1
|
Guo D, Yang L, Lu HQ, Wang YC, Meng HY, Liang P, Cui S, He ZW, Lan J, Ren YX. Enhancing Feammox efficiency through riboflavin and humic acid: Nitrogen and iron transformation, energy metabolism, and microbial response. BIORESOURCE TECHNOLOGY 2025; 429:132533. [PMID: 40233883 DOI: 10.1016/j.biortech.2025.132533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/09/2025] [Accepted: 04/11/2025] [Indexed: 04/17/2025]
Abstract
Optimizing electron shuttles and revealing their mediating mechanisms are crucial for enhancing the ammonium (NH4+-N) oxidation coupled with Fe (III) reduction. In this study, anthraquinone-2,6-disulfonate (AQDs), riboflavin (RF), and humic acid (HA) were optimized in batch tests. The optimal dosages of 6, 2, and 8 mg/L for AQDs, RF, and HA resulted in average maximum NH4+-N removal of 80.2 %, 88.5 %, and 99.2 %, with 91.4 %, 88.5 %, and 74.7 % of the removed NH4+-N converted to nitrate, respectively. In addition, an enhanced extracellular electron transfer was also observed, including an enlarged current, diversified REDOX pathway, and reduced resistance. Outperformed AQDs in nitrogen removal and microbial activity, HA and RF were selected for the subsequent 100-day long-term investigation. During this stage, excess influent Fe tended to be stored as insoluble coatings on the sludge surface, while RF and HA facilitated its use to compensate for the reduced influent Fe3+. Meanwhile, they led to an increase in iron-reducing (Comamonas) and NH4+-N oxidizing bacteria (Nitropsira and Planctomycetes), as well as improvements in electrochemical characteristics and microbial activity. Moreover, microbial N and Fe metabolic potential were efficiently enhanced. Consequently, NH4+-N and TN removal rates were obviously increased to approximately 90 % and 40 %, respectively. The addition of electron shuttles led to long-term improvements in extracellular mass transfer and microbial metabolism, which contributed more than bridging the extracellular electron transfer. These results deepened the understanding of the effect of electron shuttles on Feammox.
Collapse
Affiliation(s)
- Dun Guo
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Lei Yang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Hao-Qi Lu
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yu-Chao Wang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hong-Yan Meng
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Pan Liang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Shen Cui
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Zhang-Wei He
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jun Lan
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yong-Xiang Ren
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
2
|
Cheng X, Hu L, Liu T, Cheng X, Li J, Xu K, Zheng M. High-level nitrogen removal achieved by Feammox-based autotrophic nitrogen conversion. WATER RESEARCH X 2025; 27:100292. [PMID: 39723189 PMCID: PMC11667699 DOI: 10.1016/j.wroa.2024.100292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Anaerobic ammonium oxidation coupled with Fe(III) reduction (Feammox) is an essential process in the geochemical iron and nitrogen cycling. This study explores Feammox-based nitrogen removal in a continuous laboratory up-flow bioreactor stimulated by intermittently adding 5 mM Fe(OH)3 at intervals of approximately two months. The feed was synthetic wastewater with a relatively low ammonium concentration (∼100 mg N/L), yet without organic carbon in order to test its autotrophic nitrogen removal performance. The operation of this system showed the achievement of high-level ammonium and total nitrogen removal efficiency (∼97% and ∼90% on average, respectively) within four months of operation, along with a relatively practical rate of ∼50 mg N/(L·d). The demand of Fe(Ⅲ) for ammonium removal during the whole bioreactor operation was estimated to be only 0.033, two orders of magnitude less than that calculated based on the Feammox reaction producing nitrogen gas. A series of assays on Fe(II) oxidation with different oxidants (O2, NO2 - and NO3 -) in abiotic and biotic batch tests further revealed an important role of Fe(II) oxidation processes, likely driven by microbial nitrate reduction and chemical oxygen reduction, in assisting the regeneration of Fe(III) for continuous Feammox-based nitrogen removal. This work demonstrates that Feammox-based autotrophic nitrogen conversion is a potential option for future wastewater treatment.
Collapse
Affiliation(s)
- Xiaohui Cheng
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Lanlan Hu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Tao Liu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Xiang Cheng
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Jiyun Li
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Kangning Xu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Min Zheng
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia
| |
Collapse
|
3
|
Jia F, Chen Y, Xu Z, Gao X, Mei N, Qi X, Yang L, Jiang J, Hou L, Yao H. FeO might be more suitable than Fe 2+ for the construction of anammox-dominated Fe-N coupling system: Based on 15N isotope tracing. WATER RESEARCH 2025; 274:123097. [PMID: 39842215 DOI: 10.1016/j.watres.2025.123097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/14/2024] [Accepted: 01/04/2025] [Indexed: 01/24/2025]
Abstract
Iron not only influences the activity of anammox bacteria (AnAOB) but also participates in complex Fe-N cycles. In this study, the advanced 15N isotope tracing method was set up to quantify the potential rates of full nitrogen metabolic pathways under different ferrous iron (Fe2+ and FeO) within two identical anammox granular reactors. The results indicated that both Fe2+ and FeO enhanced AnAOB activity. However, compared to Fe2+, which readily precipitates and oxidizes, the system supplemented with FeO exhibited higher Fe-N metabolic activity and greater metabolic diversity. This is attributed to the gradual release of Fe2+ from FeO, providing a sustainable and stable supply of Fe2+ for microorganisms. Furthermore, Subgroup_10 and Paludibaculum were identified as potential functional bacteria for feammox, while Denitratisoma, I-8 and Arenimonas were for NDFO. These results suggest that FeO addition is more beneficial for the construction of a Fe-N coupling system. Overall, this study enhances our understanding of how with exogenous iron can strengthen the anammox system, laying a theoretical foundation for the development of anammox-dominant Fe-N coupling systems.
Collapse
Affiliation(s)
- Fangxu Jia
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing, 100044, PR China.
| | - Yao Chen
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing, 100044, PR China; China Energy Conservation and Environmental Protection Group, Beijing, PR China
| | - Zhicheng Xu
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing, 100044, PR China; China Unicom Asset Management Co., Ltd, Beijing, 100033, PR China
| | - Xinyu Gao
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing, 100044, PR China
| | - Ning Mei
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing, 100044, PR China
| | - Xin Qi
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing, 100044, PR China
| | - Lijun Yang
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing, 100044, PR China
| | - Jie Jiang
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing, 100044, PR China
| | - Lu Hou
- China Testing & Certification International Group Co., Ltd., Beijing, 100024, PR China
| | - Hong Yao
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing, 100044, PR China.
| |
Collapse
|
4
|
Xia Q, Cheng J, Yang F, Yi X, Huang W, Lei Z, Wang D, Huang W. Activated carbon and anthraquinone-2,6-disulfonate as electron shuttles for enhancing carbon and nitrogen removal from simultaneous methanogenesis, Feammox and denitrification system. BIORESOURCE TECHNOLOGY 2025; 418:131975. [PMID: 39674352 DOI: 10.1016/j.biortech.2024.131975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Anthraquinone-2,6-disulfonate (AQDS) and activated carbon (AC) were employed as exogenous electron shuttles (ESs) for enhancing the performance of an integrated simultaneous methanogenesis, Feammox, and denitrification (SMFD) system treating fish sludge. The addition of AQDS and AC led to an increased total nitrogen removal efficiency by 30.2 % and 66.5 %, an increased total chemical oxygen demand removal efficiency by 9.5 % and 24.5 %, and an improved methane yield by 5.2 % and 12.6 %, respectively. Regarding nitrogen removal, AQDS mainly facilitated NH4+-N oxidation into NO3--N via Feammox, while AC facilitated both Feammox and denitrification. Regarding carbon removal, both ESs promoted the hydrolysis-acidification process via stimulating dissimilatory iron reduction and established direct interspecies electron transfer (DIET) between methanogens and syntrophic bacteria. Microbial analysis confirmed the enrichment of iron-reducing bacteria, denitrifiers, DIET-related methanogens and syntrophic partners in the presence of ESs. The study provides an ESs-assisted strategy for enhancing simultaneous nitrogen and carbon removal from high-strength wastewater.
Collapse
Affiliation(s)
- Qing Xia
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Technology, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Jun Cheng
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Technology, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Fei Yang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Technology, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Xuesong Yi
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Technology, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Wenli Huang
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, 94 Weijin Road, Nankai District, Tianjin 300350, China
| | - Zhongfang Lei
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Dexin Wang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Technology, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Weiwei Huang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Technology, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China.
| |
Collapse
|
5
|
Qi S, Xu L, Su J, Li T, Wei H, Li X. Fe 3+/Fe 2+ cycling drove novel ammonia oxidation and simultaneously removed lead, cadmium, and copper. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136124. [PMID: 39405709 DOI: 10.1016/j.jhazmat.2024.136124] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/28/2024] [Accepted: 10/08/2024] [Indexed: 12/01/2024]
Abstract
The discharge of several pollutants, such as ammonia (NH4+-N), nitrate (NO3--N), and heavy metals, from aquaculture wastewater into the aquatic environment can cause severe pollution issues. In this work, microbial techniques were employed to enable concurrent elimination of NH4+-N and NO3--N by Fe3+/Fe2+ cycling. The greatest NH4+-N and NO3--N removal efficiencies of 96.1 % and 97.6 % were gained by Aquabacterium sp. XL4 at NH4+/NO3- ratio of 1:1, carbon to nitrogen ratio of 4.0, pH of 6.5, and Fe3+ dosage of 20.0 mg L-1. Inhibitor and nitrogen balance assays suggested that nitrogen removal process of strain XL4 was a coupled function of anaerobic ammonia oxidation, ferric reduction driven ammonia oxidation, and iron-based denitrification. Furthermore, under the compound influence of strain XL4 metabolic processes and microbial iron oxide adsorption, the removal efficiencies of Pb2+, Cd2+, and Cu2+ reached above 90 %. This work contributes to theoretical grounding for microbial removal of multiple pollutants.
Collapse
Affiliation(s)
- Shangzhe Qi
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Tianmeng Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hao Wei
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xuan Li
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| |
Collapse
|
6
|
Guanglei L, Tabassum S, Li J, Altundag H. Efficient manganese ammonia oxidation (Mnammox) and its influencing factors at low temperature: Metal oxide-mediated denitrification process in water bodies. BIORESOURCE TECHNOLOGY 2024; 414:131617. [PMID: 39393647 DOI: 10.1016/j.biortech.2024.131617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
This study explores the metal oxide-mediated NH4+-N reduction process: manganese ammonia oxidation efficiency, influencing factors and its resistance to low-temperature environments in water bodies. After 177d of stabilized startup of an up-flow reactor, NH4+-N removal efficiency was 63.51 %, total nitrogen (TN) removal rate was 0.021 kg/(m3.d), and effluent Mn2+ concentration was 1.503 mg/L, which was in dynamic equilibrium. X-ray photoelectron spectroscopy exhibited manganese valence state 3.29, similar to biological manganese oxidation. High-throughput sequencing revealed that phyla's denitrification function increased relative abundance, and manganese-reducing bacterial genera appeared. The batch test showed that 5 mg MnO2 had NH4+-N removal at 85.01 %. After 44 days, NH4+-N removal efficiency was 77.47 %, effluent Mn2+ concentration was 3.280 mg/L, TN removal rate was 0.063 kg/(m3.d). The long-term effect of the influent load change on the denitrification and Mnammox efficiency at 25 ∼ 15 °C was examined. Effluent Mn2+ concentration was 1.811 mg/L was relatively stable. Manganese valence decreased from 3.29 to 3.20, Mn4+ decreased by 9.58 %, while Mn3+ and Mn2+ increased by 10.94 % and 1.37 %, respectively. A new phylum Thermotogota and genus SBR1031 appeared in the microbial community.
Collapse
Affiliation(s)
- Li Guanglei
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang 110168, China
| | - Salma Tabassum
- Department of Chemistry, Faculty of Science, Sakarya University, Sakarya 54187, Turkey; Biomedical, Magnetic and Semiconductor Materials Research Center (BIMAS-RC), Sakarya University, Sakarya 54187, Turkey.
| | - Jun Li
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang 110168, China.
| | - Huseyin Altundag
- Department of Chemistry, Faculty of Science, Sakarya University, Sakarya 54187, Turkey; Biomedical, Magnetic and Semiconductor Materials Research Center (BIMAS-RC), Sakarya University, Sakarya 54187, Turkey
| |
Collapse
|
7
|
Cui S, Wang R, Chen Q, Pugliese L, Wu S. Geobatteries in environmental biogeochemistry: Electron transfer and utilization. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 22:100446. [PMID: 39104555 PMCID: PMC11298864 DOI: 10.1016/j.ese.2024.100446] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/29/2024] [Accepted: 06/30/2024] [Indexed: 08/07/2024]
Abstract
The efficiency of direct electron flow from electron donors to electron acceptors in redox reactions is significantly influenced by the spatial separation of these components. Geobatteries, a class of redox-active substances naturally present in soil-water systems, act as electron reservoirs, reversibly donating, storing, and accepting electrons. This capability allows the temporal and spatial decoupling of redox half-reactions, providing a flexible electron transfer mechanism. In this review, we systematically examine the critical role of geobatteries in influencing electron transfer and utilization in environmental biogeochemical processes. Typical redox-active centers within geobatteries, such as quinone-like moieties, nitrogen- and sulfur-containing groups, and variable-valent metals, possess the potential to repeatedly charge and discharge. Various characterization techniques, ranging from qualitative methods like elemental analysis, imaging, and spectroscopy, to quantitative techniques such as chemical, spectroscopic, and electrochemical methods, have been developed to evaluate this reversible electron transfer capacity. Additionally, current research on the ecological and environmental significance of geobatteries extends beyond natural soil-water systems (e.g., soil carbon cycle) to engineered systems such as water treatment (e.g., nitrogen removal) and waste management (e.g., anaerobic digestion). Despite these advancements, challenges such as the complexity of environmental systems, difficulties in accurately quantifying electron exchange capacity, and scaling-up issues must be addressed to fully unlock their potential. This review underscores both the promise and challenges associated with geobatteries in responding to environmental issues, such as climate change and pollutant transformation.
Collapse
Affiliation(s)
- Shihao Cui
- Department of Agroecology, Aarhus University, Blichers Allé 20, 8830, Tjele, Denmark
| | - Rui Wang
- Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10, 8000, Aarhus, Denmark
| | - Qing Chen
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Lorenzo Pugliese
- Department of Agroecology, Aarhus University, Blichers Allé 20, 8830, Tjele, Denmark
| | - Shubiao Wu
- Department of Agroecology, Aarhus University, Blichers Allé 20, 8830, Tjele, Denmark
| |
Collapse
|
8
|
Wang P, Tan J, Xiao Z, Xu F, Jin Q, He D. New insights and enhancement mechanisms of activated carbon in autotrophic denitrification system utilizing zero-valent iron as indirect electron donors. BIORESOURCE TECHNOLOGY 2024; 410:131237. [PMID: 39127355 DOI: 10.1016/j.biortech.2024.131237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Zero-valent iron acts as an indirect electron donor, supplying ferrous iron for the nitrate-dependent ferrous oxidation (NDFO) process. The addition of activated carbon (AC) increased the specific NDFO activity in situ and ex situ by 0.4 mg-N/(d·g VSS) and 2.2 mg-N/(d·g VSS), respectively, due to the enrichment of NDFO bacteria. Furthermore, AC reduced the nitrous oxide emission potential of the sludge, a mechanism that metagenomic analysis suggests may act as a cellular energy storage strategy. During a 196-day experiment, a total nitrogen removal efficiency of 53.7 % was achieved, which may be attributed to the upregulation of key genes involved in iron oxidation and denitrification. Based on these findings, a model involving pilin, 'nanowires,' and a cyc2/?→/(FoxE→FoxY)/?→cymA/Complex III/?-mediated pathway for extracellular electron uptake was proposed. Overall, this work provides a feasible strategy for enhancing the nitrogen removal performance of the ZVI-NDFO process.
Collapse
Affiliation(s)
- Peng Wang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Jun Tan
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Zhenxiong Xiao
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Fei Xu
- Shenzhen Pangu Environmental Protection Technology Co. Ltd, Shenzhen 518055, PR China
| | - Qinghai Jin
- Shenzhen Pangu Environmental Protection Technology Co. Ltd, Shenzhen 518055, PR China
| | - Di He
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
9
|
Hou X, Song X, Liu Y, Zhao X, Meng X. Treatment of eutrophic water in pyrite-filled constructed wetland integrated with microelectrolysis driven by iron/sulfur cycle: Performance and mechanism. BIORESOURCE TECHNOLOGY 2024; 407:131115. [PMID: 39013480 DOI: 10.1016/j.biortech.2024.131115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/01/2024] [Accepted: 07/13/2024] [Indexed: 07/18/2024]
Abstract
This study developed a microelectrolysis-integrated constructed wetland with pyrite filler around the cathode (e-PCW) to treat eutrophic water. Results indicated that e-PCW effectively enhanced pyrite dissolution, converting solid-phase electron donors into bioavailable forms, thereby facilitating the enrichment of various denitrifying bacteria on pyrite surfaces. Importantly, iron-reducing and sulfur-reducing bacteria attached to the pyrite surfaces enhanced the conversion of ferric iron and sulfate, thereby driving iron and sulfur cycles and promoting electron transfer. Therefore, synergistic effects of pyrite and microelectrolysis made e-PCW achieve higher total nitrogen (TN) and total phosphorus (TP) removal efficiencies. With a hydraulic retention time of 24 h, the highest removal efficiencies of TN and TP achieved 78% and 75%, respectively. Furthermore, when eutrophic water containing high concentration of algae was fed into e-PCW, it consistently demonstrated superior TN and TP removal capabilities. This work provides a valuable approach to optimizing constructed wetland technology for treating eutrophic water.
Collapse
Affiliation(s)
- Xiaoxiao Hou
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xinshan Song
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Yingying Liu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiaoxiang Zhao
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiangzhou Meng
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
10
|
Zhou T, Wang M, Zeng H, Min R, Wang J, Zhang G. Application of physicochemical techniques to the removal of ammonia nitrogen from water: a systematic review. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:344. [PMID: 39073643 DOI: 10.1007/s10653-024-02129-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/12/2024] [Indexed: 07/30/2024]
Abstract
Ammonia nitrogen is a common pollutant in water and soil, known for its biological toxicity and complex removal process. Traditional biological methods for removing ammonia nitrogen are often inefficient, especially under varying temperature conditions. This study reviews physicochemical techniques for the treatment and recovery of ammonia nitrogen from water. Key methods analyzed include ion exchange, adsorption, membrane separation, struvite precipitation, and advanced oxidation processes (AOPs). Findings indicate that these methods not only remove ammonia nitrogen but also allow for nitrogen recovery. Ion exchange, adsorption, and membrane separation are effective in separating ammonia nitrogen, while AOPs generate reactive species for efficient degradation. Struvite precipitation offers dual benefits of removal and resource recovery. Despite their advantages, these methods face challenges such as secondary pollution and high energy consumption. This paper highlights the development principles, current challenges, and future prospects of physicochemical techniques, emphasizing the need for integrated approaches to enhance ammonia nitrogen removal efficiency.
Collapse
Affiliation(s)
- Tianhong Zhou
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Miao Wang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Honglin Zeng
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Rui Min
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Jinyi Wang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Guozhen Zhang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China.
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China.
| |
Collapse
|
11
|
Ye W, Yan J, Yan J, Lin JG, Ji Q, Li Z, Ganjidoust H, Huang L, Li M, Zhang H. Potential electron acceptors for ammonium oxidation in wastewater treatment system under anoxic condition: A review. ENVIRONMENTAL RESEARCH 2024; 252:118984. [PMID: 38670211 DOI: 10.1016/j.envres.2024.118984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/16/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
Anaerobic ammonium oxidation has been considered as an environmental-friendly and energy-efficient biological nitrogen removal (BNR) technology. Recently, new reaction pathway for ammonium oxidation under anaerobic condition had been discovered. In addition to nitrite, iron trivalent, sulfate, manganese and electrons from electrode might be potential electron acceptors for ammonium oxidation, which can be coupled to traditional BNR process for wastewater treatment. In this paper, the pathway and mechanism for ammonium oxidation with various electron acceptors under anaerobic condition is studied comprehensively, and the research progress of potentially functional microbes is summarized. The potential application of various electron acceptors for ammonium oxidation in wastewater is addressed, and the N2O emission during nitrogen removal is also discussed, which was important greenhouse gas for global climate change. The problems remained unclear for ammonium oxidation by multi-electron acceptors and potential interactions are also discussed in this review.
Collapse
Affiliation(s)
- Weizhuo Ye
- School of Environmental Science and Engineering, Guangzhou University, 510006, Guangzhou, China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, 510006, Guangzhou, China
| | - Jiaqi Yan
- School of Environmental Science and Engineering, Guangzhou University, 510006, Guangzhou, China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, 510006, Guangzhou, China
| | - Jia Yan
- School of Environmental Science and Engineering, Guangzhou University, 510006, Guangzhou, China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, 510006, Guangzhou, China.
| | - Jih-Gaw Lin
- Institute of Environmental Engineering, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu City, 30010, Taiwan
| | - Qixing Ji
- The Earth, Ocean and atmospheric sciences thrust (EOAS), Hong Gong University of Science and Technology (Guangzhou), 511442, Guangzhou, China
| | - Zilei Li
- School of Environmental Science and Engineering, Guangzhou University, 510006, Guangzhou, China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, 510006, Guangzhou, China
| | - Hossein Ganjidoust
- Faculty of Civil and Environmental Engineering, Tarbiat Modarres University, 14115-397, Tehran, Iran
| | - Lei Huang
- School of Environmental Science and Engineering, Guangzhou University, 510006, Guangzhou, China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, 510006, Guangzhou, China
| | - Meng Li
- School of Environmental Science and Engineering, Guangzhou University, 510006, Guangzhou, China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, 510006, Guangzhou, China
| | - Hongguo Zhang
- School of Environmental Science and Engineering, Guangzhou University, 510006, Guangzhou, China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, 510006, Guangzhou, China
| |
Collapse
|
12
|
Wang P, Ou R, Tan J, Li N, Zheng M, Jin Q, Yu J, He D. Effect of sludge redistribution strategy on stability of partial nitrification-anammox process: Further exploration of the potential value of sludge. CHEMOSPHERE 2024; 355:141707. [PMID: 38521102 DOI: 10.1016/j.chemosphere.2024.141707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/26/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024]
Abstract
The stability of the two-stage partial nitrification-anammox (PN/A) system was compromised by the inappropriate conversion of insoluble organic matter. In response, a sludge redistribution strategy was implemented. Through the redistribution of PN sludge and anammox sludge in the two-stage PN/A system, a transition was made to the Anammox-single stage PN/A (A-PN/A) system. This specific functional reorganization, facilitated by the rapid reorganization of microbial communities, has the potential to significantly decrease the current risk of suppression. The results of the study showed that implementing the sludge redistribution strategy led to a substantial enhancement in the total nitrogen removal rate (TNRR) by 87.51%, accompanied by a significant improvement of 34.78% in the chemical oxygen demand removal rate (CRR). Additionally, this approach resulted in a remarkable two-thirds reduction in the aeration requirements. High-throughput sequencing revealed that the strategy enriched anammox and ammonia-oxidizing bacteria while limiting denitrifying bacteria, as confirmed by quantitative polymerase chain reaction analysis. Furthermore, the principal component analysis revealed that the location and duration of aeration had direct and indirect effects on functional gene expression and the evolution of microbial communities. This study emphasizes the potential benefits of restructuring microbial communities through a sludge redistribution strategy, especially in integrated systems that encounter challenges with suppression.
Collapse
Affiliation(s)
- Peng Wang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China.
| | - Rui Ou
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China.
| | - Jun Tan
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China.
| | - Ning Li
- Pearl River Water Resources Research Institute, Guangzhou, 510611, PR China.
| | - Min Zheng
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, Queensland, Australia.
| | - Qinghai Jin
- Shenzhen Pangu Environmental Protection Technology Co. Ltd, Shenzhen, 518055, PR China.
| | - Jin Yu
- Shenzhen Pangu Environmental Protection Technology Co. Ltd, Shenzhen, 518055, PR China.
| | - Di He
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China.
| |
Collapse
|
13
|
Zhang F, Zhang H, Wu Y, Xiao Y, Huang W, Tang J, Yuan Y, Chen J. Inhibiting effects of humic acid on iron flocculation hindered As removal by electro-flocculation on air cathode iron anode. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:116228. [PMID: 38518611 DOI: 10.1016/j.ecoenv.2024.116228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/07/2024] [Accepted: 03/14/2024] [Indexed: 03/24/2024]
Abstract
Activated carbon air cathode combined with iron anode oxidation-flocculation synergistic Arsenic (As) removal was a new groundwater purification technology with low energy consumption and high efficiency for groundwater with high As concentration. The presence of organic matter such as humic acid (HA) had ambiguous effects on formation of organic colloids in the system. The effects of the particle size distribution characteristics of these colloids on the formation characteristics of flocs and the efficiency of As purification was not clear. In this work, we used five different pore size alumina filter membranes to separate mixed phase solutions and studied the corresponding changes in iron and arsenic concentrations in the presence and absence of humic acid conditions. In the presence of HA, the arsenic concentration of < 0.05 µm particle size components was 1.01, 1.28, 3.07, 7.69, 2.85 and 1.24 times of that in the absence of HA. At the same time, the arsenic content in 0.05-0.1 µm and 0.1-0.45 µm particle size components was also higher than that in the system without HA, which revealed that the presence of HA hindered the flocculation behavior of As distribution to higher particle sizes in the early stage of the reaction. The presence of HA affected the flocculation rate of iron flocs from small to large particle size fractions and it had limited effect on the behavior of large-size flocs in adsorption of As. These results provide a theoretical basis for targeted, rapid, and low consumption synergistic removal of arsenic and organic compounds in high arsenic groundwater.
Collapse
Affiliation(s)
- Fang Zhang
- School of Environment and State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Hao Zhang
- School of Environment and State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Yue Wu
- School of Environment and State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Yu Xiao
- State Environmental Protection Key laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wan Huang
- School of Environment and State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China
| | - Jun Tang
- State Environmental Protection Key laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Ying Yuan
- State Environmental Protection Key laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Jiabao Chen
- State Environmental Protection Key laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China.
| |
Collapse
|
14
|
Yan J, Wu L, Ye W, Zhou J, Ji Q, Alberto Gomez M, Hong Y, Lin JG, Zhang H. Ferric and sulfate coupled ammonium oxidation enhanced nitrogen removal in two-stage partial nitrification - Anammox/denitrification process for food waste liquid digestate treatment. BIORESOURCE TECHNOLOGY 2024; 398:130533. [PMID: 38452950 DOI: 10.1016/j.biortech.2024.130533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Liquid digestate of food waste is an ammonium-, ferric- and sulfate-laden leachate produced during digestate dewatering, where the carbon source is insufficient for nitrogen removal. A two-stage partial nitrification-anammox/denitrification process was established for nitrogen removal of liquid digestate without pre-treatment (>300 d), through which nitrogen (95 %), biodegradable organics (100 %), sulfate (78 %) and iron (100 %) were efficiently removed. Additional ammonium conversion (20 %N) might be coupled with ferric and sulfate reduction, while produced nitrite could be further converted to di-nitrogen gas through anammox (75 %) and denitrification (25 %). Notably, since increasingly contribution of hydroxylamine producing nitrous oxide, and up-regulated expression of electron transfer and cytochrome c protein, the enhanced ammonium oxidation was probably conducted through extracellular polymeric substances-mediated electron transfer between sulfate/ferric-reducers and aerobic ammonium oxidizers. Thus, the established partial nitrification-anammox/denitrification process might be a cost-efficient nitrogen removal technology for liquid digestate, benefitting to domestic waste recycling and carbon neutralization.
Collapse
Affiliation(s)
- Jia Yan
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China; Key Laboratory for Water Quality Security and Protection in Pearl River Delta, Ministry of Education, Guangzhou 510006, PR China.
| | - Lingyao Wu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Weizhuo Ye
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Junlian Zhou
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China; Key Laboratory for Water Quality Security and Protection in Pearl River Delta, Ministry of Education, Guangzhou 510006, PR China
| | - Qixing Ji
- The Earth, Ocean and Atmospheric Sciences Thrust (EOAS), Hong Kong University of Science and Technology (Guangzhou), 511442 Guangzhou, PR China
| | - Mario Alberto Gomez
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Yiguo Hong
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China; Key Laboratory for Water Quality Security and Protection in Pearl River Delta, Ministry of Education, Guangzhou 510006, PR China
| | - Jih-Gaw Lin
- Institute of Environmental Engineering, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu City 30010, Taiwan
| | - Hongguo Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China; Key Laboratory for Water Quality Security and Protection in Pearl River Delta, Ministry of Education, Guangzhou 510006, PR China
| |
Collapse
|
15
|
Xu H, Zhang L, Xu R, Yang B, Zhou Y. Iron cycle-enhanced anaerobic ammonium oxidation in microaerobic granular sludge. WATER RESEARCH 2024; 250:121022. [PMID: 38113591 DOI: 10.1016/j.watres.2023.121022] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
Granule-based partial nitritation and anaerobic ammonium oxidation (PN/A) is an energy-efficient approach for treating ammonia wastewater. When treating low-strength ammonia wastewater, the stable synergy between PN and anammox is however difficult to establish due to unstable dissolved oxygen control. Here, we proposed, the PN/A granular sludge formed by a micro-oxygen-driven iron redox cycle with continuous aeration (0.42 ± 0.10 mg-O2/L) as a novel strategy to achieve stable and efficient nitrogen (N) removal. 240-day bioreactor operation showed that the iron-involved reactor had 37 % higher N removal efficiency than the iron-free reactor. Due to the formation of the microaerobic granular sludge (MGS), the bio(chemistry)-driven iron cycle could be formed with the support of anaerobic ammonium oxidation coupled to Fe3+ reduction. Both ammonia-oxidizing bacteria and generated Fe2+ could scavenge the oxygen as a defensive shield for oxygen-sensitive anammox bacteria in the MGS. Moreover, the iron minerals derived from iron oxidation and Fe-P precipitates were also deposited on the MGS surface and/or embedded in the internal channels, thus reducing the size of the channels that could limit oxygen mass transfer inside the MGS. The spatiotemporal assembly of diverse functional microorganisms in the MGS for the realization of stable PN/A could be achieved with the support of the iron redox cycle. In contrast, the iron-free MGS could not optimize oxygen mass transfer, which led to an unstable and inefficient PN/A. This work provides an alternative iron-related autotrophic N removal for low-strength ammonia wastewater.
Collapse
Affiliation(s)
- Hui Xu
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore
| | - Liang Zhang
- Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Ronghua Xu
- Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Bo Yang
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China
| | - Yan Zhou
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore.
| |
Collapse
|
16
|
Liu J, Ran X, Li J, Wang H, Xue G, Wang Y. Novel insights into carbon nanomaterials enhancing anammox for nitrogen removal: Effects and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167146. [PMID: 37726079 DOI: 10.1016/j.scitotenv.2023.167146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/21/2023]
Abstract
Carbon nanomaterials (CNMs) possess the properties including large specific surface area, high porosity, and stable chemical structures, presenting significant application advantages in wastewater treatment. Indeed, CNMs are considered to be added to anammox systems to strengthen anammox function, especially to resolve the challenge of anammox technology, i.e., the slow growth rate of anammox bacteria, as well as its high environmental sensitivity. This paper systematically reviews the promotion effects and mechanisms of CNMs on the nitrogen removal performance of anammox system. Among the zero-, one-, and two-dimensional CNMs, two-dimensional CNMs have best promoting effect on the nitrogen removal performance of anammox system due to its excellent conductivity and abundant functional groups. Then, the promotion effects of CNMs on anammox process are summarized from the perspective of anammox activity and bacteria abundance. Furthermore, CNMs not only enhance the anammox process, but also stimulate the coupling of denitrification pathways with anammox, as well as the improvement of system operational stability (alleviating the inhibitions of low temperature and pH fluctuation), thus contributing to the promoted nitrogen removal performance. Essentially, CNMs are capable of facilitating microbial immobilization and electron transfer, which favor to improve the efficiency and stability of anammox process. Finally, this review highlights the gap in knowledge and future work, aiming to provide a deeper understanding of how CNMs can strengthen the anammox system and provide a novel perspective for the engineering of the anammox process.
Collapse
Affiliation(s)
- Jiawei Liu
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Xiaochuan Ran
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Jia Li
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Han Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China.
| | - Gang Xue
- Shanghai Institute of Pollution Control and Ecological Security, Donghua University, Shanghai 201620, China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| |
Collapse
|
17
|
Zhao S, Wang X, Wang Q, Sumpradit T, Khan A, Zhou J, Salama ES, Li X, Qu J. Application of biochar in microbial fuel cells: Characteristic performances, electron-transfer mechanism, and environmental and economic assessments. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115643. [PMID: 37944462 DOI: 10.1016/j.ecoenv.2023.115643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023]
Abstract
Biochar is a by-product of thermochemical conversion of biomass or other carbonaceous materials. Recently, it has garnered extensive attention for its high application potential in microbial fuel cell (MFC) systems owing to its high conductivity and low cost. However, the effects of biochar on MFC system performance have not been comprehensively reviewed, thereby necessitating the evaluation of the efficacy of biochar application in MFCs. In this review, biochar characteristics were outlined based on recent publications. Subsequently, various applications of biochar in the MFC systems and their probable processes were summarized. Finally, proposals for future applications of biochar in MFCs were explored along with its perspectives and an environmental evaluation in the context of a circular economy. The purpose of this review is to gain comprehensive insights into the application of biochar in the MFC systems, offering important viewpoints on the effective and steady utilization of biochar in MFCs for practical application.
Collapse
Affiliation(s)
- Shuai Zhao
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xu Wang
- College of International Education, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Qiutong Wang
- College of International Education, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Tawatchai Sumpradit
- Microbiolgy and Parasitology Department, Naresuan University, Muang, Phitsanulok, Thailand
| | - Aman Khan
- Pakistan Agricultural Research Council, 20-Attaturk Avenue, Sector G-5/1, Islamabad, Pakistan
| | - Jia Zhou
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - El-Sayed Salama
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, China
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou 730000, China
| | - Jianhang Qu
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| |
Collapse
|
18
|
Cheng Y, Shi Z, Shi Y, Zhang Y, Zhang S, Luo G. Biochar promoted microbial iron reduction in competition with methanogenesis in anaerobic digestion. BIORESOURCE TECHNOLOGY 2023; 387:129561. [PMID: 37506931 DOI: 10.1016/j.biortech.2023.129561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Microbial Fe (III) reduction generally could outcompete methanogenesis due to its thermodynamic advantage, while the low bioavailability of Fe (III) compounds limits this process in the anaerobic digestion system, which could result in the low recovery of vivianite. Therefore, this study investigated the competition between Fe (III) reduction and methanogenesis in the presence of different biochar (pyrochar and hydrochar). The results showed that pyrochar obtained at 500 °C (P5) resulted in the highest Fe (III) reduction (80.3%) compared to the control experiment (29.1%). P5 also decreased methane production by 9.4%. Both conductivity and surface oxygen-containing functional groups contributed to the promotion of direct electron transfer for Fe (III) reduction. Genomic-centric metatranscriptomics analysis showed that P5 led to the highest enrichment of Geobacter soli A19 and induced the significant expression of out membrane cytochrome c and pilA in Geobacter soli A19, which was related to higher Fe (III) reduction.
Collapse
Affiliation(s)
- Yafei Cheng
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Zhijian Shi
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Yan Shi
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Yalei Zhang
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China; State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Gang Luo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China.
| |
Collapse
|
19
|
Chang J, Ren N, Yuan Q, Wang S, Liang D, He Z, Wang X, Li N. Charging-discharging cycles of geobattery activated carbon enhance iron reduction and vivianite recovery from wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163541. [PMID: 37076005 DOI: 10.1016/j.scitotenv.2023.163541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/12/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
Vivianite as a significant secondary mineral of dissimilatory iron reduction (DIR) exhibits marvelous potential to solve eutrophication as well as phosphorus shortage. Geobattery represents by natural organic matters (NOM) with rich functional groups influences bioreduction of natural iron mineral. Activated carbon (AC) which contains abundant functional groups is expected to serve as geobattery, but there remains insufficient understanding on its geobattery mechanism and how it benefits the vivianite formation. In this study, the charging and discharging cycle of "geobattery" AC enhanced extracellular electron transfer (EET) and vivianite recovery was demonstrated. Feeding with ferric citrate, AC addition increased vivianite formation efficiency by 141 %. The enhancement was attributed to the electron shuttle capacity of storage battery AC, which was contributed by the redox cycle between CO and O-H. Feeding with iron oxides, huge gap of redox potential between AC and Fe(III) minerals broke through the reduction energy barrier. Therefore the iron reduction efficiency of four Fe(III) minerals was accelerated to the same high level around 80 %, and the vivianite formation efficiency were increased by 104 %-256 % in pure culture batches. Except acting as storage battery, AC as a dry cell contributed 80 % to the whole enhancement towards iron reduction, in which O-H groups were the dominant driver. Due to the rechargeable nature and considerable electron exchange capacity, AC served as geobattery playing the role of both storage battery and dry cell on electron storaging and transferring to influence biogeochemical Fe cycle and vivianite recovery.
Collapse
Affiliation(s)
- Jifei Chang
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qing Yuan
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Shu Wang
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Danhui Liang
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Zexuan He
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Nan Li
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
20
|
Hou Y, He M, Liu Y, Wang Q, Yang A, Yang F, Lei Z, Yi X, Huang W. Biological nitrogen removal mechanisms during anaerobic digestion of swine manure: Effects of biogas circulation and activated carbon addition. BIORESOURCE TECHNOLOGY 2023; 374:128766. [PMID: 36813051 DOI: 10.1016/j.biortech.2023.128766] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
This study investigated the biological nitrogen removal mechanisms during the anaerobic digestion of swine manure and the effects of biogas circulation and activated carbon (AC) addition. Biogas circulation, AC addition, and their combination increased the methane yield by 25.9%, 22.3%, and 44.1%, respectively, when compared to the control. Nitrogen species analysis and metagenomic results indicated that nitrification-denitrification was the dominant ammonia removal pathway in all digesters with little oxygen, while anammox did not occur. Biogas circulation could promote mass transfer and induce air infiltration to enrich nitrification- and denitrification-related bacteria and functional genes. And AC might act as an electron shuttle to facilitate ammonia removal. The combined strategies showed a synergetic effect on the enrichment of nitrification and denitrification bacteria and functional genes, significantly lowering the total ammonia nitrogen by 23.6%. A single digester with biogas circulation and AC addition could enhance methanogenesis and ammonia removal via nitrification and denitrification.
Collapse
Affiliation(s)
- Yaoqi Hou
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecology and Environment, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Mengqi He
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecology and Environment, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Yongjie Liu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecology and Environment, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Qian Wang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecology and Environment, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Aopan Yang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecology and Environment, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Fei Yang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecology and Environment, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Zhongfang Lei
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Xuesong Yi
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecology and Environment, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Weiwei Huang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecology and Environment, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China.
| |
Collapse
|
21
|
Xin X, Li B, Liu X, Yang W, Liu Q. Starting-up performances and microbial community shifts in the coupling process (SAPD-A) with sulfide autotrophic partial denitrification (SAPD) and anammox treating nitrate and ammonium contained wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 331:117298. [PMID: 36669311 DOI: 10.1016/j.jenvman.2023.117298] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/11/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
A novel coupling process (SAPD-A) with sulfide autotrophic partial denitrification (SAPD) (NO3--N→NO2--N) and anaerobic ammonium oxidation (Anammox) was developed using anaerobic sequencing batch reactor (ASBR) in this work. The integrated process comprised two stages. Firstly, the starting-up of SAPD process succeeded by gradually increasing the influent nitrate and sulfide in 95 days. The average nitrate removal efficiency (NRE) and NO2--N accumulation rates were 71.24% ± 0.21% and 46.44% ± 0.53% at SAPD process (days 75-95). Then, successful coupling process (SAPD-A) was implemented in two stages (stage I and stage II of SAPD-A). In stage I, it is feasible to promote the successful construction of SAPD-A process by elevating influent ammonium only based on SAPD system, making the NRE increased from 44.45% ± 0.46% (day 95) to 64.62% ± 0.12% at the end of stage I in SAPD-A system (day 126). Meanwhile, the ammonium nitrogen removal efficiency (ARE) and total nitrogen removal efficiency (TN-RE) also rose up to 42.46% ± 2.02% and 63.28% ± 0.54% respectively. Furthermore, the average ARE, NRE and TN-RE during the stage II in the bioreactor could reach 65.17% ± 1.45%, 74.50% ± 0.81% and 77.81% ± 0.37% by loading some biofilters (with of approximate 10% of the volume of the bioreactor) attached anaerobic ammonium oxidation bacteria (AnAOB). High-throughput sequencing results showed that the dominant genera concerning nitrogen removal were norank_f_norank_o_Fimbriimonadates (with the abundance of 2.88-8.54%), norank_ o_ norank _ c_ OM190 (2.48-4.41%), norank_f_norank_o_norank_c_WWE3 (11.01-17.69%), subgroup_10 (1.97-3.81%), Limnobacter(2.17-3.49%), norank_f_n orank_ o_norank_ c_OLB14 (2.03-5.23%), norank-f-PHOS-HE36 (2.18-5.5%), Ellin6067 (1.34-2.24%) and Candidatus_ Brocadia (1.95-2.42%) during the whole starting-up period of coupling SAPD-A process. Batch experiments revealed that the sulfide was fully oxidized within 2 h, with the maximum reaction rate of 38.30 ± 1.53 mg (L h)-1 in the first 1 h. Simultaneously, the concentration of nitrate sharply decreased from 53.08 ± 0.23 mg L-1 to 24.16 ± 0.42 mg L-1 with the reaction rate of 66.41 ± 2.12 mg (L h)-1 in 0.5 h. Also, the ammonium concentration significantly declined from 47.88 ± 0.34 mg L-1 to 10.98 ± 0.39 mg L-1 in 8 h. Anammox process was responsible for the dominant nitrogen removal in the coupling SAPD-A system.
Collapse
Affiliation(s)
- Xin Xin
- School of Resources and Environment, Chengdu University of Information Technology,Chengdu, 610225, China.
| | - BaiXue Li
- School of Resources and Environment, Chengdu University of Information Technology,Chengdu, 610225, China
| | - Xin Liu
- School of Resources and Environment, Chengdu University of Information Technology,Chengdu, 610225, China
| | - Wenyu Yang
- School of Resources and Environment, Chengdu University of Information Technology,Chengdu, 610225, China
| | - Qin Liu
- School of Resources and Environment, Chengdu University of Information Technology,Chengdu, 610225, China
| |
Collapse
|
22
|
Xia Q, Ai Z, Huang W, Yang F, Liu F, Lei Z, Huang W. Recent progress in applications of Feammox technology for nitrogen removal from wastewaters: A review. BIORESOURCE TECHNOLOGY 2022; 362:127868. [PMID: 36049707 DOI: 10.1016/j.biortech.2022.127868] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Feammox process is crucial for the global nitrogen cycle and has great potentials for the treatment of low COD/NH4+-N wastewaters. This work provides a systematic and comprehensive overview of the Feammox process. Specifically, underlying mechanisms and functional microbes mediating the Feammox process are summarized in detail. And key influencing factors including pH, temperature, dissolved oxygen, organic carbon, source of Fe(III) as well as various electron shuttles are discussed. Additionally, recent development trends and attempts of the Feammox technology in wastewater treatment applications are reviewed, and perspectives for future development are presented. A thorough review of the recent progress in Feammox process is expected to provide valuable information for further process optimization, which is helpful to achieve a more economical operation and better nitrogen removal performance in future field applications.
Collapse
Affiliation(s)
- Qing Xia
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Ziyin Ai
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Wenli Huang
- MOE Key Laboratory of Pollution Process and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, No. 94 Weijin Road, Nankai District, Tianjin 300071, China
| | - Fei Yang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Fei Liu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Zhongfang Lei
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Weiwei Huang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China.
| |
Collapse
|
23
|
Chen J, Gao M, Zhao Y, Guo L, Jin C, Ji J, She Z. Nitrogen and sulfamethoxazole removal in a partially saturated vertical flow constructed wetland treating synthetic mariculture wastewater. BIORESOURCE TECHNOLOGY 2022; 358:127401. [PMID: 35660456 DOI: 10.1016/j.biortech.2022.127401] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/26/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
This study investigated the removal of nitrogen and sulfamethoxazole (SMX), and the microbial communities in a partially saturated vertical flow constructed wetland (PS-VFCW) fed with synthetic mariculture wastewater operated at different saturated zone depths (SZDs), i.e. 51, 70, and 60 cm. Removal efficiencies were 99.8%-100.0% for COD, 34.1%-100.0% for NH4+-N, 67.8%-97.3% for total inorganic nitrogen (TIN), and 29.8%-57.2% for SMX. Excellent nitrification performance was achieved at the SZDs of 51 and 60 cm. Denitrification performed well at 70 and 60 cm SZDs. The highest TIN removal efficiency (97.3%) was achieved as the SZD was 60 cm. SMX removal was significantly influenced by SZD and was promoted by higher SZD. The removal of organics, nitrogen, and SMX mainly occurred in the unsaturated zone. Ammonia-oxidizing bacteria, nitrite-oxidizing bacteria, denitrifying bacteria, and SMX-degrading bacteria were detected in the unsaturated and saturated zones, and showed an increasing trend in abundance along the depth.
Collapse
Affiliation(s)
- Jinjin Chen
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, 266100 Qingdao, China
| | - Mengchun Gao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, 266100 Qingdao, China; College of Environmental Science and Engineering, Ocean University of China, 266100 Qingdao, China
| | - Yangguo Zhao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, 266100 Qingdao, China; College of Environmental Science and Engineering, Ocean University of China, 266100 Qingdao, China
| | - Liang Guo
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, 266100 Qingdao, China; College of Environmental Science and Engineering, Ocean University of China, 266100 Qingdao, China
| | - Chunji Jin
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, 266100 Qingdao, China; College of Environmental Science and Engineering, Ocean University of China, 266100 Qingdao, China
| | - Junyuan Ji
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, 266100 Qingdao, China; College of Environmental Science and Engineering, Ocean University of China, 266100 Qingdao, China
| | - Zonglian She
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, 266100 Qingdao, China; College of Environmental Science and Engineering, Ocean University of China, 266100 Qingdao, China.
| |
Collapse
|
24
|
Zhao ZJ, Wang YR, Wang YX, Zhang W, Li ZH, Mu Y. Electrical stimulation enhancing anaerobic digestion under ammonia inhibition: A comprehensive investigation including proteomic analysis. ENVIRONMENTAL RESEARCH 2022; 211:113006. [PMID: 35227674 DOI: 10.1016/j.envres.2022.113006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/12/2022] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
Microbial electrolysis cell (MEC) coupled anaerobic digestion (AD), named as MEC-AD system, can effectively promote methane production under ammonia inhibition, but the inherent mechanism is still poorly understood. This study comprehensively explored the MEC-AD performance and mechanism under high-concentration ammonia stress including using proteomic analysis. It was found that the methane generation rates in MEC-AD systems were 2.0-2.7 times that of AD ones under 5.0 g/L ammonia stress. Additionally, the experimental conditions for methane generation in MEC-AD systems were optimized using response surface methodology. Further analysis indicates that the activities of acetate kinase and F420 were improved, and particularly the direct interspecies electron transfer (DIET) was promoted in MEC-AD systems, as indicated by increased electroactive extracellular polymeric substance, decreased charge transfer resistance, and enrichment of electroactive microbes such as Geobacter on the bioelectrodes. Moreover, proteomic analysis reveals that the DIET associated proteins such as Cytochrome C was up-regulated, and ammonia transfer-related proteins were down-regulated and ammonium detoxification-related proteins were up-regulated in MEC-AD systems. This work provides us a better understanding on the MEC-AD performance especially for the treatment of wastewater containing high-concentration ammonia.
Collapse
Affiliation(s)
- Zhi-Jun Zhao
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Yi-Ran Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Yi-Xuan Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China.
| | - Wei Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Zheng-Hao Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
25
|
Hu L, Cheng X, Qi G, Zheng M, Dang Y, Li J, Xu K. Achieving Ammonium Removal Through Anammox-Derived Feammox With Low Demand of Fe(III). Front Microbiol 2022; 13:918634. [PMID: 35832814 PMCID: PMC9271925 DOI: 10.3389/fmicb.2022.918634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Feammox-based nitrogen removal technology can reduce energy consumption by aeration and emission of carbon dioxide. However, the huge theoretical demand for Fe(III) becomes a challenge for the further development of Feammox. This study investigated an anammox-derived Feammox process with an intermittent dosage of Fe2O3 and proposed a novel approach to reduce the Fe(III) consumption. The results showed that anammox genera Candidatus Brocadia and Candidatus Kuenenia in the seed anammox sludge significantly decreased after cultivation. The formation of N2 was the dominating pathway in Feammox while that of nitrite and nitrate could be neglected. Batch tests showed that specific Feammox activity of ammonium oxidation was 1.14–9.98 mg N/(g VSS·d). The maximum removal efficiency of ammonium reached 52.3% in the bioreactor with a low dosage of Fe(III) which was only 5.8% of the theoretical demand in Feammox. The removal of ammonium was mainly achieved through Feammox, while partial nitrification/anammox also played a role due to the non-power and unintentional oxygen leakage. The super-low oxygen also responded to the low demand of Fe(III) in the bioreactor because it could trigger the cycle of Fe(III)/Fe(II) by coupling Feammox and chemical oxidation of Fe(II) to Fe(III). Therefore, anammox-derived Feammox can achieve the removal of ammonium with low Fe(III) demand at super-low oxygen.
Collapse
Affiliation(s)
- Lanlan Hu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Xiaohui Cheng
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Guangxia Qi
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, China
| | - Min Zheng
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD, Australia
| | - Yan Dang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Jiyun Li
- School of Environment, Tsinghua University, Beijing, China
| | - Kangning Xu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
- *Correspondence: Kangning Xu
| |
Collapse
|
26
|
Riboflavin as a non-quinone redox mediator for enhanced Cr(VI) removal by Shewanella putrefaciens. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|