1
|
Laitano MV, Rodriguez YE, Rivero G, Fernández-Gimenez AV, Blustein G. A novel alternative fate for shrimp fishery wastes as active ingredients in ecofriendly antifouling paints. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:9710-9721. [PMID: 40140203 DOI: 10.1007/s11356-025-36322-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 03/19/2025] [Indexed: 03/28/2025]
Abstract
This study addresses two environmental issues: the fate of fisheries organic wastes and the marine biofouling control. Marine biofouling continues to pose a significant environmental and economic burden, with existing solutions often being environmentally toxic or prohibitively expensive. Natural products, such as enzymes, have emerged as promising alternatives. Shrimp processing wastes are usually dumped to the environment, although they constitute an important source of marine enzymes. In this context, the present study investigates the potential of enzymatic extract derived from shrimp processing waste as an antifouling agent. We focused on the performance and stability of proteolytic enzymes within the extract under various conditions: exposure to seawater (static and dynamic) over time, and resistance to organic solvents. Additionally, we explored field trials using antifouling paints formulated with shrimp extract and we investigated a versatile and simple technology for extract immobilization. The results demonstrate that proteolytic activity in the shrimp extract remained stable over time in seawater and when exposed to organic solvents. Paints containing this extract completely inhibited macrofouling attachment for 7 months. Interestingly, control panels with deactivated enzymes exhibited macroalgae colonization but also showed reduced macroinvertebrate attachment. This suggests that additional compounds within the extract may have antifouling properties. We successfully produced nanocapsules of alginate-chitosan containing the shrimp extract using electrohydrodynamic atomization. While these nanocapsules show promise, further optimization is required. Overall, this study presents encouraging findings for the use of shrimp waste extract in antifouling paint formulations. This approach offers a potentially low-cost and environmentally friendly solution to the biofouling problem.
Collapse
Affiliation(s)
- María V Laitano
- Facultad de Ciencias Exactas y Naturales (FCEyN), Instituto de Investigaciones Marinas y Costeras (IIMyC), Universidad Nacional de Mar del Plata (UNMdP), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Funes 3350, CC1260,, Mar del Plata, Argentina.
| | - Yamila E Rodriguez
- Facultad de Ciencias Exactas y Naturales (FCEyN), Instituto de Investigaciones Marinas y Costeras (IIMyC), Universidad Nacional de Mar del Plata (UNMdP), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Funes 3350, CC1260,, Mar del Plata, Argentina
| | - Guadalupe Rivero
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), Facultad de Ingeniería, UNMdP-CONICET, Av. Colón 10850, Mar del Plata, B7606BWV, Argentina
| | - Analía V Fernández-Gimenez
- Facultad de Ciencias Exactas y Naturales (FCEyN), Instituto de Investigaciones Marinas y Costeras (IIMyC), Universidad Nacional de Mar del Plata (UNMdP), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Funes 3350, CC1260,, Mar del Plata, Argentina
| | - Guillermo Blustein
- Universidad Nacional de La Plata, Facultad de Ciencias Agrarias y Forestales, Calle 60 y 119 - B1900, La Plata, Argentina - Centro de Investigación y Desarrollo en Tecnología de Pinturas (CIDEPINT), CONICET-CICPBA-UNLP, Calle 52 e/ 121 y 122, La Plata, B1900AYB, Argentina
| |
Collapse
|
2
|
Dobretsov S, Rittschof D. "Omics" Techniques Used in Marine Biofouling Studies. Int J Mol Sci 2023; 24:10518. [PMID: 37445696 DOI: 10.3390/ijms241310518] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Biofouling is the growth of organisms on wet surfaces. Biofouling includes micro- (bacteria and unicellular algae) and macrofouling (mussels, barnacles, tube worms, bryozoans, etc.) and is a major problem for industries. However, the settlement and growth of some biofouling species, like oysters and corals, can be desirable. Thus, it is important to understand the process of biofouling in detail. Modern "omic" techniques, such as metabolomics, metagenomics, transcriptomics, and proteomics, provide unique opportunities to study biofouling organisms and communities and investigate their metabolites and environmental interactions. In this review, we analyze the recent publications that employ metagenomic, metabolomic, and proteomic techniques for the investigation of biofouling and biofouling organisms. Specific emphasis is given to metagenomics, proteomics and publications using combinations of different "omics" techniques. Finally, this review presents the future outlook for the use of "omics" techniques in marine biofouling studies. Like all trans-disciplinary research, environmental "omics" is in its infancy and will advance rapidly as researchers develop the necessary expertise, theory, and technology.
Collapse
Affiliation(s)
- Sergey Dobretsov
- Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al Khoud 123, Muscat P.O. Box 34, Oman
| | - Daniel Rittschof
- Nicholas School of the Environment, Duke University, Beaufort, NC 28516, USA
| |
Collapse
|
3
|
Romeu MJ, Mergulhão F. Development of Antifouling Strategies for Marine Applications. Microorganisms 2023; 11:1568. [PMID: 37375070 DOI: 10.3390/microorganisms11061568] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/08/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
Marine biofouling is an undeniable challenge for aquatic systems since it is responsible for several environmental and ecological problems and economic losses. Several strategies have been developed to mitigate fouling-related issues in marine environments, including developing marine coatings using nanotechnology and biomimetic models, and incorporating natural compounds, peptides, bacteriophages, or specific enzymes on surfaces. The advantages and limitations of these strategies are discussed in this review, and the development of novel surfaces and coatings is highlighted. The performance of these novel antibiofilm coatings is currently tested by in vitro experiments, which should try to mimic real conditions in the best way, and/or by in situ tests through the immersion of surfaces in marine environments. Both forms present their advantages and limitations, and these factors should be considered when the performance of a novel marine coating requires evaluation and validation. Despite all the advances and improvements against marine biofouling, progress toward an ideal operational strategy has been slow given the increasingly demanding regulatory requirements. Recent developments in self-polishing copolymers and fouling-release coatings have yielded promising results which set the basis for the development of more efficient and eco-friendly antifouling strategies.
Collapse
Affiliation(s)
- Maria João Romeu
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Filipe Mergulhão
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
4
|
Sousa-Cardoso F, Teixeira-Santos R, Campos AF, Lima M, Gomes LC, Soares OSGP, Mergulhão FJ. Graphene-Based Coating to Mitigate Biofilm Development in Marine Environments. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:381. [PMID: 36770342 PMCID: PMC9919625 DOI: 10.3390/nano13030381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Due to its several economic and ecological consequences, biofouling is a widely recognized concern in the marine sector. The search for non-biocide-release antifouling coatings has been on the rise, with carbon-nanocoated surfaces showing promising activity. This work aimed to study the impact of pristine graphene nanoplatelets (GNP) on biofilm development through the representative marine bacteria Cobetia marina and to investigate the antibacterial mechanisms of action of this material. For this purpose, a flow cytometric analysis was performed and a GNP/polydimethylsiloxane (PDMS) surface containing 5 wt% GNP (G5/PDMS) was produced, characterized, and assessed regarding its biofilm mitigation potential over 42 days in controlled hydrodynamic conditions that mimic marine environments. Flow cytometry revealed membrane damage, greater metabolic activity, and endogenous reactive oxygen species (ROS) production by C. marina when exposed to GNP 5% (w/v) for 24 h. In addition, C. marina biofilms formed on G5/PDMS showed consistently lower cell count and thickness (up to 43% reductions) than PDMS. Biofilm architecture analysis indicated that mature biofilms developed on the graphene-based surface had fewer empty spaces (34% reduction) and reduced biovolume (25% reduction) compared to PDMS. Overall, the GNP-based surface inhibited C. marina biofilm development, showing promising potential as a marine antifouling coating.
Collapse
Affiliation(s)
- Francisca Sousa-Cardoso
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Rita Teixeira-Santos
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Ana Francisca Campos
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Marta Lima
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Luciana C. Gomes
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Olívia S. G. P. Soares
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- LSRE-LCM—Laboratory of Separation and Reaction Engineering—Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Filipe J. Mergulhão
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
5
|
Araújo MJ, Sousa ML, Fonseca E, Felpeto AB, Martins JC, Vázquez M, Mallo N, Rodriguez-Lorenzo L, Quarato M, Pinheiro I, Turkina MV, López-Mayán JJ, Peña-Vázquez E, Barciela-Alonso MC, Spuch-Calvar M, Oliveira M, Bermejo-Barrera P, Cabaleiro S, Espiña B, Vasconcelos V, Campos A. Proteomics reveals multiple effects of titanium dioxide and silver nanoparticles in the metabolism of turbot, Scophthalmus maximus. CHEMOSPHERE 2022; 308:136110. [PMID: 36007739 DOI: 10.1016/j.chemosphere.2022.136110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/01/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Titanium dioxide (TiO2) and silver (Ag) NPs are among the most used engineered inorganic nanoparticles (NPs); however, their potential effects to marine demersal fish species, are not fully understood. Therefore, this study aimed to assess the proteomic alterations induced by sub-lethal concentrations citrate-coated 25 nm ("P25") TiO2 or polyvinylpyrrolidone (PVP) coated 15 nm Ag NPs to turbot, Scophthalmus maximus. Juvenile fish were exposed to the NPs through daily feeding for 14 days. The tested concentrations were 0, 0.75 or 1.5 mg of each NPs per kg of fish per day. The determination of NPs, Titanium and Ag levels (sp-ICP-MS/ICP-MS) and histological alterations (Transmission Electron Microscopy) supported proteomic analysis performed in the liver and kidney. Proteomic sample preparation procedure (SP3) was followed by LC-MS/MS. Label-free MS quantification methods were employed to assess differences in protein expression. Functional analysis was performed using STRING web-tool. KEGG Gene Ontology suggested terms were discussed and potential biomarkers of exposure were proposed. Overall, data shows that liver accumulated more elements than kidney, presented more histological alterations (lipid droplets counts and size) and proteomic alterations. The Differentially Expressed Proteins (DEPs) were higher in Ag NPs trial. The functional analysis revealed that both NPs caused enrichment of proteins related to generic processes (metabolic pathways). Ag NPs also affected protein synthesis and nucleic acid transcription, among other processes. Proteins related to thyroid hormone transport (Serpina7) and calcium ion binding (FAT2) were suggested as biomarkers of TiO2 NPs in liver. For Ag NPs, in kidney (and at a lower degree in liver) proteins related with metabolic activity, metabolism of exogenous substances and oxidative stress (e.g.: NADH dehydrogenase and Cytochrome P450) were suggested as potential biomarkers. Data suggests adverse effects in turbot after medium/long-term exposures and the need for additional studies to validate specific biological applications of these NPs.
Collapse
Affiliation(s)
- Mário J Araújo
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal.
| | - Maria L Sousa
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Elza Fonseca
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - Aldo Barreiro Felpeto
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - José Carlos Martins
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| | - María Vázquez
- CETGA - Cluster de la Acuicultura de Galicia, 15965, Ribeira, Galicia, A Coruña, Spain
| | - Natalia Mallo
- CETGA - Cluster de la Acuicultura de Galicia, 15965, Ribeira, Galicia, A Coruña, Spain
| | - Laura Rodriguez-Lorenzo
- INL - International Iberian Nanotechnology Laboratory, Avda. Mestre José Veiga s/n, Braga, Portugal
| | - Monica Quarato
- INL - International Iberian Nanotechnology Laboratory, Avda. Mestre José Veiga s/n, Braga, Portugal
| | - Ivone Pinheiro
- INL - International Iberian Nanotechnology Laboratory, Avda. Mestre José Veiga s/n, Braga, Portugal
| | - Maria V Turkina
- Department of Biomedical and Clinical Sciences, Faculty of Medicine and Clinical Sciences, Linköping University, 581 83, Linköping, Sweden
| | - Juan José López-Mayán
- GETEE - Trace Element, Spectroscopy and Speciation Group, Institute of Materials iMATUS, Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, Universidade de Santiago de Compostela, Avenida das Ciencias, s/n., 15782, Santiago de Compostela, Spain
| | - Elena Peña-Vázquez
- GETEE - Trace Element, Spectroscopy and Speciation Group, Institute of Materials iMATUS, Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, Universidade de Santiago de Compostela, Avenida das Ciencias, s/n., 15782, Santiago de Compostela, Spain
| | - María Carmen Barciela-Alonso
- GETEE - Trace Element, Spectroscopy and Speciation Group, Institute of Materials iMATUS, Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, Universidade de Santiago de Compostela, Avenida das Ciencias, s/n., 15782, Santiago de Compostela, Spain
| | - Miguel Spuch-Calvar
- TeamNanoTech / Magnetic Materials Group, CINBIO, Universidade de Vigo - Campus Universitario Lagoas Marcosende, 36310, Vigo, Spain
| | - Miguel Oliveira
- Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Pilar Bermejo-Barrera
- GETEE - Trace Element, Spectroscopy and Speciation Group, Institute of Materials iMATUS, Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, Universidade de Santiago de Compostela, Avenida das Ciencias, s/n., 15782, Santiago de Compostela, Spain
| | - Santiago Cabaleiro
- CETGA - Cluster de la Acuicultura de Galicia, 15965, Ribeira, Galicia, A Coruña, Spain
| | - Begoña Espiña
- INL - International Iberian Nanotechnology Laboratory, Avda. Mestre José Veiga s/n, Braga, Portugal
| | - Vitor Vasconcelos
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal; Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal
| | - Alexandre Campos
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Matosinhos, Portugal
| |
Collapse
|
6
|
Romeu MJ, Lima M, Gomes LC, de Jong ED, Morais J, Vasconcelos V, Pereira MFR, Soares OSGP, Sjollema J, Mergulhão FJ. The Use of 3D Optical Coherence Tomography to Analyze the Architecture of Cyanobacterial Biofilms Formed on a Carbon Nanotube Composite. Polymers (Basel) 2022; 14:polym14204410. [PMID: 36297988 PMCID: PMC9607013 DOI: 10.3390/polym14204410] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
The development of environmentally friendly antifouling strategies for marine applications is of paramount importance, and the fabrication of innovative nanocomposite coatings is a promising approach. Moreover, since Optical Coherence Tomography (OCT) is a powerful imaging technique in biofilm science, the improvement of its analytical power is required to better evaluate the biofilm structure under different scenarios. In this study, the effect of carbon nanotube (CNT)-modified surfaces in cyanobacterial biofilm development was assessed over a long-term assay under controlled hydrodynamic conditions. Their impact on the cyanobacterial biofilm architecture was evaluated by novel parameters obtained from three-dimensional (3D) OCT analysis, such as the contour coefficient, total biofilm volume, biovolume, volume of non-connected pores, and the average size of non-connected pores. The results showed that CNTs incorporated into a commercially used epoxy resin (CNT composite) had a higher antifouling effect at the biofilm maturation stage compared to pristine epoxy resin. Along with a delay in biofilm development, a decrease in biofilm wet weight, thickness, and biovolume was also achieved with the CNT composite compared to epoxy resin and glass (control surfaces). Additionally, biofilms developed on the CNT composite were smoother and presented a lower porosity and a strictly packed structure when compared with those formed on the control surfaces. The novel biofilm parameters obtained from 3D OCT imaging are extremely important when evaluating the biofilm architecture and behavior under different scenarios beyond marine applications.
Collapse
Affiliation(s)
- Maria J. Romeu
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Marta Lima
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Luciana C. Gomes
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Ed. D. de Jong
- Department of Biomedical Engineering, University of Groningen, University Medical Centre Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - João Morais
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Vítor Vasconcelos
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Manuel F. R. Pereira
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- LSRE–LCM—Laboratory of Separation and Reaction Engineering–Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Olívia S. G. P. Soares
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- LSRE–LCM—Laboratory of Separation and Reaction Engineering–Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Jelmer Sjollema
- Department of Biomedical Engineering, University of Groningen, University Medical Centre Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Filipe J. Mergulhão
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- Correspondence: ; Tel.: +351-225081668
| |
Collapse
|
7
|
Hydrodynamic conditions affect the proteomic profile of marine biofilms formed by filamentous cyanobacterium. NPJ Biofilms Microbiomes 2022; 8:80. [PMID: 36253388 PMCID: PMC9576798 DOI: 10.1038/s41522-022-00340-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 09/23/2022] [Indexed: 11/08/2022] Open
Abstract
Proteomic studies on cyanobacterial biofilms can be an effective approach to unravel metabolic pathways involved in biofilm formation and, consequently, obtain more efficient biofouling control strategies. Biofilm development by the filamentous cyanobacterium Toxifilum sp. LEGE 06021 was evaluated on different surfaces, glass and perspex, and at two significant shear rates for marine environments (4 s-1 and 40 s-1). Higher biofilm development was observed at 4 s-1. Overall, about 1877 proteins were identified, and differences in proteome were more noticeable between hydrodynamic conditions than those found between surfaces. Twenty Differentially Expressed Proteins (DEPs) were found between 4 s-1 vs. 40 s-1. On glass, some of these DEPs include phage tail proteins, a carotenoid protein, cyanophynase glutathione-dependent formaldehyde dehydrogenase, and the MoaD/ThiS family protein, while on perspex, DEPs include transketolase, dihydroxy-acid dehydratase, iron ABC transporter substrate-binding protein and protein NusG. This study contributes to developing a standardized protocol for proteomic analysis of filamentous cyanobacterial biofilms. This kind of proteomic analysis can also be useful for different research fields, given the broad spectrum of promising secondary metabolites and added-value compounds produced by cyanobacteria, as well as for the development of new antibiofilm strategies.
Collapse
|
8
|
Antifouling Performance of Carbon-Based Coatings for Marine Applications: A Systematic Review. Antibiotics (Basel) 2022; 11:antibiotics11081102. [PMID: 36009971 PMCID: PMC9404944 DOI: 10.3390/antibiotics11081102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 01/01/2023] Open
Abstract
Although carbon materials are widely used in surface engineering, particularly graphene (GP) and carbon nanotubes (CNTs), the application of these nanocomposites for the development of antibiofilm marine surfaces is still poorly documented. The aim of this study was, thus, to gather and discuss the relevant literature concerning the antifouling performance of carbon-based coatings against marine micro- and macrofoulers. For this purpose, a PRISMA-oriented systematic review was conducted based on predefined criteria, which resulted in the selection of thirty studies for a qualitative synthesis. In addition, the retrieved publications were subjected to a quality assessment process based on an adapted Methodological Index for Non-Randomized Studies (MINORS) scale. In general, this review demonstrated the promising antifouling performance of these carbon nanomaterials in marine environments. Further, results from the revised studies suggested that functionalized GP- and CNTs-based marine coatings exhibited improved antifouling performance compared to these materials in pristine forms. Thanks to their high self-cleaning and enhanced antimicrobial properties, as well as durability, these functionalized composites showed outstanding results in protecting submerged surfaces from the settlement of fouling organisms in marine settings. Overall, these findings can pave the way for the development of new carbon-engineered surfaces capable of preventing marine biofouling.
Collapse
|
9
|
A Selection of Platforms to Evaluate Surface Adhesion and Biofilm Formation in Controlled Hydrodynamic Conditions. Microorganisms 2021; 9:microorganisms9091993. [PMID: 34576888 PMCID: PMC8468346 DOI: 10.3390/microorganisms9091993] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 11/19/2022] Open
Abstract
The early colonization of surfaces and subsequent biofilm development have severe impacts in environmental, industrial, and biomedical settings since they entail high costs and health risks. To develop more effective biofilm control strategies, there is a need to obtain laboratory biofilms that resemble those found in natural or man-made settings. Since microbial adhesion and biofilm formation are strongly affected by hydrodynamics, the knowledge of flow characteristics in different marine, food processing, and medical device locations is essential. Once the hydrodynamic conditions are known, platforms for cell adhesion and biofilm formation should be selected and operated, in order to obtain reproducible biofilms that mimic those found in target scenarios. This review focuses on the most widely used platforms that enable the study of initial microbial adhesion and biofilm formation under controlled hydrodynamic conditions—modified Robbins devices, flow chambers, rotating biofilm devices, microplates, and microfluidic devices—and where numerical simulations have been used to define relevant flow characteristics, namely the shear stress and shear rate.
Collapse
|