1
|
Peña-Galindo I, Bernales-Santolaya B, Montalva F, Gutiérrez J, Quesada-Alvarado F, Navarrete-Quintanilla S, Robbins V, Perez-Venegas DJ, Cortés-Hinojosa G, Seguel M, Chiang G. Pups on mercury: Tracking early life exposure on South American fur seals (Arctocephalus australis) and South American sea lions (Otaria byronia) in the Southeastern Pacific. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 282:107325. [PMID: 40117900 DOI: 10.1016/j.aquatox.2025.107325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 03/23/2025]
Abstract
Mercury exists in three forms: elemental, inorganic, and organic, with methylmercury (MeHg) being the most concerning due to its ability to cross cellular barriers and bioaccumulate, particularly in marine mammals, where over 90 % of total mercury is in the MeHg form. Despite its importance, there is limited data on mercury bioaccumulation in marine mammals and maternal transfer mechanisms in the Southern Hemisphere. Pinnipeds, as ocean sentinels, are valuable for monitoring contaminants due to their ecological and biological traits. This study investigates mercury burdens and maternal transfer of mercury in South American sea lions (SASL) and South American fur seals (SAFS). Samples of clots and vibrissae from SASL pups and clots and milk from SAFS pups and females were analyzed. Total mercury (THg) levels in SASL ranged from 8.36 to 305.43 μg/Kg w.w. in clots and from 3071.8 to 28,034.5 μg/Kg d.w. in vibrissae. In SAFS, THg levels in clots ranged from 0.40 to 358.77 μg/Kg w.w. and in milk from 3.4 to 14.1 μg/Kg w.w. Significant differences were observed between newborn pups of both species, with a positive correlation between THg levels in clots from SAFS pups and females and between clots and vibrissae in SASL pups, indicating maternal transfer during gestation. Additionally, THg levels in SAFS pups decreased over time, suggesting biodilution. These species allow us to have a long term monitoring in both colonies and two different areas in Chile and are relevant findings to food security and the treatment of heavy metal contamination.
Collapse
Affiliation(s)
- I Peña-Galindo
- Programa de Doctorado en Medicina de la Conservación, Facultad de Ciencias de la Vida, Universidad Andrés Bello. Avenida República 440, Santiago 8320000, Santiago de Chile, Región Metropolitana, Chile; Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas, Facultad de Medicina, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago de Chile 7820244, Región Metropolitana, Chile
| | - B Bernales-Santolaya
- Programa de Doctorado en Salud Ambiental y Biomedicina, Universidad Mayor, Av. Alemania 281, 4801043 Temuco, Araucanía Chile
| | - F Montalva
- Guafo Science Research Group, Punta Weather, Isla Guafo s/n, Quellón, Región de los Lagos, Chile
| | - J Gutiérrez
- Guafo Science Research Group, Punta Weather, Isla Guafo s/n, Quellón, Región de los Lagos, Chile; Programa de Doctorado en Ciencias mención Ecología y Evolución, Facultad de Ciencias, Universidad Austral de Chile. Calle Independencia 631, Valdivia, 5110566, Región de los Ríos, Chile
| | - F Quesada-Alvarado
- Programa de Doctorado en Medicina de la Conservación, Facultad de Ciencias de la Vida, Universidad Andrés Bello. Avenida República 440, Santiago 8320000, Santiago de Chile, Región Metropolitana, Chile
| | - S Navarrete-Quintanilla
- Programa de doctorado en Ciencias Silvoagropecuarias y Veterinarias. Universidad de Chile. Av. Sta. Rosa 11735, La Pintana, Santiago de Chile 8820000, Región Metropolitana, Chile
| | - V Robbins
- Avian and Exotic Pet Clinic of Roanoke, 3959 Electric Road, Suite 155, Roanoke VA 24018, USA
| | - D J Perez-Venegas
- Guafo Science Research Group, Punta Weather, Isla Guafo s/n, Quellón, Región de los Lagos, Chile; Centro de Investigación y Gestión de Recursos Naturales (CIGREN), Instituto de Biología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile; Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile. Avenida República 440, Santiago 8320000, Santiago de Chile, Región Metropolitana, Chile
| | - G Cortés-Hinojosa
- Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas, Facultad de Medicina, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago de Chile 7820244, Región Metropolitana, Chile
| | - M Seguel
- Guafo Science Research Group, Punta Weather, Isla Guafo s/n, Quellón, Región de los Lagos, Chile; Pathobiology Department, School of Veterinary Medicine, St. George's University, True Blue, St. George's, Grenada
| | - G Chiang
- Centro de Investigación para la Sustentabilidad & Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Avenida República 440, Santiago 8320000, Santiago de Chile, Región Metropolitana, Chile; Centro para la Resiliencia, Adaptación y Mitigación (CReAM), Universidad Mayor, Temuco, Av. Alemania 281, 4801043 Temuco, Araucanía Chile; Escuela de Agronomía, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Temuco P.O. Box 54-D, Chile.
| |
Collapse
|
2
|
Zou C, Wang R, Yang S, Yin D. Importance of salinity on regulating the environmental fate and bioaccumulation of lithium in the Yangtze River Estuary. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176648. [PMID: 39362559 DOI: 10.1016/j.scitotenv.2024.176648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/27/2024] [Accepted: 09/29/2024] [Indexed: 10/05/2024]
Abstract
The demand of lithium (Li) has increased rapidly in recent decades under carbon neutrality strategies, but the environmental fate and potential risks of Li in aquatic ecosystem are barely known. This study conducted a comprehensive field survey in the Yangtze River Estuary (YRE) and the adjacent East China Sea (ECS), to investigate the spatial distribution of dissolved Li and bioaccumulation of Li in the coastal food web. The dissolved Li increased with salinity (from 7.39 to 189 μg L-1), controlled by the conservative mixing of Li-enriched seawater and Li-poor riverine water. Negative correlation was observed between Li content and stable nitrogen isotope in the coastal biota, indicating bio-diminish of Li in the food web. Furthermore, the Li contents in muscle tissues were significantly higher in bivalves (as filter-feeders; mean: 0.75 ± 0.41 μg g-1) than in fish (as predator; mean: 0.10 ± 0.05 μg g-1) and other biota species, indicating that dissolved uptake might be the major exposure pathway for Li. Importantly, it was noticed that the bioaccumulation factors (BAFs) in fish muscle varied greatly (from 0.17 to 5.82), showing lower BAFs for fish inhabiting in marine and benthic regions (with higher salinity and higher dissolved Li concentration). Such inhibition effects of salinity on Li bioaccumulation could not be explained by the modulation of salinity on Li speciation, but highly attributed to the inhibition of high salinity on the dissolved uptake of Li, which was associated with the co-transportation of Li and Na. Our results illuminate the importance of salinity on regulation the spatial variations of dissolved Li and Li bioaccumulation in the YRE and the adjacent ECS, which could help the understanding of Li biogeochemical cycling and potential risks in estuarine and coastal regions.
Collapse
Affiliation(s)
- Chenxi Zou
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Rui Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| | - Shouye Yang
- State Key Laboratory of Marine Geology, School of Ocean and Earth Science, Tongji University, Shanghai 200092, PR China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| |
Collapse
|
3
|
Huang H, Hu Z, Zhao X, Cheng X, Chen J, Wang Z, Qian H, Zhang S. Trophic transfer of heavy metals across four trophic levels based on muscle tissue residuals: a case study of Dachen Fishing Grounds, the East China Sea. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:361. [PMID: 38472544 DOI: 10.1007/s10661-024-12536-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/05/2024] [Indexed: 03/14/2024]
Abstract
In this study, we collected 56 species of fishery organisms (including fish, crustaceans, cephalopods, gastropods, and bivalves) from four seasonal survey cruises at the Dachen fishery grounds. We measured the concentrations of seven heavy metals (Cd, Zn, Cu, Pb, Cr, As, and Hg) in these fisheries organisms. We determined their trophic levels using carbon and nitrogen stable isotope techniques. We analyzed the characteristics of heavy metal transfer in the food chain. The results showed significant differences in heavy metal concentrations among different species. Among all biological groups, bivalves and gastropods exhibited higher levels of heavy metal enrichment than other biological groups, while fish had the lowest levels of heavy metal enrichment. Heavy metals exhibited different patterns of nutritional transfer in the food chain. While Hg showed a biomagnification phenomenon in the food chain, it was not significant. Cd, Zn, Cu, Pb, Cr, and As exhibited a trend of biodilution with increasing nutritional levels, except for As, which showed no significant correlation with δ15N.
Collapse
Affiliation(s)
- Hong Huang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China.
| | - Zhiming Hu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Xu Zhao
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Xiaopeng Cheng
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Jing Chen
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Zhenhua Wang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Han Qian
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Shouyu Zhang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
4
|
Ning Q, Shao B, Huang X, He M, Tian L, Lin Y. Bioaccumulation, biomagnification, and ecological risk of trace metals in the ecosystem around oilfield production area: A case study in Shengli Oilfield. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 196:87. [PMID: 38147204 DOI: 10.1007/s10661-023-12251-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/14/2023] [Indexed: 12/27/2023]
Abstract
The production for crude oil usually leads to contamination of the soil with trace metals and organic contaminants from spilled petroleum. Organic contaminants were generally paid more attention than trace metals in the oilfield pollution. Many studies have investigated the impacts of some petroleum hydrocarbon pollutants, however, the impacts and risk assessment of trace metals remain largely unexplored. Moreover, under some circumstances, the risks associated with trace metals are not necessarily lower than those associated with organic contaminants. This study aimed to investigate methods to evaluate the possible risks associated with 11 trace metals (Ti, Ba, Sr, Rb, V, Li, Mo, Co, Cs, Bi, and Tl) in soil and biota samples from the Shengli Oilfield using ICP-MS. The results showed that 11 trace metals in the surface soils exceeded the local background levels. The geo-accumulation index (Igeo) indicated that the soils had light-moderate to moderate contamination levels, with higher Igeo value of Ba, V, Li, Mo, Co, and Cs. The individual potential ecological risk indices ([Formula: see text]) demonstrated moderate Bi and Tl pollution in soils. Comparatively, the [Formula: see text] is recommended for the risk assessment of trace metals on the ecosystem around the oilfield area. Mo, Bi, and Sr easily accumulate in plants, as reflected by their bioaccumulation factor. Ti, Ba, V, Li, Co, Cs, Bi, and Tl exhibited considerable biomagnification, particularly in birds. In this study, trace metals showed considerable bioaccumulation and biomagnification, and the risks of these trace metals on the ecosystem around oilfield production area need more attention.
Collapse
Affiliation(s)
- Qian Ning
- Hubei Key Laboratory of Petroleum Geochemistry and Environment (Yangtze University), Wuhan, 430100, China
- School of Resources and Environment, Yangtze University, Wuhan, 430100, China
| | - Bo Shao
- Hubei Key Laboratory of Petroleum Geochemistry and Environment (Yangtze University), Wuhan, 430100, China
- School of Resources and Environment, Yangtze University, Wuhan, 430100, China
| | - Xin Huang
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Mei He
- Hubei Key Laboratory of Petroleum Geochemistry and Environment (Yangtze University), Wuhan, 430100, China.
- School of Resources and Environment, Yangtze University, Wuhan, 430100, China.
| | - Lei Tian
- Hubei Key Laboratory of Petroleum Geochemistry and Environment (Yangtze University), Wuhan, 430100, China
- School of Petroleum Engineering, Yangtze University, Wuhan, 430100, China
| | - Yan Lin
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
5
|
Muñoz-Armenta G, Pérez-González E, Rodríguez-Meza GD, González-Ocampo HA. Health risk of consuming Sphoeroides spp. from the Navachiste Lagoon complex due to its trace metals and organochlorine pesticides content. Sci Rep 2022; 12:18393. [PMID: 36319660 PMCID: PMC9626642 DOI: 10.1038/s41598-022-22757-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/19/2022] [Indexed: 11/30/2022] Open
Abstract
The Navachiste complex (NAV) is impacted by neighbored human activities and is located in the southwestern coastal zone of the Gulf of California. The study determines the trace metal (TM) and organochlorine pesticides (OCP) health risk content in the edible tissue of Sphoeroides spp. from NAV. The daily intakes (EDI), target hazard quotient (THQ), hazard index (HI), and carcinogenic and non-carcinogenic risks were calculated. Twenty OCP and seven TM were detected. Cd, Cu, Fe, Mn, Pb, and Zn were above MRLs. The γ‒Chlordane was the most frequent OCP. The highest average concentration was for α‒HCH, followed by γ‒chlordane. With the high ratios of γ‒HCH, p, p'‒ DDD and p, p'‒DDD, and the absence of p, p'‒ DDT, the higher ratios for dieldrin and endrin than for aldrin, α‒ chlordane, γ‒chlordane, heptachlor, and heptachlor epoxide indicates historical contamination. In contrast, the residual products of methoxychlor, endosulfan, and its isomers indicate endosulfan's recent use. The TM EDI, THQ > 1 (at 120 g day-1), and the ILCR (> 1 × 10-6) were above minimum levels, showing a high-risk potential for cancer development in the long term.
Collapse
Affiliation(s)
- Gabriela Muñoz-Armenta
- Instituto Politécnico Nacional, CIIDIR-UNIDAD SINALOA, Blvd. Juan de Dios Batiz Paredes #250, 81101, Guasave, SIN, Mexico
| | - Ernestina Pérez-González
- Instituto Politécnico Nacional, CIIDIR-UNIDAD SINALOA, Blvd. Juan de Dios Batiz Paredes #250, 81101, Guasave, SIN, Mexico
| | - Guadalupe Durga Rodríguez-Meza
- Instituto Politécnico Nacional, CIIDIR-UNIDAD SINALOA, Blvd. Juan de Dios Batiz Paredes #250, 81101, Guasave, SIN, Mexico
| | | |
Collapse
|