1
|
Zhao G, Zhao Y, Wang Q, Wang C, Wang C, Wang Z, Wu Q. Recoverable and recyclable porous polymer for extraction of trace endocrine disrupting compounds from seafood products prior to LC /MS analysis. Food Chem 2025; 473:143129. [PMID: 39904173 DOI: 10.1016/j.foodchem.2025.143129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/22/2025] [Accepted: 01/27/2025] [Indexed: 02/06/2025]
Abstract
Endocrine disrupting compounds (EDCs) in food pose severe threats to human wellness, so it is extremely urgent to develop effective method with high sensitivity for detecting EDCs in seafoods. Herein, novel urea-functionalized magnetic porous polymer (M-NB-POP) was synthesized from N,N,N',N'-tetra(p-aminophenyl)-p-phenylenediamine and 1,3-bis(2-isocyanato-2-propyl)benzene under mild conditions for the first time. M-NB-POP with good recoverability and recyclability shows excellent adsorption for several typical EDCs through hydrogen bonding, π-π and hydrophobic interaction. Using M-NB-POP as magnetic solid-phase extraction adsorbent, an attractive method for effective enrichment of trace EDCs in red shrimp, river prawn and crayfish was successfully developed prior to LC-MS analysis. The proposed method gave a low detection limit of 1.50-7.80 ng g-1, high spiked recoveries of 86.3-111 %, and small relative standard deviation of 1.6-6.0 %. This work provides a new protocol for assessment of trace EDCs in seafoods and concurrently presents a new strategy for developing functional materials to enrich organic pollutants.
Collapse
Affiliation(s)
- Guijiao Zhao
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Ying Zhao
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Qianqian Wang
- College of Science, Hebei Agricultural University, Baoding 071001, China.
| | - Chenhuan Wang
- School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| | - Chun Wang
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Zhi Wang
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Qiuhua Wu
- College of Science, Hebei Agricultural University, Baoding 071001, China; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
2
|
Caneparo C, Carignan L, Lonina E, Goulet SM, Pellerin FA, Chabaud S, Bordeleau F, Bolduc S, Pelletier M. Impact of Endocrine Disruptors on the Genitourinary Tract. J Xenobiot 2024; 14:1849-1888. [PMID: 39728407 DOI: 10.3390/jox14040099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/04/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024] Open
Abstract
Over the last decades, the human species has seen an increase in the incidence of pathologies linked to the genitourinary tract. Observations in animals have allowed us to link these increases, at least in part, to changes in the environment and, in particular, to an increasing presence of endocrine disruptors. These can be physical agents, such as light or heat; natural products, such as phytoestrogens; or chemicals produced by humans. Endocrine disruptors may interfere with the signaling pathways mediated by the endocrine system, particularly those linked to sex hormones. These factors and their general effects are presented before focusing on the male and female genitourinary tracts by describing their anatomy, development, and pathologies, including bladder and prostate cancer.
Collapse
Affiliation(s)
- Christophe Caneparo
- Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, Geneva University Hospitals, University of Geneva, CH-1205 Geneva, Switzerland
| | - Laurence Carignan
- Oncology Division, CHU de Québec-Université Laval Research Center and Université Laval Cancer Research Center, Quebec, QC G1R 3S3, Canada
- Regenerative Medicine Division, Centre de Recherche en Organogénèse Expérimentale/LOEX, CHU de Québec-Université Laval Research Center, Université Laval, Quebec, QC G1J 5B3, Canada
| | - Elena Lonina
- Infectious and Immune Diseases Division, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada
- Intersectorial Centre for Endocrine Disruptors Analysis, Institut National de La Recherche Scientifique (INRS), Montreal, QC H4V 1B7, Canada
- Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University; ARThrite Research Center, Université Laval, Quebec, QC G1V 0A6, Canada
| | - Sarah-Maude Goulet
- Infectious and Immune Diseases Division, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada
- Intersectorial Centre for Endocrine Disruptors Analysis, Institut National de La Recherche Scientifique (INRS), Montreal, QC H4V 1B7, Canada
- Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University; ARThrite Research Center, Université Laval, Quebec, QC G1V 0A6, Canada
| | - Felix-Antoine Pellerin
- Oncology Division, CHU de Québec-Université Laval Research Center and Université Laval Cancer Research Center, Quebec, QC G1R 3S3, Canada
- Regenerative Medicine Division, Centre de Recherche en Organogénèse Expérimentale/LOEX, CHU de Québec-Université Laval Research Center, Université Laval, Quebec, QC G1J 5B3, Canada
| | - Stéphane Chabaud
- Regenerative Medicine Division, Centre de Recherche en Organogénèse Expérimentale/LOEX, CHU de Québec-Université Laval Research Center, Université Laval, Quebec, QC G1J 5B3, Canada
| | - François Bordeleau
- Oncology Division, CHU de Québec-Université Laval Research Center and Université Laval Cancer Research Center, Quebec, QC G1R 3S3, Canada
- Regenerative Medicine Division, Centre de Recherche en Organogénèse Expérimentale/LOEX, CHU de Québec-Université Laval Research Center, Université Laval, Quebec, QC G1J 5B3, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Quebec, QC G1V 0A6, Canada
| | - Stéphane Bolduc
- Regenerative Medicine Division, Centre de Recherche en Organogénèse Expérimentale/LOEX, CHU de Québec-Université Laval Research Center, Université Laval, Quebec, QC G1J 5B3, Canada
- Department of Surgery, Université Laval, Quebec, QC G1V 0A6, Canada
| | - Martin Pelletier
- Infectious and Immune Diseases Division, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada
- Intersectorial Centre for Endocrine Disruptors Analysis, Institut National de La Recherche Scientifique (INRS), Montreal, QC H4V 1B7, Canada
- Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University; ARThrite Research Center, Université Laval, Quebec, QC G1V 0A6, Canada
| |
Collapse
|
3
|
Struk-Sokołowska J, Kotowska U, Gwoździej-Mazur J, Polińska W, Canales FA, Kaźmierczak B. Benzotriazoles and bisphenols in wastewater from the food processing industry and the quantitative changes during mechanical/biochemical treatment processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175387. [PMID: 39127214 DOI: 10.1016/j.scitotenv.2024.175387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/22/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Benzotriazoles (BTRs) and bisphenols (BPs), categorized as contaminants of emerging concern (CECs), pose significant risks to human health and ecosystems due to their endocrine-disrupting properties and environmental persistence. This study investigates the occurrence and behavior of nine BTRs and ten BPs in wastewater generated in a large-scale meat processing plant, evaluating the effectiveness of a modern mechanical-biological industrial on-site treatment plant in removing these contaminants, and based on the concentration levels from eleven sampling points at different stages of the treatment process. The method used to determine these micropollutants' concentration was ultrasound-assisted emulsification-microextraction for analytes isolation and gas chromatography-mass spectrometry for detection (USAEME-GC/MS). The results indicate that the rigorous quality control processes in the meat processing facility effectively limit the presence of these micropollutants, especially concerning BPs, which are absent or below detection limits in raw wastewater. While the concentrations of some of these micropollutants increased at different points in the treatment process, these values were relatively low, typically below one microgram per liter. Among the compounds analyzed, the only one present after completing the treatment was 5Cl-BTR (maximum concentration: 3007 ng/L), and these contamination levels are around seven times lower than the reference value associated with non-cancer health risk for drinking water. This study contributes to understanding these CECs in industrial wastewater and highlights the importance of effective treatment systems for environmental protection.
Collapse
Affiliation(s)
- Joanna Struk-Sokołowska
- Bialystok University of Technology, Faculty of Civil Engineering and Environmental Sciences, 15-351 Bialystok, Poland.
| | - Urszula Kotowska
- University of Bialystok, Faculty of Chemistry, 15-245 Bialystok, Poland
| | - Joanna Gwoździej-Mazur
- Bialystok University of Technology, Faculty of Civil Engineering and Environmental Sciences, 15-351 Bialystok, Poland
| | - Weronika Polińska
- Doctoral School of Exact and Natural Sciences, University of Bialystok, Ciolkowskiego 1K Str., 15-245 Bialystok, Poland
| | - Fausto A Canales
- Universidad de la Costa, Calle 58 #55-66, 080002 Barranquilla, Atlantico, Colombia; Wroclaw University of Science and Technology, Faculty of Environmental Engineering, 50-370 Wroclaw, Poland
| | - Bartosz Kaźmierczak
- Wroclaw University of Science and Technology, Faculty of Environmental Engineering, 50-370 Wroclaw, Poland
| |
Collapse
|
4
|
Grzegorzek M, Struk-Sokołowska J, Canales FA, Kotowska U, Kaźmierczak B. Monitoring studies on contamination of urban runoff with hazardous benzotriazoles and bisphenols in one of the least polluted places worldwide. CHEMOSPHERE 2024; 366:143444. [PMID: 39362380 DOI: 10.1016/j.chemosphere.2024.143444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/19/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Benzotriazoles (BTR) and bisphenols (BP) are artificial contaminants of emerging concern (CECs) commonly found in everyday products. This study focuses on urban runoff to investigate the occurrence of BTRs and BPs in Iceland, regarded as one of the least polluted places in the world, which made it reasonable to confirm or deny the presence of these micropollutants in its environment. Samples collected in February 2023 (SC1) and August 2024 (SC2) from seven locations along Iceland's Ring Road were evaluated to determine the occurrence of seven BTRs (1H-BTR, 4Me-BTR, 5Me-BTR, 5Cl-BTR, UV-P, UV-326, UV-329) and six BPs (BPF, BPE, BPA, BPZ, BPAP, BPM) in the runoff, using the ultrasound-assisted emulsification-microextraction for analytes isolation and gas chromatography-mass spectrometry for detection (USAEME-GC/MS). All locations showed detectable and varying levels of BTRs and BPs, with 5Cl-BTR (11.6 μg/L) and BPF (56.3 μg/L), both in SC1, demonstrating the highest concentrations, providing valuable insights into their prevalence and distribution. A correlational analysis investigated the connection between these pollutants and various characteristics associated with the locations along the Ring Road. This study contributes to the essential comprehension of these CECs, serving as input for future strategies for monitoring and mitigating their impact.
Collapse
Affiliation(s)
- Martyna Grzegorzek
- Wroclaw University of Science and Technology, Faculty of Environmental Engineering, 50-370, Wroclaw, Poland.
| | - Joanna Struk-Sokołowska
- Bialystok University of Technology, Faculty of Civil Engineering and Environmental Sciences, 15-351, Bialystok, Poland.
| | - Fausto A Canales
- Universidad de la Costa, Department of Civil and Environmental, 080002, Barranquilla, Atlantico, Colombia.
| | - Urszula Kotowska
- University of Bialystok, Faculty of Chemistry, 15-245, Bialystok, Poland.
| | - Bartosz Kaźmierczak
- Wroclaw University of Science and Technology, Faculty of Environmental Engineering, 50-370, Wroclaw, Poland.
| |
Collapse
|
5
|
Sharma N, Kumar V, S V, Umesh M, Sharma P, Thazeem B, Kaur K, Thomas J, Pasrija R, Utreja D. Hazard identification of endocrine-disrupting carcinogens (EDCs) in relation to cancers in humans. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 109:104480. [PMID: 38825092 DOI: 10.1016/j.etap.2024.104480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/21/2024] [Accepted: 05/27/2024] [Indexed: 06/04/2024]
Abstract
Endocrine disrupting chemicals or carcinogens have been known for decades for their endocrine signal disruption. Endocrine disrupting chemicals are a serious concern and they have been included in the top priority toxicants and persistent organic pollutants. Therefore, researchers have been working for a long time to understand their mechanisms of interaction in different human organs. Several reports are available about the carcinogen potential of these chemicals. The presented review is an endeavor to understand the hazard identification associated with endocrine disrupting carcinogens in relation to the human body. The paper discusses the major endocrine disrupting carcinogens and their potency for carcinogenesis. It discusses human exposure, route of entry, carcinogenicity and mechanisms. In addition, the paper discusses the research gaps and bottlenecks associated with the research. Moreover, it discusses the limitations associated with the analytical techniques for detection of endocrine disrupting carcinogens.
Collapse
Affiliation(s)
- Neha Sharma
- Department of Biochemistry, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Thandalam 602105, India
| | - Vinay Kumar
- Biomaterials & Tissue Engineering (BITE) Laboratory, Department of Community Medicine, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Thandalam 602105, India.
| | - Vimal S
- Department of Biochemistry, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Thandalam 602105, India
| | - Mridul Umesh
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru, Karnataka 560029, India
| | - Preeti Sharma
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Basheer Thazeem
- Waste Management Division, Integrated Rural Technology Centre (IRTC), Palakkad, Kerala 678592, India
| | - Komalpreet Kaur
- Punjab Agricultural University, Institute of Agriculture, Gurdaspur, Punjab 143521, India
| | - Jithin Thomas
- Department of Biotechnology, Mar Athanasius College, Kerala, India
| | - Ritu Pasrija
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Divya Utreja
- Department of Chemistry, Punjab Agricultural University, Ludhiana, Punjab 141004, India
| |
Collapse
|
6
|
Qu J, Guo R, Liu L, Ren F, Jin H. Occurrence of bisphenol analogues and their conjugated metabolites in foodstuff. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174922. [PMID: 39038674 DOI: 10.1016/j.scitotenv.2024.174922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/23/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024]
Abstract
Bisphenol analogues (BPs) are prevalent in diverse foodstuff samples worldwide. However, the occurrence of conjugated bisphenol A (BPA) and bisphenol S (BPS) metabolites in foodstuff remains poorly understood. This study analyzed eight BPs, and four conjugated BPA and BPS metabolites, in three animal-derived foodstuff and five plant-derived foodstuff samples from China. Results showed that fish foodstuff (9.7 ng/g ww) contained the highest mean concentration of BPA, followed by rice (5.1 ng/g ww) and beans foodstuff (3.6 ng/g ww). BPA-sulfate had higher mean concentrations than BPA-glucuronide in different foodstuff categories, except that in eggs foodstuff (p < 0.05). Compared with other foodstuff items, fish (3.4 ng/g ww) and vegetable (1.6 ng/g ww) foodstuff samples exhibited comparatively higher mean concentrations of BPS. Mean concentrations of BPS-sulfate were consistently higher than BPS-glucuronide in vegetables, meats, and fish foodstuff (p < 0.05). BPA contributed the major total dietary intake (DI) of BPs, with the mean DI of 435 ng/kg bw/day for women and 374 ng/kg bw/day for men, respectively. To our knowledge, this study is the first to investigate the occurrence of conjugated BPA and BPS metabolites in foodstuff, which enhances our comprehension of the origins of these conjugated metabolites in the human body.
Collapse
Affiliation(s)
- Jianli Qu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Ruyue Guo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Lin Liu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Fangfang Ren
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China.
| |
Collapse
|
7
|
Álvarez-González B, Hernández AF, Zafra-Gómez A, Chica-Redecillas L, Cuenca-López S, Vázquez-Alonso F, Martínez-González LJ, Álvarez-Cubero MJ. Exposure to environmental pollutants and genetic variants related to oxidative stress and xenobiotic metabolism-Association with prostate cancer. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 108:104455. [PMID: 38657881 DOI: 10.1016/j.etap.2024.104455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
This study assessed whether genetic variants coding for certain enzymes involved in xenobiotic detoxification, antioxidant defences and DNA repair, along with exposure to environmental chemicals, were associated with an increased prostate cancer (PCa) risk. The study population consisted of 300 men (150 PCa cases and 150 controls) which underwent prostate biopsy as their serum prostate specific antigen (PSA) levels were greater than 4 ng/ml. Genetic variants in GSTM1, GSTP1, SOD2, CAT, GPX1, XRCC1 were determined and data for chemical exposures was obtained through a structured questionnaire and by biomonitoring in a subsample of cases and controls. High serum PSA levels were associated with a greater risk of PCa, while physical exercise appears to exert a protective effect against its development. In addition, elevated urinary levels of certain organic pollutants, such as benzo(a)pyrene (BaP), bisphenol A (BPA), and ethyl-paraben (EPB), were associated with an increased risk of PCa.
Collapse
Affiliation(s)
- Beatriz Álvarez-González
- University of Granada, Legal Medicine and Toxicology Department, Faculty of Medicine, Health Sciences Technology Park (PTS), Granada, Spain; GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Health Sciences Technology Park (PTS), Granada, Granada, Spain
| | - Antonio F Hernández
- University of Granada, Legal Medicine and Toxicology Department, Faculty of Medicine, Health Sciences Technology Park (PTS), Granada, Spain; Biosanitary Research Institute, ibs.GRANADA, Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain.
| | - Alberto Zafra-Gómez
- Biosanitary Research Institute, ibs.GRANADA, Granada, Spain; University of Granada, Department of Analytical Chemistry, Campus of Fuentenueva, Granada 18071, Spain
| | - Lucia Chica-Redecillas
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Health Sciences Technology Park (PTS), Granada, Granada, Spain; University of Granada, Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, Health Sciences Technology Park (PTS), Granada, Spain
| | - Sergio Cuenca-López
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Health Sciences Technology Park (PTS), Granada, Granada, Spain; University of Granada, Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, Health Sciences Technology Park (PTS), Granada, Spain
| | - Fernando Vázquez-Alonso
- Urology Department, University Hospital Virgen de las Nieves, Av. de las Fuerzas Armadas 2, Granada, Spain
| | - Luis Javier Martínez-González
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Health Sciences Technology Park (PTS), Granada, Granada, Spain; University of Granada, Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, Health Sciences Technology Park (PTS), Granada, Spain
| | - María Jesús Álvarez-Cubero
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Health Sciences Technology Park (PTS), Granada, Granada, Spain; Biosanitary Research Institute, ibs.GRANADA, Granada, Spain; University of Granada, Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, Health Sciences Technology Park (PTS), Granada, Spain
| |
Collapse
|
8
|
Ma JY, Jiang HL, Kang FS, Liu L, Wang X, Zhao RS. High-Performance enrichment and sensitive analysis of bisphenol and its analogues in water and milk using a novel Ni-Based cationic Metal-Organic framework. Food Chem 2024; 441:138267. [PMID: 38159435 DOI: 10.1016/j.foodchem.2023.138267] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 12/10/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
A novel cationic metal-organic framework (iMOF-Ni) was designed and synthesized by a solvothermal method. It was fabricated as a solid-phase extraction (SPE) cartridge and exhibited high adsorption performance for Bisphenols (BPs). The theoretical simulation demonstrated that the adsorption mechanism between iMOF-Ni and BPs was attributed to cation-π bonding, π-π interaction, and electrostatic interactions. Under optimized SPE, a method for analyzing BPs was established by combining high-performance liquid chromatography-diode array detection (HPLC-DAD). The developed method has good linearity (R2 ≥ 0.994), low detection limits (0.07-0.16 ng/mL), and good reproducibility (1.72-6.35 %, n = 6). The applicability of the method was further evaluated by analyzing water and milk samples. Recoveries of four BPs in spiked samples were from 72.2 % to 96.6 %.
Collapse
Affiliation(s)
- Jin-Yan Ma
- Qilu University of Technology (Shandong Academy of Science), Shandong Analysis and Test Center, Key Laboratory for Applied Technology of Sophisticated Analytical Instrument of Shandong Province, Jinan 250014, PR China
| | - Hai-Long Jiang
- Qilu University of Technology (Shandong Academy of Science), Shandong Analysis and Test Center, Key Laboratory for Applied Technology of Sophisticated Analytical Instrument of Shandong Province, Jinan 250014, PR China.
| | - Fu-Shuai Kang
- Qilu University of Technology (Shandong Academy of Science), Shandong Analysis and Test Center, Key Laboratory for Applied Technology of Sophisticated Analytical Instrument of Shandong Province, Jinan 250014, PR China
| | - Lu Liu
- Qilu University of Technology (Shandong Academy of Science), Shandong Analysis and Test Center, Key Laboratory for Applied Technology of Sophisticated Analytical Instrument of Shandong Province, Jinan 250014, PR China
| | - Xia Wang
- Qilu University of Technology (Shandong Academy of Science), Shandong Analysis and Test Center, Key Laboratory for Applied Technology of Sophisticated Analytical Instrument of Shandong Province, Jinan 250014, PR China
| | - Ru-Song Zhao
- Qilu University of Technology (Shandong Academy of Science), Shandong Analysis and Test Center, Key Laboratory for Applied Technology of Sophisticated Analytical Instrument of Shandong Province, Jinan 250014, PR China.
| |
Collapse
|
9
|
Song JH, Hwang B, Park S, Kim S, Kim DH, Choi YH, Kim WJ, Moon SK. Bisphenol A regulates bladder cells responses via control of G2/M-phase cell cycle, apoptotic signaling, MAPK pathway, and transcription factor-associated MMP modulation. J Biochem Mol Toxicol 2024; 38:e23662. [PMID: 38372072 DOI: 10.1002/jbt.23662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 01/16/2024] [Accepted: 02/01/2024] [Indexed: 02/20/2024]
Abstract
Bisphenol A (BPA), an exogenous endocrine-disrupting chemical, is widely used to produce polycarbonate plastics. The widely used BPA has been detected in human urine samples, raising public anxiety about the detrimental effects of BPA on the bladder. In this study, we explored regulatory mechanisms for the adverse effects of BPA in human bladder BdFC and T24 cells. BPA induced extrinsic and intrinsic apoptosis and G2/M cell cycle arrest caused by the ATM-CHK1/CHK2-CDC25c-CDC2 signaling, which ultimately inhibited the growth of human bladder cells. We also found that BPA decreased the binding activity of AP-1 and NF-κB transcription factors in human bladder cells, which inhibited migration and invasion through matrix metallopeptidase-2 and -9 inactivation. Phosphorylation of MAPKs was implicated with BPA-mediated detrimental effects in human bladder cells. Collectively, our results provide a novel explanation for the underlying molecular mechanisms that BPA induces cytotoxicity in human bladder cells.
Collapse
Affiliation(s)
- Jun-Hui Song
- Department of Food and Nutrition, Chung-Ang University, Anseong, Republic of Korea
| | - Byungdoo Hwang
- Department of Food and Nutrition, Chung-Ang University, Anseong, Republic of Korea
| | - Solbi Park
- Department of Food and Nutrition, Chung-Ang University, Anseong, Republic of Korea
| | - Soobin Kim
- Department of Food and Nutrition, Chung-Ang University, Anseong, Republic of Korea
| | - Dong-Ho Kim
- Department of Nutrition, School of Human Life and Ecology, Osaka Metropolitan University, Osaka, Japan
| | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Dongeui University, Busan, Republic of Korea
| | - Wun-Jae Kim
- Department of Urology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Sung-Kwon Moon
- Department of Food and Nutrition, Chung-Ang University, Anseong, Republic of Korea
| |
Collapse
|
10
|
Yuan Y, Chen Q, Ding X, Zhong Q, Zhong X. Endocrine disrupting chemical Bisphenol A and its association with cancer mortality: a prospective cohort study of NHANES. Front Public Health 2024; 12:1341789. [PMID: 38584917 PMCID: PMC10995921 DOI: 10.3389/fpubh.2024.1341789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/07/2024] [Indexed: 04/09/2024] Open
Abstract
Introduction There is evidence suggesting that Bisphenol A (BPA) is associated with increased all-cause mortality in adults. However, the specific nature of the relationship between BPA exposure and cancer mortality remains relatively unexplored. Methods The National Health and Nutrition Examination Survey (NHANES) dataset was used to recruit participants. Urinary BPA was assessed using liquid chromatography-mass spectrum (LC-MS). Through the use of multivariable Cox proportional hazard regressions and constrained cubic splines, the relationships between urine BPA and death from all causes and cancer were investigated. Results This study has a total of 8,035 participants, and 137 died from cancers after a 7.5-year follow-up. The median level of BPA was 2.0 g/mL. Urinary BPA levels were not independently associated with all-cause mortality. For cancer mortality, the second quartile's multivariable-adjusted hazard ratio was 0.51 (95% confidence interval: 0.30 to 0.86; p = 0.011) compared to the lowest quartile. The restricted cubic splines showed that the association was nonlinear (p for nonlinearity = 0.028) and the inflection point was 1.99 ng/mL. Conclusion Urinary BPA exposure was U-shaped associated with the risk of cancer mortality, and a lower level of BPA less than 1.99 ng/mL was associated with a higher risk of cancer mortality.
Collapse
Affiliation(s)
| | | | | | | | - Xiaomin Zhong
- Department of Oncology, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, Huai’an, China
| |
Collapse
|
11
|
Philippat C. Invited Perspective: Deciphering the Role of Endocrine Disruptors in Cancer-Challenges and Opportunities for Epidemiological Research. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:21301. [PMID: 38306195 PMCID: PMC10836583 DOI: 10.1289/ehp14568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 02/04/2024]
Affiliation(s)
- Claire Philippat
- University Grenoble Alpes, Inserm U-1209, CNRS-UMR-5309, Environmental Epidemiology Applied to Reproduction and Respiratory Health Team, Institute for Advanced Biosciences, Grenoble, France
| |
Collapse
|
12
|
Lacouture A, Breton Y, Weidmann C, Goulet SM, Germain L, Pelletier M, Audet-Walsh É. Estrogens and endocrine-disrupting chemicals differentially impact the bioenergetic fluxes of mammary epithelial cells in two- and three-dimensional models. ENVIRONMENT INTERNATIONAL 2023; 179:108132. [PMID: 37657410 DOI: 10.1016/j.envint.2023.108132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 09/03/2023]
Abstract
Due to its sensitivity to hormonal signaling, the mammary gland is often referred to as a sentinel organ for the study of endocrine-disrupting chemicals (EDCs), environmental pollutants that can interfere with the estrogen signaling pathway and induce mammary developmental defects. If and how EDCs impact mammary epithelial cell metabolism has not yet been documented. Herein, to study how estrogens and EDCs modulate mammary gland metabolism, we performed bioenergetic flux analyses using mouse mammary epithelial organoids compared to cells grown in monolayer culture. Several EDCs were tested, including bisphenol A (BPA), its close derivative BPS, a new BPA replacement copolyester called TritanTM, and the herbicide glyphosate. We report that estrogens reprogrammed mammary epithelial cell metabolism differently when grown in two- and three-dimensional models. Specific EDCs were also demonstrated to alter bioenergetic fluxes, thus identifying a new potential adverse effect of these molecules. Notably, organoids were more sensitive to low EDC concentrations, highlighting them as a key model for screening the impact of various environmental pollutants. Mechanistically, transcriptomic analyses revealed that EDCs interfered with the regulation of estrogen target genes and the expression of metabolic genes in organoids. Furthermore, co-treatment with the anti-estrogen fulvestrant blocked these metabolic impacts of EDCs, suggesting that, at least partially, they act through modulation of the estrogen receptor activity. Finally, we demonstrate that mammary organoids can be used for long-term studies on EDC exposure to study alterations in organogenesis/morphogenesis and that past pregnancies can modulate the sensitivity of mammary epithelial organoids to specific EDCs. Overall, this study demonstrates that estrogens and EDCs modulate mammary epithelial cell metabolism in monolayer and organoid cultures. A better understanding of the metabolic impacts of EDCs will allow a better appreciation of their adverse effects on mammary gland development and function.
Collapse
Affiliation(s)
- Aurélie Lacouture
- Endocrinology - Nephrology Research Axis, Centre de recherche du CHU de Québec - Université Laval, Québec City, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec City, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec City, Canada; Intersectoral Centre for Endocrine Disruptor Analysis (CIAPE-ICEDA), Québec City, Canada
| | - Yann Breton
- Infectious and Immune Diseases Research Axis, Centre de recherche du CHU de Québec - Université Laval, Québec City, Canada; ARThrite Research Center, Université Laval, Québec City, Canada
| | - Cindy Weidmann
- Endocrinology - Nephrology Research Axis, Centre de recherche du CHU de Québec - Université Laval, Québec City, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec City, Canada
| | - Sarah-Maude Goulet
- Infectious and Immune Diseases Research Axis, Centre de recherche du CHU de Québec - Université Laval, Québec City, Canada; ARThrite Research Center, Université Laval, Québec City, Canada
| | - Lucas Germain
- Endocrinology - Nephrology Research Axis, Centre de recherche du CHU de Québec - Université Laval, Québec City, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec City, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec City, Canada
| | - Martin Pelletier
- Intersectoral Centre for Endocrine Disruptor Analysis (CIAPE-ICEDA), Québec City, Canada; Infectious and Immune Diseases Research Axis, Centre de recherche du CHU de Québec - Université Laval, Québec City, Canada; ARThrite Research Center, Université Laval, Québec City, Canada; Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Québec City, Canada.
| | - Étienne Audet-Walsh
- Endocrinology - Nephrology Research Axis, Centre de recherche du CHU de Québec - Université Laval, Québec City, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec City, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec City, Canada; Intersectoral Centre for Endocrine Disruptor Analysis (CIAPE-ICEDA), Québec City, Canada.
| |
Collapse
|
13
|
Awal A, Islam S, Islam T, Hasan MM, Nayem SMA, James MMH, Hossain MD, Ahammad AJS. Facile Chemical Synthesis of Co-Ru-Based Heterometallic Supramolecular Polymer for Electrochemical Oxidation of Bisphenol A: Kinetics Study at the Electrode/Electrolyte Interface. ACS OMEGA 2023; 8:28355-28366. [PMID: 37576688 PMCID: PMC10413823 DOI: 10.1021/acsomega.3c02206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/13/2023] [Indexed: 08/15/2023]
Abstract
Regardless of the adverse effects of Bisphenol A (BPA), its use in industry and in day-to-day life is increasing at a higher rate every year. In the present study, a simple and reliable chemical approach was used to develop an efficient BPA sensor based on a Co-Ru-based heterometallic supramolecular polymer (polyCoRu). Surface morphology and elemental analysis were examined using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). Furthermore, functional group analysis was accomplished by Fourier transform infrared spectroscopy (FT-IR). UV-vis spectroscopy was used to confirm the complexation in the ratio of 0.5:0.5:1 (metal 1/metal 2/ligand). Electrochemical characterization of the synthesized polyCoRu was conducted using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) analyses. The study identified two distinct linear dynamic ranges for the detection of BPA, 0.197-2.94 and 3.5-17.72 μM. The regression equation was utilized to determine the sensitivity and limit of detection (LOD), resulting in values of 0.6 μA cm-2 μM-1 and 0.02 μM (S/N = 3), respectively. The kinetics of BPA oxidation at the polyCoRu/GCE were investigated to evaluate the heterogeneous rate constant (k), charge transfer coefficient (α), and the number of electrons transferred during the oxidation and rate-determining step. A probable electrochemical reaction mechanism has been presented for further comprehending the phenomena occurring at the electrode surface. The practical applicability of the fabricated electrode was analyzed using tap water, resulting in a high percentage of recovery ranging from 96 to 105%. Furthermore, the reproducibility and stability data demonstrated the excellent performance of polyCoRu/GCE.
Collapse
Affiliation(s)
- Abdul Awal
- Department
of Chemistry, Jagannath University, Dhaka 1100, Bangladesh
| | - Santa Islam
- Department
of Chemistry, Jagannath University, Dhaka 1100, Bangladesh
| | - Tamanna Islam
- Environmental
Science & Engineering Program, University
of Texas at El Paso, El Paso, Texas 79968, United States
| | - Md. Mahedi Hasan
- Environmental
Science & Engineering Program, University
of Texas at El Paso, El Paso, Texas 79968, United States
| | - S. M. Abu Nayem
- Department
of Chemistry, Jagannath University, Dhaka 1100, Bangladesh
| | | | | | | |
Collapse
|
14
|
Zhu W, Zuo X, Zhang X, Deng X, Ding D, Wang C, Yan J, Wang X, Wang G. MOFs-derived CuO-Fe 3O 4@C with abundant oxygen vacancies and strong Cu-Fe interaction for deep mineralization of bisphenol A. ENVIRONMENTAL RESEARCH 2023; 228:115847. [PMID: 37030409 DOI: 10.1016/j.envres.2023.115847] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 03/21/2023] [Accepted: 04/03/2023] [Indexed: 05/06/2023]
Abstract
A novel CuO-Fe3O4 encapsulated in the carbon framework with abundant oxygen vacancies (CuO-Fe3O4@C) was successfully prepared by thermal conversion of Cu(OAc)2/Fe-metal organic framework. The as-prepared catalyst exhibited excellent peroxymonosulfate (PMS) activation performance, good recyclability and fast magnetic separation. Under optimal conditions, the added BPA (60 mg/L) could be completely removed by CuO-Fe3O4@C/PMS system within 15 min with the degradation rate constant (k) of 0.32 min-1, being 10.3 and 246.2 times that in CuO/PMS (0.031min-1) and Fe3O4/PMS (0.0013 min-1) system. A deep mineralization rate of BPA (>80%) was achieved within 60 min. The results demonstrated the synergistic effect of bimetallic clusters, oxygen vacancies and carbon framework was a key benefit for the exposure of more active sites, the electron donor capacity and the mass transfer of substrates, thereby promoting the decomposition of BPA. Capture experiments and EPR indicated that 1O2 was the predominant reactive oxygen species (ROSs). The degradation routes of BPA and the activation mechanism of PMS were proposed. This study offers an opportunity to develop promising MOFs-derived hybrid catalysts with tailored structures and properties for the practical application of SR-AOPs.
Collapse
Affiliation(s)
- Wenjun Zhu
- College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Mine Environmental Pollution Control & Remediation, Hubei Polytechnic University, Huangshi, 435003, China; Hubei Key Laboratory of Coal Conversion and New Carbon Material, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Xiaohua Zuo
- College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Mine Environmental Pollution Control & Remediation, Hubei Polytechnic University, Huangshi, 435003, China
| | - Xiaofei Zhang
- College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Mine Environmental Pollution Control & Remediation, Hubei Polytechnic University, Huangshi, 435003, China
| | - Xiangyi Deng
- College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Mine Environmental Pollution Control & Remediation, Hubei Polytechnic University, Huangshi, 435003, China
| | - Deng Ding
- College of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Chunlei Wang
- College of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - JunTao Yan
- College of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Xiaobo Wang
- College of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, China; College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Mine Environmental Pollution Control & Remediation, Hubei Polytechnic University, Huangshi, 435003, China.
| | - Guanghui Wang
- Hubei Key Laboratory of Coal Conversion and New Carbon Material, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China.
| |
Collapse
|
15
|
Manini C, López-Fernández E, López JI, Angulo JC. Advances in Urological Cancer in 2022, from Basic Approaches to Clinical Management. Cancers (Basel) 2023; 15:1422. [PMID: 36900214 PMCID: PMC10000370 DOI: 10.3390/cancers15051422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/26/2023] Open
Abstract
This Special Issue includes 12 articles and 3 reviews dealing with several basic and clinical aspects of prostate, renal, and urinary tract cancer published during 2022 in Cancers, and intends to serve as a multidisciplinary chance to share the last advances in urological neoplasms [...].
Collapse
Affiliation(s)
- Claudia Manini
- Department of Pathology, San Giovanni Bosco Hospital, 10154 Turin, Italy
- Department of Sciences of Public Health and Pediatrics, University of Turin, 10124 Turin, Italy
| | - Estíbaliz López-Fernández
- FISABIO Foundation, 46020 Valencia, Spain
- Faculty of Health Sciences, European University of Valencia, 46023 Valencia, Spain
| | - José I. López
- Biocruces-Bizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - Javier C. Angulo
- Clinical Department, Faculty of Medical Sciences, European University of Madrid, 28005 Madrid, Spain
- Department of Urology, University Hospital of Getafe, 28907 Madrid, Spain
| |
Collapse
|
16
|
Andrif M, Elmarrachi H, Ismaili N. Paradigm change in urological, gynaecological and breast cancer management: A new practice-changing data from ASCO 2022 annual meeting. Cancer Treat Res Commun 2022; 35:100677. [PMID: 36696853 DOI: 10.1016/j.ctarc.2022.100677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022]
Abstract
Changing medical practice has been a constant process based on many scientific findings for years. In the oncology community, the American Society of Clinical Oncology (ASCO), one of the major annual conferences, presented the latest updates on practice-changing in cancer. At the recent meeting of 2022, held this year on June 2-6, researchers presented essential findings in urological, gynecological, and breast cancer management. In urological cancer, olaparib + abiraterone was demonstrated thru the PROpel trial to benefit in first-line treatment mCRPC regardless of the HRR stratification factor, along with the adjuvant therapy everolimus, for fully resected RCC in the EVEREST trial. In gynecological cancer, tisotumab vedotin demonstrated a potential role in improving clinical outcomes in 1st line r/mCC thru InnovaTV-205. In breast cancer, trastuzumab deruxtecan showed significant benefit for redefined human epidermal growth factors receptor 2 status in HER2 low BC patients, where current targeted-HER2 therapies are ineffective in the DESTINY-BREAST 04 study. The use of Immuno-based combinations in the medical management of TNBC patients has been supported thru several recent studies, showing positive results and outcomes, as demonstrated by the expert's opinions in Rizzo et al. research papers. In this article, we resumed the different renowned and what we considered intriguing to review studies presented during these three long sessions at the ASCO 2022 meeting.
Collapse
Affiliation(s)
- Meriem Andrif
- Mohammed VI Center for Research & Innovation, Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco; Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco
| | - Hafsa Elmarrachi
- Mohammed VI Center for Research & Innovation, Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco; Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco
| | - Nabil Ismaili
- Mohammed VI Center for Research & Innovation, Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco; Department of Medical Oncology, Cheikh Khalifa International University Hospital, Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco; Department of Medical Oncology, Mohamed VI International University Hospital, Mohammed VI University of Health Sciences (UM6SS), Bouskoura, Morocco; Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco.
| |
Collapse
|
17
|
Martin-Way D, Puche-Sanz I, Cozar JM, Zafra-Gomez A, Gomez-Regalado MDC, Morales-Alvarez CM, Hernandez AF, Martinez-Gonzalez LJ, Alvarez-Cubero MJ. Genetic variants of antioxidant enzymes and environmental exposures as molecular biomarkers associated with the risk and aggressiveness of bladder cancer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:156965. [PMID: 35764155 DOI: 10.1016/j.scitotenv.2022.156965] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Bladder cancer (BC) is one of the top 10 most common tumours worldwide; however, no molecular markers are currently available for tumour management and follow-up. BC could benefit from molecular biomarkers in environmental disease, which provide mechanistic understanding of individual susceptibility to exposure-related cancers and allow characterizing genetic alterations in the molecular pathway for malignancy. This case-control study performed a molecular analysis in 99 BC and 125 controls. Buccal swabs were collected to assess SNPs in eleven genes coding for xenobiotic detoxification enzymes, cellular antioxidant defences, and hormone synthesis and signalling (NAT2 (rs1801280), GPX1 (rs1050450 and rs17650792), TXNRD1 (rs7310505), PRDX3 (rs3740562), PON1 (rs662), SOD1 (rs10432782), SOD2 (rs4880), CAT (rs1001179), CYP17A1 (rs743572) and ESR1 (rs746432)). A structured questionnaire was administered to study participants to assess environmental and dietary chemical exposures. Several miRNAs associated with BC and detoxification/antioxidant pathways were analysed in a subsample of the study population, including miR-93-5p, miR-221-3p, miR-126, miR-27a-3p, miR-193b, and miR-193a-5p. Levels of selected environmental pollutants (polycyclic aromatic hydrocarbons and endocrine disrupting chemicals) were determined in urine from a subsample of BC cases and controls. We found that CYP17A1, CAT, SOD1, ESR1, PON1, and GPX1 (rs17650792) were associated with BC risk. Furthermore, exposure to smoke and/or dust, and alcohol intake were identified as risk factors for BC. Increased urinary levels of benzo[a]pyrene and bisphenol A were observed in BC patients relative to controls, along with an increased expression of miR-193b, miR-27a and miR-93-5p in BC. Nevertheless, further studies with a larger sample size are warranted to confirm these exploratory results. This study also shows that the combination of genetic markers (PON1 and CYP17A1) and miRNA (miR-221-3p and miR-93-5p) open a new scenario in the use of non-invasive biomarkers in the stratification of BC to guide personalized medicine, which is extremely urged in the current clinical setting.
Collapse
Affiliation(s)
- D Martin-Way
- Urology Department, University Hospital Fuenlabrada, Fuenlabrada, Madrid, Spain
| | - I Puche-Sanz
- Urology Department, University Hospital Virgen de las Nieves, Av. de las Fuerzas Armadas 2, 18014 Granada, Spain
| | - J M Cozar
- Urology Department, University Hospital Virgen de las Nieves, Av. de las Fuerzas Armadas 2, 18014 Granada, Spain
| | - A Zafra-Gomez
- University of Granada, Department of Analytical Chemistry, Campus of Fuentenueva, 18071 Granada, Spain
| | - M D C Gomez-Regalado
- University of Granada, Department of Analytical Chemistry, Campus of Fuentenueva, 18071 Granada, Spain
| | - C M Morales-Alvarez
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, PTS Granada, Granada, Spain; University of Granada, Department of Biochemistry and Molecular Biology III, Faculty of Medicine, PTS, Granada, Spain
| | - A F Hernandez
- University of Granada, Legal Medicine and Toxicology Department, Faculty of Medicine, PTS, Granada, Spain; Instituto de Investigación Biosanitaria ibs. GRANADA, 18014 Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Spain
| | - L J Martinez-Gonzalez
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, PTS Granada, Granada, Spain.
| | - M J Alvarez-Cubero
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, PTS Granada, Granada, Spain; University of Granada, Department of Biochemistry and Molecular Biology III, Faculty of Medicine, PTS, Granada, Spain; Instituto de Investigación Biosanitaria ibs. GRANADA, 18014 Granada, Spain
| |
Collapse
|
18
|
Pellerin È, Pellerin FA, Chabaud S, Pouliot F, Bolduc S, Pelletier M. Bisphenols A and S Alter the Bioenergetics and Behaviours of Normal Urothelial and Bladder Cancer Cells. Cancers (Basel) 2022; 14:cancers14164011. [PMID: 36011004 PMCID: PMC9406715 DOI: 10.3390/cancers14164011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Bisphenol A (BPA) and bisphenol S (BPS) are used in the production of plastics. These endocrine disruptors can be released into the environment and food, resulting in the continuous exposure of humans to bisphenols (BPs). The bladder urothelium is chronically exposed to BPA and BPS due to their presence in human urine samples. BPA and BPS exposure has been linked to cancer progression, especially for hormone-dependent cancers. However, the bladder is not recognized as a hormone-dependent tissue. Still, the presence of hormone receptors on the urothelium and their role in bladder cancer initiation and progression suggest that BPs could impact bladder cancer development. The effects of chronic exposure to BPA and BPS for 72 h on the bioenergetics (glycolysis and mitochondrial respiration), proliferation and migration of normal urothelial cells and non-invasive and invasive bladder cancer cells were evaluated. The results demonstrate that chronic exposure to BPs decreased urothelial cells' energy metabolism and properties while increasing them for bladder cancer cells. These findings suggest that exposure to BPA and BPS could promote bladder cancer development with a potential clinical impact on bladder cancer progression. Further studies using 3D models would help to understand the clinical consequences of this exposure.
Collapse
Affiliation(s)
- Ève Pellerin
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Quebec, QC G1J 1Z4, Canada
| | - Félix-Antoine Pellerin
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Quebec, QC G1J 1Z4, Canada
| | - Stéphane Chabaud
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Quebec, QC G1J 1Z4, Canada
| | - Frédéric Pouliot
- Oncology Division, CHU de Québec-Université Laval Research Center, Quebec, QC G1R 2J6, Canada
- Department of Surgery, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada
| | - Stéphane Bolduc
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Quebec, QC G1J 1Z4, Canada
- Department of Surgery, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada
- Correspondence: (S.B.); (M.P.); Tel.: +1-418-525-4444 (ext. 42282) (S.B.); +1-418-525-4444 (ext. 46166) (M.P.)
| | - Martin Pelletier
- Infectious and Immune Disease Division, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada
- Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada
- Correspondence: (S.B.); (M.P.); Tel.: +1-418-525-4444 (ext. 42282) (S.B.); +1-418-525-4444 (ext. 46166) (M.P.)
| |
Collapse
|
19
|
Xing J, Zhang S, Zhang M, Hou J. A critical review of presence, removal and potential impacts of endocrine disruptors bisphenol A. Comp Biochem Physiol C Toxicol Pharmacol 2022; 254:109275. [PMID: 35077873 DOI: 10.1016/j.cbpc.2022.109275] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/24/2021] [Accepted: 01/19/2022] [Indexed: 12/15/2022]
Abstract
Bisphenol A (BPA) is a synthetic organic compound that is mainly used in the production of polymer materials polycarbonate and epoxy resin. Widespread use and irregular processing methods have led to BPA being detected globally, raising concerns about its environmental and health effects. This review outlines an overview of the presence and removal of BPA in the environment and consumer products. We also summarized the endocrine-disrupting toxicity of BPA, and the relatively less summarized neurotoxicity, cytotoxicity, reproductive toxicity, genotoxicity, and carcinogenicity. Human exposure data show that humans have been exposed to low concentrations of BPA for a long time, future research should focus on the long-term exposure and the migration of BPA from consumer products to humans and the possible health risks associated with human exposure to BPA. Exploring economical and effective methods to reduce and remove BPA from the environment is imperative. The development of safe, functional and reproducible BPA analogs and the study of its degradation products can be the focus of subsequent research.
Collapse
Affiliation(s)
- Jianing Xing
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Siyi Zhang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Miaolian Zhang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Jing Hou
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China.
| |
Collapse
|
20
|
Tuculina M, Perlea P, Gheorghiță M, Cumpătă C, Dascălu I, Turcu A, Nicola A, Gheorghiță L, Diaconu O, Valea A, Ghemigian A, Carsote M. Diabetes mellitus: Plasticizers and nanomaterials acting as endocrine‑disrupting chemicals (Review). Exp Ther Med 2022; 23:288. [DOI: 10.3892/etm.2022.11217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/18/2021] [Indexed: 11/06/2022] Open
Affiliation(s)
- Mihaela Tuculina
- Department of Orthodontics, Faculty of Dental Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Paula Perlea
- Department of Endodontology, Faculty of Dental Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Mircea Gheorghiță
- Department of Orthodontics, Faculty of Dental Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Cristian Cumpătă
- Faculty of Dental Medicine, ‘Titu Maiorescu’ University of Bucharest, 031593 Bucharest, Romania
| | - Ionela Dascălu
- Department of Orthodontics, Faculty of Dental Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Adina Turcu
- Department of Orthodontics, Faculty of Dental Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Andreea Nicola
- Department of Orthodontics, Faculty of Dental Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Lelia Gheorghiță
- Department of Orthodontics, Faculty of Dental Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Oana Diaconu
- Department of Orthodontics, Faculty of Dental Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Ana Valea
- Departement of Endocrinology, ‘Iuliu Hatieganu’ University of Medicine and Pharmacy, 400337 Cluj‑Napoca, Romania
| | - Adina Ghemigian
- Department of Endocrinology, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Mara Carsote
- Department of Endocrinology, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
| |
Collapse
|
21
|
Bisphenol A Alters the Energy Metabolism of Stromal Cells and Could Promote Bladder Cancer Progression. Cancers (Basel) 2021; 13:cancers13215461. [PMID: 34771623 PMCID: PMC8582525 DOI: 10.3390/cancers13215461] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 11/23/2022] Open
Abstract
Simple Summary Our research brings new insight on the potential impact of bisphenol A on bladder cancer progression. By evaluating the effects of bisphenol A on the stromal environment of bladder cancer, we aimed to demonstrate that this endocrine disruptor could promote bladder cancer invasion through alteration of the energy metabolism of stromal cells, specifically on bladder fibroblasts and cancer-associated fibroblasts. These findings could modify the understanding of bladder cancer since bladder tissue is not recognized as a hormone-sensitive tissue. Consequently, our study suggests that endocrine disruptors, such as bisphenol A, could impact bladder cancer progression. Abstract Bisphenol A (BPA) is an endocrine-disrupting molecule used in plastics. Through its release in food and the environment, BPA can be found in humans and is mostly excreted in urine. The bladder is therefore continuously exposed to this compound. BPA can bind to multiple cell receptors involved in proliferation, migration and invasion pathways, and exposure to BPA is associated with cancer progression. Considering the physiological concentrations of BPA in urine, we tested the effect of nanomolar concentrations of BPA on the metabolism of bladder fibroblasts and cancer-associated fibroblasts (CAFs). Our results show that BPA led to a decreased metabolism in fibroblasts, which could alter the extracellular matrix. Furthermore, CAF induction triggered a metabolic switch, similar to the Warburg effect described in cancer cells. Additionally, we demonstrated that nanomolar concentrations of BPA could exacerbate this metabolic switch observed in CAFs via an increased glycolytic metabolism, leading to greater acidification of the extracellular environment. These findings suggest that chronic exposure to BPA could promote cancer progression through an alteration of the metabolism of stromal cells.
Collapse
|
22
|
Genitourinary Tissue Engineering: Reconstruction and Research Models. Bioengineering (Basel) 2021; 8:bioengineering8070099. [PMID: 34356206 PMCID: PMC8301202 DOI: 10.3390/bioengineering8070099] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/28/2021] [Accepted: 07/06/2021] [Indexed: 01/15/2023] Open
Abstract
Tissue engineering is an emerging field of research that initially aimed to produce 3D tissues to bypass the lack of adequate tissues for the repair or replacement of deficient organs. The basis of tissue engineering protocols is to create scaffolds, which can have a synthetic or natural origin, seeded or not with cells. At the same time, more and more studies have indicated the low clinic translation rate of research realised using standard cell culture conditions, i.e., cells on plastic surfaces or using animal models that are too different from humans. New models are needed to mimic the 3D organisation of tissue and the cells themselves and the interaction between cells and the extracellular matrix. In this regard, urology and gynaecology fields are of particular interest. The urethra and vagina can be sites suffering from many pathologies without currently adequate treatment options. Due to the specific organisation of the human urethral/bladder and vaginal epithelium, current research models remain poorly representative. In this review, the anatomy, the current pathologies, and the treatments will be described before focusing on producing tissues and research models using tissue engineering. An emphasis is made on the self-assembly approach, which allows tissue production without the need for biomaterials.
Collapse
|