1
|
Potì S, Merico E, Conte M, Unga F, Cesari D, Dinoi A, De Bartolomeo AR, Pennetta A, Bloise E, Deluca G, De Benedetto GE, Ferrera R, Bompadre E, Guascito MR, Contini D. Spatial and seasonal variability of the contribution of sources to PM 2.5, PM 10 and their oxidative potential in different sites in a central Mediterranean area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 976:179283. [PMID: 40188722 DOI: 10.1016/j.scitotenv.2025.179283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/09/2025] [Accepted: 03/27/2025] [Indexed: 04/23/2025]
Abstract
Oxidative potential (OP) is a potential indicator of negative health effects of particulate matter (PM). To address mitigation strategies, there is need of understanding how natural and anthropogenic sources influence OP at different sites. This work investigates spatial and seasonal variabilities of PM2.5 and PM10 concentrations, composition, and oxidative potential (OPDTTV, obtained with DTT assay), simultaneously at 22 sites in a central Mediterranean area in south Italy. Source apportionment using PMF5 allowed to evaluate the contributions of eight sources: traffic, biomass burning (BB), nitrate, sulphate-rich, marine, crustal, carbonates/construction, and industrial (only for PM2.5). Nitrate, traffic, and BB had larger contributions during the cold season and presented spatial variability with exclusion of nitrate. Industrial contributions did not have relevant seasonal or spatial variability. The other sources had an opposite trend with larger values during the warm season but only sulphate-rich had non-negligible spatial variability. OPDTTV had relevant spatial variability only during the cold season. Four sources had statistically significant contributions to OPDTTV: traffic, BB, sulphate-rich, and crustal (in descending order). The use of soluble and insoluble fractions of OC and Ca in PMF5 allowed a better separation between traffic and BB sources and allowed to determine the role of local construction works. The results may have implications in future policies for mitigation strategies of OP targeting specific sources categories.
Collapse
Affiliation(s)
- Serena Potì
- Istituto di Scienze dell'Atmosfera e del Clima (ISAC), Consiglio Nazionale delle Ricerche (CNR), Lecce, Italy; Dipartimento di Ingegneria dell'Innovazione, Università del Salento, Lecce, Italy
| | - Eva Merico
- Istituto di Scienze dell'Atmosfera e del Clima (ISAC), Consiglio Nazionale delle Ricerche (CNR), Lecce, Italy
| | - Marianna Conte
- Istituto di Scienze dell'Atmosfera e del Clima (ISAC), Consiglio Nazionale delle Ricerche (CNR), Roma, Italy
| | - Florin Unga
- Istituto di Scienze dell'Atmosfera e del Clima (ISAC), Consiglio Nazionale delle Ricerche (CNR), Lecce, Italy
| | - Daniela Cesari
- Istituto di Scienze dell'Atmosfera e del Clima (ISAC), Consiglio Nazionale delle Ricerche (CNR), Lecce, Italy
| | - Adelaide Dinoi
- Istituto di Scienze dell'Atmosfera e del Clima (ISAC), Consiglio Nazionale delle Ricerche (CNR), Lecce, Italy
| | - Anna Rita De Bartolomeo
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali DiSTeBA, Università del Salento, Lecce, Italy
| | - Antonio Pennetta
- Istituto di Scienze dell'Atmosfera e del Clima (ISAC), Consiglio Nazionale delle Ricerche (CNR), Lecce, Italy
| | - Ermelinda Bloise
- Istituto di Scienze dell'Atmosfera e del Clima (ISAC), Consiglio Nazionale delle Ricerche (CNR), Lecce, Italy
| | - Giuseppe Deluca
- Istituto di Scienze dell'Atmosfera e del Clima (ISAC), Consiglio Nazionale delle Ricerche (CNR), Lecce, Italy
| | | | | | | | - Maria Rachele Guascito
- Istituto di Scienze dell'Atmosfera e del Clima (ISAC), Consiglio Nazionale delle Ricerche (CNR), Lecce, Italy; Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali DiSTeBA, Università del Salento, Lecce, Italy.
| | - Daniele Contini
- Istituto di Scienze dell'Atmosfera e del Clima (ISAC), Consiglio Nazionale delle Ricerche (CNR), Lecce, Italy.
| |
Collapse
|
2
|
Li Z, Jiang L, Yu H, Wang J. The hidden risk in high-temperature urban environments: assessment of metal elements and human health risks of particulate matter at street. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137475. [PMID: 39922074 DOI: 10.1016/j.jhazmat.2025.137475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/01/2025] [Accepted: 02/01/2025] [Indexed: 02/10/2025]
Abstract
With the exacerbated urban heat island effect, urban populations are exposing to high temperatures and increased exposure to particulate matter (PM) during daily commutes (especially vulnerable groups). Under high-temperature urban environments, the traffic emissions and the individual respiratory rate would rise simultaneously, causing an elevated risk of air particulate exposure. Most previous studies on PM at bus stations have focused on concentration levels, while neglecting chemical analyses of metal elements or increased human respiratory intake in high-temperature environments. This study conducted PM sampling and physiological parameter measurements of waiting passengers under high temperature conditions at six distinct bus stations in Nanjing. The health risks associated with exposure to metallic elements were evaluated alongside the impact of elevated temperatures on human health, employing chemical analyses to substantiate these assessments. The results indicated that the average PM concentration at bus stations exceeded the urban background by approximately 15 μg/m³, while As, Cd, and Cr were identified as hazards posing significant health risks. Notably, under high-temperature conditions, the core body temperature of individuals reached 37.91 °C, with the health risk increasing by around 20-30 %. In view of the risk of human being exposed to high temperature environment, active and passive mitigation measures are proposed.
Collapse
Affiliation(s)
- Zixuan Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Lanfei Jiang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Hanhui Yu
- School of Architecture, Southeast University, Nanjing 210096, China; Jiangsu Province Engineering Research Center of Urban Heat and Pollution Control, Southeast University, Nanjing 210096, China
| | - Junqi Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; School of Architecture, Southeast University, Nanjing 210096, China; Jiangsu Province Engineering Research Center of Urban Heat and Pollution Control, Southeast University, Nanjing 210096, China.
| |
Collapse
|
3
|
Wei Y, Chen Y, Hong Y, Chen J, Li HB, Li H, Yao X, Mehmood T, Feng X, Luo XS. Comparative in vitro toxicological effects of water-soluble and insoluble components of atmospheric PM 2.5 on human lung cells. Toxicol In Vitro 2024; 98:105828. [PMID: 38621549 DOI: 10.1016/j.tiv.2024.105828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/12/2024] [Accepted: 04/11/2024] [Indexed: 04/17/2024]
Abstract
Fine particulates in city air significantly impact human health, but the hazardous compositional mechanisms are still unclear. Besides the toxicity of environmental PM2.5 to in vitro human lung epithelial cells (A549), the independent cytotoxicity of PM2.5-bound water-soluble (WS-PM2.5) and water-insoluble (WIS-PM2.5) fractions were also compared by cell viability, oxidative stress (reactive oxygen species, ROS), and inflammatory injury (IL-6 and TNF-α). The cytotoxicity of PM2.5 varied significantly by sampling season and place, with degrees greater in winter and spring than in summer and autumn, related to corresponding trend of air PM2.5 level, and also higher in industrial than urban site, although their PM2.5 pollution levels were comparable. The PM2.5 bound metals (Ni, Cr, Fe, and Mn) may contribute to cellular injury. Both WS-PM2.5 and WIS-PM2.5 posed significant cytotoxicity, that WS-PM2.5 was more harmful than WIS-PM2.5 in terms of decreasing cell viability and increasing inflammatory cytokines production. In particular, industrial samples were usually more toxic than urban samples, and those from summer were generally less toxic than other seasons. Hence, in order to mitigate the health risks of PM2.5 pollution, the crucial targets might be components of heavy metals and soluble fractions, and sources in industrial areas, especially during the cold seasons.
Collapse
Affiliation(s)
- Yaqian Wei
- International Center for Ecology, Meteorology, and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yan Chen
- International Center for Ecology, Meteorology, and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China; Jiangsu Environmental Engineering Technology Co., Ltd., Nanjing 210036, China
| | - Youwei Hong
- Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jinsheng Chen
- Center for Excellence in Regional Atmospheric Environment, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Hong-Bo Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Hanhan Li
- International Center for Ecology, Meteorology, and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Xuewen Yao
- International Center for Ecology, Meteorology, and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Tariq Mehmood
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Engineering, Permoserstr. 15, Leipzig D-04318, Germany
| | - Xinyuan Feng
- International Center for Ecology, Meteorology, and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Xiao-San Luo
- International Center for Ecology, Meteorology, and Environment, School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| |
Collapse
|
4
|
Shahbaz MA, Kuivanen S, Mussalo L, Afonin AM, Kumari K, Behzadpour D, Kalapudas J, Koivisto AM, Penttilä E, Löppönen H, Jalava P, Vapalahti O, Balistreri G, Lampinen R, Kanninen KM. Exposure to urban particulate matter alters responses of olfactory mucosal cells to SARS-CoV-2 infection. ENVIRONMENTAL RESEARCH 2024; 249:118451. [PMID: 38341073 DOI: 10.1016/j.envres.2024.118451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Respiratory viruses have a significant impact on health, as highlighted by the COVID-19 pandemic. Exposure to air pollution can contribute to viral susceptibility and be associated with severe outcomes, as suggested by recent epidemiological studies. Furthermore, exposure to particulate matter (PM), an important constituent of air pollution, is linked to adverse effects on the brain, including cognitive decline and Alzheimer's disease (AD). The olfactory mucosa (OM), a tissue located at the rooftop of the nasal cavity, is directly exposed to inhaled air and in direct contact with the brain. Increasing evidence of OM dysfunction related to neuropathogenesis and viral infection demonstrates the importance of elucidating the interplay between viruses and air pollutants at the OM. This study examined the effects of subacute exposure to urban PM 0.2 and PM 10-2.5 on SARS-CoV-2 infection using primary human OM cells obtained from cognitively healthy individuals and individuals diagnosed with AD. OM cells were exposed to PM and subsequently infected with the SARS-CoV-2 virus in the presence of pollutants. SARS-CoV-2 entry receptors and replication, toxicological endpoints, cytokine release, oxidative stress markers, and amyloid beta levels were measured. Exposure to PM did not enhance the expression of viral entry receptors or cellular viral load in human OM cells. However, PM-exposed and SARS-CoV-2-infected cells showed alterations in cellular and immune responses when compared to cells infected only with the virus or pollutants. These changes are highly pronounced in AD OM cells. These results suggest that exposure of human OM cells to PM does not increase susceptibility to SARS-CoV-2 infection in vitro, but it can alter cellular immune responses to the virus, particularly in AD. Understanding the interplay of air pollutants and COVID-19 can provide important insight for the development of public health policies and interventions to reduce the negative influences of air pollution exposure.
Collapse
Affiliation(s)
- Muhammad Ali Shahbaz
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Kuopio, Finland
| | - Suvi Kuivanen
- University of Helsinki, Department of Virology, Faculty of Medicine, Helsinki, Finland; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Virology, Berlin, Germany
| | - Laura Mussalo
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Kuopio, Finland
| | - Alexey M Afonin
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Kuopio, Finland
| | - Kajal Kumari
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Kuopio, Finland
| | - Donya Behzadpour
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Kuopio, Finland
| | - Juho Kalapudas
- University of Eastern Finland, Brain Research Unit, Department of Neurology, School of Medicine, Kuopio, Finland
| | - Anne M Koivisto
- University of Eastern Finland, Brain Research Unit, Department of Neurology, School of Medicine, Kuopio, Finland; Kuopio University Hospital, Department of Neurology, Neuro Centre, Kuopio, Finland; University of Helsinki, Faculty of Medicine, Department of Neurology and Geriatrics, Helsinki University Hospital and Neurosciences, Helsinki, Finland
| | - Elina Penttilä
- University of Eastern Finland and Kuopio University Hospital, Department of Otorhinolaryngology, Kuopio, Finland
| | - Heikki Löppönen
- University of Eastern Finland and Kuopio University Hospital, Department of Otorhinolaryngology, Kuopio, Finland
| | - Pasi Jalava
- University of Eastern Finland, Inhalation Toxicology Laboratory, Department of Environmental and Biological Sciences, Kuopio, Finland
| | - Olli Vapalahti
- University of Helsinki, Department of Virology, Faculty of Medicine, Helsinki, Finland
| | - Giuseppe Balistreri
- University of Helsinki, Department of Virology, Faculty of Medicine, Helsinki, Finland
| | - Riikka Lampinen
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Kuopio, Finland
| | - Katja M Kanninen
- University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Kuopio, Finland.
| |
Collapse
|
5
|
Nosratabadi AR, Gustafsson M, Lovén K, Ljunggren SA, Olofsson U, Abbasi S, Blomqvist G, Karlsson H, Ljungman AG, Cassee FR, Gerlofs-Nijland ME, Gudmundsson A. Airway contraction and cytokine release in isolated rat lungs induced by wear particles from the road and tire interface and road vehicle brakes. Inhal Toxicol 2023; 35:309-323. [PMID: 38054445 DOI: 10.1080/08958378.2023.2289018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 11/17/2023] [Indexed: 12/07/2023]
Abstract
The dominant road traffic particle sources are wear particles from the road and tire interface, and from vehicle brake pads. The aim of this work was to investigate the effect of road and brake wear particles on pulmonary function and biomarkers in isolated perfused rat lungs. Particles were sampled from the studded tire wear of three road pavements containing different rock materials in a road simulator; and from the wear of two brake pad materials using a pin-on-disk machine. Isolated rat lungs inhaled the coarse and fine fractions of the sampled particles resulting in an estimated total particle lung dose of 50 μg. The tidal volume (TV) was measured during the particle exposure and the following 50 min. Perfusate and BALF were analyzed for the cytokines TNF, CXCL1 and CCL3. The TV of lungs exposed to rock materials was significantly reduced after 25 min of exposure compared to the controls, for quartzite already after 4 min. The particles of the heavy-duty brake pads had no effect on the TV. Brake particles resulted in a significant elevation of CXCL1 in the perfusate. Brake particles showed significant elevations of all three measured cytokines, and quartzite showed a significant elevation of TNF in BALF. The study shows that the toxic effect on lungs exposed to airborne particles can be investigated using measurements of tidal volume. Furthermore, the study shows that the choice of rock material in road pavements has the potential to affect the toxicity of road wear PM10.
Collapse
Affiliation(s)
- Ali Reza Nosratabadi
- Occupational and Environmental Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Mats Gustafsson
- Swedish National Road and Transport Research Institute (VTI), Linköping, Sweden
| | - Karin Lovén
- Ergonomics and Aerosol Technology, Design Sciences, Lund University, Lund, Sweden
| | - Stefan A Ljunggren
- Occupational and Environmental Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Ulf Olofsson
- School of Industrial Engineering and Management, Department of Machine Design, Royal Institute of Technology (KTH), Stockholm, Sweden
| | - Saeed Abbasi
- School of Industrial Engineering and Management, Department of Machine Design, Royal Institute of Technology (KTH), Stockholm, Sweden
| | - Göran Blomqvist
- Swedish National Road and Transport Research Institute (VTI), Linköping, Sweden
| | - Helen Karlsson
- Occupational and Environmental Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Anders G Ljungman
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Flemming R Cassee
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | | | - Anders Gudmundsson
- Ergonomics and Aerosol Technology, Design Sciences, Lund University, Lund, Sweden
| |
Collapse
|
6
|
Tossavainen T, Martikainen MV, Loukola H, Roponen M. Common Pollen Modulate Immune Responses against Viral-Like Challenges in Airway Coculture Model. J Immunol Res 2023; 2023:6639092. [PMID: 37965270 PMCID: PMC10643028 DOI: 10.1155/2023/6639092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 11/16/2023] Open
Abstract
Recent research indicates that exposure to pollen increases the risk and severity of respiratory infections, while studies also suggest that it may possess a protective function. Our aim was to investigate how exposure to common pollen modifies airway cells' responses to viral- or bacterial-like challenges and vice versa. Cocultured A549 and THP-1 cells were exposed to three doses of four different pollens (Alnus glutinosa, Betula pendula, Phleum pratense, or Ambrosia artemisiifolia) and subsequently to Toll-like receptor (TLR) ligands mimicking bacterial and viral challenges (TLR3, TLR4, TLR7/8). The stimulation experiment was replicated in reverse order. Toxicological and immunological end points were analyzed. When cells were primed with pollen, especially with grass (P. pratense) or weed (A. artemisiifolia), the ability of cells to secrete cytokines in response to bacterial- and viral-like exposure was decreased. In contrast, cells primed with viral ligand TLR7/8 showed greater cytokine responses against pollen than cells exposed to ligands or pollen alone. Our results suggest that pollen exposure potentially weakens immune reactions to bacterial- or viral-like challenges by modulating cytokine production. They also indicate that TLR7/8-mediated viral challenges could elicit exaggerated immune responses against pollen. Both mechanisms could contribute to the acceleration and complication of infections during the pollen season.
Collapse
Affiliation(s)
- Tarleena Tossavainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Maria-Viola Martikainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Hanna Loukola
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Marjut Roponen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
7
|
Yang M, Zeng HX, Wang XF, Hakkarainen H, Leskinen A, Komppula M, Roponen M, Wu QZ, Xu SL, Lin LZ, Liu RQ, Hu LW, Yang BY, Zeng XW, Dong GH, Jalava P. Sources, chemical components, and toxicological responses of size segregated urban air PM samples in high air pollution season in Guangzhou, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161092. [PMID: 36586693 DOI: 10.1016/j.scitotenv.2022.161092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
The sources, sizes, components, and toxicological responses of particulate matter (PM) have demonstrated remarkable spatiotemporal variability. However, associations between components, sources, and toxicological effects in different-sized PM remain unclear. The purposes of this study were to 1) determine the sources of PM chemical components, 2) investigate the associations between components and toxicology of PM from Guangzhou high air pollution season. We collected size-segregated PM samples (PM10-2.5, PM2.5-1, PM1-0.2, PM0.2) from December 2017 to March 2018 in Guangzhou. PM sources and components were analyzed. RAW264.7 mouse macrophages were treated with PM samples for 24 h followed by measurements of toxicological responses. The concentrations of PM10-2.5 and PM1-0.2 were relatively high in all samples. Water-soluble ions and PAHs were more abundant in smaller-diameter PM, while metallic elements were more enriched in larger-diameter PM. Traffic exhaust, soil dust, and biomass burning/petrochemical were the most important sources of PAHs, metals and ions, respectively. The main contributions to PM were soil dust, coal combustion, and biomass burning/petrochemical. Exposure to PM10-2.5 induced the most significant reduction of cell mitochondrial activity, oxidative stress and inflammatory response, whereas DNA damage, an increase of Sub G1/G0 population, and impaired cell membrane integrity were most evident with PM1-0.2 exposure. There were moderate or strong correlations between most single chemicals and almost all toxicological endpoints as well as between various toxicological outcomes. Our findings highlight those various size-segregated PM-induced toxicological effects in cells, and identify chemical components and sources of PM that play the key role in adverse intracellular responses. Although fine and ultrafine PM have attracted much attention, the inflammatory damage caused by coarse PM cannot be ignored.
Collapse
Affiliation(s)
- Mo Yang
- Department of Environmental and Biological Science, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland; Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Hui-Xian Zeng
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xin-Feng Wang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Henri Hakkarainen
- Department of Environmental and Biological Science, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Ari Leskinen
- Finnish Meteorological Institute, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland; Department of Applied Physics, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Mika Komppula
- Finnish Meteorological Institute, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Marjut Roponen
- Department of Environmental and Biological Science, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Qi-Zhen Wu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Shu-Li Xu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Li-Zi Lin
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ru-Qing Liu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Li-Wen Hu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Bo-Yi Yang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiao-Wen Zeng
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Pasi Jalava
- Department of Environmental and Biological Science, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| |
Collapse
|
8
|
Yang M, Jalava P, Wang XF, Bloom MS, Leskinen A, Hakkarainen H, Roponen M, Komppula M, Wu QZ, Xu SL, Lin LZ, Liu RQ, Hu LW, Yang BY, Zeng XW, Yu YJ, Dong GH. Winter and spring variation in sources, chemical components and toxicological responses of urban air particulate matter samples in Guangzhou, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157382. [PMID: 35843314 DOI: 10.1016/j.scitotenv.2022.157382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/17/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
The sources and chemical components of urban air particles exhibit seasonal variations that may affect their hazardousness to human health. Our aims were to investigate winter and spring variation in particulate matter (PM) sources, components and toxicological responses of different PM size fractions from samples collected in Guangzhou, China. Four size-segregated PM samples (PM10-2.5, PM2.5-1, PM1-0.2, and PM0.2) were collected separately during winter (December 2017 and January 2018) and spring (March 2018). All PM samples were analyzed for chemical components and characterized by source. RAW 264.7 macrophages were exposed to four doses of PM samples for 24 h. Cytotoxicity, oxidation, cell cycle, genotoxicity and inflammatory parameters were tested. PM concentrations were higher in the winter samples and caused more severe cytotoxicity and oxidative damage than to PM in the spring samples. PM in winter and spring led to increases in cell cycle and genotoxicity. The trends of size-segregated PM components were consistent in winter and spring samples. Metallic elements and PAHs were found in the largest concentrations in winter PM, but ions were found in the largest concentrations in spring PM. metallic elements, PAHs and ions in size-segregated PM samples were associated with most toxicological endpoints. Soil dust and biomass burning were the main sources of PM in winter, whereas traffic exhaust and biomass burning was the main source with of spring PM. Our results suggest that the composition of PM samples from Guangzhou differed during winter and spring, which led to strong variations in toxicological responses. The results demonstrate the importance of examining a different particle sizes, compositions and sources across different seasons, for human risk assessment.
Collapse
Affiliation(s)
- Mo Yang
- Department of Environmental and Biological Science, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland; Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Pasi Jalava
- Department of Environmental and Biological Science, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Xin-Feng Wang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Michael S Bloom
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; Department of Global and Community Health, George Mason University, Fairfax, VA, USA
| | - Ari Leskinen
- Finnish Meteorological Institute, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland; Department of Applied Physics, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Henri Hakkarainen
- Department of Environmental and Biological Science, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Marjut Roponen
- Department of Environmental and Biological Science, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Mika Komppula
- Finnish Meteorological Institute, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Qi-Zhen Wu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Shu-Li Xu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Li-Zi Lin
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ru-Qing Liu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Li-Wen Hu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Bo-Yi Yang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiao-Wen Zeng
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yun-Jiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, China.
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
9
|
Giannossa LC, Cesari D, Merico E, Dinoi A, Mangone A, Guascito MR, Contini D. Inter-annual variability of source contributions to PM 10, PM 2.5, and oxidative potential in an urban background site in the central mediterranean. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 319:115752. [PMID: 35982560 DOI: 10.1016/j.jenvman.2022.115752] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/04/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
Airborne particulate matter (PM) is studied because of its effects on human health and climate change. PM long-term characterisation allows identifying trends and evaluating the outcomes of environmental protection policies. This work is aimed to study the inter-annual variability of PM2.5 and PM10 concentrations and chemical composition in an urban background site (Italy). A dataset of daily PM2.5 and PM10 was collected in the period 2016-2017, including the content of OC, EC, major water-soluble ions, main metals, and compared to a similar dataset collected in the period 2013-2014. Oxidative potential using DTT assay (dithiothreitol) was evaluated and expressed in DTTV as 0.39 nmol/min·m3 in PM10 and 0.29 in PM2.5 nmol/min·m3. PM source apportionment was computed using the EPA PMF5.0 model and source contributions compared with those of a previous dataset collected between 2013 and 2014. Multi linear regression analysis identified which source contributed (p < 0.05) to the oxidative potential of each size fraction. Inter-annual trends were more evident on PM2.5 with reductions of biomass burning contribution and increases in traffic contribution in the 2016-2017 period. Crustal contributions were similar for the two periods, in both size fractions. Carbonates were comparable in PM10 with a slight increase in PM2.5. Sea spray decreased in PM10. The DTTV of PM2.5 peaked during cold periods, while, the DTTV of the PM10-2.5 fraction peaked in summer, suggesting that different sources, with different seasonality, influence OP in the PM2.5 and PM10-2.5 fractions. Analysis showed that sea spray, crustal, and carbonates sources contribute ∼13.6% to DTTV in PM2.5 and ∼62.4% to DTTV in PM10-2.5. Combustion sources (biomass burning and traffic) contribute to the majority of DTTV (50.6%) in PM2.5 and contribute for ∼26% to DTTV in PM10-2.5. Secondary nitrate contributes to DTTV in both fine and coarse fraction; secondary sulphate contribute to DTTV in PM2.5 with negligible contributions to DTTV in PM10-2.5.
Collapse
Affiliation(s)
| | - Daniela Cesari
- Italy National Research Council of Italy, Institute of Atmospheric Sciences and Climate (CNR-ISAC), Lecce, 73100, Italy.
| | - Eva Merico
- Italy National Research Council of Italy, Institute of Atmospheric Sciences and Climate (CNR-ISAC), Lecce, 73100, Italy
| | - Adelaide Dinoi
- Italy National Research Council of Italy, Institute of Atmospheric Sciences and Climate (CNR-ISAC), Lecce, 73100, Italy
| | - Annarosa Mangone
- University of Bari Aldo Moro, Department of Chemistry, I-70125, Bari, Italy
| | - Maria Rachele Guascito
- Italy National Research Council of Italy, Institute of Atmospheric Sciences and Climate (CNR-ISAC), Lecce, 73100, Italy; Department of Environmental and Biological Sciences and Technologies (DISTEBA), University of Salento, Lecce, 73100, Italy
| | - Daniele Contini
- Italy National Research Council of Italy, Institute of Atmospheric Sciences and Climate (CNR-ISAC), Lecce, 73100, Italy
| |
Collapse
|
10
|
Yang M, Jalava P, Hakkarainen H, Roponen M, Leskinen A, Komppula M, Dong GP, Lao XQ, Wu QZ, Xu SL, Lin LZ, Liu RQ, Hu LW, Yang BY, Zeng XW, Dong GH. Fine and ultrafine airborne PM influence inflammation response of young adults and toxicological responses in vitro. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155618. [PMID: 35513150 DOI: 10.1016/j.scitotenv.2022.155618] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/05/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
Little evidence is available regarding the impact of different sizes of inhaled particulate matter (PM) on inflammatory responses in healthy young adults in connection with toxicological responses. We conducted a five-time repeated measurement panel study on 88 healthy young college students in Guangzhou, China from December 2017 to January 2018. Blood samples were collected from each participant and tested for tumor necrosis factor alpha (TNF-α) levels every week for 5 consecutive weeks. Mass concentrations of ambient PM2.5, PM1, PM0.5 and number concentrations of ambient PM0.1 were measured. RAW 264.7 macrophages were exposed to PM (PM10-2.5, PM2.5-1, PM1-0.2, PM0.2) collected at the same time as the panel study. Cytotoxicity, oxidation and inflammatory parameters, cell cycle and genotoxicity were tested. Particles were characterized for their chemical composition. The trends of associations between PM2.5, PM1, PM0.5 and TNF-α level were consistent in lag 0 and 3 days, and the relative risk decreased as the particle size decreased. All the ambient air pollutants had the similar change trends in lag 1, 4 and 5 days. Similar results in RAW 264.7 macrophages were found; PM10-2.5 induced the greatest TNF-α and macrophage inflammatory protein 2 (MIP-2) productions and oxidative damage. PM1-0.2 and PM0.2 induced more significant dose-dependent increases of cell cycle and genotoxic response. In the component concentrations of PM samples, metal elements were PM10-2.5 > PM2.5-1 > PM0.2 ≥ PM1-0.2; ions and polycyclic aromatic hydrocarbons (PAHs) were PM0.2 > PM1-0.2 > PM2.5-1 > PM10-2.5. Our results suggested that exposure to all particle sizes was significantly associated with inflammation among healthy young adults and toxicological responses in RAW 264.7 macrophages. Different human and toxicological reactions caused by PM samples indicated the importance of investigating various particle sizes.
Collapse
Affiliation(s)
- Mo Yang
- Department of Environmental and Biological Science, University of Eastern Finland, Yliopistonranta 1, 1627, FI-70211 Kuopio, Finland; Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Pasi Jalava
- Department of Environmental and Biological Science, University of Eastern Finland, Yliopistonranta 1, 1627, FI-70211 Kuopio, Finland
| | - Henri Hakkarainen
- Department of Environmental and Biological Science, University of Eastern Finland, Yliopistonranta 1, 1627, FI-70211 Kuopio, Finland
| | - Marjut Roponen
- Department of Environmental and Biological Science, University of Eastern Finland, Yliopistonranta 1, 1627, FI-70211 Kuopio, Finland
| | - Ari Leskinen
- Finnish Meteorological Institute, Yliopistonranta 1, 1627, FI-70211 Kuopio, Finland; Department of Applied Physics, University of Eastern Finland, Yliopistonranta 1, 1627, FI-70211 Kuopio, Finland
| | - Mika Komppula
- Finnish Meteorological Institute, Yliopistonranta 1, 1627, FI-70211 Kuopio, Finland
| | - Guo-Ping Dong
- Department of Accounting, Guangzhou Huashang College, Guangzhou 51000, China
| | - Xiang-Qian Lao
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, 421, 4/F School of Public Health, Prince of Wales Hospital, Sha Tin, N.T., Hong Kong, China
| | - Qi-Zhen Wu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Shu-Li Xu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Li-Zi Lin
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ru-Qing Liu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Li-Wen Hu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Bo-Yi Yang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiao-Wen Zeng
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
11
|
Hesperidin Protects Human HaCaT Keratinocytes from Particulate Matter 2.5-Induced Apoptosis via the Inhibition of Oxidative Stress and Autophagy. Antioxidants (Basel) 2022; 11:antiox11071363. [PMID: 35883854 PMCID: PMC9312010 DOI: 10.3390/antiox11071363] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022] Open
Abstract
Numerous epidemiological studies have reported that particulate matter 2.5 (PM2.5) causes skin aging and skin inflammation and impairs skin homeostasis. Hesperidin, a bioflavonoid that is abundant in citrus species, reportedly has anti-inflammatory properties. In this study, we evaluated the cytoprotective effect of hesperidin against PM2.5-mediated damage in a human skin cell line (HaCaT). Hesperidin reduced PM2.5-induced intracellular reactive oxygen species (ROS) generation and oxidative cellular/organelle damage. PM2.5 increased the proportion of acridine orange-positive cells, levels of autophagy-related proteins, beclin-1 and microtubule-associated protein light chain 3, and apoptosis-related proteins, B-cell lymphoma-2-associated X protein, cleaved caspase-3, and cleaved caspase-9. However, hesperidin ameliorated PM2.5-induced autophagy and apoptosis. PM2.5 promoted cellular apoptosis via mitogen-activated protein kinase (MAPK) activation by promoting the phosphorylation of extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38. The MAPK inhibitors U0126, SP600125, and SB203580 along with hesperidin exerted a protective effect against PM2.5-induced cellular apoptosis. Furthermore, hesperidin restored PM2.5-mediated reduction in cell viability via Akt activation; this was also confirmed using LY294002 (a phosphoinositide 3-kinase inhibitor). Overall, hesperidin shows therapeutic potential against PM2.5-induced skin damage by mitigating excessive ROS accumulation, autophagy, and apoptosis.
Collapse
|
12
|
Impact of COVID-19 Lockdown on Oxidative Potential of Particulate Matter: Case of Athens (Greece). TOXICS 2022; 10:toxics10060280. [PMID: 35736890 PMCID: PMC9229565 DOI: 10.3390/toxics10060280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/10/2022] [Accepted: 05/17/2022] [Indexed: 12/10/2022]
Abstract
This work evaluates the aerosol oxidative potential (OP) and its changes from modified air pollution emissions during the COVID-19 lockdown period in 2020, with the intent of elucidating the contribution of aerosol sources and related components to aerosol OP. For this, daily particulate matter (PM) samples at an urban background site were collected and analyzed with a chemical (acellular) assay based on Dithiothreitol (DTT) during the COVID-19 restriction period in Athens (Greece). The obtained time-series of OP, PM2.5, organic matter (OM) and SO42− of the pre-, post- and lockdown periods were also compared to the data of the same time periods during the years 2017–2019. Even though all traffic-related emissions have been significantly reduced during the lockdown period (by 30%), there is no reduction in water-soluble OP, organics and sulfate concentrations of aerosol during 2020. The results reveal that the decrease in traffic was not sufficient to drive any measurable change on OP, suggesting that other sources—such as biomass burning and secondary aerosol from long-range transport, which remained unchanged during the COVID lockdown—are the main contributors to OP in Athens, Greece.
Collapse
|
13
|
Wallraff JP, Ungeheuer F, Dombrowski A, Oehlmann J, Vogel AL. Occurrence and in vitro toxicity of organic compounds in urban background PM 2.5. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:152779. [PMID: 35007573 DOI: 10.1016/j.scitotenv.2021.152779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/12/2021] [Accepted: 12/25/2021] [Indexed: 06/14/2023]
Abstract
This study describes the chemical composition and in vitro toxicity of the organic fraction of fine particulate matter (PM2.5) at an urban background site, which receives emissions either from Frankfurt international airport or the city centre, respectively. We analysed the chemical composition of filter extracts (PM2.5) using ultrahigh-performance liquid chromatography coupled to a high-resolution mass spectrometer, followed by a non-target analysis. In parallel, we applied the bulk of the filter extracts to a Microtox and acetylcholinesterase-inhibition assay for in vitro toxicity testing. We find that both the chemical composition and toxicity depend on the prevailing wind directions, and the airport operating condition, respectively. The occurrence of the airport marker compounds tricresyl phosphate and pentaerythritol esters depends on the time of the day, reflecting the night flight ban as well as an airport strike event during November 2019. We compared the organic aerosol composition and toxicity from the airport wind-sector against the city centre wind-sector. We find that urban background aerosol shows a higher baseline toxicity and acetylcholinesterase inhibition compared to rural PM2.5 that is advected over the airport. Our results indicate that the concentration and individual composition of PM2.5 influence the toxicity. Suspected drivers of the acetylcholinesterase inhibition are i.e. organophosphorus esters like triphenyl phosphate and cresyldiphenyl phosphate, and the non-ionic surfactant 4-tert-octylphenol ethoxylate. However, further research is necessary to unambiguously identify harmful organic air pollutants and their sources and quantify concentration levels at which adverse effects in humans and the environment can occur.
Collapse
Affiliation(s)
- Jonas P Wallraff
- Institute for Atmospheric and Environmental Sciences, Goethe-University Frankfurt, Altenhöferallee 1, 60438 Frankfurt am Main, Germany
| | - Florian Ungeheuer
- Institute for Atmospheric and Environmental Sciences, Goethe-University Frankfurt, Altenhöferallee 1, 60438 Frankfurt am Main, Germany
| | - Andrea Dombrowski
- Institute of Ecology, Evolution and Diversity, Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Jörg Oehlmann
- Institute of Ecology, Evolution and Diversity, Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Alexander L Vogel
- Institute for Atmospheric and Environmental Sciences, Goethe-University Frankfurt, Altenhöferallee 1, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
14
|
Sánchez-Piñero J, Moreda-Piñeiro J, Moscoso-Pérez C, FernándezGonzález V, Prada-Rodríguez D, López-Mahía P. Development and validation of a multi-pollutant method for the analysis of polycyclic aromatic hydrocarbons, synthetic musk compounds and plasticizers in atmospheric particulate matter (PM2.5). TALANTA OPEN 2021. [DOI: 10.1016/j.talo.2021.100057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
15
|
Yang Z, Liu Q, Liu Y, Qi X, Wang X. Cell cycle arrest of human bronchial epithelial cells modulated by differences in chemical components of particulate matter. RSC Adv 2021; 11:10582-10591. [PMID: 35423563 PMCID: PMC8695810 DOI: 10.1039/d0ra10563e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/05/2021] [Indexed: 12/11/2022] Open
Abstract
There is increasing interest in understanding the role of airborne chemical components in modulating the cell cycle of human bronchial epithelial (HBE) cells that is associated with burden of cardiopulmonary disease. To address this need, our study collected ambient PM10 (particles with aerodynamic diameter less than or equal to 10 μm) and PM2.5 (particles with aerodynamic diameter less than or equal to 2.5 μm) across four sampling sites in Beijing during the year of 2015. Chemical components including organic carbon (OC), elemental carbon (EC), polycyclic aromatic hydrocarbons (PAHs), metals and water soluble ions were determined. Spearman's rank-order correlation was performed to examine the associations between chemical components in ambient particles and cell cycle distributions with p-values adjusted by Bonferroni methodology. Our results demonstrated the significant associations between certain chemical compositions (i.e., PAHs, EC, As and Ni) and percentages of HBE cells in G0/G1 and G1/G2 phases, respectively. Our results highlighted the need to reduce the specific toxins (e.g., PAHs, EC, As and Ni) from ambient particles to protect cardiopulmonary health associated with air pollution. Future study may focus on illustrating the mechanism of certain chemical compositions in altering the cell cycle in HBE cells.
Collapse
Affiliation(s)
- Zheng Yang
- Beijing Milu Ecological Research Center Beijing 100076 China
| | - Qingyang Liu
- College of Biology and the Environment, Nanjing Forestry University Nanjing Jiangsu Province 210037 China
| | - Yanju Liu
- Beijing Milu Ecological Research Center Beijing 100076 China .,Beijing Center for Physical and Chemical Analysis Beijing 100089 China
| | - Xuekui Qi
- Beijing Center for Physical and Chemical Analysis Beijing 100089 China
| | - Xinxin Wang
- Beijing Center for Physical and Chemical Analysis Beijing 100089 China
| |
Collapse
|