1
|
Guo J, Hou J, Yang Z, Xia J, Wu J, You G, Miao L. Boron nitride quantum dots supported hollow NH 2-MIL-125 drive photo-Fenton-PMS system for photocatalytic tetracycline degradation: Contribution of tannic acid etching. CHEMOSPHERE 2024; 365:143389. [PMID: 39321886 DOI: 10.1016/j.chemosphere.2024.143389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/06/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
NH2-MIL-125(Ti) materials had great potential for photocatalytic applications but had low activity due to exciton effect and narrow absorption range of visible light. The surface oxygen-containing negative functional groups of boron nitride quantum dots (BNQDs) could overcome these defects, but due to the low load capacity, a higher specific surface area of the substrate was usually required. In this paper, a hollow Ti-MOF material was developed by etching technology. The hollow structure formed by tannic acid etching broadened the absorption range of visable light and provided more alternative surfaces for loading BNQDs. The 85.2% of high tetracycline (TC) removal efficiency for the best sample (BNQDs-5@20-Ti-MOF + PMS) was obtained, which was about 56.8 and 1.9 times of the 20-Ti-MOF and BNQDs-5@20-Ti-MOF, respectively. BNQDs-5@20-Ti-MOF + PMS system showed a great TC degradation efficiency in a wide pH range (pH = 5-9). In addition, reaction temperature and the inorganic ions did not show significant inhibition effect for TC removal. Both free radical and non-free radical pathways were involved in the TC degration by BNQDs-5@20-Ti-MOF + PMS system, among which O2•- and 1O2 played the key roles. Interestingly, multiple 1O2 production paths contributed to the high efficiency and stability of BNQDs-5@20-Ti-MOF + PMS system. This study revealed a reasonable combination of Ti-MOF and BNQDs, which provided a new efficient photocatalyst for environmental remediation.
Collapse
Affiliation(s)
- Jun Guo
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Zijun Yang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Jun Xia
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Jun Wu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Guoxiang You
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
2
|
Fard NE, Ali NS, Saady NMC, Albayati TM, Salih IK, Zendehboudi S, Harharah HN, Harharah RH. A review on development and modification strategies of MOFs Z-scheme heterojunction for photocatalytic wastewater treatment, water splitting, and DFT calculations. Heliyon 2024; 10:e32861. [PMID: 39027550 PMCID: PMC11255594 DOI: 10.1016/j.heliyon.2024.e32861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 07/20/2024] Open
Abstract
Increasing water pollution and decreasing energy reserves have emerged as growing concerns for the environment. These pollution are due to the dangerous effects of numerous pollutants on humans and aquatic organisms, such as hydrocarbons, biphenyls, pesticides, dyes, pharmaceuticals, and metal ions. On the other hand, the need for a clean environment, finding alternatives to fossil and renewable fuels is very important. Hydrogen (H2) is regarded as a viable and promising substitute for fossil fuels, and a range of methodologies have been devised to generate this particular source of energy. Metal-organic frameworks (MOFs) are a new generation of nanoporous coordination polymers whose crystal structure is composed of the juxtaposition of organic and inorganic constituent units. Due to their flexible nature, regular structure, and high surface area, these materials have attracted much attention for removing various pollutants from water and wastewater, and water splitting. MOFs Z-scheme heterojunctions have been identified as an economical and eco-friendly method for eliminating pollutants from wastewater systems, and producing H2. Their low-cost synthesis and unique properties increase their application in various energy and environment fields. The heterojunctions possess diverse properties, such as exceptional surface area, making them ideal for degradation and separation. The development and formulation of Z-scheme heterojunctions photocatalytic systems using MOFs, which possess stable and potent redox capability, have emerged as a successful approach for addressing environmental pollution and energy shortages in recent times. Through the utilization of the benefits offered by MOFs Z-scheme heterojunctions photocatalysts, such as efficient separation and migration of charge carriers, extensive spectrum of light absorption, among other advantages, notable enhancements can be attained. This review encompasses the synthesis techniques, structure, and properties of MOFs Z-scheme heterojunctions, and their extensive use in treating various wastewaters, including dyes, pharmaceuticals, and heavy metals, and water splitting. Also, it provides an overview of the mechanisms, pathways, and various theoretical and practical aspects for MOFs Z-scheme heterojunctions. Finally, it thoroughly assesses existing challenges and suggests further research on the promising applications of MOFs Z-scheme in industrial-scale wastewater treatment.
Collapse
Affiliation(s)
- Narges Elmi Fard
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nisreen S. Ali
- Materials Engineering Department, College of Engineering, Mustansiriyah University, Baghdad, Iraq
| | - Noori M. Cata Saady
- Department of Civil Engineering, Memorial University, St. John's, NL, A1B 3X5, Canada
| | - Talib M. Albayati
- Department of Chemical Engineering, University of Technology- Iraq, 52 Alsinaa St., PO Box, 35010, Baghdad, Iraq
| | - Issam K. Salih
- Department of Chemical Engineering and Petroleum Industries, Al-Mustaqbal University College, Babylon, 51001, Iraq
| | - Sohrab Zendehboudi
- Department of Process Engineering, Memorial University, St. John's, NL, A1B 3X5, Canada
| | - Hamed N. Harharah
- Department of Chemical Engineering, College of Engineering, King Khalid University, Abha 61411, Kingdom of Saudi Arabia
| | - Ramzi H. Harharah
- Department of Chemical and Process Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| |
Collapse
|
3
|
Agurokpon D, Louis H, Benjamin I, Godfrey OC, Ghotekar S, Adeyinka AS. Impact of Polythiophene ((C 4H 4S) n; n = 3, 5, 7, 9) Units on the Adsorption, Reactivity, and Photodegradation Mechanism of Tetracycline by Ti-Doped Graphene/Boron Nitride (Ti@GP_BN) Nanocomposite Materials: Insights from Computational Study. ACS OMEGA 2023; 8:42340-42355. [PMID: 38024685 PMCID: PMC10652268 DOI: 10.1021/acsomega.3c04625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/08/2023] [Indexed: 12/01/2023]
Abstract
This study addresses the formidable persistence of tetracycline (TC) in the environment and its adverse impact on soil, water, and microbial ecosystems. To combat this issue, an innovative approach by varying polythiophene ((C4H4S)n; n = 3, 5, 7, 9) units and the subsequent interaction with Ti-doped graphene/boron nitride (Ti@GP_BN) nanocomposites was applied as catalysts for investigating the molecular structure, adsorption, excitation analysis, and photodegradation mechanism of tetracycline within the framework of density functional theory (DFT) at the B3LYP-gd3bj/def2svp method. This study reveals a compelling correlation between the adsorption potential of the nanocomposites and their corresponding excitation behaviors, particularly notable in the fifth and seventh units of the polythiophene configuration. These units exhibit distinct excitation patterns, characterized by energy levels of 1.3406 and 924.81 nm wavelengths for the fifth unit and 1.3391 and 925.88 nm wavelengths for the seventh unit. Through exploring deeper, the examination of the exciton binding energy emerges as a pivotal factor, bolstering the outcomes derived from both UV-vis transition analysis and adsorption exploration. Notably, the calculated exciton binding energies of 0.120 and 0.103 eV for polythiophene units containing 5 and 7 segments, respectively, provide compelling confirmation of our findings. This convergence of data reinforces the integrity of our earlier analyses, enhancing our understanding of the intricate electronic and energetic interplay within these intricate systems. This study sheds light on the promising potential of the polythiophene/Ti-doped graphene/boron nitride nanocomposite as an efficient candidate for TC photodegradation, contributing to the advancement of sustainable environmental remediation strategies. This study was conducted theoretically; hence, experimental studies are needed to authenticate the use of the studied nanocomposites for degrading TC.
Collapse
Affiliation(s)
- Daniel
C. Agurokpon
- Computational
and Bio-Simulation Research Group, University
of Calabar, Calabar 540221, Nigeria
| | - Hitler Louis
- Computational
and Bio-Simulation Research Group, University
of Calabar, Calabar 540221, Nigeria
- Department
of Pure and Applied Chemistry, University
of Calabar, Calabar 540221, Nigeria
- Centre for
Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital
and Research Institute, Chettinad Academy
of Research and Education, Kelambakkam 603103, Tamil Nadu India
| | - Innocent Benjamin
- Computational
and Bio-Simulation Research Group, University
of Calabar, Calabar 540221, Nigeria
| | - Obinna C. Godfrey
- Computational
and Bio-Simulation Research Group, University
of Calabar, Calabar 540221, Nigeria
- Department
of Biochemistry, University of Calabar, Calabar 540221, Nigeria
| | - Suresh Ghotekar
- Department
of Chemistry, Smt. Devkiba Mohansinhji, Chauhan College of Commerce
and Science, University of Mumbai, Silvassa 396, India
| | - Adedapo S. Adeyinka
- Department
of Chemical Sciences, University of Johannesburg, Auckland Park 2006, South-Africa
| |
Collapse
|
4
|
Nkoh JN, Oderinde O, Etafo NO, Kifle GA, Okeke ES, Ejeromedoghene O, Mgbechidinma CL, Oke EA, Raheem SA, Bakare OC, Ogunlaja OO, Sindiku O, Oladeji OS. Recent perspective of antibiotics remediation: A review of the principles, mechanisms, and chemistry controlling remediation from aqueous media. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163469. [PMID: 37061067 DOI: 10.1016/j.scitotenv.2023.163469] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/08/2023] [Accepted: 04/08/2023] [Indexed: 06/01/2023]
Abstract
Antibiotic pollution is an ever-growing concern that affects the growth of plants and the well-being of animals and humans. Research on antibiotics remediation from aqueous media has grown over the years and previous reviews have highlighted recent advances in antibiotics remediation technologies, perspectives on antibiotics ecotoxicity, and the development of antibiotic-resistant genes. Nevertheless, the relationship between antibiotics solution chemistry, remediation technology, and the interactions between antibiotics and adsorbents at the molecular level is still elusive. Thus, this review summarizes recent literature on antibiotics remediation from aqueous media and the adsorption perspective. The review discusses the principles, mechanisms, and solution chemistry of antibiotics and how they affect remediation and the type of adsorbents used for antibiotic adsorption processes. The literature analysis revealed that: (i) Although antibiotics extraction and detection techniques have evolved from single-substrate-oriented to multi-substrates-oriented detection technologies, antibiotics pollution remains a great danger to the environment due to its trace level; (ii) Some of the most effective antibiotic remediation technologies are still at the laboratory scale. Thus, upscaling these technologies to field level will require funding, which brings in more constraints and doubts patterning to whether the technology will achieve the same performance as in the laboratory; and (iii) Adsorption technologies remain the most affordable for antibiotic remediation. However, the recent trends show more focus on developing high-end adsorbents which are expensive and sometimes less efficient compared to existing adsorbents. Thus, more research needs to focus on developing cheaper and less complex adsorbents from readily available raw materials. This review will be beneficial to stakeholders, researchers, and public health professionals for the efficient management of antibiotics for a refined decision.
Collapse
Affiliation(s)
- Jackson Nkoh Nkoh
- Department of Chemistry, University of Buea, P.O. Box 63, Buea, Cameroon; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P.O. Box 821, Nanjing, China; Organization of African Academic Doctors (OAAD), Off Kamiti Road, P.O. Box 25305000100, Nairobi, Kenya
| | - Olayinka Oderinde
- Department of Chemistry, Faculty of Natural and Applied Sciences, Lead City University, Ibadan, Nigeria.
| | - Nelson Oshogwue Etafo
- Programa de Posgrado en Ciencia y Tecnología de Materiales, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Ing. J. Cárdenas Valdez S/N Republica, 25280 Saltillo, Coahuila, Mexico
| | - Ghebretensae Aron Kifle
- Organization of African Academic Doctors (OAAD), Off Kamiti Road, P.O. Box 25305000100, Nairobi, Kenya; Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China; Department of Chemistry, Mai Nefhi College of Science, National Higher Education and Research Institute, Asmara 12676, Eritrea
| | - Emmanuel Sunday Okeke
- Organization of African Academic Doctors (OAAD), Off Kamiti Road, P.O. Box 25305000100, Nairobi, Kenya; Department of Biochemistry, Faculty of Biological Science & Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria; Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Onome Ejeromedoghene
- School of Chemistry and Chemical Engineering, Southeast University, Jiangning District, Nanjing, Jiangsu Province 211189, PR China
| | - Chiamaka Linda Mgbechidinma
- School of Life Sciences, Centre for Cell and Development Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; Department of Microbiology, University of Ibadan, Ibadan, Oyo State 200243, Nigeria
| | - Emmanuel A Oke
- Department of Chemistry, Veer Narmad South Gujarat University, Surat 395007, India
| | - Saheed Abiola Raheem
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
| | - Omonike Christianah Bakare
- Department of Biological Sciences, Faculty of Natural and Applied Sciences, Lead City University, Ibadan, Nigeria
| | - Olumuyiwa O Ogunlaja
- Department of Chemical Sciences, Faculty of Natural and Applied Sciences, Lead City University, Ibadan, Nigeria
| | - Omotayo Sindiku
- Department of Biological Sciences, Faculty of Natural and Applied Sciences, Lead City University, Ibadan, Nigeria
| | - Olatunde Sunday Oladeji
- Department of Chemical Sciences, Faculty of Natural Sciences, Ajayi Crowther University, Oyo, Nigeria
| |
Collapse
|
5
|
Asgari S, Mohammadi Ziarani G, Badiei A, Ajalloueian F, Vasseghian Y. Electrospun composite nanofibers as novel high-performance and visible-light photocatalysts for removal of environmental pollutants: A review. ENVIRONMENTAL RESEARCH 2022; 215:114296. [PMID: 36116501 DOI: 10.1016/j.envres.2022.114296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 07/28/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Environmental pollution caused by industries and human manipulations is coming a serious global challenge. On the other hand, the world is facing an energy crisis caused by population growth. Designing solar-driven photocatalysts which are inspired by the photosynthesis of plant leaves is a fantastic solution to use solar energy as green, available, and unlimited energy containing ∼50% visible light for the removal of environmental pollutants. The polymeric and non-polymeric-based electrospun composite nanofibers (NFs) are as innovative photocatalytic candidates which increase photocatalytic activity and transition from UV light to visible light and overcome the aggregation, photocorrosion, toxicity, and hard recycling and separation of the nanosized powder form of photocatalysts. The composite NFs are fabricated easily by either embedding the photocatalytic agents into the NFs during electrospinning or via their decorating on the surface of NFs post-electrospinning. Polyacrylonitrile-based, tungsten trioxide-based, zinc oxide-based, and titanium dioxide-based composite NFs were revealed as the most reported composite NFs. All the lately investigated electrospun composite NFs indicated long-term stability, high photocatalytic efficiency (∼> 80%) within a short time of light radiation (10-430 min), and high stability after several cycles of use. They were applied in various applications including degradation of dyes/antibiotics, water splitting, wastewater treatment, antibacterial usage, etc. The photogenerated species especially holes, O2∙-, and .OH were mostly responsible for the photocatalytic mechanism and pathway. The electrospun composite NFs have the potential to use in large-scale productions in condition that their thickness and recycling conditions are optimized, and their toxicity and detaching are resolved.
Collapse
Affiliation(s)
- Shadi Asgari
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, P.O. Box 1993893973, Tehran, Iran
| | - Ghodsi Mohammadi Ziarani
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, P.O. Box 1993893973, Tehran, Iran.
| | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Fatemeh Ajalloueian
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, Ørsteds Plads, 2800, Kgs, Lyngby, Denmark
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India; The University of Johannesburg, Department of Chemical Engineering, P.O. Box 17011, Doornfontein, 2088, South Africa.
| |
Collapse
|
6
|
Du Y, Ma R, Wang L, Qian J, Wang Q. 2D/1D BiOI/g-C 3N 4 nanotubes heterostructure for photoelectrochemical overall water splitting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156166. [PMID: 35618118 DOI: 10.1016/j.scitotenv.2022.156166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/15/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
To boost the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) performances, the BiOI/graphitic carbon nitride nanotubes (g-C3N4 nanotubes) heterojunction was synthesized herein through the hydrothermal method. BiOI in-situ grew on the surface of g-C3N4 nanotubes derived from melamine. The rapid recombination between photoexcited electrons and holes of pristine semiconductors was prevented via building the stable heterojunction. The SEM results indicated that the BiOI was wrapped around the surface of g-C3N4 nanotubes, resulting in an optimized electronic transmission pathway. Much lower charge transfer resistance at the p-n heterojunction was demonstrated compared with pristine BiOI according to the EIS results, thus leading to the faster surface reaction rates. Moreover, the composite exhibited both outstanding OER and HER activities under illuminated conditions. This study may shed light upon establishing a bifunctional photoelectrocatalysis for photoelectrochemical water splitting based on stable 2D metal and 1D metal-free nanocomposite.
Collapse
Affiliation(s)
- Yufei Du
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Rui Ma
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Lingzhen Wang
- Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, China
| | - Jin Qian
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China.
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
7
|
Liang S, Chen Y, Han W, Jiao Y, Li W, Tian G. Hierarchical S-scheme titanium dioxide@cobalt-nickel based metal–organic framework nanotube photocatalyst for selective carbon dioxide photoreduction to methane. J Colloid Interface Sci 2022; 630:11-22. [DOI: 10.1016/j.jcis.2022.09.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/09/2022] [Accepted: 09/22/2022] [Indexed: 10/14/2022]
|
8
|
Li D, Liu Y, Wen C, Huang J, Li R, Liu H, Zhong J, Chen P, Lv W, Liu G. Construction of dual transfer channels in graphitic carbon nitride photocatalyst for high-efficiency environmental pollution remediation: Enhanced exciton dissociation and carrier migration. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129171. [PMID: 35605504 DOI: 10.1016/j.jhazmat.2022.129171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/06/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Graphitic carbon nitride (g-C3N4) is a promising candidate for photocatalysis, but exhibits moderate activity due to strongly bound excitons and sluggish charge migration. The dissociation of excitons to free electrons and holes is considered an effective strategy to enhance photocatalytic activity. Herein, a novel boron nitride quantum dots (BNQDs) modified P-doped g-C3N4 photocatalyst (BQPN) was successfully prepared by thermal polymerization method. Photoluminescence techniques and photoelectrochemical tests demonstrated that the introduction of P atoms and BNQDs promoted the dissociation of excitons and the migration of photogenerated carriers. Specifically, theoretical calculations revealed that P substitutions were the sites of pooled electrons, while BNQDs were the excellent photogenerated hole extractors. Accordingly, compared with g-C3N4, the BQPN showed improved performance in degrading four non-steroidal anti-inflammatory drugs (NSAIDs) under visible light irradiation. This work not only establishes an in-depth understanding of excitonic regulation in g-C3N4, but also offers a promising photocatalytic technology for environmental remediation.
Collapse
Affiliation(s)
- Daguang Li
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yang Liu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Chenghui Wen
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiaxing Huang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Ruobai Li
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Haijin Liu
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huaihe River Water Environment and Pollution Control, Xinxiang 453007, China
| | - Jiapeng Zhong
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Ping Chen
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Wenying Lv
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guoguang Liu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
9
|
Jia F, Zhao D, Shu M, Sun F, Wang D, Chen C, Deng Y, Zhu X. Co-doped Fe-MIL-100 as an adsorbent for tetracycline removal from aqueous solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:55026-55038. [PMID: 35307798 DOI: 10.1007/s11356-022-19684-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
In the study, Fe-MIL-100 was modified by adding Co2+ in the synthesis process; Co/Fe-MIL-100 was successfully synthesized and used to adsorb tetracycline. The addition of Co2+ increased the thermal stability of Fe-MIL-100 without changing the crystal structure. It was found that Co/Fe-MIL-100 exhibited satisfactory performance in tetracycline removal, the tetracycline removal efficiency reached almost 100% in the initial concentration range of 10-40 mg/L, and it still reached 82.38% under the condition of 60 mg/L tetracycline. Besides, the factors of tetracycline concentration, pH and inorganic anion on removal efficiency were explored. The coexistence of inorganic anion decreased the adsorption capacity of tetracycline due to the competitive adsorption. CO32- had a more obvious inhibition effect on the adsorption efficiency of tetracycline than Cl-. The fitting correlation coefficient of Langmuir model was higher and the kinetics better fitted by pseudo-second-order, respectively. As a result of its high removal efficiency and excellent recycling performance, it has great potential in application fields such as removing tetracycline from wastewater.
Collapse
Affiliation(s)
- Feiyue Jia
- Shanghai Waterway Engineering Design and Consulting Co., Ltd., Shanghai, 200120, China
| | - Donghua Zhao
- Shanghai Waterway Engineering Design and Consulting Co., Ltd., Shanghai, 200120, China
| | - Mengzhao Shu
- Shanghai Waterway Engineering Design and Consulting Co., Ltd., Shanghai, 200120, China
| | - Feifei Sun
- Shanghai Waterway Engineering Design and Consulting Co., Ltd., Shanghai, 200120, China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China.
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, People's Republic of China.
| | - Chen Chen
- Shanghai Waterway Engineering Design and Consulting Co., Ltd., Shanghai, 200120, China
| | - Yu Deng
- Shanghai Waterway Engineering Design and Consulting Co., Ltd., Shanghai, 200120, China
| | - Xiaoming Zhu
- Shanghai Waterway Engineering Design and Consulting Co., Ltd., Shanghai, 200120, China
| |
Collapse
|