1
|
Nguyen Thanh L, Hachad M, McQuaid N, Krylova K, Thanh LNH, Visentin F, Burnet JB, Quete FS, Maere T, Tsitouras A, Vanrolleghem P, Frigon D, Loeb S, Dorner S, Goitom E. Hydrological and physicochemical parameters associated with SARS-CoV-2 and pepper mild mottle virus wastewater concentrations for a large-combined sewer system. JOURNAL OF WATER AND HEALTH 2025; 23:413-427. [PMID: 40156218 DOI: 10.2166/wh.2025.352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/13/2025] [Indexed: 04/01/2025]
Abstract
During COVID-19, surveillance of SARS-CoV-2 in wastewater has been a promising tool for tracking viral infection at the community level. However, in addition to the shedding rates within the community, SARS-CoV-2 concentrations in raw wastewater are influenced by several environmental factors. This study investigated the effects of wastewater characteristics on the viral quantification of SARS-CoV-2 and pepper mild mottle virus (PMMoV) for a large wastewater system with combined sewers. Principal component analysis illustrated that water temperature negatively correlates with SARS-CoV-2 and PMMoV in wastewater, but flow rate and EC are highly correlated with SARS-CoV-2 in spring and winter. The normalization using EC enhanced the correlation with clinical data compared to normalization using pH, flow rate, and raw SARS-CoV-2. The normalization using PMMoV reduced the correlation with clinical data. Multiple linear and random forest (RF) applied to predict the concentrations of SARS-CoV-2 in wastewater, given the confirmed cases and physicochemical parameters. RF regression was the best model to predict SARS-CoV-2 in wastewater (R2=0.8), with the most important variables being the confirmed cases followed by water temperature. RF model is a potent predictor of the presence of SARS-CoV-2 in wastewater. This enhances the degree of reliability between community outbreaks and SARS-CoV-2 monitoring.
Collapse
Affiliation(s)
- Luan Nguyen Thanh
- Département des génies civil, géologique et des mines, Polytechnique Montréal, Montréal, Canada E-mail:
| | - Mounia Hachad
- Département des génies civil, géologique et des mines, Polytechnique Montréal, Montréal, Canada
| | - Natasha McQuaid
- Département des génies civil, géologique et des mines, Polytechnique Montréal, Montréal, Canada
| | - Kateryna Krylova
- Département des génies civil, géologique et des mines, Polytechnique Montréal, Montréal, Canada
| | - Loan Nguyen Ha Thanh
- Département des génies civil, géologique et des mines, Polytechnique Montréal, Montréal, Canada
| | - Flavia Visentin
- Département des génies civil, géologique et des mines, Polytechnique Montréal, Montréal, Canada
| | - Jean-Baptiste Burnet
- Département des génies civil, géologique et des mines, Polytechnique Montréal, Montréal, Canada
| | | | - Thomas Maere
- Department of Civil and Water Engineering, Université Laval, Quebec City, QC, Canada
| | | | - Peter Vanrolleghem
- Department of Civil and Water Engineering, Université Laval, Quebec City, QC, Canada
| | - Dominic Frigon
- Department of Civil Engineering, McGill University, Montreal, QC, Canada
| | - Stephanie Loeb
- Department of Civil Engineering, McGill University, Montreal, QC, Canada
| | - Sarah Dorner
- Département des génies civil, géologique et des mines, Polytechnique Montréal, Montréal, Canada
| | - Eyerusalem Goitom
- Département des génies civil, géologique et des mines, Polytechnique Montréal, Montréal, Canada
| |
Collapse
|
2
|
Cancela F, Lizasoain A, Panzera Y, Fernández-López E, Lozano J, Calleros L, Grecco S, Marandino AE, Cortinas MN, Masachessi G, Nates S, Icasuriaga R, Colina R, Mirazo S. Targeted Enrichment Sequencing Utilizing a Respiratory Pathogen Panel for Genomic Wastewater-Based Viral Epidemiology in Uruguay. FOOD AND ENVIRONMENTAL VIROLOGY 2025; 17:14. [PMID: 39786435 DOI: 10.1007/s12560-024-09629-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 12/20/2024] [Indexed: 01/12/2025]
Abstract
Human respiratory and enteric viruses are responsible for substantial morbidity and mortality worldwide. Wastewater-based epidemiology utilizing next-generation sequencing serves as an effective tool for monitoring viral circulation dynamics at the community level. However, these complex environmental samples are often laden with other microorganisms and host genomic material, which can hinder the sensitivity of viral detection. To address this limitation, targeted enrichment sequencing is emerging as a preferred strategy, facilitating the acquisition of a more comprehensive understanding of specific pathogens. In this study, we evaluated the performance of a targeted enrichment sequencing panel for 42 excreted respiratory viruses (including Picornaviridae, Adenoviridae, Coronaviridae, Paramyxoviridae, Orthomyxoviridae, Orthoherpesviridae, Pneumoviridae, and Parvoviridae families), known as the Respiratory Pathogen ID/AMR enrichment panel (RPIP), coupled with Explify bioinformatics analysis in 3 sewage samples from Uruguay. RPIP panel successfully identified sequences from frequently circulating viruses, along with some that had not been documented previously. We identified and characterized various viruses, including human Enterovirus (Coxsackievirus A1 and A19), Influenza A-H1N1, and full-length sequences of SARS-CoV-2. Additionally, several other viral pathogens were detected, such as human Bocavirus, human Parechovirus, Enterovirus A71, and Enterovirus D68; however, for these viruses further analysis was limited due to the small genomic regions or low-read coverage obtained. While the RPIP panel necessitates substantial sequencing depth and may introduce bias towards the more predominant strains present in the samples, this approach suggests its viability as a genomic epidemiological tool for assessing respiratory and enteric viruses in wastewater.
Collapse
Affiliation(s)
- Florencia Cancela
- Laboratorio de Ecología Viral y Virus Zoonóticos, Unidad Académica de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Av. Alfredo Navarro 3051, 11600, Montevideo, Uruguay
| | - Andrés Lizasoain
- Laboratorio de Virología Molecular, Departamento de Ciencias Biológicas, Centro Universitario Regional Litoral Norte, Universidad de la República, 50000, Salto, Uruguay
| | - Yanina Panzera
- Sección Genética Evolutiva, Departamento de Biología Animal, Instituto de Biología, Plataforma Genómica, Facultad de Ciencias, Universidad de la República, 11400, Montevideo, Uruguay
| | | | | | - Lucia Calleros
- Sección Genética Evolutiva, Departamento de Biología Animal, Instituto de Biología, Plataforma Genómica, Facultad de Ciencias, Universidad de la República, 11400, Montevideo, Uruguay
| | - Sofia Grecco
- Sección Genética Evolutiva, Departamento de Biología Animal, Instituto de Biología, Plataforma Genómica, Facultad de Ciencias, Universidad de la República, 11400, Montevideo, Uruguay
| | - Ana Eugenia Marandino
- Sección Genética Evolutiva, Departamento de Biología Animal, Instituto de Biología, Plataforma Genómica, Facultad de Ciencias, Universidad de la República, 11400, Montevideo, Uruguay
| | - María Noel Cortinas
- Unidad Genómica, Departamento de Laboratorios de Salud Pública, Ministerio de Salud Pública, 11600, Montevideo, Uruguay
| | - Gisela Masachessi
- Instituto de Virología Dr. J. M. Vanella, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n, Ciudad Universitaria, X5000, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB, CABA, Argentina
| | - Silvia Nates
- Instituto de Virología Dr. J. M. Vanella, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Enfermera Gordillo Gómez s/n, Ciudad Universitaria, X5000, Córdoba, Argentina
| | - Romina Icasuriaga
- Laboratorio de Ecología Viral y Virus Zoonóticos, Unidad Académica de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Av. Alfredo Navarro 3051, 11600, Montevideo, Uruguay
| | - Rodney Colina
- Laboratorio de Virología Molecular, Departamento de Ciencias Biológicas, Centro Universitario Regional Litoral Norte, Universidad de la República, 50000, Salto, Uruguay
| | - Santiago Mirazo
- Laboratorio de Ecología Viral y Virus Zoonóticos, Unidad Académica de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Av. Alfredo Navarro 3051, 11600, Montevideo, Uruguay.
| |
Collapse
|
3
|
Ribeiro AVC, Mannarino CF, Dos Santos Leal T, de Oliveira CS, Bianco K, Clementino MM, Novo SPC, Prado T, de Castro EDSG, Lermontov A, Fumian TM, Miagostovich MP. Environmental Dissemination of SARS-CoV-2: An Analysis Employing Crassphage and Next-Generation Sequencing Protocols. FOOD AND ENVIRONMENTAL VIROLOGY 2025; 17:13. [PMID: 39776004 DOI: 10.1007/s12560-024-09620-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/07/2024] [Indexed: 01/11/2025]
Abstract
This study aimed to investigate the dissemination of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in water samples obtained during the coronavirus disease 2019 pandemic period, employing cross-assembly phage (crAssphage) as a fecal contamination biomarker and next-generation sequencing protocols to characterize SARS-CoV-2 variants. Raw wastewater and surface water (stream and sea) samples were collected for over a month in Rio de Janeiro, Brazil. Ultracentrifugation and negatively charged membrane filtration were employed for viral concentration of the wastewater and surface water samples, respectively. Viruses were detected and quantified by (RT-)qPCR applying TaqMan® system protocols. SARS-CoV-2 RNA signals were detected in 92.5% (37/40) of the wastewater samples and in 31.25% (10/32) of the stream water samples, but not in seawater samples. CrAssphage was detected in 100% of the wastewater samples, 93.75% (30/32) of the stream samples, and in 2/4 of the seawater samples. CrAssphage detection and high concentrations in stream surface waters (median 8.95 log10 gc/L) revealed diffuse contamination by domestic wastewater in a region with high sanitary coverage. The correlations detected between SARS-CoV-2 data and the moving averages of clinical cases per capita over the sampling period were moderate to strong when applying a 13-day offset, regardless of normalization by crAssphage data or not. Sequencing of the receptor-binding domain of the spike protein confirmed the detection of SARS-CoV-2, but did not characterize the circulating variant. On the other hand, the whole genome sequencing protocol identified circulation of the Gamma variant, corroborating the sampling period clinical data.
Collapse
Affiliation(s)
- André Vinicius Costa Ribeiro
- Stricto Sensu Graduate Program in Cellular and Molecular Biology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-360, Brazil.
- Department of Sanitation and Environmental Health, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Av. Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, CEP 21040-360, Brazil.
| | - Camille Ferreira Mannarino
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Thiago Dos Santos Leal
- Niterói City Hall/Secretariat for Environment, Water Resources and Sustainability, Niterói, 24020-206, Brazil
| | - Carla Santos de Oliveira
- Laboratory of Arbovirus and Hemorrhagic Virus, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Kayo Bianco
- National Institute of Quality Control in Health, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Maysa Mandetta Clementino
- National Institute of Quality Control in Health, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Shênia Patricia Corrêa Novo
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Tatiana Prado
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-360, Brazil
| | | | - André Lermontov
- Federal University of Rio de Janeiro, Av. Athos da Silveira Ramos, 149 - Cidade Universitária, Rio de Janeiro, 21941-909, Brazil
| | - Tulio Machado Fumian
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Marize Pereira Miagostovich
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, 21040-360, Brazil
| |
Collapse
|
4
|
Siri Y, Malla B, Thao LT, Hirai S, Ruti AA, Rahmani AF, Raya S, Angga MS, Sthapit N, Shrestha S, Takeda T, Kitajima M, Dinh NQ, Phuc PD, Ngo HTT, Haramoto E. Assessment of environmental factors influencing SARS-CoV-2 in Vietnam's surface water across two years of clinical data. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177449. [PMID: 39542275 DOI: 10.1016/j.scitotenv.2024.177449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/23/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
Wastewater-based epidemiology (WBE) is an effective, non-invasive method for monitoring the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by tracking viral prevalence in water. This study aimed to investigate the presence of SARS-CoV-2 in surface water in Vietnam over two years. One-step quantitative reverse transcription polymerase chain reaction (qRT-PCR) assays were employed to quantify SARS-CoV-2 and its variant-specific mutation sites (G339D/E484A) and pepper mild mottle virus (PMMoV) from a total of 315 samples (105 samples per site) to compare with reported Coronavirus disease 2019 (COVID-19) cases and environmental factors. SARS-CoV-2 was detected in 38 % (40/105), 43 % (45/105), and 39 % (41/105) of water samples from Sites A, B, and C, respectively, with concentrations of 3.0-5.6 log10 copies/L. PMMoV concentrations were 5.1-8.9 log10 copies/L. SARS-CoV-2 levels were higher in winter compared with summer. There was a strong positive association between the mutant type and SARS-CoV-2 concentrations (Spearman's rho = 0.77, p < 0.01). The mean concentrations of mutant and nonmutant types were 2.3 and 1.8 log10 copies/L, respectively. Peaks in SARS-CoV-2 concentrations preceded reported COVID-19 cases by 2-4 weeks, with the highest association observed at a 4-week delay (Pearson's correlation coefficient: 0.46-0.53). Environmental factors, including temperature, pH, and electrical conductivity, correlated negatively with SARS-CoV-2 (Spearman's rho = -0.21, -0.28, and -0.21, respectively, p < 0.05), whereas average rainfall, humidity, and dissolved oxygen correlated positively (Spearman's rho = 0.20, 0.27, and 0.51, respectively, p < 0.05). These correlations highlight the significance of environmental variables in understanding viral prevalence in water. Our findings confirmed the utility of WBE as an early warning system for long-term monitoring. Future research should incorporate environmental factors to improve prediction accuracy for clinical cases and other waterborne diseases.
Collapse
Affiliation(s)
- Yadpiroon Siri
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Bikash Malla
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Le Thanh Thao
- Faculty of Biotechnology, Chemistry and Environmental Engineering, Phenikaa University, Yen Nghia, Ha Dong, Hanoi 12116, Viet Nam; Environmental Chemistry and Ecotoxicology Lab, Phenikaa University, Yen Nghia Ward, Ha Dong District, Hanoi 12116, Viet Nam
| | - Soichiro Hirai
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Annisa Andarini Ruti
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Aulia Fajar Rahmani
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Sunayana Raya
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Made Sandhyana Angga
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Niva Sthapit
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Sadhana Shrestha
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Tomoko Takeda
- Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masaaki Kitajima
- Research Center for Water Environment Technology, School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Nguyen Quoc Dinh
- Environmental Chemistry and Ecotoxicology Lab, Phenikaa University, Yen Nghia Ward, Ha Dong District, Hanoi 12116, Viet Nam; External Engagement Office, Phenikaa University, Yen Nghia, Ha Dong, Hanoi 12116, Viet Nam
| | - Pham Duc Phuc
- Center for Public Health and Ecosystem Research, Hanoi University of Public Health, Viet Nam; Institute of Environmental Health and Sustainable Development, Hanoi, Viet Nam
| | - Huong Thi Thuy Ngo
- Faculty of Biotechnology, Chemistry and Environmental Engineering, Phenikaa University, Yen Nghia, Ha Dong, Hanoi 12116, Viet Nam; Environmental Chemistry and Ecotoxicology Lab, Phenikaa University, Yen Nghia Ward, Ha Dong District, Hanoi 12116, Viet Nam.
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan.
| |
Collapse
|
5
|
Carmo dos Santos M, Cerqueira Silva AC, dos Reis Teixeira C, Pinheiro Macedo Prazeres F, Fernandes dos Santos R, de Araújo Rolo C, de Souza Santos E, Santos da Fonseca M, Oliveira Valente C, Saraiva Hodel KV, Moraes dos Santos Fonseca L, Sampaio Dotto Fiuza B, de Freitas Bueno R, Bittencourt de Andrade J, Aparecida Souza Machado B. Wastewater surveillance for viral pathogens: A tool for public health. Heliyon 2024; 10:e33873. [PMID: 39071684 PMCID: PMC11279281 DOI: 10.1016/j.heliyon.2024.e33873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/03/2024] [Accepted: 06/28/2024] [Indexed: 07/30/2024] Open
Abstract
A focus on water quality has intensified globally, considering its critical role in sustaining life and ecosystems. Wastewater, reflecting societal development, profoundly impacts public health. Wastewater-based epidemiology (WBE) has emerged as a surveillance tool for detecting outbreaks early, monitoring infectious disease trends, and providing real-time insights, particularly in vulnerable communities. WBE aids in tracking pathogens, including viruses, in sewage, offering a comprehensive understanding of community health and lifestyle habits. With the rise in global COVID-19 cases, WBE has gained prominence, aiding in monitoring SARS-CoV-2 levels worldwide. Despite advancements in water treatment, poorly treated wastewater discharge remains a threat, amplifying the spread of water-, sanitation-, and hygiene (WaSH)-related diseases. WBE, serving as complementary surveillance, is pivotal for monitoring community-level viral infections. However, there is untapped potential for WBE to expand its role in public health surveillance. This review emphasizes the importance of WBE in understanding the link between viral surveillance in wastewater and public health, highlighting the need for its further integration into public health management.
Collapse
Affiliation(s)
- Matheus Carmo dos Santos
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Ana Clara Cerqueira Silva
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Carine dos Reis Teixeira
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Filipe Pinheiro Macedo Prazeres
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Rosângela Fernandes dos Santos
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Carolina de Araújo Rolo
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Emanuelle de Souza Santos
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Maísa Santos da Fonseca
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Camila Oliveira Valente
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Katharine Valéria Saraiva Hodel
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Larissa Moraes dos Santos Fonseca
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Bianca Sampaio Dotto Fiuza
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
| | - Rodrigo de Freitas Bueno
- Federal University of ABC. Center of Engineering, Modelling and Applied Social Sciences (CECS), Santo Andre, São Paulo, Brazil
| | - Jailson Bittencourt de Andrade
- University Center SENAI CIMATEC, SENAI CIMATEC, Salvador, 41650-010, Bahia, Brazil
- Centro Interdisciplinar de Energia e Ambiente – CIEnAm, Federal University of Bahia, Salvador, 40170-115, Brazil
| | - Bruna Aparecida Souza Machado
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), SENAI CI-MATEC, Salvador, 41650-010, Bahia, Brazil
- University Center SENAI CIMATEC, SENAI CIMATEC, Salvador, 41650-010, Bahia, Brazil
| |
Collapse
|
6
|
Ribeiro AVC, Mannarino CF, Novo SPC, Prado T, Lermontov A, de Paula BB, Fumian TM, Miagostovich MP. Assessment of crAssphage as a biological variable for SARS-CoV-2 data normalization in wastewater surveillance. J Appl Microbiol 2024; 135:lxae177. [PMID: 39013607 DOI: 10.1093/jambio/lxae177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 07/18/2024]
Abstract
AIMS This study aimed to assess the use of cross-assembled phage (crAssphage) as an endogenous control employing a multivariate normalization analysis and its application as a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) data normalizer. METHODS AND RESULTS A total of 188 twelve-hour composite raw sewage samples were obtained from eight wastewater treatment plants (WWTP) during a 1-year monitoring period. Employing the N1 and N2 target regions, SARS-CoV-2 RNA was detected in 94% (177) and 90% (170) of the samples, respectively, with a global median of 5 log10 genomic copies per liter (GC l-1). CrAssphage was detected in 100% of the samples, ranging from 8.29 to 10.43 log10 GC l-1, with a median of 9.46 ± 0.40 log10 GC l-1, presenting both spatial and temporal variabilities. CONCLUSIONS Although SARS-CoV-2 data normalization employing crAssphage revealed a correlation with clinical cases occurring during the study period, crAssphage normalization by the flow per capita per day of each WWTP increased this correlation, corroborating the importance of normalizing wastewater surveillance data in disease trend monitoring.
Collapse
Affiliation(s)
- André Vinicius Costa Ribeiro
- Department of Sanitation and Environmental Health, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | - Camille Ferreira Mannarino
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | - Shênia Patrícia Corrêa Novo
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | - Tatiana Prado
- Laboratory of Respiratory, Exanthematic, Enteroviruses and Viral Emergencies, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | - André Lermontov
- Chemical and Biochemical Process Technology, School of Chemistry/Federal University of Rio de Janeiro - EQ/UFRJ, Rio de Janeiro 21941-909, Brazil
| | - Bruna Barbosa de Paula
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | - Tulio Machado Fumian
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | - Marize Pereira Miagostovich
- Laboratory of Comparative and Environmental Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| |
Collapse
|
7
|
Fondriest M, Vaccari L, Aldrovandi F, De Lellis L, Ferretti F, Fiorentino C, Mari E, Mascolo MG, Minelli L, Perlangeli V, Bortone G, Pandolfi P, Colacci A, Ranzi A. Wastewater-Based Epidemiology for SARS-CoV-2 in Northern Italy: A Spatiotemporal Model. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:741. [PMID: 38928987 PMCID: PMC11203876 DOI: 10.3390/ijerph21060741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/23/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024]
Abstract
The study investigated the application of Wastewater-Based Epidemiology (WBE) as a tool for monitoring the SARS-CoV-2 prevalence in a city in northern Italy from October 2021 to May 2023. Based on a previously used deterministic model, this study proposed a variation to account for the population characteristics and virus biodegradation in the sewer network. The model calculated virus loads and corresponding COVID-19 cases over time in different areas of the city and was validated using healthcare data while considering viral mutations, vaccinations, and testing variability. The correlation between the predicted and reported cases was high across the three waves that occurred during the period considered, demonstrating the ability of the model to predict the relevant fluctuations in the number of cases. The population characteristics did not substantially influence the predicted and reported infection rates. Conversely, biodegradation significantly reduced the virus load reaching the wastewater treatment plant, resulting in a 30% reduction in the total virus load produced in the study area. This approach can be applied to compare the virus load values across cities with different population demographics and sewer network structures, improving the comparability of the WBE data for effective surveillance and intervention strategies.
Collapse
Affiliation(s)
- Matilde Fondriest
- Regional Agency for Prevention, Environment and Energy of Emilia-Romagna, 40139 Bologna, Italy; (L.V.); (E.M.); (M.G.M.); (G.B.); (A.C.); (A.R.)
| | - Lorenzo Vaccari
- Regional Agency for Prevention, Environment and Energy of Emilia-Romagna, 40139 Bologna, Italy; (L.V.); (E.M.); (M.G.M.); (G.B.); (A.C.); (A.R.)
| | - Federico Aldrovandi
- Alma Mater Institute on Healthy Planet, Department of Biological, Geological and Environmental Sciences, University of Bologna, 40138 Bologna, Italy;
| | | | - Filippo Ferretti
- Local Health Authority of Bologna, Department of Public Health, 40124 Bologna, Italy; (F.F.); (C.F.); (V.P.); (P.P.)
| | - Carmine Fiorentino
- Local Health Authority of Bologna, Department of Public Health, 40124 Bologna, Italy; (F.F.); (C.F.); (V.P.); (P.P.)
| | - Erica Mari
- Regional Agency for Prevention, Environment and Energy of Emilia-Romagna, 40139 Bologna, Italy; (L.V.); (E.M.); (M.G.M.); (G.B.); (A.C.); (A.R.)
- Local Health Authority of Bologna, Department of Public Health, 40124 Bologna, Italy; (F.F.); (C.F.); (V.P.); (P.P.)
| | - Maria Grazia Mascolo
- Regional Agency for Prevention, Environment and Energy of Emilia-Romagna, 40139 Bologna, Italy; (L.V.); (E.M.); (M.G.M.); (G.B.); (A.C.); (A.R.)
| | | | - Vincenza Perlangeli
- Local Health Authority of Bologna, Department of Public Health, 40124 Bologna, Italy; (F.F.); (C.F.); (V.P.); (P.P.)
| | - Giuseppe Bortone
- Regional Agency for Prevention, Environment and Energy of Emilia-Romagna, 40139 Bologna, Italy; (L.V.); (E.M.); (M.G.M.); (G.B.); (A.C.); (A.R.)
| | - Paolo Pandolfi
- Local Health Authority of Bologna, Department of Public Health, 40124 Bologna, Italy; (F.F.); (C.F.); (V.P.); (P.P.)
| | - Annamaria Colacci
- Regional Agency for Prevention, Environment and Energy of Emilia-Romagna, 40139 Bologna, Italy; (L.V.); (E.M.); (M.G.M.); (G.B.); (A.C.); (A.R.)
| | - Andrea Ranzi
- Regional Agency for Prevention, Environment and Energy of Emilia-Romagna, 40139 Bologna, Italy; (L.V.); (E.M.); (M.G.M.); (G.B.); (A.C.); (A.R.)
| |
Collapse
|
8
|
Baz Lomba JA, Pires J, Myrmel M, Arnø JK, Madslien EH, Langlete P, Amato E, Hyllestad S. Effectiveness of environmental surveillance of SARS-CoV-2 as an early-warning system: Update of a systematic review during the second year of the pandemic. JOURNAL OF WATER AND HEALTH 2024; 22:197-234. [PMID: 38295081 PMCID: wh_2023_279 DOI: 10.2166/wh.2023.279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
The aim of this updated systematic review was to offer an overview of the effectiveness of environmental surveillance (ES) of SARS-CoV-2 as a potential early-warning system (EWS) for COVID-19 and new variants of concerns (VOCs) during the second year of the pandemic. An updated literature search was conducted to evaluate the added value of ES of SARS-CoV-2 for public health decisions. The search for studies published between June 2021 and July 2022 resulted in 1,588 publications, identifying 331 articles for full-text screening. A total of 151 publications met our inclusion criteria for the assessment of the effectiveness of ES as an EWS and early detection of SARS-CoV-2 variants. We identified a further 30 publications among the grey literature. ES confirms its usefulness as an EWS for detecting new waves of SARS-CoV-2 infection with an average lead time of 1-2 weeks for most of the publication. ES could function as an EWS for new VOCs in areas with no registered cases or limited clinical capacity. Challenges in data harmonization and variant detection require standardized approaches and innovations for improved public health decision-making. ES confirms its potential to support public health decision-making and resource allocation in future outbreaks.
Collapse
Affiliation(s)
- Jose Antonio Baz Lomba
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway E-mail:
| | - João Pires
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway; ECDC fellowship Programme, Public Health Microbiology path (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Solna, Sweden
| | - Mette Myrmel
- Faculty of Veterinary Medicine, Virology Unit, Norwegian University of Life Science (NMBU), Oslo, Norway
| | - Jorunn Karterud Arnø
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Elisabeth Henie Madslien
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Petter Langlete
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Ettore Amato
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Susanne Hyllestad
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
9
|
Choi BJ, Hoselton S, Njau GN, Idamawatta I, Carson P, McEvoy J. Estimating the prevalence of COVID-19 cases through the analysis of SARS-CoV-2 RNA copies derived from wastewater samples from North Dakota. GLOBAL EPIDEMIOLOGY 2023; 6:100124. [PMID: 37881481 PMCID: PMC10594563 DOI: 10.1016/j.gloepi.2023.100124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/27/2023] Open
Abstract
The SARS-CoV-2 virus was first detected in December 2019, which prompted many researchers to investigate how the virus spreads. SARS-CoV-2 is mainly transmitted through respiratory droplets. Symptoms of the SARS-CoV-2 virus appear after an incubation period. Moreover, the asymptomatic infected individuals unknowingly spread the virus. Detecting infected people requires daily tests and contact tracing, which are expensive. The early detection of infectious diseases, including COVID-19, can be achieved with wastewater-based epidemiology, which is timely and cost-effective. In this study, we collected wastewater samples from wastewater treatment plants in several cities in North Dakota and then extracted viral RNA copies. We used log-RNA copies in the model to predict the number of infected cases using Quantile Regression (QR) and K-Nearest Neighbor (KNN) Regression. The model's performance was evaluated by comparing the Mean Absolute Percentage Error (MAPE). The QR model performs well in cities where the population is >10000 . In addition, the model predictions were compared with the basic Susceptible-Infected-Recovered (SIR) model which is the golden standard model for infectious diseases.
Collapse
Affiliation(s)
- Bong-Jin Choi
- Department of Statistics and Department of Public Health, North Dakota State University, United States of America
| | - Scott Hoselton
- Department of Microbiological Sciences, North Dakota State University, United States of America
| | - Grace N. Njau
- North Dakota Department of Health, United States of America
| | - I.G.C.G. Idamawatta
- Department of Statistics, North Dakota State University, United States of America
| | - Paul Carson
- Center for Immunization Research and Education (CIRE), Department of Public Health, North Dakota State University, United States of America
| | - John McEvoy
- Department of Microbiological Sciences, North Dakota State University, United States of America
| |
Collapse
|
10
|
Lombardi A, Voli A, Mancusi A, Girardi S, Proroga YTR, Pierri B, Olivares R, Cossentino L, Suffredini E, La Rosa G, Fusco G, Pizzolante A, Porta A, Campiglia P, Torre I, Pennino F, Tosco A. SARS-CoV-2 RNA in Wastewater and Bivalve Mollusk Samples of Campania, Southern Italy. Viruses 2023; 15:1777. [PMID: 37632119 PMCID: PMC10459311 DOI: 10.3390/v15081777] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/12/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
SARS-CoV-2 can be detected in the feces of infected people, consequently in wastewater, and in bivalve mollusks, that are able to accumulate viruses due to their ability to filter large amounts of water. This study aimed to monitor SARS-CoV-2 RNA presence in 168 raw wastewater samples collected from six wastewater treatment plants (WWTPs) and 57 mollusk samples obtained from eight harvesting sites in Campania, Italy. The monitoring period spanned from October 2021 to April 2022, and the results were compared and correlated with the epidemiological situation. In sewage, the ORF1b region of SARS-CoV-2 was detected using RT-qPCR, while in mollusks, three targets-RdRp, ORF1b, and E-were identified via RT-dPCR. Results showed a 92.3% rate of positive wastewater samples with increased genomic copies (g.c.)/(day*inhabitant) in December-January and March-April 2022. In the entire observation period, 54.4% of mollusks tested positive for at least one SARS-CoV-2 target, and the rate of positive samples showed a trend similar to that of the wastewater samples. The lower SARS-CoV-2 positivity rate in bivalve mollusks compared to sewages is a direct consequence of the seawater dilution effect. Our data confirm that both sample types can be used as sentinels to detect SARS-CoV-2 in the environment and suggest their potential use in obtaining complementary information on SARS-CoV-2.
Collapse
Affiliation(s)
- Annalisa Lombardi
- Department of Public Health, University “Federico II”, Via Sergio Pansini 5, 80131 Naples, Italy; (A.L.)
| | - Antonia Voli
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (A.V.); (A.P.); (P.C.)
| | - Andrea Mancusi
- Department of Food Security Coordination, Zooprophylactic Institute of Southern Italy, Via Salute 2, 80055 Portici, Italy; (A.M.); (S.G.); (Y.T.R.P.); (B.P.)
| | - Santa Girardi
- Department of Food Security Coordination, Zooprophylactic Institute of Southern Italy, Via Salute 2, 80055 Portici, Italy; (A.M.); (S.G.); (Y.T.R.P.); (B.P.)
| | - Yolande Thérèse Rose Proroga
- Department of Food Security Coordination, Zooprophylactic Institute of Southern Italy, Via Salute 2, 80055 Portici, Italy; (A.M.); (S.G.); (Y.T.R.P.); (B.P.)
| | - Biancamaria Pierri
- Department of Food Security Coordination, Zooprophylactic Institute of Southern Italy, Via Salute 2, 80055 Portici, Italy; (A.M.); (S.G.); (Y.T.R.P.); (B.P.)
| | - Renato Olivares
- Campania Regional Environmental Protection Agency (ARPAC), Via Vicinale Santa Maria del Pianto, 80143 Naples, Italy; (R.O.); (L.C.)
| | - Luigi Cossentino
- Campania Regional Environmental Protection Agency (ARPAC), Via Vicinale Santa Maria del Pianto, 80143 Naples, Italy; (R.O.); (L.C.)
| | - Elisabetta Suffredini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Giuseppina La Rosa
- Department of Environment and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Giovanna Fusco
- Zooprophylactic Institute of Southern Italy, Via Salute 2, 80055 Portici, Italy; (G.F.); (A.P.)
| | - Antonio Pizzolante
- Zooprophylactic Institute of Southern Italy, Via Salute 2, 80055 Portici, Italy; (G.F.); (A.P.)
| | - Amalia Porta
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (A.V.); (A.P.); (P.C.)
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (A.V.); (A.P.); (P.C.)
| | - Ida Torre
- Department of Public Health, University “Federico II”, Via Sergio Pansini 5, 80131 Naples, Italy; (A.L.)
| | - Francesca Pennino
- Department of Public Health, University “Federico II”, Via Sergio Pansini 5, 80131 Naples, Italy; (A.L.)
| | - Alessandra Tosco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (A.V.); (A.P.); (P.C.)
| |
Collapse
|
11
|
Ciannella S, González-Fernández C, Gomez-Pastora J. Recent progress on wastewater-based epidemiology for COVID-19 surveillance: A systematic review of analytical procedures and epidemiological modeling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:162953. [PMID: 36948304 PMCID: PMC10028212 DOI: 10.1016/j.scitotenv.2023.162953] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 05/13/2023]
Abstract
On March 11, 2020, the World Health Organization declared the coronavirus disease 2019 (COVID-19), whose causative agent is the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), a pandemic. This virus is predominantly transmitted via respiratory droplets and shed via sputum, saliva, urine, and stool. Wastewater-based epidemiology (WBE) has been able to monitor the circulation of viral pathogens in the population. This tool demands both in-lab and computational work to be meaningful for, among other purposes, the prediction of outbreaks. In this context, we present a systematic review that organizes and discusses laboratory procedures for SARS-CoV-2 RNA quantification from a wastewater matrix, along with modeling techniques applied to the development of WBE for COVID-19 surveillance. The goal of this review is to present the current panorama of WBE operational aspects as well as to identify current challenges related to it. Our review was conducted in a reproducible manner by following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines for systematic reviews. We identified a lack of standardization in wastewater analytical procedures. Regardless, the reverse transcription-quantitative polymerase chain reaction (RT-qPCR) approach was the most reported technique employed to detect and quantify viral RNA in wastewater samples. As a more convenient sample matrix, we suggest the solid portion of wastewater to be considered in future investigations due to its higher viral load compared to the liquid fraction. Regarding the epidemiological modeling, the data-driven approach was consistently used for the prediction of variables associated with outbreaks. Future efforts should also be directed toward the development of rapid, more economical, portable, and accurate detection devices.
Collapse
Affiliation(s)
- Stefano Ciannella
- Department of Chemical Engineering, Texas Tech University, Lubbock 79409, TX, USA.
| | - Cristina González-Fernández
- Department of Chemical Engineering, Texas Tech University, Lubbock 79409, TX, USA; Departamento de Ingenierías Química y Biomolecular, Universidad de Cantabria, Avda. Los Castros, s/n, 39005 Santander, Spain.
| | | |
Collapse
|
12
|
Trigo-Tasende N, Vallejo JA, Rumbo-Feal S, Conde-Pérez K, Vaamonde M, López-Oriona Á, Barbeito I, Nasser-Ali M, Reif R, Rodiño-Janeiro BK, Fernández-Álvarez E, Iglesias-Corrás I, Freire B, Tarrío-Saavedra J, Tomás L, Gallego-García P, Posada D, Bou G, López-de-Ullibarri I, Cao R, Ladra S, Poza M. Wastewater early warning system for SARS-CoV-2 outbreaks and variants in a Coruña, Spain. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27877-3. [PMID: 37286834 DOI: 10.1007/s11356-023-27877-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/19/2023] [Indexed: 06/09/2023]
Abstract
Wastewater-based epidemiology has been widely used as a cost-effective method for tracking the COVID-19 pandemic at the community level. Here we describe COVIDBENS, a wastewater surveillance program running from June 2020 to March 2022 in the wastewater treatment plant of Bens in A Coruña (Spain). The main goal of this work was to provide an effective early warning tool based in wastewater epidemiology to help in decision-making at both the social and public health levels. RT-qPCR procedures and Illumina sequencing were used to weekly monitor the viral load and to detect SARS-CoV-2 mutations in wastewater, respectively. In addition, own statistical models were applied to estimate the real number of infected people and the frequency of each emerging variant circulating in the community, which considerable improved the surveillance strategy. Our analysis detected 6 viral load waves in A Coruña with concentrations between 103 and 106 SARS-CoV-2 RNA copies/L. Our system was able to anticipate community outbreaks during the pandemic with 8-36 days in advance with respect to clinical reports and, to detect the emergence of new SARS-CoV-2 variants in A Coruña such as Alpha (B.1.1.7), Delta (B.1.617.2), and Omicron (B.1.1.529 and BA.2) in wastewater with 42, 30, and 27 days, respectively, before the health system did. Data generated here helped local authorities and health managers to give a faster and more efficient response to the pandemic situation, and also allowed important industrial companies to adapt their production to each situation. The wastewater-based epidemiology program developed in our metropolitan area of A Coruña (Spain) during the SARS-CoV-2 pandemic served as a powerful early warning system combining statistical models with mutations and viral load monitoring in wastewater over time.
Collapse
Affiliation(s)
- Noelia Trigo-Tasende
- University of A Coruña (UDC) - Microbiome and Health group (meiGAbiome), Institute of Biomedical Research (INIBIC) - University Hospital of A Coruña (CHUAC) - Interdisciplinary Center for Chemistry and Biology (CICA) - Spanish Network for Infectious Diseases (CIBERINFEC-ISCIII), Campus da Zapateira, 15008, A Coruña, Spain
| | - Juan A Vallejo
- University of A Coruña (UDC) - Microbiome and Health group (meiGAbiome), Institute of Biomedical Research (INIBIC) - University Hospital of A Coruña (CHUAC) - Interdisciplinary Center for Chemistry and Biology (CICA) - Spanish Network for Infectious Diseases (CIBERINFEC-ISCIII), Campus da Zapateira, 15008, A Coruña, Spain
| | - Soraya Rumbo-Feal
- University of A Coruña (UDC) - Microbiome and Health group (meiGAbiome), Institute of Biomedical Research (INIBIC) - University Hospital of A Coruña (CHUAC) - Interdisciplinary Center for Chemistry and Biology (CICA) - Spanish Network for Infectious Diseases (CIBERINFEC-ISCIII), Campus da Zapateira, 15008, A Coruña, Spain
| | - Kelly Conde-Pérez
- University of A Coruña (UDC) - Microbiome and Health group (meiGAbiome), Institute of Biomedical Research (INIBIC) - University Hospital of A Coruña (CHUAC) - Interdisciplinary Center for Chemistry and Biology (CICA) - Spanish Network for Infectious Diseases (CIBERINFEC-ISCIII), Campus da Zapateira, 15008, A Coruña, Spain
| | - Manuel Vaamonde
- Research Group MODES, Research Center for Information and Communication Technologies (CITIC), University of A Coruña (UDC), Campus de Elviña, 15071 , A Coruña, Spain
| | - Ángel López-Oriona
- Research Group MODES, Research Center for Information and Communication Technologies (CITIC), University of A Coruña (UDC), Campus de Elviña, 15071 , A Coruña, Spain
| | - Inés Barbeito
- Research Group MODES, Research Center for Information and Communication Technologies (CITIC), University of A Coruña (UDC), Campus de Elviña, 15071 , A Coruña, Spain
| | - Mohammed Nasser-Ali
- University of A Coruña (UDC) - Microbiome and Health group (meiGAbiome), Institute of Biomedical Research (INIBIC) - University Hospital of A Coruña (CHUAC) - Interdisciplinary Center for Chemistry and Biology (CICA) - Spanish Network for Infectious Diseases (CIBERINFEC-ISCIII), Campus da Zapateira, 15008, A Coruña, Spain
| | - Rubén Reif
- Center for Research in Biological Chemistry and Molecular Materials (CiQUS), University of Santiago de Compostela (USC), 15782, Santiago de Compostela, Spain
| | - Bruno K Rodiño-Janeiro
- BFlow, University of Santiago de Compostela (USC) and Health Research Institute of Santiago de Compostela (IDIS), Campus Vida, 15706, Santiago de Compostela, A Coruña, Spain
| | - Elisa Fernández-Álvarez
- University of A Coruña (UDC), Research Center for Information and Communication Technologies (CITIC), Database Laboratory, Campus de Elviña, 15071, A Coruña, Spain
| | - Iago Iglesias-Corrás
- University of A Coruña (UDC), Research Center for Information and Communication Technologies (CITIC), Database Laboratory, Campus de Elviña, 15071, A Coruña, Spain
| | - Borja Freire
- University of A Coruña (UDC), Research Center for Information and Communication Technologies (CITIC), Database Laboratory, Campus de Elviña, 15071, A Coruña, Spain
| | - Javier Tarrío-Saavedra
- Research Group MODES, Research Center for Information and Communication Technologies (CITIC), University of A Coruña (UDC), Campus de Elviña, 15071 , A Coruña, Spain
| | - Laura Tomás
- CINBIO, Universidade de Vigo, 36310, Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36312, Vigo, Spain
| | - Pilar Gallego-García
- CINBIO, Universidade de Vigo, 36310, Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36312, Vigo, Spain
| | - David Posada
- CINBIO, Universidade de Vigo, 36310, Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36312, Vigo, Spain
- Department of Biochemistry, Genetics, and Immunology, Universidade de Vigo, 36310, Vigo, Spain
| | - Germán Bou
- University of A Coruña (UDC) - Microbiome and Health group (meiGAbiome), Institute of Biomedical Research (INIBIC) - University Hospital of A Coruña (CHUAC) - Interdisciplinary Center for Chemistry and Biology (CICA) - Spanish Network for Infectious Diseases (CIBERINFEC-ISCIII), Campus da Zapateira, 15008, A Coruña, Spain
| | - Ignacio López-de-Ullibarri
- Research Group MODES, Research Center for Information and Communication Technologies (CITIC), University of A Coruña (UDC), Campus de Elviña, 15071 , A Coruña, Spain
| | - Ricardo Cao
- Research Group MODES, Research Center for Information and Communication Technologies (CITIC), University of A Coruña (UDC), Campus de Elviña, 15071 , A Coruña, Spain
| | - Susana Ladra
- University of A Coruña (UDC), Research Center for Information and Communication Technologies (CITIC), Database Laboratory, Campus de Elviña, 15071, A Coruña, Spain
| | - Margarita Poza
- University of A Coruña (UDC) - Microbiome and Health group (meiGAbiome), Institute of Biomedical Research (INIBIC) - University Hospital of A Coruña (CHUAC) - Interdisciplinary Center for Chemistry and Biology (CICA) - Spanish Network for Infectious Diseases (CIBERINFEC-ISCIII), Campus da Zapateira, 15008, A Coruña, Spain.
| |
Collapse
|
13
|
Salvo M, Azambuya J, Baccardatz N, Moriondo A, Blanco R, Martinez M, Direnna M, Bertolini G, Gamazo P, Colina R, Alvareda E, Victoria M. One-Year Surveillance of SARS-CoV-2 and Rotavirus in Water Matrices from a Hot Spring Area. FOOD AND ENVIRONMENTAL VIROLOGY 2022; 14:401-409. [PMID: 36181654 PMCID: PMC9525940 DOI: 10.1007/s12560-022-09537-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
The pandemic of Coronavirus Disease 2019 (COVID-19) caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is still impacting not only on human health but also all economic activities, especially in those related to tourism. In this study, in order to characterize the presence of SARS-CoV-2 in a hot spring park in Uruguay, swimming pools water, wastewater, and surface water from this area were analyzed by quantitative PCR. Wastewater from Salto city located next to the hydrothermal spring area was also evaluated as well as the presence of Rotavirus (RV). Overall, SARS-CoV-2 was detected in 13% (13/102) of the analyzed samples. Moreover, this virus was not detected in any of the samples from the swimming pools water and was present in 18% (3/17) of wastewater samples from the hotels area showing the same trend between the titer of SARS-CoV-2 and the number of infected people in Salto city. SARS-CoV-2 was also detected in wastewater samples (32% (11/34)) from Salto city, detecting the first positive sample when 105 persons were positive for SARS-CoV-2. Rotavirus was detected only in 10% (2/24) of the wastewater samples analyzed in months when partial lockdown measures were taken, however, this virus was detected in nearly all wastewater samples analyzed when social distancing measures and partial lockdown were relaxed. Wastewater results confirmed the advantages of using the detection and quantification of viruses in this matrix in order to evaluate the presence of these viruses in the population, highlighting the usefulness of this approach to define and apply social distancing. This study suggests that waters from swimming pools are not a source of infection for SARS-CoV-2, although more studies are needed including infectivity assays in order to confirm this statement.
Collapse
Affiliation(s)
- M Salvo
- Water Department, Centro Universitario Regional Litoral Norte, Universidad de La República, Rivera 1350, 50000, Salto, CP, Uruguay
| | - J Azambuya
- Administración de Las Obras Sanitarias del Estado, Salto, Uruguay
| | - N Baccardatz
- Administración de Las Obras Sanitarias del Estado, Salto, Uruguay
| | - A Moriondo
- Ministry of Public Health, Salto, Uruguay
| | - R Blanco
- Ministry of Public Health, Salto, Uruguay
| | | | - M Direnna
- Intendencia de Salto, Salto, Uruguay
| | | | - P Gamazo
- Water Department, Centro Universitario Regional Litoral Norte, Universidad de La República, Rivera 1350, 50000, Salto, CP, Uruguay
| | - R Colina
- Laboratory of Molecular Virology, Centro Universitario Regional Litoral Norte, Universidad de la República, Rivera 1350, 50000, Salto, CP, Uruguay
| | - E Alvareda
- Water Department, Centro Universitario Regional Litoral Norte, Universidad de La República, Rivera 1350, 50000, Salto, CP, Uruguay.
| | - M Victoria
- Laboratory of Molecular Virology, Centro Universitario Regional Litoral Norte, Universidad de la República, Rivera 1350, 50000, Salto, CP, Uruguay.
| |
Collapse
|
14
|
Rauch W, Schenk H, Insam H, Markt R, Kreuzinger N. Data modelling recipes for SARS-CoV-2 wastewater-based epidemiology. ENVIRONMENTAL RESEARCH 2022; 214:113809. [PMID: 35798267 PMCID: PMC9252867 DOI: 10.1016/j.envres.2022.113809] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/15/2022] [Accepted: 06/29/2022] [Indexed: 05/19/2023]
Abstract
Wastewater based epidemiology is recognized as one of the monitoring pillars, providing essential information for pandemic management. Central in the methodology are data modelling concepts for both communicating the monitoring results but also for analysis of the signal. It is due to the fast development of the field that a range of modelling concepts are used but without a coherent framework. This paper provides for such a framework, focusing on robust and simple concepts readily applicable, rather than applying latest findings from e.g., machine learning. It is demonstrated that data preprocessing, most important normalization by means of biomarkers and equal temporal spacing of the scattered data, is crucial. In terms of the latter, downsampling to a weekly spaced series is sufficient. Also, data smoothing turned out to be essential, not only for communication of the signal dynamics but likewise for regressions, nowcasting and forecasting. Correlation of the signal with epidemic indicators requires multivariate regression as the signal alone cannot explain the dynamics but - for this case study - multiple linear regression proofed to be a suitable tool when the focus is on understanding and interpretation. It was also demonstrated that short term prediction (7 days) is accurate with simple models (exponential smoothing or autoregressive models) but forecast accuracy deteriorates fast for longer periods.
Collapse
Affiliation(s)
- Wolfgang Rauch
- Unit of Environmental Engineering, Department of Infrastructure, University of Innsbruck, Technikerstrasse 13, 6020, Innsbruck, Austria.
| | - Hannes Schenk
- Unit of Environmental Engineering, Department of Infrastructure, University of Innsbruck, Technikerstrasse 13, 6020, Innsbruck, Austria
| | - Heribert Insam
- Department of Microbiology, University of Innsbruck, Austria
| | - Rudolf Markt
- Department of Microbiology, University of Innsbruck, Austria
| | - Norbert Kreuzinger
- Institute for Water Quality and Resource Management, Technische Universität Wien, Austria
| |
Collapse
|
15
|
Dumke R, Geissler M, Skupin A, Helm B, Mayer R, Schubert S, Oertel R, Renner B, Dalpke AH. Simultaneous Detection of SARS-CoV-2 and Influenza Virus in Wastewater of Two Cities in Southeastern Germany, January to May 2022. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192013374. [PMID: 36293955 PMCID: PMC9603229 DOI: 10.3390/ijerph192013374] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 05/06/2023]
Abstract
Dependent on the excretion pattern, wastewater monitoring of viruses can be a valuable approach to characterizing their circulation in the human population. Using polyethylene glycol precipitation and reverse transcription-quantitative PCR, the occurrence of RNA of SARS-CoV-2 and influenza viruses A/B in the raw wastewater of two treatment plants in Germany between January and May 2022 was investigated. Due to the relatively high incidence in both exposal areas (plant 1 and plant 2), SARS-CoV-2-specific RNA was determined in all 273 composite samples analyzed (concentration of E gene: 1.3 × 104 to 3.2 × 106 gc/L). Despite a nation-wide low number of confirmed infections, influenza virus A was demonstrated in 5.2% (concentration: 9.8 × 102 to 8.4 × 104 gc/L; plant 1) and in 41.6% (3.6 × 103 to 3.0 × 105 gc/L; plant 2) of samples. Influenza virus B was detected in 36.0% (7.2 × 102 to 8.5 × 106 gc/L; plant 1) and 57.7% (9.6 × 103 to 2.1 × 107 gc/L; plant 2) of wastewater samples. The results of the study demonstrate the frequent detection of two primary respiratory viruses in wastewater and offer the possibility to track the epidemiology of influenza by wastewater-based monitoring.
Collapse
Affiliation(s)
- Roger Dumke
- Institute of Medical Microbiology und Virology, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- Correspondence:
| | - Michael Geissler
- Institute of Medical Microbiology und Virology, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Annett Skupin
- Institute of Medical Microbiology und Virology, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Björn Helm
- Institute of Urban and Industrial Water Management, Technische Universität Dresden, 01069 Dresden, Germany
| | - Robin Mayer
- Institute of Urban and Industrial Water Management, Technische Universität Dresden, 01069 Dresden, Germany
| | - Sara Schubert
- Institute of Clinical Pharmacology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- Institute of Hydrobiology, Technische Universität Dresden, 01217 Dresden, Germany
| | - Reinhard Oertel
- Institute of Clinical Pharmacology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Bertold Renner
- Institute of Clinical Pharmacology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Alexander H. Dalpke
- Institute of Medical Microbiology und Virology, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University Hospital Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
16
|
de Freitas Bueno R, Claro ICM, Augusto MR, Duran AFA, Camillo LDMB, Cabral AD, Sodré FF, Brandão CCS, Vizzotto CS, Silveira R, de Melo Mendes G, Arruda AF, de Brito NN, Machado BAS, Duarte GRM, de Lourdes Aguiar-Oliveira M. Wastewater-based epidemiology: A Brazilian SARS-COV-2 surveillance experience. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2022; 10:108298. [PMID: 35873721 PMCID: PMC9295330 DOI: 10.1016/j.jece.2022.108298] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/05/2022] [Accepted: 07/17/2022] [Indexed: 05/11/2023]
Abstract
Since 2020, developed countries have rapidly shared both publicly and academically relevant wastewater surveillance information. Data on SARS-CoV-2 circulation is pivotal for guiding public health policies and improving the COVID-19 pandemic response. Conversely, low- and middle-income countries, such as Latin America and the Caribbean, showed timid activities in the Wastewater-Based Epidemiology (WBE) context. In these countries, isolated groups perform viral wastewater monitoring, and the data are unevenly shared or accessible to health agencies and the scientific community. This manuscript aims to highlight the relevance of a multiparty effort involving research, public health, and governmental agencies to support usage of WBE methodology to its full potential during the COVID-19 pandemic as part of a joint One Health surveillance approach. Thus, in this study, we explored the results obtained from wastewater surveillance in different regions of Brazil as a part of the COVID-19 Wastewater Monitoring Network ANA (National Water Agency), MCTI (Ministry of Science, Technology, and Innovations) and MS (Ministry of Health). Over the epidemiological weeks of 2021 and early 2022, viral RNA concentrations in wastewater followed epidemiological trends and variations. The highest viral loads in wastewater samples were detected during the second Brazilian wave of COVID-19. Corroborating international reports, our experience demonstrated usefulness of the WBE approach in viral surveillance. Wastewater surveillance allows hotspot identification, and therefore, early public health interventions. In addition, this methodology allows tracking of asymptomatic and oligosymptomatic individuals, who are generally underreported, especially in emerging countries with limited clinical testing capacity. Therefore, WBE undoubtedly contributes to improving public health responses in the context of this pandemic, as well as other sanitary emergencies.
Collapse
Affiliation(s)
- Rodrigo de Freitas Bueno
- Federal University of ABC. Center of Engineering, Modelling and Applied Social Sciences (CECS), Santo Andre, São Paulo, Brazil
| | - Ieda Carolina Mantovani Claro
- Federal University of ABC. Center of Engineering, Modelling and Applied Social Sciences (CECS), Santo Andre, São Paulo, Brazil
| | - Matheus Ribeiro Augusto
- Federal University of ABC. Center of Engineering, Modelling and Applied Social Sciences (CECS), Santo Andre, São Paulo, Brazil
| | - Adriana Feliciano Alves Duran
- Federal University of ABC. Center of Engineering, Modelling and Applied Social Sciences (CECS), Santo Andre, São Paulo, Brazil
| | | | - Aline Diniz Cabral
- Federal University of ABC. Center of Engineering, Modelling and Applied Social Sciences (CECS), Santo Andre, São Paulo, Brazil
| | | | | | - Carla Simone Vizzotto
- University of Brasilia, Department of Civil and Environmental Engineering, Brasília, Federal District, Brazil
| | - Rafaella Silveira
- University of Brasilia. Institute of Chemistry, Brasília, Federal District, Brazil
- University of Brasilia, Department of Civil and Environmental Engineering, Brasília, Federal District, Brazil
| | | | | | | | - Bruna Aparecida Souza Machado
- University Center SENAI/CIMATEC. SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), Salvador, Bahia, Brazil
| | | | - Maria de Lourdes Aguiar-Oliveira
- Laboratory of Respiratory Viruses and Measles, National/MoH and International/WHO Reference Laboratory in COVID-19, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
17
|
Padilla-Reyes DA, Álvarez MM, Mora A, Cervantes-Avilés PA, Kumar M, Loge FJ, Mahlknecht J. Acquired insights from the long-term surveillance of SARS-CoV-2 RNA for COVID-19 monitoring: The case of Monterrey Metropolitan Area (Mexico). ENVIRONMENTAL RESEARCH 2022; 210:112967. [PMID: 35189100 PMCID: PMC8853965 DOI: 10.1016/j.envres.2022.112967] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 05/08/2023]
Abstract
Wastewater-based epidemiology offers a time- and cost-effective way to monitor SARS-CoV-2 spread in communities and therefore represents a complement to clinical testing. WBE applicability has been demonstrated in a number of cases over short-term periods as a method for tracking the prevalence of SARS-CoV-2 and an early-warning tool for predicting outbreaks in the population. This study reports SARS-CoV-2 viral loads from wastewater treatment plants (WWTPs) and hospitals over a 6-month period (June to December 2020). Results show that the overall range of viral load in positive tested samples was between 1.2 × 103 and 3.5 × 106 gene copies/l, unveiling that secondary-treated wastewaters mirrored the viral load of influents. The interpretation suggests that the viral titers found in three out of four WWTPs were associated to clinical COVID-19 surveillance indicators preceding 2-7 days the rise of reported clinical cases. The median wastewater detection rate of SARS-CoV-2 was one out of 14,300 reported new cases. Preliminary model estimates of prevalence ranged from 0.02 to 4.6% for the studied period. This comprehensive statistical and epidemiological analysis demonstrates that the applied wastewater-based approach to COVID-19 surveillance is in general consistent and feasible, although there is room for improvements.
Collapse
Affiliation(s)
- Diego A Padilla-Reyes
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Eugenio Garza Sada 2501 Sur, Monterrey, 64849, Mexico
| | - Mario Moises Álvarez
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Eugenio Garza Sada 2501 Sur, Monterrey, 64849, Mexico
| | - Abrahan Mora
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Puebla, Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, Puebla, 72453, Mexico
| | - Pabel A Cervantes-Avilés
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Puebla, Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, Puebla, 72453, Mexico
| | - Manish Kumar
- Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun, 248007, India
| | - Frank J Loge
- Department of Civil and Environmental Engineering, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Jürgen Mahlknecht
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Eugenio Garza Sada 2501 Sur, Monterrey, 64849, Mexico.
| |
Collapse
|
18
|
Buonanno G, Robotto A, Brizio E, Morawska L, Civra A, Corino F, Lembo D, Ficco G, Stabile L. Link between SARS-CoV-2 emissions and airborne concentrations: Closing the gap in understanding. JOURNAL OF HAZARDOUS MATERIALS 2022; 428:128279. [PMID: 35063838 PMCID: PMC8760841 DOI: 10.1016/j.jhazmat.2022.128279] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 05/03/2023]
Abstract
The airborne transmission of SARS-CoV-2 remains surprisingly controversial; indeed, health and regulatory authorities still require direct proof of this mode of transmission. To close this gap, we measured the viral load of SARS-CoV-2 of an infected subject in a hospital room (through an oral and nasopharyngeal swab), as well as the airborne SARS-CoV-2 concentration in the room resulting from the person breathing and speaking. Moreover, we simulated the same scenarios to estimate the concentration of RNA copies in the air through a novel theoretical approach and conducted a comparative analysis between experimental and theoretical results. Results showed that for an infected subject's viral load ranging between 2.4 × 106 and 5.5 × 106 RNA copies mL-1, the corresponding airborne SARS-CoV-2 concentration was below the minimum detection threshold when the person was breathing, and 16.1 (expanded uncertainty of 32.8) RNA copies m-3 when speaking. The application of the predictive approach provided concentrations metrologically compatible with the available experimental data (i.e. for speaking activity). Thus, the study presented significant evidence to close the gap in understanding airborne transmission, given that the airborne SARS-CoV-2 concentration was shown to be directly related to the SARS-CoV-2 emitted. Moreover, the theoretical analysis was shown to be able to quantitatively link the airborne concentration to the emission.
Collapse
Affiliation(s)
- G Buonanno
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, FR, Italy; International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, Qld, Australia; Infectious Diseases Unit, Department of Medical Sciences, Amedeo di Savoia Hospital, University of Turin, Torino, Italy
| | - A Robotto
- Environmental Protection Agency of Piedmont (ARPA Piemonte), Italy; Infectious Diseases Unit, Department of Medical Sciences, Amedeo di Savoia Hospital, University of Turin, Torino, Italy
| | - E Brizio
- Environmental Protection Agency of Piedmont (ARPA Piemonte), Italy; Infectious Diseases Unit, Department of Medical Sciences, Amedeo di Savoia Hospital, University of Turin, Torino, Italy
| | - L Morawska
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, Qld, Australia; Infectious Diseases Unit, Department of Medical Sciences, Amedeo di Savoia Hospital, University of Turin, Torino, Italy
| | - A Civra
- Dept. of Clinical and Biological Science, Azienda Ospedaliero-Universitaria San Luigi Gonzaga, University of Turin, Italy; Infectious Diseases Unit, Department of Medical Sciences, Amedeo di Savoia Hospital, University of Turin, Torino, Italy
| | - F Corino
- Environmental Protection Agency of Piedmont (ARPA Piemonte), Italy; Infectious Diseases Unit, Department of Medical Sciences, Amedeo di Savoia Hospital, University of Turin, Torino, Italy
| | - D Lembo
- Dept. of Clinical and Biological Science, Azienda Ospedaliero-Universitaria San Luigi Gonzaga, University of Turin, Italy; Infectious Diseases Unit, Department of Medical Sciences, Amedeo di Savoia Hospital, University of Turin, Torino, Italy
| | - G Ficco
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, FR, Italy; Infectious Diseases Unit, Department of Medical Sciences, Amedeo di Savoia Hospital, University of Turin, Torino, Italy
| | - L Stabile
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, FR, Italy; Infectious Diseases Unit, Department of Medical Sciences, Amedeo di Savoia Hospital, University of Turin, Torino, Italy.
| |
Collapse
|