1
|
Yu K, Zhang Q, Wei Y, Chen R, Kan H. Global association between air pollution and COVID-19 mortality: A systematic review and meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167542. [PMID: 37797765 DOI: 10.1016/j.scitotenv.2023.167542] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/13/2023] [Accepted: 09/30/2023] [Indexed: 10/07/2023]
Abstract
BACKGROUND The COVID-19 pandemic presents unprecedented challenge for global public health systems and exacerbates existing health disparities. Epidemiological evidence suggested a potential linkage between particulate and gaseous pollutants and COVID-19 mortality. We aimed to summarize the overall risk of COVID-19 mortality associated with ambient air pollutants over the short- and long-term. METHODS For the systematic review and meta-analysis, we searched five databases for studies evaluating the risk of COVID-19 mortality from exposure to air pollution. Inclusion of articles was assessed independently on the basis of research topic and availability of effect estimates. The risk estimates (relative risk) for each pollutant were pooled with a random-effect model. Potential heterogeneity was explored by subgroup analysis. Funnel plots and trim-and-fill methods were employed to assess and adjust for publication bias. FINDINGS The systematic review retrieved 2059 records, and finally included 43 original studies. PM2.5 (RR: 1.71, 95 % CI: 1.40-2.08, per 10 μg/m3 increase), NO2 (RR: 1.33, 1.07-1.65, per 10 ppb increase) and O3 (RR: 1.61, 1.00-2.57, per 10 ppb increase) were positively associated with COVID-19 mortality for long-term exposures. Accordingly, a higher risk of COVID-19 mortality was associated with PM2.5 (1.05, 1.02-1.08), PM10 (1.05, 1.01-1.08), and NO2 (1.40, 1.04-1.90) for short-term exposures. There was some heterogeneity across subgroups of income level and geographical areas. CONCLUSION Both long-term and short-term exposures to ambient air pollution may increase the risk of COVID-19 mortality. Future studies utilizing individual-level information on demographics, exposures, outcome ascertainment and confounders are warranted to improve the accuracy of estimates.
Collapse
Affiliation(s)
- Kexin Yu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Qingli Zhang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Yuhao Wei
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China.
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, China; Children's Hospital of Fudan University, National Center for Children's Health, Shanghai, China.
| |
Collapse
|
2
|
Houweling L, Maitland-Van der Zee AH, Holtjer JCS, Bazdar S, Vermeulen RCH, Downward GS, Bloemsma LD. The effect of the urban exposome on COVID-19 health outcomes: A systematic review and meta-analysis. ENVIRONMENTAL RESEARCH 2024; 240:117351. [PMID: 37852458 DOI: 10.1016/j.envres.2023.117351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND The global severity of SARS-CoV-2 illness has been associated with various urban characteristics, including exposure to ambient air pollutants. This systematic review and meta-analysis aims to synthesize findings from ecological and non-ecological studies to investigate the impact of multiple urban-related features on a variety of COVID-19 health outcomes. METHODS On December 5, 2022, PubMed was searched to identify all types of observational studies that examined one or more urban exposome characteristics in relation to various COVID-19 health outcomes such as infection severity, the need for hospitalization, ICU admission, COVID pneumonia, and mortality. RESULTS A total of 38 non-ecological and 241 ecological studies were included in this review. Non-ecological studies highlighted the significant effects of population density, urbanization, and exposure to ambient air pollutants, particularly PM2.5. The meta-analyses revealed that a 1 μg/m3 increase in PM2.5 was associated with a higher likelihood of COVID-19 hospitalization (pooled OR 1.08 (95% CI:1.02-1.14)) and death (pooled OR 1.06 (95% CI:1.03-1.09)). Ecological studies, in addition to confirming the findings of non-ecological studies, also indicated that higher exposure to nitrogen dioxide (NO2), ozone (O3), sulphur dioxide (SO2), and carbon monoxide (CO), as well as lower ambient temperature, humidity, ultraviolet (UV) radiation, and less green and blue space exposure, were associated with increased COVID-19 morbidity and mortality. CONCLUSION This systematic review has identified several key vulnerability features related to urban areas in the context of the recent COVID-19 pandemic. The findings underscore the importance of improving policies related to urban exposures and implementing measures to protect individuals from these harmful environmental stressors.
Collapse
Affiliation(s)
- Laura Houweling
- Department of Environmental Epidemiology, Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands; Dept. of Pulmonary Medicine, Amsterdam UMC, Amsterdam, the Netherlands.
| | - Anke-Hilse Maitland-Van der Zee
- Dept. of Pulmonary Medicine, Amsterdam UMC, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands; Amsterdam Public Health, Amsterdam, the Netherlands
| | - Judith C S Holtjer
- Department of Environmental Epidemiology, Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| | - Somayeh Bazdar
- Dept. of Pulmonary Medicine, Amsterdam UMC, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands; Amsterdam Public Health, Amsterdam, the Netherlands
| | - Roel C H Vermeulen
- Department of Environmental Epidemiology, Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - George S Downward
- Department of Environmental Epidemiology, Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Lizan D Bloemsma
- Dept. of Pulmonary Medicine, Amsterdam UMC, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands; Amsterdam Public Health, Amsterdam, the Netherlands
| |
Collapse
|
3
|
Klimkaite L, Liveikis T, Kaspute G, Armalyte J, Aldonyte R. Air pollution-associated shifts in the human airway microbiome and exposure-associated molecular events. Future Microbiol 2023; 18:607-623. [PMID: 37477532 DOI: 10.2217/fmb-2022-0258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023] Open
Abstract
Publications addressing air pollution-induced human respiratory microbiome shifts are reviewed in this article. The healthy respiratory microbiota is characterized by a low density of bacteria, fungi and viruses with high diversity, and usually consists of Bacteroidetes, Firmicutes, Proteobacteria, Actinobacteria, Fusobacteria, viruses and fungi. The air's microbiome is highly dependent on air pollution levels and is directly reflected within the human respiratory microbiome. In addition, pollutants indirectly modify the local environment in human respiratory organs by reducing antioxidant capacity, misbalancing proteolysis and modulating inflammation, all of which regulate local microbiomes. Improving air quality leads to more diverse and healthy microbiomes of the local air and, subsequently, residents' airways.
Collapse
Affiliation(s)
| | | | - Greta Kaspute
- State Research Institute Center for Innovative Medicine, Vilnius, Lithuania
| | | | - Ruta Aldonyte
- State Research Institute Center for Innovative Medicine, Vilnius, Lithuania
| |
Collapse
|
4
|
Coker ES, Molitor J, Liverani S, Martin J, Maranzano P, Pontarollo N, Vergalli S. Bayesian profile regression to study the ecologic associations of correlated environmental exposures with excess mortality risk during the first year of the Covid-19 epidemic in lombardy, Italy. ENVIRONMENTAL RESEARCH 2023; 216:114484. [PMID: 36220446 PMCID: PMC9547389 DOI: 10.1016/j.envres.2022.114484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/23/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Many countries, including Italy, have experienced significant social and spatial inequalities in mortality during the Covid-19 pandemic. This study applies a multiple exposures framework to investigate how joint place-based factors influence spatial inequalities of excess mortality during the first year of the Covid -19 pandemic in the Lombardy region of Italy. For the Lombardy region, we integrated municipality-level data on all-cause mortality between 2015 and 2020 with 13 spatial covariates, including 5-year average concentrations of six air pollutants, the average temperature in 2020, and multiple socio-demographic factors, and health facilities per capita. Using the clustering algorithm Bayesian profile regression, we fit spatial covariates jointly to identify clusters of municipalities with similar exposure profiles and estimated associations between clusters and excess mortality in 2020. Cluster analysis resulted in 13 clusters. Controlling for spatial autocorrelation of excess mortality and health-protective agency, two clusters had significantly elevated excess mortality than the rest of Lombardy. Municipalities in these highest-risk clusters are in Bergamo, Brescia, and Cremona provinces. The highest risk cluster (C11) had the highest long-term particulate matter air pollution levels (PM2.5 and PM10) and significantly elevated NO2 and CO air pollutants, temperature, proportion ≤18 years, and male-to-female ratio. This cluster is significantly lower for income and ≥65 years. The other high-risk cluster, Cluster 10 (C10), is elevated significantly for ozone but significantly lower for other air pollutants. Covariates with elevated levels for C10 include proportion 65 years or older and a male-to-female ratio. Cluster 10 is significantly lower for income, temperature, per capita health facilities, ≤18 years, and population density. Our results suggest that joint built, natural, and socio-demographic factors influenced spatial inequalities of excess mortality in Lombardy in 2020. Studies must apply a multiple exposures framework to guide policy decisions addressing the complex and multi-dimensional nature of spatial inequalities of Covid-19-related mortality.
Collapse
Affiliation(s)
- Eric S Coker
- Department of Environmental and Global Health, University of Florida, 1225 Center Dr, Gainesville, FL, 32610, United States.
| | - John Molitor
- College of Public Health and Human Sciences, Oregon State University, Milam Hall 157, 2520 SW Campus Way, Corvallis, OR, 97331, United States.
| | - Silvia Liverani
- School of Mathematical Sciences, Queen Mary University of London, Mile End Road London E1 4NS, United Kingdom.
| | - James Martin
- Department of Environmental and Global Health, University of Florida, 1225 Center Dr, Gainesville, FL, 32610, United States
| | - Paolo Maranzano
- Department of Economics, Management and Statistics of the University of Milano-Bicocca (UniMiB), Piazza Dell'Ateneo Nuovo, 1 - 20126, Milano, Italy.
| | - Nicola Pontarollo
- Department of Economics and Management, Università Degli Studi di Brescia, Brescia, Via S. Faustino 74/B, 25122, Brescia, Italy.
| | - Sergio Vergalli
- Department of Agricultural Economics, Università Cattolica Del Sacro Cuore, Piacenza, Via Emilia Parmense, 29122, Piacenza PC, Italy.
| |
Collapse
|
5
|
Beloconi A, Vounatsou P. Long-term air pollution exposure and COVID-19 case-severity: An analysis of individual-level data from Switzerland. ENVIRONMENTAL RESEARCH 2023; 216:114481. [PMID: 36206929 PMCID: PMC9531360 DOI: 10.1016/j.envres.2022.114481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 05/05/2023]
Abstract
Several studies are pointing out that exposure to elevated air pollutants could contribute to increased COVID-19 mortality. However, literature on the associations between air pollution exposure and COVID-19 severe morbidity is rather sparse. In addition, the majority of the studies used an ecological study design and were applied in regions with rather high air pollution levels. Here, we study the differential effects of long-term exposure to air pollution on severe morbidity and mortality risks from COVID-19 in various population subgroups in Switzerland, a country known for clean air. We perform individual-level analyses using data covering the first two major waves of COVID-19 between February 2020 and May 2021. High-resolution maps of particulate matter (PM2.5) and nitrogen dioxide (NO2) concentrations were produced for the 6 years preceding the pandemic using Bayesian geostatistical models. Air pollution exposure for each patient was measured by the long-term average concentration across the municipality of residence. The models were adjusted for the effects of individual characteristics, socio-economic, health-system, and climatic factors. The variables with an important association to COVID-19 case-severity were identified using Bayesian spatial variable selection. The results have shown that the individual-level characteristics are important factors related to COVID-19 morbidity and mortality in all the models. Long-term exposure to air pollution appears to influence the severity of the disease only when analyzing data during the first wave; this effect is attenuated upon adjustment for health-system related factors during the entire study period. Our findings suggest that the burden of air pollution increased the risks of COVID-19 in Switzerland during the first wave of the pandemic, but not during the second wave, when the national health system was better prepared.
Collapse
Affiliation(s)
- Anton Beloconi
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Penelope Vounatsou
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland.
| |
Collapse
|
6
|
Association Between Air Pollution, Climate Change, and COVID-19 Pandemic: A Review of the Recent Scientific Evidence. HEALTH SCOPE 2022. [DOI: 10.5812/jhealthscope-122412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Background: Recent studies indicated the possible relationship between climate change, environmental pollution, and Coronavirus Disease 2019 (COVID-19) pandemic. This study reviewed the effects of air pollution, climate parameters, and lockdown on the number of cases and deaths related to COVID-19. Methods: The present review was performed to determine the effects of weather and air pollution on the number of cases and deaths related to COVID-19 during the lockdown. Articles were collected by searching the existing online databases, such as PubMed, Science Direct, and Google Scholar, with no limitations on publication dates. Afterwards, this review focused on outdoor air pollution, including PM2.5, PM10, NO2, SO2, and O3, and weather conditions affecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)/COVID-19. Results: Most reviewed investigations in the present study showed that exposure to air pollutants, particularly PM2.5 and NO2, is positively related to COVID-19 patients and mortality. Moreover, these studies showed that air pollution could be essential in transmitting COVID-19. Local meteorology plays a vital role in coronavirus spread and mortality. Temperature and humidity variables are negatively correlated with virus transmission. The evidence demonstrated that air pollution could lead to COVID-19 transmission. These results support decision-makers in curbing potential new outbreaks. Conclusions: Overall, in environmental perspective-based COVID-19 studies, efforts should be accelerated regarding effective policies for reducing human emissions, bringing about air pollution and weather change. Therefore, using clean and renewable energy sources will increase public health and environmental quality by improving global air quality.
Collapse
|
7
|
Borna M, Woloshynowych M, Schiano-Phan R, Volpi EV, Usman M. A correlational analysis of COVID-19 incidence and mortality and urban determinants of vitamin D status across the London boroughs. Sci Rep 2022; 12:11741. [PMID: 35817805 PMCID: PMC9272647 DOI: 10.1038/s41598-022-15664-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 06/27/2022] [Indexed: 02/06/2023] Open
Abstract
One of the biggest challenges of the COVID-19 pandemic is the heterogeneity in disease severity exhibited amongst patients. Among multiple factors, latest studies suggest vitamin D deficiency and pre-existing health conditions to be major contributors to death from COVID-19. It is known that certain urban form attributes can impact sun exposure and vitamin D synthesis. Also, long-term exposure to air pollution can play an independent role in vitamin D deficiency. We conducted a correlational analysis of urban form and air quality in relation to the demographics and COVID-19 incidence and mortality across 32 London boroughs between March 2020 and January 2021. We found total population, number of residents of Asian ethnicity, 4-year average PM10 levels and road length to be positively correlated with COVID-19 cases and deaths. We also found percentage of households with access to total open space to be negatively correlated with COVID-19 deaths. Our findings link COVID-19 incidence and mortality across London with environmental variables linked to vitamin D status. Our study is entirely based on publicly available data and provides a reference framework for further research as more data are gathered and the syndemic dimension of COVID-19 becomes increasingly relevant in connection to health inequalities within large urban areas.
Collapse
Affiliation(s)
- Mehrdad Borna
- School of Architecture and Cities, University of Westminster, 35 Marylebone Road, London, NW1 5LS, UK.
| | | | - Rosa Schiano-Phan
- School of Architecture and Cities, University of Westminster, 35 Marylebone Road, London, NW1 5LS, UK
| | | | - Moonisah Usman
- Centre for Education and Teaching Innovation, University of Westminster, London, UK
| |
Collapse
|
8
|
Santurtún A, Colom ML, Fdez-Arroyabe P, Real ÁD, Fernández-Olmo I, Zarrabeitia MT. Exposure to particulate matter: Direct and indirect role in the COVID-19 pandemic. ENVIRONMENTAL RESEARCH 2022; 206:112261. [PMID: 34687752 PMCID: PMC8527737 DOI: 10.1016/j.envres.2021.112261] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 05/16/2023]
Abstract
Knowing the transmission factors and the natural environment that favor the spread of a viral infection is crucial to stop outbreaks and develop effective preventive strategies. This work aims to evaluate the role of Particulate Matter (PM) in the COVID-19 pandemic, focusing especially on that of PM as a vector for SARS-CoV-2. Exposure to PM has been related to new cases and to the clinical severity of people infected by SARS-CoV-2, which can be explained by the oxidative stress and the inflammatory response generated by these particles when entering the respiratory system, as well as by the role of PM in the expression of ACE-2 in respiratory cells in human hosts. In addition, different authors have detected SARS-CoV-2 RNA in PM sampled both in outdoor and indoor environments. The results of various studies lead to the hypothesis that the aerosols emitted by an infected person could be deposited in other suspended particles, sometimes of natural but especially of anthropogenic origin, that form the basal PM. However, the viability of the virus in PM has not yet been demonstrated. Should PM be confirmed as a vector of transmission, prevention strategies ought to be adapted, and PM sampling in outdoor environments could become an indicator of viral load in a specific area.
Collapse
Affiliation(s)
- Ana Santurtún
- Legal Medicine and Toxicology Area, Department of Physiology and Pharmacology. Faculty of Medicine. University of Cantabria, Santander, Spain.
| | - Marina L Colom
- Legal Medicine and Toxicology Area, Department of Physiology and Pharmacology. Faculty of Medicine. University of Cantabria, Santander, Spain
| | - Pablo Fdez-Arroyabe
- Geography and Planning Department, Geobiomet Research Group. University of Cantabria, Santander, Spain
| | - Álvaro Del Real
- Medicine and Psychiatry Department. University of Cantabria, Santander, Spain
| | - Ignacio Fernández-Olmo
- Chemical and Molecular Engineering Department. University of Cantabria, Santander, Spain
| | - María T Zarrabeitia
- Legal Medicine and Toxicology Area, Department of Physiology and Pharmacology. Faculty of Medicine. University of Cantabria, Santander, Spain
| |
Collapse
|
9
|
Busetta G, Campolo MG, Panarello D. Economic expectations and anxiety during the COVID-19 pandemic: a one-year longitudinal evaluation on Italian university students. QUALITY & QUANTITY 2022; 57:59-76. [PMID: 35250100 PMCID: PMC8883755 DOI: 10.1007/s11135-022-01330-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/23/2021] [Accepted: 01/23/2022] [Indexed: 02/03/2023]
Abstract
The COVID-19 pandemic has produced an extensive aggravation of people's anxiety level. Different policies aimed at fighting the spread of the virus could affect anxiety in various ways. We built an ad hoc web-based survey, administered to the student population of three Italian universities at the beginning of the pandemic and at one year's distance, to collect information on retrospective and current anxiety levels and the underlining reasons. The survey also included questions concerning sociodemographic, economic, labor, lifestyle, academic career, and on-line teaching features, which prevents students from identifying the main survey topic to be anxiety. This research aims at assessing the change in anxiety levels between the analyzed periods and the main determinants of such change, focusing on students' economic expectancies. Results from a Poisson regression model show that anxiety has increased compared to both the pre-pandemic level and the one quantified during the first lockdown. This increase is revealed to be mostly driven by economic and career-related uncertainties, rather than by job loss and proximity to COVID-19. Thus, policymakers should take action to provide certainties both in terms of economic prospects and reopening strategies, especially to avoid that the resulting increase in anxiety translates into an amplified suicide risk.
Collapse
Affiliation(s)
- Giovanni Busetta
- Department of Economics, University of Messina, Via dei Verdi 75, 98122 Messina, Italy
| | | | - Demetrio Panarello
- Department of Statistical Sciences “Paolo Fortunati”, University of Bologna, Via delle Belle Arti 41, 40126 Bologna, Italy
| |
Collapse
|