
OBJECTIVE To collect maternal maternity information on preterm births in two tertiary hospitals in the urban area of Baota District, Yan'an City, from January 2018 to December 2020, to explore the long-term and short-term effects of air pollutants (PM2.5, PM10, SO2, NO2, CO and O3) and preterm births, and to explore changes in blood cell counts due to air pollutants. METHODS Daily average mass concentration data of six air pollutants in the urban area of Yan'an City from January 1, 2017 to December 31, 2020 were collected from the monitoring station in Baota District, Yan'an City. Meteorological information was obtained from the Meteorological Bureau of Yan'an City, including temperature,relative humidity and wind speed for the time period. The mass concentration of air pollutants in each exposure window of pregnant women was assessed by the nearest monitoring station method, and conditional logistic regression was used to analyze the relationship between air pollutants and preterm births, as well as the lagged and cumulative effects of air pollutants. Multiple linear regression was used to explore the relationship between air pollutants and blood tests after stepwise linear regression was used to determine confounders for each blood test. RESULTS The long-term effects of pollutants showed that PM2.5, PM10, SO2, NO2and CO were risk factors for preterm birth. In the two-pollutant model, PM2.5, PM10, SO2 and NO2 mixed with other pollutants were associated with preterm birth. The lagged effect showed that PM2.5, PM10, SO2, NO, and CO were associated with preterm birth; the cumulative effect showed that other air pollutants except O3 were associated with preterm birth. The correlation study between air pollutants and blood indicators showed that air pollutants were correlated with leukocytes, monocytes, basophils, erythrocytes, hs-CRPand not with CRP. CONCLUSION Exposure to air pollutants is a risk factor for preterm birth. Exposure to air pollutants was associated with changes in leukocytes, monocytes, basophils and erythrocytes and hs-CRP.
Collapse
Affiliation(s)
- Jimin Li
- Medical School of Yan'an University, Yan'an, Shaanxi, China
| | - Jiajia Gu
- Medical School of Yan'an University, Yan'an, Shaanxi, China
| | - Lang Liu
- Medical School of Yan'an University, Yan'an, Shaanxi, China
| | - Meiying Cao
- Medical School of Yan'an University, Yan'an, Shaanxi, China
| | - Zeqi Wang
- Medical School of Yan'an University, Yan'an, Shaanxi, China
| | - Xi Tian
- Medical School of Yan'an University, Yan'an, Shaanxi, China
| | - Jinwei He
- Medical School of Yan'an University, Yan'an, Shaanxi, China.
| |
Collapse
|
8
|
Yang L, Xie G, Yang W, Wang R, Zhang B, Xu M, Sun L, Xu X, Xiang W, Cui X, Luo Y, Chung MC. Short-term effects of air pollution exposure on the risk of preterm birth in Xi'an, China. Ann Med 2023; 55:325-334. [PMID: 36598136 PMCID: PMC9828631 DOI: 10.1080/07853890.2022.2163282] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 12/22/2022] [Indexed: 01/05/2023] Open
Abstract
INTRODUCTION Long-term exposure to air pollution is known to be harmful to preterm birth (PTB), but little is known about the short-term effects. This study aims to quantify the short-term effect of particulate matter with aerodynamic diameter ≤ 2.5 μm (PM2.5), ≤10 μm (PM10) and nitrogen dioxide (NO2) on PTB. MATERIALS AND METHODS A total of 18,826 singleton PTBs were collected during the study period. Poisson regression model combined with the distributed lag non-linear model was applied to evaluate the short-term effects of PTBs and air pollutants. RESULTS Maternal exposure to NO2 was significantly associated increased risk of PTB at Lag1 (RR: 1.025, 95%CI: 1.003-1.047). In the moving average model, maternal exposure to NO2 significantly increased the risk of PTB at Lag01 (RR: 1.029, 95%CI: 1.004-1.054). In the cumulative model, maternal exposure to NO2 significant increased the risk of PTB at Cum01 (RR:1.026, 95%CI: 1.002-1.051), Cum02 (RR: 1.030, 95%CI: 1.003-1.059), and Cum03 (RR: 1.033, 95%CI: 1.002-1.066). The effects of PM2.5, PM10 and NO2 on PTB were significant and greater in the cold season than the warm season. CONCLUSIONS Maternal exposure to NO2, PM2.5 and PM10 before delivery has a significant risk for PTB, particularly in the cold season.Key messagesMaternal exposure to NO2 was significant associated with an increased risk of preterm birth at the day 1 before delivery.Particle matter (PM2.5 and PM10) showed a significant short-term effect on preterm birth in the cold season.The effects of air pollutants on preterm birth was greater in the cold season compared with the warm season.
Collapse
Affiliation(s)
- Liren Yang
- Department of Obstetrics and Gynecology, Maternal & Child Health Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, P.R. China
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, P.R. China
| | - Guilan Xie
- Department of Obstetrics and Gynecology, Maternal & Child Health Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, P.R. China
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, P.R. China
| | - Wenfang Yang
- Department of Obstetrics and Gynecology, Maternal & Child Health Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, P.R. China
| | - Ruiqi Wang
- Department of Obstetrics and Gynecology, Maternal & Child Health Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, P.R. China
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, P.R. China
| | - Boxing Zhang
- Department of Obstetrics and Gynecology, Maternal & Child Health Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, P.R. China
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, P.R. China
| | - Mengmeng Xu
- Department of Obstetrics and Gynecology, Maternal & Child Health Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, P.R. China
| | - Landi Sun
- Department of Obstetrics and Gynecology, Maternal & Child Health Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, P.R. China
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, P.R. China
| | - Xu Xu
- The National Medical Center Office, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, P.R. China
| | - Wanwan Xiang
- Department of Obstetrics and Gynecology, Maternal & Child Health Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, P.R. China
- College of Public Health, Zhengzhou University, Zhengzhou, P.R. China
| | - Xiaoyi Cui
- Department of Obstetrics and Gynecology, Maternal & Child Health Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, P.R. China
- College of Nursing, Peking University Health Science Center, Beijing, P.R. China
| | - Yiwen Luo
- Department of Obstetrics and Gynecology, Maternal & Child Health Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, P.R. China
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, P.R. China
| | - Mei Chun Chung
- Division of Nutrition Epidemiology and Data Science, Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| |
Collapse
|
9
|
Ming X, He Z, Li Y, Hu Y, Yang Y, Chen H, Chen Q, Yang H, Zhou W. The short-term effects of air pollution exposure on preterm births in Chongqing, China: 2015-2020. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:51679-51691. [PMID: 36810823 PMCID: PMC10119072 DOI: 10.1007/s11356-023-25624-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Accumulating evidence suggested that the risk of preterm births (PTBs) following prenatal exposure to air pollution was inconclusive. The aim of this study is to investigate the relationship between air pollution exposure in the days before delivery and PTB and assess the threshold effect of short-term prenatal exposure to air pollution on PTB. This study collected data including meteorological factors, air pollutants, and information in Birth Certificate System from 9 districts during 2015-2020 in Chongqing, China. Generalized additive models (GAMs) with the distributed lag non-linear models were conducted to assess the acute impact of air pollutants on the daily counts of PTB, after controlling for potential confounding factors. We observed that PM2.5 was related to increased occurrence of PTB on lag 0-3 and lag 10-21 days, with the strongest on the first day (RR = 1.017, 95%CI: 1.000-1.034) and then decreasing. The thresholds of PM2.5 for lag 1-7 and 1-30 days were 100 μg/m3 and 50 μg/m3, respectively. The lag effect of PM10 on PTB was very similar to that of PM2.5. In addition, the lagged and cumulative exposure of SO2 and NO2 was also associated with the increased risk of PTB. The lag relative risk and cumulative relative risk of CO exposure were the strongest, with a maximum RR at lag 0 (RR = 1.044, 95%CI: 1.018, 1.069). Importantly, the exposure-response curve of CO showed that RR increased rapidly when the concentration exceeded 1000 μg/m3. This study indicated significant associations between air pollution and PTB. The relative risk decreases with day lag, while the cumulative effect increases. Thus, pregnant women should understand the risk of air pollution and try to avoid high concentration exposure.
Collapse
Affiliation(s)
- Xin Ming
- Women and Children's Hospital of Chongqing Medical University (Chongqing Health Center for Women and Children), Longshan Road 120, Chongqing, 401147, China
| | - Ziyi He
- Women and Children's Hospital of Chongqing Medical University (Chongqing Health Center for Women and Children), Longshan Road 120, Chongqing, 401147, China
| | - Yannan Li
- Women and Children's Hospital of Chongqing Medical University (Chongqing Health Center for Women and Children), Longshan Road 120, Chongqing, 401147, China
| | - Yaqiong Hu
- Women and Children's Hospital of Chongqing Medical University (Chongqing Health Center for Women and Children), Longshan Road 120, Chongqing, 401147, China
| | - Yunping Yang
- Women and Children's Hospital of Chongqing Medical University (Chongqing Health Center for Women and Children), Longshan Road 120, Chongqing, 401147, China
| | - Hongyan Chen
- Women and Children's Hospital of Chongqing Medical University (Chongqing Health Center for Women and Children), Longshan Road 120, Chongqing, 401147, China
| | - Qin Chen
- Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Huan Yang
- Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Wenzheng Zhou
- Women and Children's Hospital of Chongqing Medical University (Chongqing Health Center for Women and Children), Longshan Road 120, Chongqing, 401147, China.
| |
Collapse
|
10
|
Chiarello DI, Ustáriz J, Marín R, Carrasco-Wong I, Farías M, Giordano A, Gallardo FS, Illanes SE, Gutiérrez J. Cellular mechanisms linking to outdoor and indoor air pollution damage during pregnancy. Front Endocrinol (Lausanne) 2023; 14:1084986. [PMID: 36875486 PMCID: PMC9974835 DOI: 10.3389/fendo.2023.1084986] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
Pregnancies are a critical window period for environmental influences over the mother and the offspring. There is a growing body of evidence associating indoor and outdoor air pollution exposure to adverse pregnancy outcomes such as preterm birth and hypertensive disorders of pregnancy. Particulate matter (PM) could trigger oxi-inflammation and could also reach the placenta leading to placental damage with fetal consequences. The combination of strategies such as risk assessment, advise about risks of environmental exposures to pregnant women, together with nutritional strategies and digital solutions to monitor air quality can be effective in mitigating the effects of air pollution during pregnancy.
Collapse
Affiliation(s)
- Delia I. Chiarello
- Cellular Signaling and Differentiation Laboratory (CSDL), School of Medical Technology, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
| | - Javier Ustáriz
- Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Reinaldo Marín
- Center for Biophysics and Biochemistry (CBB), Venezuelan Institute for Scientific Research (IVIC), Caracas, Venezuela
| | - Ivo Carrasco-Wong
- Cellular Signaling and Differentiation Laboratory (CSDL), School of Medical Technology, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
| | - Marcelo Farías
- Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ady Giordano
- Inorganic Chemistry Department, Faculty of Chemistry and of Pharmacy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Felipe S. Gallardo
- Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sebastián E. Illanes
- Reproductive Biology Program, Center for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Jaime Gutiérrez
- Cellular Signaling and Differentiation Laboratory (CSDL), School of Medical Technology, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
| |
Collapse
|
11
|
Paciência I, Rantala AK, Antikainen H, Hugg TT, Jaakkola MS, Jaakkola JJK. Varying effects of greenness in the spring and summer on the development of allergic rhinitis up to 27 years of age: The Espoo Cohort Study. Allergy 2023. [PMID: 36661482 DOI: 10.1111/all.15649] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/04/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Affiliation(s)
- Inês Paciência
- Center for Environmental and Respiratory Health Research (CERH), Population Health, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Aino K Rantala
- Center for Environmental and Respiratory Health Research (CERH), Population Health, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | | | - Timo T Hugg
- Center for Environmental and Respiratory Health Research (CERH), Population Health, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Maritta S Jaakkola
- Center for Environmental and Respiratory Health Research (CERH), Population Health, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Jouni J K Jaakkola
- Center for Environmental and Respiratory Health Research (CERH), Population Health, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland.,Finnish Meteorological Institute, Helsinki, Finland
| |
Collapse
|
12
|
Mainka A, Żak M. Synergistic or Antagonistic Health Effects of Long- and Short-Term Exposure to Ambient NO 2 and PM 2.5: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14079. [PMID: 36360958 PMCID: PMC9657687 DOI: 10.3390/ijerph192114079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 05/31/2023]
Abstract
Studies on adverse health effects associated with air pollution mostly focus on individual pollutants. However, the air is a complex medium, and thus epidemiological studies face many challenges and limitations in the multipollutant approach. NO2 and PM2.5 have been selected as both originating from combustion processes and are considered to be the main pollutants associated with traffic; moreover, both elicit oxidative stress responses. An answer to the question of whether synergistic or antagonistic health effects of combined pollutants are demonstrated by pollutants monitored in ambient air is not explicit. Among the analyzed studies, only a few revealed statistical significance. Exposure to a single pollutant (PM2.5 or NO2) was mostly associated with a small increase in non-accidental mortality (HR:1.01-1.03). PM2.5 increase of <10 µg/m3 adjusted for NO2 as well as NO2 adjusted for PM2.5 resulted in a slightly lower health risk than a single pollutant. In the case of cardiovascular heart disease, mortality evoked by exposure to PM2.5 or NO2 adjusted for NO2 and PM2.5, respectively, revealed an antagonistic effect on health risk compared to the single pollutant. Both short- and long-term exposure to PM2.5 or NO2 adjusted for NO2 and PM2.5, respectively, revealed a synergistic effect appearing as higher mortality from respiratory diseases.
Collapse
Affiliation(s)
- Anna Mainka
- Department of Air Protection, Silesian University of Technology, 22B Konarskiego St., 44-100 Gliwice, Poland
| | | |
Collapse
|
13
|
Mendrinos A, Ramesh B, Ruktanonchai CW, Gohlke JM. Poultry Concentrated Animal-Feeding Operations on the Eastern Shore, Virginia, and Geospatial Associations with Adverse Birth Outcomes. Healthcare (Basel) 2022; 10:healthcare10102016. [PMID: 36292462 PMCID: PMC9602095 DOI: 10.3390/healthcare10102016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/04/2022] Open
Abstract
Concentrated animal-feeding operations (CAFOs) emit pollution into surrounding areas, and previous research has found associations with poor health outcomes. The objective of this study was to investigate if home proximity to poultry CAFOs during pregnancy is associated with adverse birth outcomes, including preterm birth (PTB) and low birth weight (LBW). This study includes births occurring on the Eastern Shore, Virginia, from 2002 to 2015 (N = 5768). A buffer model considering CAFOs within 1 km, 2 km, and 5 km of the maternal residence and an inverse distance weighted (IDW) approach were used to estimate proximity to CAFOs. Associations between proximity to poultry CAFOs and adverse birth outcomes were determined by using regression models, adjusting for available covariates. We found a −52.8 g (−95.8, −9.8) change in birthweight and a −1.51 (−2.78, −0.25) change in gestational days for the highest tertile of inverse distance to CAFOs. Infants born with a maternal residence with at least one CAFO within a 5 km buffer weighed −47 g (−94.1, −1.7) less than infants with no CAFOs within a 5 km buffer of the maternal address. More specific measures of exposure pathways via air and water should be used in future studies to refine mediators of the association found in the present study.
Collapse
Affiliation(s)
- Antonia Mendrinos
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Balaji Ramesh
- Department of Population Health Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| | - Corrine W. Ruktanonchai
- Department of Population Health Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| | - Julia M. Gohlke
- Department of Population Health Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
- Correspondence:
| |
Collapse
|
14
|
Toolabi A, Bonyadi Z, Ramavandi B. Health impacts quantification attributed to ambient particulate matter in the nearest Iranian city to the main dust source. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:666. [PMID: 35962291 DOI: 10.1007/s10661-022-10329-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Urban air contamination is one of the ten most dangerous parameters for human health, which causes cardiovascular disease, respiratory, metabolic diseases, and decreased lung function. Air Q is a reliable software for studying the impacts of atmospheric contaminants on human health, and today, it is widely used in the environment. The purpose of this research was to quantify the mortality and morbidity rates that corresponded to ambient particulate matter (PM) in Rigan City. To perform this, the Air Q software was used. The findings reflected that the yearly mean values of PM10 and PM2.5 are 264.83 and 50.45 μg/m3. The findings indicated that the PM10 and PM2.5 content in Rigan was above standard levels described by WHO. The total number of deaths, cardiovascular deaths, and respiratory deaths due to PM in Rigan were estimated as 70.3, 45.8, and 10.7 persons, respectively. Hospital admissions for cardiovascular and respiratory diseases correlated to PM10 were estimated at 154.2 and 59 persons, respectively. Acute myocardial infarction associated with PM2.5 was 2.7 persons. Overall, the data in this study may be helpful to national and regional policymakers who are responsible for managing and preventing atmospheric contamination and assessing the costs of health risks.
Collapse
Affiliation(s)
- Ali Toolabi
- Department of Environmental Health Engineering, School of Public Health, Bam University of Medical Sciences, Bam, Iran
| | - Ziaeddin Bonyadi
- Department of Environmental Health Engineering, Faculty of Health, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Bahman Ramavandi
- Department of Environmental Health Engineering, Faculty of Health, Bushehr University of Medical Sciences, Bushehr, Iran.
| |
Collapse
|
15
|
Gheissari R, Liao J, Garcia E, Pavlovic N, Gilliland FD, Xiang AH, Chen Z. Health Outcomes in Children Associated with Prenatal and Early-Life Exposures to Air Pollution: A Narrative Review. TOXICS 2022; 10:toxics10080458. [PMID: 36006137 PMCID: PMC9415268 DOI: 10.3390/toxics10080458] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/25/2022] [Accepted: 08/03/2022] [Indexed: 06/04/2023]
Abstract
(1) Background: The developmental origins of health and disease (DOHaD) hypothesis links adverse fetal exposures with developmental mal-adaptations and morbidity later in life. Short- and long-term exposures to air pollutants are known contributors to health outcomes; however, the potential for developmental health effects of air pollution exposures during gestation or early-childhood have yet to be reviewed and synthesized from a DOHaD lens. The objective of this study is to summarize the literature on cardiovascular and metabolic, respiratory, allergic, and neuropsychological health outcomes, from prenatal development through early childhood, associated with early-life exposures to outdoor air pollutants, including traffic-related and wildfire-generated air pollutants. (2) Methods: We conducted a search using PubMed and the references of articles previously known to the authors. We selected papers that investigated health outcomes during fetal or childhood development in association with early-life ambient or source-specific air pollution exposure. (3) Results: The current literature reports that prenatal and early-childhood exposures to ambient and traffic-related air pollutants are associated with a range of adverse outcomes in early life, including cardiovascular and metabolic, respiratory and allergic, and neurodevelopmental outcomes. Very few studies have investigated associations between wildfire-related air pollution exposure and health outcomes during prenatal, postnatal, or childhood development. (4) Conclusion: Evidence from January 2000 to January 2022 supports a role for prenatal and early-childhood air pollution exposures adversely affecting health outcomes during development. Future studies are needed to identify both detrimental air pollutants from the exposure mixture and critical exposure time periods, investigate emerging exposure sources such as wildfire, and develop feasible interventional tools.
Collapse
Affiliation(s)
- Roya Gheissari
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | - Jiawen Liao
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | - Erika Garcia
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | - Nathan Pavlovic
- Sonoma Technology Inc., 1450 N. McDowell Blvd., Suite 200, Petaluma, CA 94954, USA
| | - Frank D. Gilliland
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | - Anny H. Xiang
- Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA 91107, USA
| | - Zhanghua Chen
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
16
|
Yi C, Wang Q, Qu Y, Niu J, Oliver BG, Chen H. In-utero exposure to air pollution and early-life neural development and cognition. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 238:113589. [PMID: 35525116 DOI: 10.1016/j.ecoenv.2022.113589] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/19/2022] [Accepted: 04/28/2022] [Indexed: 05/06/2023]
Abstract
Air pollution remains one of the major health threats around the world. Compared to adults, foetuses and infants are more vulnerable to the effects of environmental toxins. Maternal exposure to air pollution causes several adverse birth outcomes and may lead to life-long health consequences. Given that a healthy intrauterine environment is a critical factor for supporting normal foetal brain development, there is a need to understand how prenatal exposure to air pollution affects brain health and results in neurological dysfunction. This review summarised the current knowledge on the adverse effects of prenatal air pollution exposure on early life neurodevelopment and subsequent impairment of cognition and behaviour in childhood, as well as the potential of early-onset neurodegeneration. While inflammation, oxidative stress, and endoplasmic reticulum are closely involved in the physiological response, sex differences also occur. In general, males are more susceptible than females to the adverse effect of in-utero air pollution exposure. Considering the evidence provided in this review and the rising concerns of global air pollution, any efforts to reduce pollutant emission or exposure will be protective for the next generation.
Collapse
Affiliation(s)
- Chenju Yi
- Research Centre, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China.
| | - Qi Wang
- Research Centre, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Yibo Qu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, China
| | - Jianqin Niu
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University, Chongqing 400038, China
| | - Brian G Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW 2007, Australia; Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, NSW 2037, Australia
| | - Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW 2007, Australia
| |
Collapse
|
17
|
Zhou G, Wu J, Yang M, Sun P, Gong Y, Chai J, Zhang J, Afrim FK, Dong W, Sun R, Wang Y, Li Q, Zhou D, Yu F, Yan X, Zhang Y, Jiang L, Ba Y. Prenatal exposure to air pollution and the risk of preterm birth in rural population of Henan Province. CHEMOSPHERE 2022; 286:131833. [PMID: 34426128 DOI: 10.1016/j.chemosphere.2021.131833] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/29/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Due to the poor living and healthcare conditions, preterm birth (PTB) in rural population is a pressing health issue. However, PTB studies in rural population are rare. To explore the effects of air pollutants on PTB in rural population, we collected 697,316 medical records during 2014-2016 based on the National Free Preconception Health Examination Project. Logistic regression models were used to estimate the association between air pollutants and PTB and the modifying effects of demographic characteristics. Relative contribution and principal component analysis-generalized linear model (PCA-GLM) analysis were used to explore the most significant air pollutant and gestational period. Our results demonstrated that PTB risk is positively associated with exposure to air pollutants including PM10, PM2.5, SO2, NO2, and CO, while negatively associated with O3 exposure (P < 0.05). In addition, we found that NO2 was the largest contributor to the risk of PTB caused by air pollutants (26.5%). The third trimester of pregnancy was the most sensitive exposure window. PCA-GLM analysis showed that the first component (a combination of PM, SO2, NO2, and CO) increased the risk of PTB. Moreover, we found that rural women who are younger, had higher educated, multi-parity, or smoke appeared to be more sensitive to the association between air pollutants exposure and PTB (P-interaction<0.05). Our findings suggested that increased air pollutants except O3 were associated with elevated PTB risk, especially among vulnerable mothers. Therefore, the effects of air pollutants exposure on PTB should be mitigated by restricting emission sources of NO2 and SO2 in rural population, especially during the third trimester.
Collapse
Affiliation(s)
- Guoyu Zhou
- Department of Environmental Health & Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; Yellow River Institute for Ecological Protection & Regional Coordinated Development, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Jingjing Wu
- Department of Environmental Health & Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Meng Yang
- Department of Environmental Health & Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Panpan Sun
- National Health Commission Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Henan Institute of Reproduction Health Science and Technology, Zhengzhou, Henan, 450002, PR China
| | - Yongxiang Gong
- Department of Environmental Health & Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Jian Chai
- National Health Commission Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Henan Institute of Reproduction Health Science and Technology, Zhengzhou, Henan, 450002, PR China
| | - Junxi Zhang
- National Health Commission Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Henan Institute of Reproduction Health Science and Technology, Zhengzhou, Henan, 450002, PR China
| | - Francis-Kojo Afrim
- Department of Environmental Health & Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Wei Dong
- National Health Commission Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Henan Institute of Reproduction Health Science and Technology, Zhengzhou, Henan, 450002, PR China
| | - Renjie Sun
- Department of Environmental Health & Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Yuhong Wang
- National Health Commission Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Henan Institute of Reproduction Health Science and Technology, Zhengzhou, Henan, 450002, PR China
| | - Qinyang Li
- Department of Environmental Health & Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Dezhuan Zhou
- National Health Commission Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Henan Institute of Reproduction Health Science and Technology, Zhengzhou, Henan, 450002, PR China
| | - Fangfang Yu
- Department of Environmental Health & Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Xi Yan
- Department of Neurology, Henan Provincial People's Hospital; Zhengzhou University People's Hospital; Henan University People's Hospital, Zhengzhou, Henan, 450001, PR China
| | - Yawei Zhang
- Department of Environment Health Science, Yale University School of Public Health, New Haven, CT, USA
| | - Lifang Jiang
- National Health Commission Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Henan Institute of Reproduction Health Science and Technology, Zhengzhou, Henan, 450002, PR China
| | - Yue Ba
- Department of Environmental Health & Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; Yellow River Institute for Ecological Protection & Regional Coordinated Development, Zhengzhou University, Zhengzhou, Henan, 450001, PR China.
| |
Collapse
|
18
|
Zhu W, Zheng H, Liu J, Cai J, Wang G, Li Y, Shen H, Yang J, Wang X, Wu J, Nie J. The correlation between chronic exposure to particulate matter and spontaneous abortion: A meta-analysis. CHEMOSPHERE 2022; 286:131802. [PMID: 34426134 DOI: 10.1016/j.chemosphere.2021.131802] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/23/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Spontaneous abortion (SAB) brings serious physical and psychological sequelae to women and their families. Though a growing body of individual studies have suggested the possible linkage between chronic particulate matter (PM) exposure and risks of SAB, the provided results were rather contradictory. We therefore performed an evidence-based meta-analysis. METHODS We systematically searched the PubMed, EMBASE and Web of Science databases for available studies published before February 1, 2021 which reported associations between PM exposure and SAB. Corresponding models were applied to combine relative risks (RRs) and their confidence intervals (CIs) from eligible studies according to heterogeneity test. The GRADEpro app was used to evaluate the certainty of evidence. Sensitivity analyses and a publication bias assessment were also utilized to determine the stability of results. RESULTS Of the initial 2358 citations, 6 papers examining the chronic effects of PM exposure were deemed eligible and a total population of approximately 723,000 was observed. Pooled RR for SAB risks associated with a 10 μg/m3 increase in fine particulate matter (PM2.5) and particulate matter ≤ 10 μm in aerodynamic diameter (PM10) were 1.20 (95%CI: 1.01-1.40) and 1.09 (95%CI: 1.02-1.15), respectively. The GRADE results of PM2.5 and PM10 were both categorized as "moderate" certainty evidence. CONCLUSION Our findings revealed a significant increase of SAB hazards related with maternal PM exposure, and this study may therefore provide new evidence for personal protection to improve reproductive health.
Collapse
Affiliation(s)
- Wentao Zhu
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, 215123, Jiangsu, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Huiqiu Zheng
- Department of Child and Adolescent Health and Health Education, School of Public Health, Inner Mongolia Medical University, Hohhot, 010110, Inner Mongolia, China
| | - Jieyu Liu
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, 215123, Jiangsu, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Jiajie Cai
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, 215123, Jiangsu, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Gechao Wang
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, 215123, Jiangsu, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Yi Li
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, 215123, Jiangsu, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Haochong Shen
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, 215123, Jiangsu, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Jing Yang
- Department of Basic Medicine and Forensic Medicine, Baotou Medical College, Baotou, 014040, Inner Mongolia, China
| | - Xuemei Wang
- Department of Health Statistics, School of Public Health, Inner Mongolia Medical University, Hohhot, 010110, Inner Mongolia, China
| | - Jing Wu
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, 215123, Jiangsu, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China.
| | - Jihua Nie
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, 215123, Jiangsu, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China.
| |
Collapse
|
19
|
Ju L, Li C, Yang M, Sun S, Zhang Q, Cao J, Ding R. Maternal air pollution exposure increases the risk of preterm birth: Evidence from the meta-analysis of cohort studies. ENVIRONMENTAL RESEARCH 2021; 202:111654. [PMID: 34252430 DOI: 10.1016/j.envres.2021.111654] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/19/2021] [Accepted: 07/03/2021] [Indexed: 06/13/2023]
Abstract
Preterm birth (PTB), a major public health impact, has been shown to be associated with prenatal air pollution exposure, but the results are still inconsistent. This meta-analysis was performed to quantitatively evaluate the correlation between maternal air pollutant exposure and PTB, and provide evidence of higher grade to help improving the pregnancy outcomes. Databases including Web of Science and PubMed were searched to retrieve eligible studies published up to October 2020. The quality of the articles was assessed by the Newcastle-Ottawa Quality Score (NOS), after which the pooled estimate of the effect was calculated. The robustness of the joint estimates was confirmed by sensitivity analysis of excluded studies one by one, and the sources of heterogeneity were discussed by stratification analysis. Egger's and Begg's tests were performed to examine publication bias. Sixty studies that met the eligible criteria were finally included in this study. The findings showed combined relative risks of 1.032-1.070 for PTB, 0.859-1.081 for moderate PTB, 1.119-1.194 for very PTB and 1.128-1.259 for extremely PTB when mothers were exposed to PM2.5, PM10, NO2, O3, SO2, CO and NOx during pregnancy, while the sensitive windows varied for different air pollutants. Notably, PM2.5 exposure in only the 2nd trimester, NO2 exposure in only the 3rd trimester, and O3 exposure in all three trimesters were positively associated with PTB, while NO2 exposure in the 1st trimester was negatively associated with PTB. In addition, exposure of PM2.5 and PM10 in the 2nd trimester was positively associated with moderate PTB, and in the 1st and 2nd trimesters were positively associated with very PTB. These findings demonstrated that PM2.5, PM10, O3, NO2 were associated with PTB (including moderate PTB, very PTB, and/or extremely PTB), while NOx was not, and the relationship between CO and SO2 and PTB was not stable.
Collapse
Affiliation(s)
- Liangliang Ju
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China.
| | - Changlian Li
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China.
| | - Mei Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China.
| | - Shu Sun
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China.
| | - Qi Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China.
| | - Jiyu Cao
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China; Department of Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China.
| | - Rui Ding
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230032, China.
| |
Collapse
|
20
|
Zhang J, Chen G, Liang S, Liu J, Zhang J, Shen H, Chen Y, Duan J, Sun Z. PM 2.5 exposure exaggerates the risk of adverse birth outcomes in pregnant women with pre-existing hyperlipidemia: Modulation role of adipokines and lipidome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147604. [PMID: 33992945 DOI: 10.1016/j.scitotenv.2021.147604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 05/02/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
The in-utero environmental exposure to fine particulate matter (PM2.5) might lead to adverse birth outcomes, such as low birth weight (LBW) and preterm birth (PTB), thereby increasing susceptibility to diseases in later life. However, no studies have examined the underlying mechanism through cross-omics of lipidome and adipokines profiling, as well as the possible effect modification by maternal hyperlipidemia. In total, 203 mother-newborn pairs were recruited in the birth cohort study ongoing since February 2017 in Beijing, China. Individual-level of PM2.5 exposure was estimated using a satellite data based random forest model. Cord blood lipidome and adipokines were assessed through the lipidomic approaches and antibody-based array. Multivariable logistic/linear regression models and moderation analysis were employed in this study. We observed a significantly increased risk of PTB associated with PM2.5 exposure during the second trimester, especially in pregnant women with pre-existing hyperlipidemia. 9 lipid classes and 21 adipokines were associated with PM2.5 exposure independently or significantly influenced by the interaction of maternal PM2.5 exposure and hyperlipidemia. In addition, 4 adipokines (ANGPTL4, IGFBP-2, IL-12p40, and TNF-RII) and 3 lipid classes [phosphatidylcholines (PCs), phosphatidylinositols (PIs), and triglycerides (TGs)] were related to the increased risk of PTB, indicating that inflammation, IGF/IGFBP axis, and lipolysis induced lipid homeostasis disorder of PCs, TGs, and PIs might be the possible mediators for the PM2.5-induced adverse birth outcomes. Our results substantiated the need for reducing exposure in susceptible populations.
Collapse
Affiliation(s)
- Jingyi Zhang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, People's Republic of China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, People's Republic of China
| | - Gongbo Chen
- Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Shuang Liang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, People's Republic of China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, People's Republic of China
| | - Jiangyan Liu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, People's Republic of China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, People's Republic of China
| | - Jie Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, People's Republic of China
| | - Heqing Shen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, People's Republic of China
| | - Yi Chen
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University, People's Republic of China.
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, People's Republic of China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, People's Republic of China.
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, People's Republic of China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, People's Republic of China.
| |
Collapse
|
21
|
Zhang C, Li S, Guo GL, Hao JW, Cheng P, Xiong LL, Chen ST, Cao JY, Guo YW, Hao JH. Acute associations between air pollution on premature rupture of membranes in Hefei, China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:3393-3406. [PMID: 33555491 DOI: 10.1007/s10653-021-00833-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 01/23/2021] [Indexed: 06/12/2023]
Abstract
Numerous studies had focused on the association between air pollution and health outcomes in recent years. However, little evidence is available on associations between air pollutants and premature rupture of membranes (PROM). Therefore, we performed time-series analysis to evaluate the association between PROM and air pollution. The daily average concentrations of PM2.5, SO2 and NO2 were 54.58 μg/m3, 13.06 μg/m3 and 46.09 μg/m3, respectively, and daily maximum 8-h average O3 concentration was 95.67 μg/m3. The strongest effects of SO2, NO2 and O3 were found in lag4, lag06 and lag09, and an increase of 10 μg/m3 in SO2, NO2 and O3 was corresponding to increase in incidence of PROM of 8.74% (95% CI 2.12-15.79%), 3.09% (95% CI 0.64-5.59%) and 1.68% (95% CI 0.28-3.09%), respectively. There were no significant effects of PM2.5 on PROM. Season-specific analyses found that the effects of PM2.5, SO2 and O3 on PROM were more obvious in cold season, but the statistically significant effect of NO2 was observed in warm season. We also found the modifying effects by maternal age on PROM, and we found that the effects of SO2 and NO2 on PROM were higher among younger mothers (< 35 years) than advanced age mothers (≥ 35 years); however, ≥ 35 years group were more vulnerable to O3 than < 35 years group. This study indicates that air pollution exposure is an important risk factor for PROM and we wish this study could provide evidence to local government to take rigid approaches to control emissions of air pollutants.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Sha Li
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Gan-Lan Guo
- Department of Obstetrics and Gynecology, Anhui Women and Child Health Care Hospital, Anhui Medical University, Hefei, China
| | - Jing-Wen Hao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Peng Cheng
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Li-Lin Xiong
- Department of Environmental Health, Nanjing Municipal Center for Disease Control and Prevention, Nanjing, China
| | - Shu-Ting Chen
- Yunlong District Maternal and Child Health Family Planning Service Center, Xuzhou, China
| | - Ji-Yu Cao
- Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, Hefei, China
| | - Yu-Wen Guo
- Department of Obstetrics and Gynecology, Anhui Women and Child Health Care Hospital, Anhui Medical University, Hefei, China.
| | - Jia-Hu Hao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
22
|
Roberman J, Emeto TI, Adegboye OA. Adverse Birth Outcomes Due to Exposure to Household Air Pollution from Unclean Cooking Fuel among Women of Reproductive Age in Nigeria. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:E634. [PMID: 33451100 PMCID: PMC7828613 DOI: 10.3390/ijerph18020634] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/01/2021] [Accepted: 01/08/2021] [Indexed: 11/16/2022]
Abstract
Exposure to household air pollution (HAP) from cooking with unclean fuels and indoor smoking has become a significant contributor to global mortality and morbidity, especially in low- and middle-income countries such as Nigeria. Growing evidence suggests that exposure to HAP disproportionately affects mothers and children and can increase risks of adverse birth outcomes. We aimed to quantify the association between HAP and adverse birth outcomes of stillbirth, preterm births, and low birth weight while controlling for geographic variability. This study is based on a cross-sectional survey of 127,545 birth records from 41,821 individual women collected as part of the 2018 Nigeria Demographic and Health Survey (NDHS) covering 2013-2018. We developed Bayesian structured additive regression models based on Bayesian splines for adverse birth outcomes. Our model includes the mother's level and household characteristics while correcting for spatial effects and multiple births per mother. Model parameters and inferences were based on a fully Bayesian approach via Markov Chain Monte Carlo (MCMC) simulations. We observe that unclean fuel is the primary source of cooking for 89.3% of the 41,821 surveyed women in the 2018 NDHS. Of all pregnancies, 14.9% resulted in at least one adverse birth outcome; 14.3% resulted in stillbirth, 7.3% resulted in an underweight birth, and 1% resulted in premature birth. We found that the risk of stillbirth is significantly higher for mothers using unclean cooking fuel. However, exposure to unclean fuel was not significantly associated with low birth weight and preterm birth. Mothers who attained at least primary education had reduced risk of stillbirth, while the risk of stillbirth increased with the increasing age of the mother. Mothers living in the Northern states had a significantly higher risk of adverse births outcomes in 2018. Our results show that decreasing national levels of adverse birth outcomes depends on working toward addressing the disparities between states.
Collapse
Affiliation(s)
- Jamie Roberman
- Public Health & Tropical Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia; (J.R.); (T.I.E.)
| | - Theophilus I. Emeto
- Public Health & Tropical Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia; (J.R.); (T.I.E.)
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
| | - Oyelola A. Adegboye
- Public Health & Tropical Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia; (J.R.); (T.I.E.)
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
23
|
Bonyadi Z, Arfaeinia H, Ramavandi B, Omidvar M, Asadi R. Quantification of mortality and morbidity attributed to the ambient air criteria pollutants in Shiraz city, Iran. CHEMOSPHERE 2020; 257:127233. [PMID: 32505953 DOI: 10.1016/j.chemosphere.2020.127233] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/11/2020] [Accepted: 05/25/2020] [Indexed: 05/28/2023]
Abstract
According to the epidemiological surveys, ambient air pollution has directly related to mortality and different diseases such as cardiovascular and respiratory defects. Among the atmospheric contaminants, criteria air ones (NO2, O3, PM2.5/10, SO2) demonstrated that have particular importance in the community disease. The overall goal of this paper was to study the impact of criteria air contaminants on the health of the inhabitants of Shiraz city, Iran. To accomplish this, the AirQ2.2.3 software was applied. The results of the study revealed that the annual average NO2, SO2, PM2.5, PM10, and O3 concentrations are 39.98, 27.6, 14.35, 46.16, and 120.03 μg/m3 in 2016 and 30.27, 23.97, 16.45, 51.65, and 52.58 μg/m3 in 2017. The total International Classification of Diseases (ICD), cardiovascular, and respiratory mortalities caused by air contaminants in Shiraz was predicted as 911, 628, and 182 cases in 2016, and 346, 370, and 82 cases in 2017, respectively. Sulfur dioxide (SO2) had the greatest rate of total mortality with the attributable equivalent of 4.3% in 2016, but this value has been decreased to 0.42% in 2017. The findings of this research revealed that air contamination has caused problems in Shiraz city according to the predicted results. The findings of this work provide useful data for regional and national health policymakers, who should take decisions to develop strategies for control air contaminants and estimate the cost-effectiveness of interventions.
Collapse
Affiliation(s)
- Ziaeddin Bonyadi
- Department of Environmental Health Engineering, Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Arfaeinia
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran; Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Bahman Ramavandi
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran; Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Mohsen Omidvar
- Department of Occupational Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Reza Asadi
- Department of Environment, Bushehr Branch, Islamic Azad University, Bushehr, Iran
| |
Collapse
|