1
|
Zhao Q, Liao C, Jiang E, Yan X, Su H, Tian L, Li N, Lobo FL, Wang X. Dual-purpose elemental sulfur for capturing and accelerating biodegradation of petroleum hydrocarbons in anaerobic environment. WATER RESEARCH X 2025; 26:100290. [PMID: 39717821 PMCID: PMC11664143 DOI: 10.1016/j.wroa.2024.100290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/29/2024] [Accepted: 12/01/2024] [Indexed: 12/25/2024]
Abstract
Hydrophobic organic pollutants in aqueous environments are challenging to biodegrade due to limited contact between microorganisms, the pollutants and the electron acceptor, particularly under anaerobic or anoxic conditions. Here, we propose a novel strategy that uses inexpensive, dual-function elemental sulfur (S0) to enhance biodegradation. Using petroleum hydrocarbons as the target pollutants, we demonstrated that hydrophobic and nonpolar S° can concentrate hydrocarbons while simultaneously serving as an electron acceptor to enrich hydrocarbon-degrading bacteria. The permeable reactive barrier filled with S0 effectively removed petroleum hydrocarbons. In addition to rapid adsorption, we discovered, for the first time, that petroleum hydrocarbons underwent efficient biodegradation through the reduction of S0. Specifically, n-alkanes were degraded by 80 % to 90 % and polycyclic aromatic hydrocarbons by 40 % to 95 %. These degradation rates were 17 % to 30 % and 26 % to 43 % higher, respectively, compared to those observed without S0. Consecutive subcultures combined with untargeted metabolomics analysis revealed that bacteria capable of dissimilatory sulfur reduction enhanced the fermentation process. These bacteria provided electrons to the metabolic network, which facilitated the mineralization of petroleum hydrocarbons. Our findings highlight the significant potential of S° for removing hydrophobic organic pollutants in oxygen-free environments, demonstrate the feasibility of integrating adsorption, biodegradation, and electron supply to enhance pollutant removal.
Collapse
Affiliation(s)
- Qian Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, PR China
| | - Chengmei Liao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, PR China
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, PR China
| | - Enli Jiang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, PR China
| | - Xuejun Yan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, PR China
| | - Huijuan Su
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, PR China
| | - Lili Tian
- School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, PR China
| | - Nan Li
- School of Environmental Science and Engineering, Tianjin University, No. 135 Yaguan Road, Jinnan District, Tianjin 300350, PR China
| | - Fernanda Leite Lobo
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará (UFC), Campus Do Pici 60.440-900, Fortaleza, CE, Brazil
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, PR China
| |
Collapse
|
2
|
Gao W, Duan X, Chen X, Wei L, Wang S, Wu J, Zhu Z. Iron‑carbon complex types and bonding forms jointly control organic carbon mineralization in paddy soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176117. [PMID: 39245374 DOI: 10.1016/j.scitotenv.2024.176117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
The crucial role of iron (Fe) oxides in stabilizing soil organic carbon (SOC) is well recognized, but their effects on SOC mineralization remain poorly understood. To address this knowledge gap, we evaluated the effects of four typical Fe-bound OC (Fe-OC) complexes including adsorbed ferrihydrite (Fh)- and goethite (Goe)- 13C, coprecipitated Fh/Goe-13C and 13C-glucose as the control, on OC mineralization during an 80-day anaerobic incubation in a paddy soil. 13C-tracing indicated that Fe-13C complexes significantly stimulated CO2 emissions from both the input 13C and SOC compared with glucose alone. In contrast, the addition of Fh- and Goe-C complexes consistently inhibited CH4 emissions by 72-91 % and 21-61 % compared with glucose addition, respectively. Fe-OC complexes reduced the CO2 equivalent by 62-71 % and 17-41 % in soils with Fh-C and Goe-C complexes, respectively. We concluded that Fe crystallinity and its bonding forms with organic carbon jointly control SOC mineralization. The coprecipitated Goe-C complexes had the lowest OC mineralization rate and highest OC residence time among four Fe-OC complexes. These findings highlighted that promoting the formation of coprecipitated well-ordered minerals would increase SOC sequestration by reducing OC mineralization and mitigating the global warming effect in paddy management.
Collapse
Affiliation(s)
- Wei Gao
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, PR China
| | - Xun Duan
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, PR China
| | - Xiangbi Chen
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, PR China.
| | - Liang Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, PR China
| | - Shuang Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, PR China
| | - Jinshui Wu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, PR China
| | - Zhenke Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, PR China.
| |
Collapse
|
3
|
Tian L, Ou Y, Yan B, Zhu H, Liu H, Cheng L, Jiao P. Synergistic improvement of nitrogen and phosphorus removal in constructed wetlands by the addition of solid iron substrates and ferrous irons. FUNDAMENTAL RESEARCH 2023; 3:890-897. [PMID: 38933005 PMCID: PMC11197743 DOI: 10.1016/j.fmre.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/13/2022] [Accepted: 10/11/2022] [Indexed: 11/30/2022] Open
Abstract
Sanjiang Plain is intensively used for rice production, and ditch drainage diffuse pollution prevention is crucial. Groundwater, rich in Fe ions, is the main source of irrigation water in this region. In this study, pyrite and zero-valent iron (ZVI) (sponge iron and iron scraps) were used as substrates to identify the synergistic influence of exogenous Fe2+ addition and solid iron substrates on pollutant removal in constructed wetlands. Based on the results, iron substrates hardly improved the ammonia removal, mainly because of the physical structure and oxidation activity. At a hydraulic retention time longer than 8 h, the pollution removal efficiency in the zero-valent iron (ZVI) substrate treatment increased significantly, and the removal of nitrate (NO3 --N) and total phosphorus (TP) in the iron scrap substrate treatment reached about 60% and 70%, respectively. The high-throughput sequencing results showed a significant increase in the abundance of microorganisms involved in denitrification and phosphate accumulation in biofilms on ZVI substrates. The highest diversities of such microorganisms in biofilms on iron scraps were found for denitrifying bacteria (Pseudomonas), nitrate-reducing Fe (II)-oxidizing bacteria (Acidovorax), and Dechloromonas with autotrophic denitrification and phosphate accumulation, with a 43% cumulative abundance. Dechloromonas dominated in the iron sponge substrate treatment. The highest relative abundance of Acidovorax was found in the mixed iron substrate (pyrite, sponge iron, and iron scraps) treatment. The addition of ZVI substrate significantly improved the removal of NO3 --N and TP and reduced the hydraulic retention time through the continuous release of Fe2+ and the promotion of microbial growth. When designing constructed wetlands for treating paddy field drainage, the appropriate addition of iron scrap substrates is recommended to enhance the pollutant removal efficiency and shock load resistance of CWs.
Collapse
Affiliation(s)
- Liping Tian
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Ou
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Changchun 130102, China
| | - Baixing Yan
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Changchun 130102, China
| | - Hui Zhu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Changchun 130102, China
| | - Huiping Liu
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Lei Cheng
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Peng Jiao
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
4
|
Bai B, Zhang L, Dong H, Huang Y. Coupled Fe(III) reduction and phenanthrene degradation by marine-derived Kocuria oceani FXJ8.057 under aerobic condition. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132237. [PMID: 37595472 DOI: 10.1016/j.jhazmat.2023.132237] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/29/2023] [Accepted: 08/04/2023] [Indexed: 08/20/2023]
Abstract
Diverse aerobic actinobacteria possess the capacity to degrade polycyclic aromatic hydrocarbons (PAHs) and have recently been shown to reduce Fe(III). However, the coupling of the two processes under oxic conditions remains unclear. Here, the co-metabolism of phenanthrene (PHE) and Fe(III) by marine-derived Kocuria oceani FXJ8.057 was realized under aerobic condition. In the presence of both PHE and Fe(III), the rates of PHE degradation (83.91 %) and Fe(III) reduction (50.00 %) were synchronously enhanced, compared to those with PHE (67.34 %) or Fe(III) (38.00 %) alone. Transcriptome analysis detected upregulation of PHE biodegradation and riboflavin biosynthesis in the strain cultured with both PHE and Fe(III) compared to that with PHE alone. Metabolite analysis indicated that, with the addition of Fe(III), the strain could efficiently degrade PHE via three pathways. Moreover, the strain secreted riboflavin, which acted as a shuttle to promote electron transfer from PHE to Fe(III). It also secreted organic acids that could delay Fe(II) reoxidation. Finally, H2O2 secreted by the strain caused extracellular Fenton reaction to generate •OH, which also played a minor role in the PHE degradation. These findings provide the first example of an aerobic bacterium that couples PAH degradation to Fe(III) reduction and extend our understanding of Fe(III)-reducing microorganisms.
Collapse
Affiliation(s)
- Bingbing Bai
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Limin Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Hailiang Dong
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| | - Ying Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
5
|
Zhou R, Li H, Liu C, Liu Y, Lee JF, Lin YJ, Yan Z, Xu Z, Yi X, Feng C. Magnetic anaerobic granular sludge for sequestration and immobilization of Pb. WATER RESEARCH 2023; 239:120022. [PMID: 37172375 DOI: 10.1016/j.watres.2023.120022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/03/2023] [Accepted: 04/29/2023] [Indexed: 05/14/2023]
Abstract
The development of magnetic adsorbents with high capacity to capture heavy metals has been the subject of intense research, but the process usually involves costive synthesis steps. Here, we propose a green approach to obtaining a magnetic biohybrid through in situ grown anaerobic granular sludge (AGS) with the help of magnetite, constituting a promising adsorbent for sequestration and immobilization of Pb in aqueous solutions and soils. The resultant magnetite-embedded AGS (M-AGS) was not only capable of promoting methane production but also conducive to Pb adsorption because of the large surface area and abundant function groups. The uptake of Pb on M-AGS followed the pseudo-second order, having a maximum adsorption capacity of 197.8 mg gDS-1 at pH 5.0, larger than 159.7, 170.3, and 178.1 mg gDS-1 in relation to AGS, F-AGS (ferrihydrite-mediated), and H-AGS (hematite-mediated), respectively. Mechanistic investigations showed that Pb binding to M-AGS proceeds via surface complexation, mineral precipitation, and lattice replacement, which promotes heavy metal capture and stabilization. This was evident from the increased proportion of structural Pb sequestrated from the aqueous solution and the enhanced percentage of the residual fraction of Pb extracted from the contaminated soils.
Collapse
Affiliation(s)
- Rui Zhou
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Han Li
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Chengshuai Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China
| | - Yizhang Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China
| | - Jyh-Fu Lee
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan, ROC
| | - Yu-Jung Lin
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan, ROC
| | - Zhang Yan
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Zhangyi Xu
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Xiaoyun Yi
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Chunhua Feng
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
6
|
Gupta S, Graham DW, Sreekrishnan TR, Ahammad SZ. Exploring the impacts of physicochemical characteristics and heavy metals fractions on bacterial communities in four rivers. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116453. [PMID: 36274305 DOI: 10.1016/j.jenvman.2022.116453] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Heavy metals contamination in sediment poses serious threats to bacterial communities that play critical roles in sediment biogeochemical processes. However, the physicochemical factors and the major heavy metals fractions that affect sediment bacterial communities are still unclear. Here, we performed heatmap and redundancy analyses to examine the effects of physico-chemical characteristics and heavy metals fractions on the sediment bacterial community from rivers in the UK (River Tyne and Ouseburn) and India (River Ganga and Yamuna). The results revealed that physicochemical characteristics and heavy metals fractions altered the diversity, richness, and structures of the bacterial community. Moreover, the fractions of Co, Zn, Pb, Cr, and Cu played significant roles in shaping the bacterial community structure, and physicochemical variables, particularly NH4+-N and NO2--N, also influenced the bacterial diversity and structure. Firmicutes showed strong associations with both physicochemical factors and heavy metals fractions. Chloroflexi and Actinobacteriota can be used as biomarkers for Zn contamination. Overall, our study identified the significance of sediment chemical characteristics and heavy metals fractions in determining the bacterial community structure as well as bioremediation and environmental management of metals contaminated sites.
Collapse
Affiliation(s)
- Sonia Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - David W Graham
- School of Engineering, Newcastle University, Newcastle Upon Tyne- NE1 7RU, United Kingdom
| | - T R Sreekrishnan
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Shaikh Ziauddin Ahammad
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
7
|
Chen D, Li Y, Jiang Q, Chen C, Xiao Z. Biogenic ferrihydrite-humin coprecipitate as an electron donor for the enhancement of microbial denitrification by Pseudomonas stutzeri. ENVIRONMENTAL RESEARCH 2023; 216:114837. [PMID: 36400223 DOI: 10.1016/j.envres.2022.114837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/30/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Nitrate pollution of groundwater has become an increasingly serious environmental problem that poses a great threat to aquatic ecosystems and to human health. Previous studies have shown that solid-phase humin (HM) can act as an additional electron donor to support microbial denitrification in the bioremediation of nitrate-contaminated groundwater where electron donor is deficient. However, the electron-donating capacities of HMs vary widely. In this study, we introduced ferrihydrite and prepared ferrihydrite-humin (Fh-HM) coprecipitates via biotic means to strengthen their electron-donating capacities. The spectroscopic results showed that the crystal phase of Fh did not change after coprecipitation with HM in the presence of Shewanella oneidensis MR-1, and iron may have complexed with the organic groups of HM. The Fh-HM coprecipitate prepared with an optimal initial Fh-HM mass ratio of 14:1 enhanced the microbial denitrification of Pseudomonas stutzeri with an electron-donating capacity 2.4-fold higher than that of HM alone, and the enhancement was not caused by greater bacterial growth. The alginate bead embedding assay indicated that the oxidation pathway of Fh-HM coprecipitate was mainly through direct contact between P. stutzeri and the coprecipitate. Further analyses suggested that quinone and organic-complexed Fe were the main electron-donating fractions of the coprecipitate. The results of the column experiments demonstrated that the column filled with Fh-HM-coated quartz sand exhibited a higher denitrification rate than the one filled with quartz sand, indicating its potential for practical applications.
Collapse
Affiliation(s)
- Dan Chen
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, PR China
| | - Yi Li
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, PR China
| | - Qitao Jiang
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, PR China
| | - Chuang Chen
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, PR China
| | - Zhixing Xiao
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, PR China.
| |
Collapse
|
8
|
Castro AR, Martins G, Salvador AF, Cavaleiro AJ. Iron Compounds in Anaerobic Degradation of Petroleum Hydrocarbons: A Review. Microorganisms 2022; 10:2142. [PMID: 36363734 PMCID: PMC9695802 DOI: 10.3390/microorganisms10112142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 09/22/2023] Open
Abstract
Waste and wastewater containing hydrocarbons are produced worldwide by various oil-based industries, whose activities also contribute to the occurrence of oil spills throughout the globe, causing severe environmental contamination. Anaerobic microorganisms with the ability to biodegrade petroleum hydrocarbons are important in the treatment of contaminated matrices, both in situ in deep subsurfaces, or ex situ in bioreactors. In the latter, part of the energetic value of these compounds can be recovered in the form of biogas. Anaerobic degradation of petroleum hydrocarbons can be improved by various iron compounds, but different iron species exert distinct effects. For example, Fe(III) can be used as an electron acceptor in microbial hydrocarbon degradation, zero-valent iron can donate electrons for enhanced methanogenesis, and conductive iron oxides may facilitate electron transfers in methanogenic processes. Iron compounds can also act as hydrocarbon adsorbents, or be involved in secondary abiotic reactions, overall promoting hydrocarbon biodegradation. These multiple roles of iron are comprehensively reviewed in this paper and linked to key functional microorganisms involved in these processes, to the underlying mechanisms, and to the main influential factors. Recent research progress, future perspectives, and remaining challenges on the application of iron-assisted anaerobic hydrocarbon degradation are highlighted.
Collapse
Affiliation(s)
- Ana R. Castro
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4704-553 Braga/Guimarães, Portugal
| | - Gilberto Martins
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4704-553 Braga/Guimarães, Portugal
| | - Andreia F. Salvador
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4704-553 Braga/Guimarães, Portugal
| | - Ana J. Cavaleiro
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4704-553 Braga/Guimarães, Portugal
| |
Collapse
|
9
|
Yu L, He D, Yang L, Rensing C, Zeng RJ, Zhou S. Anaerobic methane oxidation coupled to ferrihydrite reduction by Methanosarcina barkeri. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:157235. [PMID: 35817105 DOI: 10.1016/j.scitotenv.2022.157235] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/21/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Fe(III) has been recognized as a potential electron sink for the anaerobic oxidation of methane (Fe-AOM) in diverse environments. However, most of previous Fe-AOM processes are limited to ANME archaea and the Fe-AOM mechanism remains unclear. Here we investigate, for the first time, the Fe-AOM performance and mechanisms by a single methanogen Methanosarcina barkeri. The results showed that M. barkeri was capable of oxidizing methane to CO2 and reducing ferrihydrite to siderite simultaneously. The presence of methane enhanced both the abundances of redox-active species (such as cytochromes) and electrochemical activity of M. barkeri. The proteomic analyses revealed that M. barkeri up-regulated the expressions of a number of methanogenic enzymes during Fe-AOM, and significantly enriched metabolic pathways of amino acid synthesis and nitrogen fixation. Metabolic inhibition experiments indicated that membrane-bound redox-active components (cytochromes, methanophenazine and F420H2:quinone oxidoreductase) were probably involved in extracellular electron transfer (EET) from cells to ferrihydrite. Overall, these results provide a deep insight into the single‑carbon metabolism and survival strategy for methanogens and suggest that methanogens may play an important role in linking methane and iron cycling in the substrate-limited environments.
Collapse
Affiliation(s)
- Linpeng Yu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dan He
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lin Yang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Christopher Rensing
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Raymond J Zeng
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
10
|
Tian L, Yan B, Ou Y, Liu H, Cheng L, Jiao P. Effectiveness of Exogenous Fe 2+ on Nutrient Removal in Gravel-Based Constructed Wetlands. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031475. [PMID: 35162498 PMCID: PMC8835606 DOI: 10.3390/ijerph19031475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 11/16/2022]
Abstract
A group of microcosm-scale unplanted constructed wetlands (CWs) were established to evaluate the effectiveness of exogenous Fe2+ addition on ammonium nitrogen (NH4+-N), nitrate nitrogen (NO3--N), and total phosphorus (TP) removal. The addition of Fe2+ concentrations were 5 mg/L (CW-Fe5), 10 mg/L (CW-Fe10), 20 mg/L (CW-Fe20), 30 mg/L (CW-Fe30), and 0 mg/L (CW-CK). The microbial community in CWs was also analyzed to reveal the enhancement mechanism of pollutant removal. The results showed that the addition of Fe2+ could significantly (p < 0.05) reduce the NO3--N concentration in the CWs. When 10 mg/L Fe2+ was added and the hydraulic retention time (HRT) was 8 h, the highest removal rate of NO3--N was 88.66%. For NH4+-N, when the HRT was 8-24 h, the removal rate of CW-Fe5 was the highest (35.23% at 8 h and 59.24% at 24 h). When the HRT was 48-72 h, the removal rate of NH4+-N in CWs with 10 mg/L Fe2+ addition was the highest (85.19% at 48 h and 88.66% and 72 h). The removal rate of TP in all CWs was higher than 57.06%, compared with CW-CK, it increased 0.63-31.62% in CWs with Fe2+ addition; the final effluent TP concentration in CW-Fe5 (0.13 mg/L) and CW-Fe10 (0.16 mg/L) met the class III water standards in Surface Water Environmental Quality Standards of China (GB3838-2002). Microbical diversity indexes, including Shannon and Chao1, were significantly lower (p < 0.05) in Fe2+ amended treatment than that in CW-CK treatment. Furthermore, phylum Firmicutes, family Carnobacteriaceae, and genus Trichococcus in Fe2+ amended treatments was significantly (p < 0.05) higher than that in CW-CK treatment. Fe3+ reducing bacteria, such as Trichococcus genus, belonging to the Carnobacteriaceae in family-level, and Lactobacillales order affiliated to Firmicutes in the phylum-level, can reduce the oxidized Fe3+ to Fe2+ and continue to provide electrons for nitrate. It is recommended to consider adding an appropriate amount of iron into the water to strengthen its purifying capacity effect for constructed artificial wetlands in the future.
Collapse
Affiliation(s)
- Liping Tian
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baixing Yan
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China;
- Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Changchun 130102, China
- Correspondence: (B.Y.); (Y.O.)
| | - Yang Ou
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China;
- Jilin Provincial Engineering Center of CWs Design in Cold Region & Beautiful Country Construction, Changchun 130102, China
- Correspondence: (B.Y.); (Y.O.)
| | - Huiping Liu
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (H.L.); (L.C.)
| | - Lei Cheng
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China; (H.L.); (L.C.)
| | - Peng Jiao
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China;
| |
Collapse
|