1
|
Zhang X, Liu Y, Yuan J. Amino-functionalized Fe/Co bimetallic MOFs for accelerated Fe (III)/Fe (II) cycling and efficient degradation of sulfamethoxazole in Fenton-like system. Front Chem 2025; 13:1579108. [PMID: 40224220 PMCID: PMC11986425 DOI: 10.3389/fchem.2025.1579108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 03/05/2025] [Indexed: 04/15/2025] Open
Abstract
Metal-organic frameworks (MOFs) are recognized as important Fenton-like materials for environmental remediation. However, their applications are often hindered by slow cycling between Fe (III) and Fe (II). This study aimed to address the slow Fe (III)/Fe (II) cycling limitation of Fe-MOFs through dual modification strategy: bimetallic modification and amino functionalization. A series of NH2-MOF(Fe, Co) catalysts with varying Fe/Co ratios were synthesized via a hydrothermal method and evaluated for sulfamethoxazole (SMX) degradation. The optimized NH2-MOF(Fe, Co) catalyst (Fe/Co ratio = 7:3) exhibited substantially enhanced catalytic performance, with SMX removal rate and rate constant in the H2O2 system being 3.2 and 43.5 times higher than those of the Fe-MOF/H2O2 system, respectively. The catalyst demonstrated robust performance across a wide pH range (3.05-7.00), addressing a common limitation of Fenton-like systems. Physicochemical characterization revealed that the enhanced performance was attributed to two key factors: the synergistic effect between Co and Fe in the bimetallic active center, and improved electron transfer to the central metal due to -NH2 functionalization. These modifications effectively addressed the Fe (III)/Fe (II) redox cycling limitation. The proposed reaction mechanism provides insights into SMX degradation pathways in the NH2-MOF(Fe, Co)/H2O2 system. This study presents an efficient and stable MOF-based Fenton-like catalyst with potential applications in wastewater treatment and environmental remediation.
Collapse
Affiliation(s)
- Xianbing Zhang
- National Engineering Research Center for Inland Waterway Regulation, Chongqing Key Laboratory of Ecological Waterway, Chongqing Jiaotong University, Chongqing, China
| | - Yuheng Liu
- National Engineering Research Center for Inland Waterway Regulation, Chongqing Key Laboratory of Ecological Waterway, Chongqing Jiaotong University, Chongqing, China
| | - Jiajia Yuan
- School of Materials and Environmental Engineering, Shenzhen Polytechnic University, Shenzhen, China
| |
Collapse
|
2
|
Lv W, Song Y, Mo Z. Synthesis of metal-organic framework-luminescent guest (MOF@LG) composites and their applications in environmental health sensing: A mini review. Talanta 2025; 283:127105. [PMID: 39486302 DOI: 10.1016/j.talanta.2024.127105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/13/2024] [Accepted: 10/23/2024] [Indexed: 11/04/2024]
Abstract
Metal-organic framework (MOF) materials are three-dimensional structures formed by the combination of metal ions and organic ligands. So far, various typical metal organic framework materials have emerged, such as ZIF-8, MOF-5, UIO-66, etc. These traditional MOF materials have the advantages of simple synthesis, high porosity, and high stability, and have great research potential in the field of fluorescence sensing. However, MOF materials with excellent luminescent properties often involve fine regulation of organic ligands to ensure that fluorescence emission can be achieved between metal ions and organic ligands through energy transfer and photo induced electron transfer. The long synthesis cycle and cumbersome preparation process pose challenges for the research of fluorescent MOF materials. Combining MOF materials with luminescent guests is an effective way to prepare simple fluorescent chemical sensors. These luminescent guests include quantum dots, organic dyes, fluorescent nanoparticles, etc. They have the characteristic of high luminescence quantum yield, but high concentrations often lead to aggregation and collision, which in turn cause emission quenching. MOF materials with excellent porosity and specific surface area can serve as an ideal platform for encapsulating luminescent guests and preventing their aggregation. The preparation of MOF@luminescent guest composite material (MOF@LG) is easy to synthesize, which not only effectively improves the poor fluorescence performance of MOFs themselves, but also preserves the excellent fluorescence performance of luminescent guests. Composite materials often have excellent solid-state luminescence performance, making them a good choice for constructing a simple fluorescence sensing platform.
Collapse
Affiliation(s)
- Wenbo Lv
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Lanzhou, 730070, PR China; Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Lanzhou, 730070, PR China; Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China
| | - Yafang Song
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Lanzhou, 730070, PR China; Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Lanzhou, 730070, PR China; Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China
| | - Zunli Mo
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Lanzhou, 730070, PR China; Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Lanzhou, 730070, PR China; Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, PR China.
| |
Collapse
|
3
|
Ren B, Xing Z, Zhang N, Cheng T, Liu X, Chen W, Wang Z, Li Z, Zhou W. Iron-copper bimetallic photo-Fenton system promoted photothermal-hydrogen peroxide production for efficient low-temperature wastewater treatment. J Colloid Interface Sci 2025; 677:882-895. [PMID: 39173520 DOI: 10.1016/j.jcis.2024.08.116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/23/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024]
Abstract
Enhancing the velocity of the oxidation-reduction cycle is crucial for improving the catalytic efficiency of Fenton processes. Therefore, the development of an effective strategy for wastewater degradation at low temperatures is essential. In this context, we present the preparation of an NH2-MIL-88B (Fe)/CuInS2 S-scheme heterojunction. Specifically, CuInS2 nanoparticles are introduced onto the Ferro-organic skeleton, resulting in the exposure of a significant number of active surface sites. Furthermore, NH2-MIL-88B (Fe)/CuInS2 demonstrates an extended photoresponse into the long-wavelength region, which contributes to its excellent photothermal properties. Notably, the degradation rate of tetracycline in low-temperature aqueous environments reaches as high as 99.7 %, several times higher than that of the original sample. Additionally, the hydrogen production of NH2-MIL-88B (Fe)/CuInS2 is 2.23 times that of single NH2-MIL-88B (Fe) and 3.46 times that of single CuInS2. Moreover, the system exhibits good H2O2 evolution performance, forming an efficient photo-Fenton system. The charge transfer process in S-scheme heterojunction is confirmed using in-situ X-ray photoelectron spectroscopy and electron paramagnetic resonance. Both transient photoluminescence and photo electrochemical tests further validate the enhanced photoelectrochemical properties of the NH2-MIL-88B (Fe)/CuInS2 S-scheme heterojunction. The exceptional performance of this system can be attributed to the synergistic effects of the S-scheme heterojunction and the bimetallic codoped photo-Fenton system. This research presents a novel approach for the breakdown of low-temperature wastewater using an improved photocatalytic Fenton system.
Collapse
Affiliation(s)
- Bo Ren
- Heilongjiang Provincial Key Laboratory of Environmental Nanotechnology, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, PR China
| | - Zipeng Xing
- Heilongjiang Provincial Key Laboratory of Environmental Nanotechnology, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, PR China.
| | - Na Zhang
- Heilongjiang Provincial Key Laboratory of Environmental Nanotechnology, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, PR China
| | - Tao Cheng
- Heilongjiang Provincial Key Laboratory of Environmental Nanotechnology, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, PR China
| | - Xinyue Liu
- Heilongjiang Provincial Key Laboratory of Environmental Nanotechnology, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, PR China
| | - Weizi Chen
- Heilongjiang Provincial Key Laboratory of Environmental Nanotechnology, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, PR China
| | - Zibin Wang
- Heilongjiang Provincial Key Laboratory of Environmental Nanotechnology, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, PR China
| | - Zhenzi Li
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, PR China.
| | - Wei Zhou
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, PR China.
| |
Collapse
|
4
|
Lin Y, Qiao J, Sun Y, Dong H. The profound review of Fenton process: What's the next step? J Environ Sci (China) 2025; 147:114-130. [PMID: 39003034 DOI: 10.1016/j.jes.2023.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 07/15/2024]
Abstract
Fenton and Fenton-like processes, which could produce highly reactive species to degrade organic contaminants, have been widely used in the field of wastewater treatment. Therein, the chemistry of Fenton process including the nature of active oxidants, the complicated reactions involved, and the behind reason for its strongly pH-dependent performance, is the basis for the application of Fenton and Fenton-like processes in wastewater treatment. Nevertheless, the conflicting views still exist about the mechanism of the Fenton process. For instance, reaching a unanimous consensus on the nature of active oxidants (hydroxyl radical or tetravalent iron) in this process remains challenging. This review comprehensively examined the mechanism of the Fenton process including the debate on the nature of active oxidants, reactions involved in the Fenton process, and the behind reason for the pH-dependent degradation of contaminants in the Fenton process. Then, we summarized several strategies that promote the Fe(II)/Fe(III) cycle, reduce the competitive consumption of active oxidants by side reactions, and replace the Fenton reagent, thus improving the performance of the Fenton process. Furthermore, advances for the future were proposed including the demand for the high-accuracy identification of active oxidants and taking advantages of the characteristic of target contaminants during the degradation of contaminants by the Fenton process.
Collapse
Affiliation(s)
- Yimin Lin
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Junlian Qiao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yuankui Sun
- Department of Environmental Science, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Hongyu Dong
- Department of Environmental Science, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
5
|
Lomba-Fernández B, Fdez-Sanromán A, Pazos M, Sanromán MA, Rosales E. Iron metal-organic framework nanofiber membrane for the integration of electro-Fenton and effective continuous treatment of pharmaceuticals in water. CHEMOSPHERE 2024; 366:143447. [PMID: 39362377 DOI: 10.1016/j.chemosphere.2024.143447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/20/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
In this study, an iron metal-organic framework (Fe-MOF) was synthesized and immobilized by electrospinning technique with the objective of obtaining a membrane composed of nanofibers of this material (Fe-MOF nanofiber membrane). The characterization performed by XRD, TEM, SEM, EDS mapping and FTIR confirmed the correct synthesis of Fe-MOF as well as its correct retention in the elaborated membranes. The usefulness and effectiveness of the Fe-MOF nanofiber membrane as a catalyst for the electro-Fenton process was evaluated by performing sulfamethoxazole degradation tests. Different parameters such as the effect of intensity (25 and 100 mA), the effect of the drug initial concentration (10-50 mg/L) and the reusability of membranes were studied. Then, the degradation of a drug mixture formed by sulfamethoxazole and antipyrine was evaluated, reaching a degradation of 92.10 % and 87.43 % respectively for each drug in 4 h at 25 mA. In addition, the identification of reactive oxygen species was ascertained by scavenger assays. The study of degradation products was also carried out and their toxicity was predicted by ECOSAR program, concluding that the environmental toxicity would disappear with mineralization. Finally, given the good results obtained in batch tests, the behavior of the process was studied in a system that works continuously, achieving a stable degradation of 83.10 % in the case of treatment with a mixture of drugs. This confirmed the stability of the Fe-MOF nanofiber membrane, as well as, its catalytic activity, making it suitable for long-term treatments.
Collapse
Affiliation(s)
- Barbara Lomba-Fernández
- CINTECX, Universidade de Vigo, Grupo de Bioingeniería y Procesos Sostenibles, Departamento de Ingeniería Química, Campus Lagoas-Marcosende, 36310, Vigo, Spain.
| | - Antía Fdez-Sanromán
- CINTECX, Universidade de Vigo, Grupo de Bioingeniería y Procesos Sostenibles, Departamento de Ingeniería Química, Campus Lagoas-Marcosende, 36310, Vigo, Spain.
| | - Marta Pazos
- CINTECX, Universidade de Vigo, Grupo de Bioingeniería y Procesos Sostenibles, Departamento de Ingeniería Química, Campus Lagoas-Marcosende, 36310, Vigo, Spain.
| | - M Angeles Sanromán
- CINTECX, Universidade de Vigo, Grupo de Bioingeniería y Procesos Sostenibles, Departamento de Ingeniería Química, Campus Lagoas-Marcosende, 36310, Vigo, Spain.
| | - Emilio Rosales
- CINTECX, Universidade de Vigo, Grupo de Bioingeniería y Procesos Sostenibles, Departamento de Ingeniería Química, Campus Lagoas-Marcosende, 36310, Vigo, Spain.
| |
Collapse
|
6
|
Cao Y, Wu G, Huang Y, Huang C. Synergistic Degradation of Methylene Blue by Hydrodynamic Cavitation Combined with Hydrogen Peroxide/Vitamin C System. ACS OMEGA 2024; 9:39997-40009. [PMID: 39346872 PMCID: PMC11425821 DOI: 10.1021/acsomega.4c05815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/26/2024] [Accepted: 09/05/2024] [Indexed: 10/01/2024]
Abstract
In this study, a new combined process of hydrodynamic cavitation (HC) and a hydrogen peroxide/vitamin C (H2O2/Vc) system was proposed for the degradation of methylene blue (MB) in wastewater. An impact-jet hydraulic cavitator was used as the cavitation generation equipment, and H2O2/Vc was selected as a homogeneous oxidation system. The degradation characteristics of MB were investigated. The results showed that the degradation effect of HC in combination with the H2O2/Vc system was more effective than that of the individual HC or H2O2/Vc system. A maximum degradation rate of 87.8% was achieved under the following conditions: H2O2 concentration of 0.03 mol/L, Vc concentration of 0.021 mol/L, inlet pressure of 0.3 MPa, initial solution concentration of 4 μmol/L, solution volume of 150 mL, and reaction time of 10 min. The synergy index was 1.615, indicating a synergistic effect between the HC and H2O2/Vc system. The data of the hydroxyl radical (·OH) yield under the conditions of HC, the H2O2/Vc system, and the HC + H2O2/Vc system were fitted and analyzed. A correlation equation for ·OH yield was established, further revealing the synergistic mechanism of the HC and H2O2/Vc system. The intermediate products of MB degradation were detected based on LC-MS, and three possible degradation pathways of MB degradation were proposed. The combined process of HC and H2O2/Vc systems exhibited relatively low energy efficiency and operating cost, indicating that it was in line with the development direction of wastewater treatment.
Collapse
Affiliation(s)
- Yan Cao
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, P. R. China
- Guangxi Key Laboratory of Green Processing of Sugar Resources (Guangxi University of Science and Technology), Liuzhou 545006, Guangxi, P. R. China
| | - Guoqiang Wu
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, P. R. China
| | - Yongchun Huang
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, P. R. China
- Guangxi Key Laboratory of Green Processing of Sugar Resources (Guangxi University of Science and Technology), Liuzhou 545006, Guangxi, P. R. China
| | - Chengdu Huang
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, P. R. China
- Guangxi Key Laboratory of Green Processing of Sugar Resources (Guangxi University of Science and Technology), Liuzhou 545006, Guangxi, P. R. China
| |
Collapse
|
7
|
Lv W, Song Y, Guo R, Liu N, Mo Z. Metal-organic frame material encapsulated Rhodamine 6G: A highly sensitive fluorescence sensing platform for the detection of picric acid contaminants in water. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 316:124355. [PMID: 38701575 DOI: 10.1016/j.saa.2024.124355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/27/2024] [Accepted: 04/25/2024] [Indexed: 05/05/2024]
Abstract
As a water pollutant with excellent solubility, 2,4,6-trinitrophenol (also known as picric acid, PA) poses a potential threat to the natural environment and human health, so it is crucial important to detect PA in water. In this study, a novel composite material (MIL-53(Al)@R6G) was successfully synthesized by encapsulating Rhodamine 6G into a metal-organic frame material, which was used for fluorescence detection of picric acid (PA) in water. The composite exhibits bright yellow fluorescence emission with a fluorescence quantum yield of 58.23 %. In the process of PA detection, the composite has excellent selectivity and anti-interference performance, and PA can significantly quench the fluorescence intensity of MIL-53(Al)@R6G. MIL-53(Al)@R6G has the advantages of fast detection time (20 s), wide linear range (1-100 µM) and low detection limit (4.8 nM). In addition, MIL-53(Al)@R6G has demonstrated its potential for the detection of PA in environmental water samples with satisfactory results.
Collapse
Affiliation(s)
- Wenbo Lv
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Lanzhou 730070, PR China; Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Lanzhou 730070, PR China; Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Yafang Song
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Lanzhou 730070, PR China; Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Lanzhou 730070, PR China; Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Ruibin Guo
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Lanzhou 730070, PR China; Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Lanzhou 730070, PR China; Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Nijuan Liu
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Lanzhou 730070, PR China; Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Lanzhou 730070, PR China; Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Zunli Mo
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Lanzhou 730070, PR China; Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Lanzhou 730070, PR China; Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China.
| |
Collapse
|
8
|
Bai C, Zhang Y, Liu Q, Zhu C, Li J, Chen R. Interfacial complexation between Fe 3+ and Bi 2MoO 6 promote efficient persulfate activation via Fe 3+/Fe 2+ cycle for organic contaminates degradation upon visible light irradiation. J Colloid Interface Sci 2024; 664:238-250. [PMID: 38461790 DOI: 10.1016/j.jcis.2024.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
To address the observed decrease in efficiency during Fe2+-mediated persulfate (PDS) activation caused by slow electron transfer rates and challenges in cycling between Fe3+/Fe2+ states, we devised a strategy to establish interfacial complexation between Fe3+ and Bi2MoO6 in the presence of PDS. The proposed approach facilitates more efficient capture of photogenerated electrons, thereby accelerating the rate-limiting reduction process of the Fe3+/Fe2+ cycle under visible light irradiation and promoting PDS activation. The Bi2MoO6/Fe3+/PDS/Vis system demonstrates complete degradation of organic pollutants, including Atrazine (ATZ), carbamazepine (CBZ), bisphenol A (BPA), and 2,4-dichlorophenol (DCP) at a concentration of 10 mg/L within a rapid reaction time of 30 min. Radical scavenging experiments and electron paramagnetic resonance spectra (EPR) confirm that the sulfate radical (•SO4-) is the dominant species responsible for organic contaminant degradation. The real-time conversion process between Fe3+ and Fe2+ was monitored by observing changes in iron species forms and concentrations within the reaction system. X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy verify the formation of a complexation between Fe3+ and Bi2MoO6, facilitating anchoring of Fe3+ onto material surface. Based on these findings, we propose a reliable mechanism for the activation reaction. This work presents a promising heterogeneous PDS activation method based on Fe3+/Fe2+ cycle for water treatment.
Collapse
Affiliation(s)
- Chengbo Bai
- State Key Laboratory of New Textile Materials & Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, PR China; School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Yuhan Zhang
- State Key Laboratory of New Textile Materials & Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, PR China; School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Qiong Liu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Chengxin Zhu
- State Key Laboratory of New Textile Materials & Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, PR China
| | - Jun Li
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450002, PR China
| | - Rong Chen
- State Key Laboratory of New Textile Materials & Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, PR China; Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450002, PR China.
| |
Collapse
|
9
|
Zhou B, Liu Q, Zheng C, Ge Y, Huang L, Fu H, Fang S. Enhanced Fenton-like catalysis via interfacial regulation of g-C 3N 4 for efficient aromatic organic pollutant degradation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124341. [PMID: 38852662 DOI: 10.1016/j.envpol.2024.124341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/07/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
For the efficient degradation of organic pollutants with the goal of reducing the water environment pollution, we employed an alkaline hydrothermal treatment on primeval g-C3N4 to synthesize a hydroxyl-grafted g-C3N4 (CN-0.5) material, from which we engineered a novel Fenton-like catalyst, known as Cu-CN-0.5. The introduction of numerous hydroxyl functional groups allowed the CN-0.5 substrate to stably fix active copper oxide particles through surface complexation, resulting in a low Cu leaching rate during a Cu-CN-0.5 Fenton-like process. A sequence of characterization techniques and theoretical calculations uncovered that interfacial complexation induced charge redistribution on the Cu-CN-0.5 surface. Specifically, some of the π electrons in the tris-s-triazine units were transferred to the copper oxide particles along the newly formed chemical bonds (C(π)-O-Cu), forming a π-deficient area on the tris-s-triazine plane near the complexation site. In a typical Cu-CN-0.5 Fenton-like process, a stable π-π interaction was established due to the favorable positive-negative match of electrostatic potential between the aromatic pollutants and π-deficient areas, leading to a significant improvement in Cu-CN-0.5's adsorption capacity for aromatic pollutants. Furthermore, pollutants also delivered electrons to the Cu-CN-0.5 Fenton-like system via a "through-space" approach, which suppressed the futile oxidation of H2O2 in reducing the high-valent Cu2+ and significantly improved the generation efficiency of •OH with high oxidative capacity. As expected, Cu-CN-0.5 not only exhibited an efficient Fenton degradation for several typical aromatic organic pollutants, but also demonstrated both a low metal leaching rate (0.12 mg/L) and a H2O2 utilization rate exceeding 80%. The distinctive Fenton degradation mechanism substantiated the potential of the as-prepared material for effective wastewater treatment applications.
Collapse
Affiliation(s)
- Bin Zhou
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou, 350108, China.
| | - Qingsong Liu
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou, 350108, China.
| | - Caihong Zheng
- Fuzhou Ecological Environment Promotion and Education Center, Fuzhou, 350000, China.
| | - Yao Ge
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou, 350108, China.
| | - Lili Huang
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou, 350108, China.
| | - Haoyang Fu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
| | - Shengqiong Fang
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou, 350108, China.
| |
Collapse
|
10
|
Zhao DL, Zhou W, Shen L, Li B, Sun H, Zeng Q, Tang CY, Lin H, Chung TS. New directions on membranes for removal and degradation of emerging pollutants in aqueous systems. WATER RESEARCH 2024; 251:121111. [PMID: 38211412 DOI: 10.1016/j.watres.2024.121111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/06/2023] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
Emerging pollutants (EPs) refer to a group of non-regulated chemical or biological substances that have been recently introduced or detected in the environment. These pollutants tend to exhibit resistance to conventional treatment methods and can persist in the environment for prolonged periods, posing potential adverse effects on ecosystems and human health. As we enter a new era of managing these pollutants, membrane-based technologies hold significant promise in mitigating impact of EPs on the environment and safeguarding human health due to their high selectivity, efficiency, cost-effectiveness and capability for simultaneous separation and degradation. Moreover, these technologies continue to evolve rapidly with the development of new membrane materials and functionalities, advanced treatment strategies, and analyses for effectively treating EPs of more recent concerns. The objective of this review is to present the latest directions and advancements in membrane-based technologies for addressing EPs. By highlighting the progress in this field, we aim to share valuable perspectives with researchers and contribute to the development of future directions in sustainable treatments for EPs.
Collapse
Affiliation(s)
- Die Ling Zhao
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Wangyi Zhou
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Bowen Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Hongyu Sun
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Qianqian Zeng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Chuyang Y Tang
- Department of Civil Engineering, University of Hong Kong, Pokfulam, Hong Kong 999077, China
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Tai-Shung Chung
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, 10607, Taiwan; Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore.
| |
Collapse
|
11
|
Huang L, Li J, Han J, Zhang Y. Robust fabrication of sulfonated graphene oxide/poly (ether sulfone) catalytic membrane reactor for efficient cellulose hydrolysis and product separation. BIORESOURCE TECHNOLOGY 2024; 393:130138. [PMID: 38040307 DOI: 10.1016/j.biortech.2023.130138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
The efficient conversion of cellulose to high value-added products is important for the utilization of cellulose biomass. Achieving efficient cellulose hydrolysis and timely products separation is the essential target. Herein, a modified sulfonated graphene oxide/polydopamine deposited polyethersulfone (mGO(SO3H)-PDA/PES) membrane reactor, combining in the same unit a conversion effect and a separation effect, was prepared by suction filtration and subsequent polymerization and adhesion. The structure of PES membrane and deposition of PDA was regulated to sure that small molecules can pass through the membrane, while cellulose could not. As a result, the mGO(SO3H)-PDA/PES membrane realized the efficient cellulose hydrolysis and timely products separation under cross-flow circulation mode at 0.1 MPa, avoiding the further degradation of reducing sugar products. The yields of total reducing sugar (TRS) and glucose in separated hydrolysate reached 93.2 % and 85.5 %, respectively. This strategy provides potential guidance for efficient conversion of cellulose.
Collapse
Affiliation(s)
- Lilan Huang
- School of Material Science and Engineering, Shandong University of Technology, Zibo 255000, China
| | - Jinwei Li
- School of Material Science and Engineering, Shandong University of Technology, Zibo 255000, China
| | - Jin Han
- School of Material Science and Engineering, Shandong University of Technology, Zibo 255000, China
| | - Yuzhong Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin 300387, China.
| |
Collapse
|
12
|
Khan Q, Sayed M, Khan JA, Rehman F, Noreen S, Sohni S, Gul I. Advanced oxidation/reduction processes (AO/RPs) for wastewater treatment, current challenges, and future perspectives: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:1863-1889. [PMID: 38063964 DOI: 10.1007/s11356-023-31181-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/18/2023] [Indexed: 01/18/2024]
Abstract
Advanced oxidation/reduction processes (AO/RPs) are considered as effective water treatment technologies and thus could be used to solve the problem of water pollution. These technologies of wastewater treatment involve the production of highly reactive species such as •OH, H•, e-aq, SO4•-, and SO3•-. These radicals can attack the targeted contaminants present in aqueous media and result in their destruction. The efficiency of AO/RPs is highly affected by various operational parameters such as initial concentration of contaminant, solution pH, catalyst amount, intensity of light source, nature of oxidant and reductant used, and the presence of various ionic species in aquatic media. Among AO/RPs, the solar light-based AO/RPs are most widely used nowadays for contaminant removal from aqueous media because of their high environmental friendliness and cost effectiveness. By using these techniques, almost all types of pollutants can be easily removed from aquatic media within short intervals of time, and hence, the problem of water pollution can be solved effectively. This review focuses on various AO/RPs used for wastewater treatment. The effects of different operational parameters that affect the efficiency of these processes toward contaminant removal have been discussed. Besides, challenges and future recommendations are also briefly provided for the researchers in order to improve the efficiency of these processes.
Collapse
Affiliation(s)
- Qaiser Khan
- Radiation and Environmental Chemistry Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar, Pakistan
| | - Murtaza Sayed
- Radiation and Environmental Chemistry Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar, Pakistan.
| | - Javed Ali Khan
- Radiation and Environmental Chemistry Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar, Pakistan
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan, 23200, Khyber Pakhtunkhwa, Pakistan
| | - Faiza Rehman
- Department of Chemistry, University of Poonch, Rawalakot, Azad Kashmir, Pakistan
| | - Saima Noreen
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Saima Sohni
- Institute of Chemical Sciences, University of Peshawar, Peshawar, Pakistan
| | - Ikhtiar Gul
- Radiation and Environmental Chemistry Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar, Pakistan
| |
Collapse
|
13
|
Li Z, Zhang W, Liu X, Wang X, Dai H, Chen F, Tang Y, Li J. Iron-Cobalt magnetic porous carbon beads activated peroxymonosulfate for enhanced degradation and Microbial inactivation. J Colloid Interface Sci 2023; 652:1878-1888. [PMID: 37688934 DOI: 10.1016/j.jcis.2023.09.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 09/11/2023]
Abstract
Magnetic carbon-based catalysts are promising materials for advanced oxidation processes, offering both high catalytic activity and environmental friendliness, and hold great potential in environmental remediation. In this work, Fe and Co zeolite imidazole frameworks (ZIFs) derived micron-sized magnetic porous carbon beads (MPCBs) were prepared by phase inversion and following the carbonization procedure, and the morphological and structural characteristics of the MPCBs were confirmed. The presence of pores and channels in the MPCBs provides a specific microenvironment for the for the catalysis of the core. Bisphenol A (BPA) was selected for the targeted pollutant, and the catalytic experiments confirmed that the effective catalytic activity of MPCBs in the presence of peroxymonosulfate (PMS), which could almost completely degrade BPA in 20 min with a reaction rate of 0.368 min-1. Furthermore, the MPCBs were used to effectively bacterial inactivation. Intermediate products of the BPA degradation process were validated and the toxicological studies showed a gradual decrease in toxicity, indicating effective reduction of potential hazards. The macroscopic preparation methods we developed for MPCBs that is promising for industrial applications and has the potential to cope with complex environmental remediation.
Collapse
Affiliation(s)
- Zihan Li
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Wuxiang Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China.
| | - Xingyu Liu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Xingang Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Hongliang Dai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Fangyan Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Yubin Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Jiansheng Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China.
| |
Collapse
|
14
|
Zhang X, Razanajatovo MR, Du X, Wang S, Feng L, Wan S, Chen N, Zhang Q. Well-designed protein amyloid nanofibrils composites as versatile and sustainable materials for aquatic environment remediation: A review. ECO-ENVIRONMENT & HEALTH (ONLINE) 2023; 2:264-277. [PMID: 38435357 PMCID: PMC10902511 DOI: 10.1016/j.eehl.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 03/05/2024]
Abstract
Amyloid nanofibrils (ANFs) are supramolecular polymers originally classified as pathological markers in various human degenerative diseases. However, in recent years, ANFs have garnered greater interest and are regarded as nature-based sustainable biomaterials in environmental science, material engineering, and nanotechnology. On a laboratory scale, ANFs can be produced from food proteins via protein unfolding, misfolding, and hydrolysis. Furthermore, ANFs have specific structural characteristics such as a high aspect ratio, good rigidity, chemical stability, and a controllable sequence. These properties make them a promising functional material in water decontamination research. As a result, the fabrication and application of ANFs and their composites in water purification have recently gained considerable attention. Despite the large amount of literature in this field, there is a lack of systematic review to assess the gap in using ANFs and their composites to remove contaminants from water. This review discusses significant advancements in design techniques as well as the physicochemical properties of ANFs-based composites. We also emphasize the current progress in using ANFs-based composites to remove inorganic, organic, and biological contaminants. The interaction mechanisms between ANFs-based composites and contaminants are also highlighted. Finally, we illustrate the challenges and opportunities associated with the future preparation and application of ANFs-based composites. We anticipate that this review will shed new light on the future design and use of ANFs-based composites.
Collapse
Affiliation(s)
- Xiaolin Zhang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse and Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Mamitiana Roger Razanajatovo
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse and Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Xuedong Du
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse and Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Shuo Wang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse and Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Li Feng
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse and Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Shunli Wan
- College of Life & Environment Sciences, Huangshan University, Huangshan 245041, China
| | - Ningyi Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qingrui Zhang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse and Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
15
|
Fdez-Sanromán A, Pazos M, Sanromán MA, Rosales E. Heterogeneous electro-Fenton system using Fe-MOF as catalyst and electrocatalyst for degradation of pharmaceuticals. CHEMOSPHERE 2023; 340:139942. [PMID: 37634590 DOI: 10.1016/j.chemosphere.2023.139942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/07/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023]
Abstract
In recent years, heterogeneous electro-Fenton processes have gained considerable attention as an alternative to homogeneous processes. In this context, the aim of this study is the use of a commercial iron metal-organic framework (Fe-MOF), Basolite® F-300, as a base material for the design of a heterogeneous electro-Fenton treatment system for the removal of antipyrine. Initially, the catalyst was applied as powder in aqueous solution and three key parameters of the electro-Fenton process (pH, Fe-MOF concentration and current density) were evaluated and optimized by a Central Composite Design Face Centred (CCD-FC) using antipyrine removal and energy consumption as response functions. Near complete antipyrine removal (94%) was achieved under optimal conditions: pH 3, Fe-MOF 157.78 mg/L and current density 6.67 mA/cm2, obtaining an energy consumption of 0.29 W·h per mg of antipyrine removed. Later, two electrocatalysts (Fe-MOF functionalized cathodes), prepared by different Fe-MOF immobilisation approaches (composite of carbon black/polytetrafluoroethylene or by electrospinning on Ni foam), were synthesized. Their characterisation showed notable Fe-MOF incorporation into the material and favourable properties as electrocatalysts. Both Fe-MOF functionalized cathodes were evaluated in the removal of antipyrine at different pH (acidic and natural) and current density (27.78 and 55.56 mA/cm2), achieving in the best conditions removal levels around 80% in 1 h without any operational problems. In addition, several intermediates generated during the treatment were identified and their toxicity estimated. According to the obtained results, the degradation compounds have less toxicity than the parent compounds, confirming the effectiveness of the treatment.
Collapse
Affiliation(s)
- Antía Fdez-Sanromán
- CINTECX, Universidade de Vigo, Grupo de Bioingeniería y Procesos Sostenibles, Departamento de Ingeniería Química, Campus Lagoas-Marcosende, 36310, Vigo, Spain.
| | - Marta Pazos
- CINTECX, Universidade de Vigo, Grupo de Bioingeniería y Procesos Sostenibles, Departamento de Ingeniería Química, Campus Lagoas-Marcosende, 36310, Vigo, Spain.
| | - M Angeles Sanromán
- CINTECX, Universidade de Vigo, Grupo de Bioingeniería y Procesos Sostenibles, Departamento de Ingeniería Química, Campus Lagoas-Marcosende, 36310, Vigo, Spain.
| | - Emilio Rosales
- CINTECX, Universidade de Vigo, Grupo de Bioingeniería y Procesos Sostenibles, Departamento de Ingeniería Química, Campus Lagoas-Marcosende, 36310, Vigo, Spain.
| |
Collapse
|
16
|
Wang FX, Zhang ZW, Wang F, Li Y, Zhang ZC, Wang CC, Yu B, Du X, Wang P, Fu H, Zhao C. Fe-Cu bimetal metal-organic framework for efficient decontamination via Fenton-like process: Synthesis, performance and mechanism. J Colloid Interface Sci 2023; 649:384-393. [PMID: 37354795 DOI: 10.1016/j.jcis.2023.06.083] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/01/2023] [Accepted: 06/13/2023] [Indexed: 06/26/2023]
Abstract
Constructing Fe-Cu bimetal catalysts is an efficient strategy to promote Fe(III)/Fe(II) cycle, whereas there is still a long way to go before fully understanding the role of the Cu in the catalysts. Herein, a new Fe-MOF namely BUC-96(Fe) was fabricated from FeSO4·7H2O, 4,4'-bipyridine (bpy) and 2,5-dihydroxyterephthalic acid (H4dhtp) by both hydrothermal reaction and microwave-assisted method. Also, bimetal BUC-96(FeCu-x) were obtained when the CuSO4 was added into the system identical to the synthesis process of BUC-96(Fe). Series BUC-96 MOFs showed good organics elimination performance via Fenton-like process, where 88.1% (k = 0.0672 min-1) of chloroquine phosphate (CQ, 20 mg/L) was decomposed over pristine BUC-96(Fe) within 30 min. Interestingly, nearly 100% CQ was degraded over BUC-96(FeCu-5) as catalyst under the identical conditions within 5 min, whose reaction rate (1.3527 min-1) was 20.1-fold higher than that of BUC-96. Additionally, BUC-96(FeCu-5) exhibited excellent Fenton-like oxidation degradation performance for 10 selected emerging organic pollutants. The reaction mechanism was studied in detail by experiments, and density functional theory (DFT) calculation. The results revealed that the introduced Cu not only accelerated Fe(III)/Fe(II) cycles, hydroxyl radical (·OH) generation, electron transfer, but also lowered H2O2 dissociated energy barrier. This work advanced the bimetal MOFs construction and application in wastewater treatment via Fenton-like process.
Collapse
Affiliation(s)
- Fu-Xue Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Zi-Wei Zhang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Fei Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Ya Li
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Zi-Chen Zhang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Chong-Chen Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| | - Baoyi Yu
- Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture, College of Biological Sciences Engineering, Beijing University of Agriculture, Beijing 102206, China
| | - Xuedong Du
- School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Peng Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Huifen Fu
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Chen Zhao
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| |
Collapse
|
17
|
Du X, Fu W, Su P, Zhang Q, Zhou M. FeMo@porous carbon derived from MIL-53(Fe)@MoO 3 as excellent heterogeneous electro-Fenton catalyst: Co-catalysis of Mo. J Environ Sci (China) 2023; 127:652-666. [PMID: 36522094 DOI: 10.1016/j.jes.2022.06.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 06/17/2023]
Abstract
An ultra-efficient electro-Fenton catalyst with porous carbon coated Fe-Mo metal (FeMo@PC), was prepared by calcining MIL-53(Fe)@MoO3. This FeMo@PC-2 exhibited impressive catalytic performance for sulfamethazine (SMT) degradation with a high turnover frequency value (7.89 L/(g·min)), much better than most of reported catalysts. The mineralization current efficiency and electric energy consumption were 83.2% and 0.03 kWh/gTOC, respectively, at low current (5 mA) and small dosage of catalyst (25.0 mg/L). The removal rate of heterogeneous electro-Fenton (Hetero-EF) process catalyzed by FeMo@PC-2 was 4.58 times that of Fe@PC/Hetero-EF process. Because the internal-micro-electrolysis occurred between PC and Fe0, while the co-catalysis of Mo accelerated the rate-limiting step of the Fe3+/Fe2+ cycle and greatly improved the H2O2 utilization efficiency. The results of radical scavenger experiments and electron paramagnetic resonance confirmed the main role of surface-bound hydroxyl radical oxidation. This process was feasible to remove diverse organic contaminants such as phenol, 2,4-dichlorophenoxyacetic acid, carbamazepine and SMT. This paper enlightened the importance of the doped Mo, which could greatly improve the activity of the iron-carbon heterogeneous catalyst derived from metal-organic frameworks in EF process for efficient removal of organic contaminants.
Collapse
Affiliation(s)
- Xuedong Du
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Wenyang Fu
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Pei Su
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qizhan Zhang
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Minghua Zhou
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
18
|
Han J, Guan J. Heteronuclear dual-metal atom catalysts for nanocatalytic tumor therapy. CHINESE JOURNAL OF CATALYSIS 2023. [DOI: 10.1016/s1872-2067(22)64207-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
19
|
Zheng Y, Du X, Song G, Gu J, Guo J, Zhou M. Degradation of carbamazepine over MOFs derived FeMn@C bimetallic heterogeneous electro-Fenton catalyst. CHEMOSPHERE 2023; 312:137353. [PMID: 36423717 DOI: 10.1016/j.chemosphere.2022.137353] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/23/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
A highly efficient heterogeneous electro-Fenton (Hetero-EF) catalyst with core-shell structure was successfully prepared by calcination of Mn-doped Mil-53 (Fe) precursor at high temperature. FeMn@C-800/2 prepared at pyrolysis temperature of 800 °C and Fe:Mn molar doping ratio of 2:1 showed the best catalytic performance for the degradation of carbamazepine (CBZ). The characterization, properties and stability of FeMn@C-800/2 were systematically investigated, obtaining the apparent first-order reaction rate of Hetero-EF was 8.9 and 17.8 times higher than that on Fe@C-800 and Mn@C-800 at the optimized conditions of current density 10 mA cm-2, catalyst dosage of 50 mg L-1 and initial pH 4.0, respectively. The incorporation of Mn promoted the generation of more Fe0 and Fe3C during the pyrolysis process, and enhanced the internal micro-electrolysis between Fe0 and carbon shell. At the same time, the presence of Mn0 also promoted the regeneration of Fe2+, and improved the activity of iron-carbon heterogeneous catalysis in the EF process, so as to degrade organic pollutants more effectively. This work would help to gain insight into the design of MOFs derived Fe-Mn bimetal catalyst and its mechanism for enhanced heterogeneous electro-Fenton.
Collapse
Affiliation(s)
- Yang Zheng
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Xuedong Du
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Ge Song
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Jinyu Gu
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Jieru Guo
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Minghua Zhou
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
20
|
Wan J, Wang L, Xu W, Xu Z, Yuan J, Zhang G. Preparation of N and Ce Co-doped MIL-101(Fe) Heterogeneous Catalysts for Efficient Electro-Fenton Oxidation. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Jiakang Wan
- Center for Membrane and Water Science &Technology, Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou310014, P. R. China
| | - Ling Wang
- Hangzhou Special Equipments Inspection and Research Institute, Hangzhou310014, China
| | - Wentao Xu
- College of Chemical Engineering and Material Science, Quanzhou Normal University, Quanzhou362000, China
| | - Zehai Xu
- Center for Membrane and Water Science &Technology, Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou310014, P. R. China
| | - Junsheng Yuan
- College of Chemical Engineering and Material Science, Quanzhou Normal University, Quanzhou362000, China
| | - Guoliang Zhang
- Center for Membrane and Water Science &Technology, Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou310014, P. R. China
- College of Chemical Engineering and Material Science, Quanzhou Normal University, Quanzhou362000, China
| |
Collapse
|
21
|
Single iron atoms embedded in MOF-derived nitrogen-doped carbon as an efficient heterogeneous electro-Fenton catalyst for degradation of carbamazepine over a wide pH. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Core-Shell Hierarchical Fe/Cu Bimetallic Fenton Catalyst with Improved Adsorption and Catalytic Performance for Congo Red Degradation. Catalysts 2022. [DOI: 10.3390/catal12111363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The preparation of heterogeneous Fenton catalysts with both adsorption and catalytic properties has become an effective strategy for the treatment of refractory organic wastewater. In this work, 4A-Fe@Cu bimetallic Fenton catalysts with a three-dimensional core-shell structure were prepared by a simple, template-free, and surfactant-free methodology and used in the adsorption and degradation of Congo red (CR). The results showed that the open three-dimensional network structure and the positive charge of the surface of the 4A-Fe@Cu catalyst could endow a high adsorption capacity for CR, reaching 432.9 mg/g. The good adsorption property of 4A-Fe@Cu for CR not only did not inactivate the catalytic site on 4A-Fe@Cu but also could promote the contact between CR and the active sites on the catalyst surface and accelerate the degradation process. The 4A-Fe@Cu bimetallic catalyst exhibited higher catalytic activity than monometallic 4A@Cu and/or 4A-Fe catalysts due to low work function value. The effects of different pH, H2O2 dosages, and catalyst dosages on the catalytic performance of 4A-Fe@Cu were explored. In the conditions of 7.2 mM H2O2, 2 g/L 4A-Fe@Cu, and 1 g/L CR solution, the degradation ratio of CR by 4A-Fe@Cu could reach 99.2% at pH 8. This strategy provided guidance to the design of high-performance Fenton-like catalysts with both adsorption and catalysis properties for dye wastewater treatment.
Collapse
|
23
|
Li L, Yang S, Wang Y, Hui S, Xiao T, Kong J, Zhao X. Nitrogen-doped carbon nanosheets for efficient degradation of bisphenol A by H2O2 activation at neutral pH values. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
24
|
Wang F, Liu SS, Feng Z, Fu H, Wang M, Wang P, Liu W, Wang CC. High-efficient peroxymonosulfate activation for rapid atrazine degradation by FeS x@MoS 2 derived from MIL-88A(Fe). JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129723. [PMID: 35969948 DOI: 10.1016/j.jhazmat.2022.129723] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/23/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
FeSx@MoS2-x (FM-x, x implied real Mo/Fe content ratios) in which FeSx derived from MIL-88A deposited on the surface of MoS2 with a tight heterogeneous interface were synthesized for peroxymonosulfate (PMS) activation to degrade atrazine (ATZ). The catalytic performance of FM-0.96 was greatly improved due to the rapid regeneration of Fe2+ resulting from the interfacial interaction. FM-0.96 could completely degrade 10.0 mg/L ATZ within 1.0 min, and the toxicities for most of its intermediates were greatly reduced. The k value of FM-0.96 was 320 and 40 times higher than that of the MoS2 and FeSx, respectively. The SO4·-, ·OH and 1O2 were mainly responsible for ATZ degradation in FM-0.96/PMS system, and the conversion pathway of 1O2 was analyzed. Furthermore, the long-term continuous operation for ATZ degradation was achieved using a fixed membrane reactor. This work provides deep insights into metal sulfide composites derived from metal-organic frameworks for removing pollutants by activating PMS.
Collapse
Affiliation(s)
- Fei Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China
| | - Shan-Shan Liu
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China
| | - Ziyue Feng
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China
| | - Huifen Fu
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China.
| | - Mengyu Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China
| | - Peng Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China
| | - Wen Liu
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, PR China
| | - Chong-Chen Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China.
| |
Collapse
|
25
|
Castañeda-Juárez M, Linares-Hernández I, Martínez-Miranda V, Teutli-Sequeira EA, Castillo-Suárez LA, Sierra-Sánchez AG. SARS-CoV-2 pharmaceutical drugs: a critical review on the environmental impacts, chemical characteristics, and behavior of advanced oxidation processes in water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:67604-67640. [PMID: 35930148 PMCID: PMC9362221 DOI: 10.1007/s11356-022-22234-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
This review summarizes research data on the pharmaceutical drugs used to treat the novel SARS-CoV-2 virus, their characteristics, environmental impacts, and the advanced oxidation processes (AOP) applied to remove them. A literature survey was conducted using the electronic databases Science Direct, Scopus, Taylor & Francis, Google Scholar, PubMed, and Springer. This complete research includes and discusses relevant studies that involve the introduction, pharmaceutical drugs used in the SARS-CoV-2 pandemic: chemical characteristics and environmental impact, advanced oxidation process (AOP), future trends and discussion, and conclusions. The results show a full approach in the versatility of AOPs as a promising solution to minimize the environmental impact associated with these compounds by the fact that they offer different ways for hydroxyl radical production. Moreover, this article focuses on introducing the fundamentals of each AOP, the main parameters involved, and the concomitance with other sources and modifications over the years. Photocatalysis, sonochemical technologies, electro-oxidation, photolysis, Fenton reaction, ozone, and sulfate radical AOP have been used to mineralize SARS-CoV-2 pharmaceutical compounds, and the efficiencies are greater than 65%. According to the results, photocatalysis is the main technology currently applied to remove these pharmaceuticals. This process has garnered attention because solar energy can be directly utilized; however, low photocatalytic efficiencies and high costs in large-scale practical applications limit its use. Furthermore, pharmaceuticals in the environment are diverse and complex. Finally, the review also provides ideas for further research needs and major concerns.
Collapse
Affiliation(s)
- Monserrat Castañeda-Juárez
- Instituto Interamericano de Tecnología Y Ciencias de Agua (IITCA), Universidad Autónoma del Estado de México, Km.14.5, Carretera Toluca-Atlacomulco, Toluca, Estado de México, C.P 50200, México.
| | - Ivonne Linares-Hernández
- Instituto Interamericano de Tecnología Y Ciencias de Agua (IITCA), Universidad Autónoma del Estado de México, Km.14.5, Carretera Toluca-Atlacomulco, Toluca, Estado de México, C.P 50200, México
| | - Verónica Martínez-Miranda
- Instituto Interamericano de Tecnología Y Ciencias de Agua (IITCA), Universidad Autónoma del Estado de México, Km.14.5, Carretera Toluca-Atlacomulco, Toluca, Estado de México, C.P 50200, México
| | - Elia Alejandra Teutli-Sequeira
- Instituto Interamericano de Tecnología Y Ciencias de Agua (IITCA), Universidad Autónoma del Estado de México, Km.14.5, Carretera Toluca-Atlacomulco, Toluca, Estado de México, C.P 50200, México
- Cátedras CONACYT-IITCA, Av. Insurgentes Sur 1582, Col. Crédito Constructor, Alcaldía Benito Juárez, Ciudad de Mexico, C.P 03940, México
| | - Luis Antonio Castillo-Suárez
- Instituto Interamericano de Tecnología Y Ciencias de Agua (IITCA), Universidad Autónoma del Estado de México, Km.14.5, Carretera Toluca-Atlacomulco, Toluca, Estado de México, C.P 50200, México
- Cátedras COMECYT. Consejo Mexiquense de Ciencia Y Tecnología COMECYT, Paseo Colón núm.: 112-A, col. Ciprés, Toluca, Estado de México, C.P. 50120, México
| | - Ana Gabriela Sierra-Sánchez
- Instituto Interamericano de Tecnología Y Ciencias de Agua (IITCA), Universidad Autónoma del Estado de México, Km.14.5, Carretera Toluca-Atlacomulco, Toluca, Estado de México, C.P 50200, México
| |
Collapse
|
26
|
Pan S, Zhai Z, Yang K, Xiang Y, Tang S, Zhang Y, Jiao T, Zhang Q, Yuan D. β-Lactoglobulin amyloid fibrils supported Fe(III) to activate peroxydisulfate for organic pollutants elimination. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120806] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
27
|
Zhang Y, Sun M, Peng M, Du E, Xu X, Wang CC. The fabrication strategies and enhanced performances of metal-organic frameworks and carbon dots composites: State of the art review. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Wang FX, Zhang ZC, Yi XH, Wang CC, Wang P, Wang CY, Yu B. A micron-sized Co-MOF sheet to activate peroxymonosulfate for efficient organic pollutant degradation. CrystEngComm 2022. [DOI: 10.1039/d2ce00791f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Co-MOF with a 2D morphology (BUC-92) was prepared, which exhibited outstanding rhodamine B (RhB) degradation performance via peroxymonosulfate (PMS) activation.
Collapse
Affiliation(s)
- Fu-Xue Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial, and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China
| | - Zi-Chen Zhang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial, and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China
| | - Xiao-Hong Yi
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial, and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China
| | - Chong-Chen Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial, and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China
| | - Peng Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial, and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China
| | - Chao-Yang Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial, and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China
| | - Baoyi Yu
- Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture, College of Biological Sciences Engineering, Beijing University of Agriculture, Beijing 102206, China
| |
Collapse
|