1
|
Costa SM, Simas MCDC, da Costa LJ, Silva R. Dynamics of SARS-CoV-2 Mutations in Wastewater Provide Insights into the Circulation of Virus Variants in the Population. Int J Mol Sci 2025; 26:4324. [PMID: 40362561 PMCID: PMC12072199 DOI: 10.3390/ijms26094324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/23/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
SARS-CoV-2 high transmission and genomic mutations result in the emergence of new variants that impact COVID-19 vaccine efficacy and virus transmission by evading the host immune system. Wastewater-based epidemiology is an effective approach to monitor SARS-CoV-2 variants circulation in the population but is a challenge due to the presence of reaction inhibitors and the low concentrations of SARS-CoV-2 in this environment. Here, we aim to improve SARS-CoV-2 variant detection in wastewater by employing nested PCR followed by next-generation sequencing (NGS) of small amplicons of the S gene. Eight SARS-CoV-2 wastewater samples from Alegria Wastewater Treatment Plant, in Rio de Janeiro, Brazil, were collected monthly from February to September 2021. Samples were submitted to virus concentration, RNA extraction and nested PCR followed by NGS. The small amplicons were used to prepare libraries for sequencing without the need to perform any fragmentation step. We identified and calculated the frequencies of 29 mutations matching the Alpha, Beta, Gamma, Delta, Omicron, and P.2 variants. Omicron matching-mutations were detected before the lineage was classified as a variant of concern. SARS-CoV-2 wastewater sequences clustered with SARS-CoV-2 variants detected in clinical samples that circulated in 2021 in Rio de Janeiro. We show that sequencing of selected small amplicons of SARS-CoV-2 S gene allows the identification of SARS-CoV-2 variants matching mutations and their frequencies' calculation. This approach may be expanded using customizing primers for additional genomic regions, in order to differentiate current variants. Approaches that allow us to learn how variants emerge and how they relate to clinical outcomes are crucial for our understanding of the dynamics of virus variants circulation, providing valuable data for public health management.
Collapse
Affiliation(s)
- Sara Mesquita Costa
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (S.M.C.); (M.C.d.C.S.)
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil;
| | - Maria Clara da Costa Simas
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (S.M.C.); (M.C.d.C.S.)
| | - Luciana Jesus da Costa
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil;
| | - Rosane Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (S.M.C.); (M.C.d.C.S.)
| |
Collapse
|
2
|
Böttcher S, Kreibich J, Wilton T, Saliba V, Blomqvist S, Al-Hello H, Savolainen-Kopra C, Wieczorek M, Gad B, Krzysztoszek A, Pintó RM, Cabrerizo M, Bosch A, Saxentoff E, Diedrich S, Martin J. Detection of circulating vaccine-derived poliovirus type 2 (cVDPV2) in wastewater samples: a wake-up call, Finland, Germany, Poland, Spain, the United Kingdom, 2024. Euro Surveill 2025; 30:2500037. [PMID: 39850005 PMCID: PMC11914958 DOI: 10.2807/1560-7917.es.2025.30.3.2500037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 01/23/2025] [Indexed: 01/25/2025] Open
Abstract
In 2024, circulating vaccine-derived poliovirus type 2 (cVDPV2) was detected in wastewater samples in Finland, Germany, Poland, Spain and the United Kingdom (UK). All strains were genetically linked, but sequence analysis showed high genetic diversity among the strains identified within individual wastewater sites and countries and an unexpected high genetic proximity among isolates from different countries. Taken together these results, with sequential samples having tested positive in various sites, a broader geographic distribution beyond positive sampling sites must be considered.
Collapse
Affiliation(s)
| | | | - Thomas Wilton
- Medicines and Healthcare products Regulatory Agency (MHRA), South Mimms (Potters Bar), United Kingdom
| | - Vanessa Saliba
- United Kingdom Health Security Agency (UKHSA), London, United Kingdom
| | - Soile Blomqvist
- Finnish Institute for Health and Welfare (THL), Helsinki, Finland
| | - Haider Al-Hello
- Finnish Institute for Health and Welfare (THL), Helsinki, Finland
| | | | - Magdalena Wieczorek
- National Institute of Public Health NIH - National Institute of Research, Warsaw, Poland
| | - Beata Gad
- National Institute of Public Health NIH - National Institute of Research, Warsaw, Poland
| | - Arleta Krzysztoszek
- National Institute of Public Health NIH - National Institute of Research, Warsaw, Poland
| | | | | | | | - Eugene Saxentoff
- World Health Organization Regional Office for Europe (WHO/Europe), Copenhagen, Denmark
| | | | - Javier Martin
- Medicines and Healthcare products Regulatory Agency (MHRA), South Mimms (Potters Bar), United Kingdom
| |
Collapse
|
3
|
Shelton K, Deshpande GN, Sanchez GJ, Vogel JR, Miller AC, Florea G, Jeffries ER, De Leόn KB, Stevenson B, Kuhn KG. Real-Time Monitoring of SARS-CoV-2 Variants in Oklahoma Wastewater through Allele-Specific RT-qPCR. Microorganisms 2024; 12:2001. [PMID: 39458310 PMCID: PMC11509313 DOI: 10.3390/microorganisms12102001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
During the COVID-19 pandemic, wastewater surveillance was used to monitor community transmission of SARS-CoV-2. As new genetic variants emerged, the need for timely identification of these variants in wastewater became an important focus. In response to increased reports of Omicron transmission across the United States, the Oklahoma Wastewater Surveillance team utilized allele-specific RT-qPCR assays to detect and differentiate variants, such as Omicron, from other variants found in wastewater in Oklahoma. The PCR assays showed presence of the Omicron variant in Oklahoma on average two weeks before official reports, which was confirmed through genomic sequencing of selected wastewater samples. Through continued surveillance from November 2021 to January 2022, we also demonstrated the transition from prevalence of the Delta variant to prevalence of the Omicron variant in local communities. We further assessed how this transition correlated with certain demographic factors characterizing each community. Our results highlight RT-qPCR assays as a rapid, simple, and cost-effective method for monitoring the community spread of SARS-CoV-2 genetic variants in wastewater. Additionally, they demonstrate that specific demographic factors such as ethnic composition and household income can correlate with the timing of SARS-CoV-2 variant introduction and spread.
Collapse
Affiliation(s)
- Kristen Shelton
- School of Civil Engineering and Environmental Science, University of Oklahoma, Norman, OK 73071, USA; (K.S.); (G.J.S.); (J.R.V.); (A.C.M.)
| | - Gargi N. Deshpande
- Department of Biostatistics and Epidemiology, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Gilson J. Sanchez
- School of Civil Engineering and Environmental Science, University of Oklahoma, Norman, OK 73071, USA; (K.S.); (G.J.S.); (J.R.V.); (A.C.M.)
| | - Jason R. Vogel
- School of Civil Engineering and Environmental Science, University of Oklahoma, Norman, OK 73071, USA; (K.S.); (G.J.S.); (J.R.V.); (A.C.M.)
| | - A. Caitlin Miller
- School of Civil Engineering and Environmental Science, University of Oklahoma, Norman, OK 73071, USA; (K.S.); (G.J.S.); (J.R.V.); (A.C.M.)
| | - Gabriel Florea
- Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA;
| | - Erin R. Jeffries
- School of Biological Sciences, University of Oklahoma, Norman, OK 73019, USA; (E.R.J.); (K.B.D.L.); (B.S.)
| | - Kara B. De Leόn
- School of Biological Sciences, University of Oklahoma, Norman, OK 73019, USA; (E.R.J.); (K.B.D.L.); (B.S.)
| | - Bradley Stevenson
- School of Biological Sciences, University of Oklahoma, Norman, OK 73019, USA; (E.R.J.); (K.B.D.L.); (B.S.)
- Earth and Planetary Science, Northwestern University, Evanston, IL 60208, USA
| | - Katrin Gaardbo Kuhn
- Department of Biostatistics and Epidemiology, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| |
Collapse
|
4
|
Rashid SA, Rajendiran S, Nazakat R, Mohammad Sham N, Khairul Hasni NA, Anasir MI, Kamel KA, Muhamad Robat R. A scoping review of global SARS-CoV-2 wastewater-based epidemiology in light of COVID-19 pandemic. Heliyon 2024; 10:e30600. [PMID: 38765075 PMCID: PMC11098849 DOI: 10.1016/j.heliyon.2024.e30600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/21/2024] Open
Abstract
Recently, wastewater-based epidemiology (WBE) research has experienced a strong impetus during the Coronavirus disease 2019 (COVID-19) pandemic. However, a few technical issues related to surveillance strategies, such as standardized procedures ranging from sampling to testing protocols, need to be resolved in preparation for future infectious disease outbreaks. This review highlights the study characteristics, potential use of WBE and overview of methods, as well as methods utilized to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) including its variant in wastewater. A literature search was performed electronically in PubMed and Scopus according to PRISMA guidelines for relevant peer-reviewed articles published between January 2020 and March 2022. The search identified 588 articles, out of which 221 fulfilled the necessary criteria and are discussed in this review. Most global WBE studies were conducted in North America (n = 75, 34 %), followed by Europe (n = 68, 30.8 %), and Asia (n = 43, 19.5 %). The review also showed that most of the application of WBE observed were to correlate SARS-CoV-2 ribonucleic acid (RNA) trends in sewage with epidemiological data (n = 90, 40.7 %). The techniques that were often used globally for sample collection, concentration, preferred matrix recovery control and various sample types were also discussed. Overall, this review provided a framework for researchers specializing in WBE to apply strategic approaches to their research questions in achieving better functional insights. In addition, areas that needed more in-depth analysis, data collection, and ideas for new initiatives were identified.
Collapse
Affiliation(s)
- Siti Aishah Rashid
- Environmental Health Research Centre, Institute for Medical Research, National Institutes of Health (NIH), Ministry of Health, Shah Alam, Selangor, Malaysia
| | - Sakshaleni Rajendiran
- Environmental Health Research Centre, Institute for Medical Research, National Institutes of Health (NIH), Ministry of Health, Shah Alam, Selangor, Malaysia
| | - Raheel Nazakat
- Environmental Health Research Centre, Institute for Medical Research, National Institutes of Health (NIH), Ministry of Health, Shah Alam, Selangor, Malaysia
| | - Noraishah Mohammad Sham
- Environmental Health Research Centre, Institute for Medical Research, National Institutes of Health (NIH), Ministry of Health, Shah Alam, Selangor, Malaysia
| | - Nurul Amalina Khairul Hasni
- Environmental Health Research Centre, Institute for Medical Research, National Institutes of Health (NIH), Ministry of Health, Shah Alam, Selangor, Malaysia
| | - Mohd Ishtiaq Anasir
- Infectious Disease Research Centre, Institute for Medical Research, National Institutes of Health (NIH), Ministry of Health, Shah Alam, Selangor, Malaysia
| | - Khayri Azizi Kamel
- Infectious Disease Research Centre, Institute for Medical Research, National Institutes of Health (NIH), Ministry of Health, Shah Alam, Selangor, Malaysia
| | - Rosnawati Muhamad Robat
- Occupational & Environmental Health Unit, Public Health Division, Selangor State Health Department, Ministry of Health Malaysia, Malaysia
| |
Collapse
|
5
|
Girón-Guzmán I, Cuevas-Ferrando E, Barranquero R, Díaz-Reolid A, Puchades-Colera P, Falcó I, Pérez-Cataluña A, Sánchez G. Urban wastewater-based epidemiology for multi-viral pathogen surveillance in the Valencian region, Spain. WATER RESEARCH 2024; 255:121463. [PMID: 38537489 DOI: 10.1016/j.watres.2024.121463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/28/2024] [Accepted: 03/12/2024] [Indexed: 04/24/2024]
Abstract
Wastewater-based epidemiology (WBE) has lately arised as a promising tool for monitoring and tracking viral pathogens in communities. In this study, we analysed WBE's role as a multi-pathogen surveillance strategy to detect the presence of several viral illness causative agents. Thus, an epidemiological study was conducted from October 2021 to February 2023 to estimate the weekly levels of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), Respiratory Syncytial virus (RSV), and Influenza A virus (IAV) in influent wastewater samples (n = 69). In parallel, a one-year study (October 2021 to October 2022) was performed to assess the presence of pathogenic human enteric viruses. Besides, monitoring of proposed viral fecal contamination indicators crAssphage and Pepper mild mottle virus (PMMoV) was also assessed, along with plaque counting of somatic coliphages. Genetic material of rotavirus (RV), human astrovirus (HAStV), and norovirus genogroup I (GI) and GII was found in almost all samples, while hepatitis A and E viruses (HAV and HEV) only tested positive in 3.77 % and 22.64 % of the samples, respectively. No seasonal patterns were overall found for enteric viruses, although RVs had a peak prevalence in the winter months. All samples tested positive for SARS-CoV-2 RNA, with a mean concentration of 5.43 log genome copies per liter (log GC/L). The tracking of the circulating SARS-CoV-2 variants of concern (VOCs) was performed by both duplex RT-qPCR and next generation sequencing (NGS). Both techniques reliably showed how the dominant VOC transitioned from Delta to Omicron during two weeks in Spain in December 2021. RSV and IAV viruses peaked in winter months with mean concentrations 6.40 and 4.10 log GC/L, respectively. Moreover, the three selected respiratory viruses strongly correlated with reported clinical data when normalised by wastewater physico-chemical parameters and presented weaker correlations when normalising sewage concentration levels with crAssphage or somatic coliphages titers. Finally, predictive models were generated for each respiratory virus, confirming high reliability on WBE data as an early-warning system and communities illness monitoring system. Overall, this study presents WBE as an optimal tool for multi-pathogen tracking reflecting viral circulation and diseases trends within a selected area, its value as a multi-pathogen early-warning tool stands out due to its public health interest.
Collapse
Affiliation(s)
- Inés Girón-Guzmán
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain
| | - Enric Cuevas-Ferrando
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain.
| | - Regino Barranquero
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain
| | - Azahara Díaz-Reolid
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain
| | - Pablo Puchades-Colera
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain
| | - Irene Falcó
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain; Department of Microbiology and Ecology, University of Valencia, Valencia, Spain
| | - Alba Pérez-Cataluña
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain
| | - Gloria Sánchez
- Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain.
| |
Collapse
|
6
|
Patiño LH, Ballesteros N, Muñoz M, Ramírez AL, Castañeda S, Galeano LA, Hidalgo A, Paniz-Mondolfi A, Ramírez JD. Global and genetic diversity of SARS-CoV-2 in wastewater. Heliyon 2024; 10:e27452. [PMID: 38463823 PMCID: PMC10923837 DOI: 10.1016/j.heliyon.2024.e27452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/03/2024] [Accepted: 02/28/2024] [Indexed: 03/12/2024] Open
Abstract
The analysis of SARS-CoV-2 in wastewater has enabled us to better understand the spread and evolution of the virus worldwide. To deepen our understanding of its epidemiological and genomic characteristics, we analyzed 10,147 SARS-CoV-2 sequences from 5 continents and 21 countries that were deposited in the GISAID database up until January 31, 2023. Our results revealed over 100 independent lineages of the virus circulating in water samples from March 2020 to January 2023, including variants of interest and concern. We observed four clearly defined periods of global distribution of these variants over time, with one variant being replaced by another. Interestingly, we found that SARS-CoV-2 water-borne sequences from different countries had a close phylogenetic relationship. Additionally, 40 SARS-CoV-2 water-borne sequences from Europe and the USA did not show any phylogenetic relationship with SARS-CoV-2 human sequences. We also identified a significant number of non-synonymous mutations, some of which were detected in previously reported cryptic lineages. Among the countries analyzed, France and the USA showed the highest degree of sequence diversity, while Austria reported the highest number of genomes (6,296). Our study provides valuable information about the epidemiological and genomic diversity of SARS-CoV-2 in wastewater, which can be employed to support public health initiatives and preparedness.
Collapse
Affiliation(s)
- Luz Helena Patiño
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, 111321, Colombia
| | - Nathalia Ballesteros
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, 111321, Colombia
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, 111321, Colombia
| | - Angie Lorena Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, 111321, Colombia
| | - Sergio Castañeda
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, 111321, Colombia
| | - Luis Alejandro Galeano
- Grupo de Investigación en Materiales Funcionales y Catálisis (GIMFC), Departamento de Química, Universidad de Nariño, Pasto, 52002, Colombia
| | - Arsenio Hidalgo
- Grupo de Investigación en Salud Pública, Departamento de Matemáticas, Universidad de Nariño, Pasto, 50002, Colombia
| | - Alberto Paniz-Mondolfi
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, 111321, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, 111321, Colombia
| |
Collapse
|
7
|
Baz Lomba JA, Pires J, Myrmel M, Arnø JK, Madslien EH, Langlete P, Amato E, Hyllestad S. Effectiveness of environmental surveillance of SARS-CoV-2 as an early-warning system: Update of a systematic review during the second year of the pandemic. JOURNAL OF WATER AND HEALTH 2024; 22:197-234. [PMID: 38295081 PMCID: wh_2023_279 DOI: 10.2166/wh.2023.279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
The aim of this updated systematic review was to offer an overview of the effectiveness of environmental surveillance (ES) of SARS-CoV-2 as a potential early-warning system (EWS) for COVID-19 and new variants of concerns (VOCs) during the second year of the pandemic. An updated literature search was conducted to evaluate the added value of ES of SARS-CoV-2 for public health decisions. The search for studies published between June 2021 and July 2022 resulted in 1,588 publications, identifying 331 articles for full-text screening. A total of 151 publications met our inclusion criteria for the assessment of the effectiveness of ES as an EWS and early detection of SARS-CoV-2 variants. We identified a further 30 publications among the grey literature. ES confirms its usefulness as an EWS for detecting new waves of SARS-CoV-2 infection with an average lead time of 1-2 weeks for most of the publication. ES could function as an EWS for new VOCs in areas with no registered cases or limited clinical capacity. Challenges in data harmonization and variant detection require standardized approaches and innovations for improved public health decision-making. ES confirms its potential to support public health decision-making and resource allocation in future outbreaks.
Collapse
Affiliation(s)
- Jose Antonio Baz Lomba
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway E-mail:
| | - João Pires
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway; ECDC fellowship Programme, Public Health Microbiology path (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Solna, Sweden
| | - Mette Myrmel
- Faculty of Veterinary Medicine, Virology Unit, Norwegian University of Life Science (NMBU), Oslo, Norway
| | - Jorunn Karterud Arnø
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Elisabeth Henie Madslien
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Petter Langlete
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Ettore Amato
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Susanne Hyllestad
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
8
|
Phan T, Brozak S, Pell B, Oghuan J, Gitter A, Hu T, Ribeiro RM, Ke R, Mena KD, Perelson AS, Kuang Y, Wu F. Making waves: Integrating wastewater surveillance with dynamic modeling to track and predict viral outbreaks. WATER RESEARCH 2023; 243:120372. [PMID: 37494742 DOI: 10.1016/j.watres.2023.120372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/10/2023] [Accepted: 07/15/2023] [Indexed: 07/28/2023]
Abstract
Wastewater surveillance has proved to be a valuable tool to track the COVID-19 pandemic. However, most studies using wastewater surveillance data revolve around establishing correlations and lead time relative to reported case data. In this perspective, we advocate for the integration of wastewater surveillance data with dynamic within-host and between-host models to better understand, monitor, and predict viral disease outbreaks. Dynamic models overcome emblematic difficulties of using wastewater surveillance data such as establishing the temporal viral shedding profile. Complementarily, wastewater surveillance data bypasses the issues of time lag and underreporting in clinical case report data, thus enhancing the utility and applicability of dynamic models. The integration of wastewater surveillance data with dynamic models can enhance real-time tracking and prevalence estimation, forecast viral transmission and intervention effectiveness, and most importantly, provide a mechanistic understanding of infectious disease dynamics and the driving factors. Dynamic modeling of wastewater surveillance data will advance the development of a predictive and responsive monitoring system to improve pandemic preparedness and population health.
Collapse
Affiliation(s)
- Tin Phan
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, NM 87544, USA
| | - Samantha Brozak
- School of Mathematical and Statistical Sciences, Arizona State University, AZ 85281, USA
| | - Bruce Pell
- Department of Mathematics and Computer Science, Lawrence Technological University, MI 48075, USA
| | - Jeremiah Oghuan
- School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Anna Gitter
- School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Tao Hu
- Department of Geography, Oklahoma State University, Stillwater, OK 74078, USA
| | - Ruy M Ribeiro
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, NM 87544, USA
| | - Ruian Ke
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, NM 87544, USA
| | - Kristina D Mena
- School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Texas Epidemic Public Health Institute, Houston, TX 77030, USA
| | - Alan S Perelson
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, NM 87544, USA; Santa Fe Institute, Santa Fe, NM 87501, USA
| | - Yang Kuang
- School of Mathematical and Statistical Sciences, Arizona State University, AZ 85281, USA
| | - Fuqing Wu
- School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Texas Epidemic Public Health Institute, Houston, TX 77030, USA.
| |
Collapse
|
9
|
Mattei M, Pintó RM, Guix S, Bosch A, Arenas A. Analysis of SARS-CoV-2 in wastewater for prevalence estimation and investigating clinical diagnostic test biases. WATER RESEARCH 2023; 242:120223. [PMID: 37354838 PMCID: PMC10265495 DOI: 10.1016/j.watres.2023.120223] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/10/2023] [Accepted: 06/12/2023] [Indexed: 06/26/2023]
Abstract
Here we analyze SARS-CoV-2 genome copies in Catalonia's wastewater during the Omicron peak and develop a mathematical model to estimate the number of infections and the temporal relationship between reported and unreported cases. 1-liter samples from 16 wastewater treatment plants were collected and used in a compartmental epidemiological model. The average correlation between genome copies and reported cases was 0.85, with an average delay of 8.8 days. The model estimated that 53% of the population was infected, compared to the 19% reported cases. The under-reporting was highest in November and December 2021. The maximum genome copies shed in feces by an infected individual was estimated to range from 1.4×108 gc/g to 4.4×108 gc/g. Our framework demonstrates the potential of wastewater data as a leading indicator for daily new infections, particularly in contexts with low detection rates. It also serves as a complementary tool for prevalence estimation and offers a general approach for integrating wastewater data into compartmental models.
Collapse
Affiliation(s)
- Mattia Mattei
- Departament d'Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, 43007 Tarragona, Spain.
| | - Rosa M Pintó
- Enteric Virus Laboratory, School of Biology, University of Barcelona, 08028, Barcelona, Spain
| | - Susana Guix
- Enteric Virus Laboratory, School of Biology, University of Barcelona, 08028, Barcelona, Spain
| | - Albert Bosch
- Enteric Virus Laboratory, School of Biology, University of Barcelona, 08028, Barcelona, Spain
| | - Alex Arenas
- Departament d'Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, 43007 Tarragona, Spain; Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA, 99354, USA.
| |
Collapse
|
10
|
Tiwari A, Adhikari S, Zhang S, Solomon TB, Lipponen A, Islam MA, Thakali O, Sangkham S, Shaheen MNF, Jiang G, Haramoto E, Mazumder P, Malla B, Kumar M, Pitkänen T, Sherchan SP. Tracing COVID-19 Trails in Wastewater: A Systematic Review of SARS-CoV-2 Surveillance with Viral Variants. WATER 2023; 15:1018. [DOI: 10.3390/w15061018] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
The emergence of new variants of SARS-CoV-2 associated with varying infectivity, pathogenicity, diagnosis, and effectiveness against treatments challenged the overall management of the COVID-19 pandemic. Wastewater surveillance (WWS), i.e., monitoring COVID-19 infections in communities through detecting viruses in wastewater, was applied to track the emergence and spread of SARS-CoV-2 variants globally. However, there is a lack of comprehensive understanding of the use and effectiveness of WWS for new SARS-CoV-2 variants. Here we systematically reviewed published articles reporting monitoring of different SARS-CoV-2 variants in wastewater by following the PRISMA guidelines and provided the current state of the art of this study area. A total of 80 WWS studies were found that reported different monitoring variants of SARS-CoV-2 until November 2022. Most of these studies (66 out of the total 80, 82.5%) were conducted in Europe and North America, i.e., resource-rich countries. There was a high variation in WWS sampling strategy around the world, with composite sampling (50/66 total studies, 76%) as the primary method in resource-rich countries. In contrast, grab sampling was more common (8/14 total studies, 57%) in resource-limited countries. Among detection methods, the reverse transcriptase polymerase chain reaction (RT-PCR)-based sequencing method and quantitative RT-PCR method were commonly used for monitoring SARS-CoV-2 variants in wastewater. Among different variants, the B1.1.7 (Alpha) variant that appeared earlier in the pandemic was the most reported (48/80 total studies), followed by B.1.617.2 (Delta), B.1.351 (Beta), P.1 (Gamma), and others in wastewater. All variants reported in WWS studies followed the same pattern as the clinical reporting within the same timeline, demonstrating that WWS tracked all variants in a timely way when the variants emerged. Thus, wastewater monitoring may be utilized to identify the presence or absence of SARS-CoV-2 and follow the development and transmission of existing and emerging variants. Routine wastewater monitoring is a powerful infectious disease surveillance tool when implemented globally.
Collapse
Affiliation(s)
- Ananda Tiwari
- Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare, 70701 Kuopio, Finland
| | | | - Shuxin Zhang
- School of Civil, Mining, Environmental and Architecture Engineering, University of Wollongong, Wollongong 2522, Australia
| | | | - Anssi Lipponen
- Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare, 70701 Kuopio, Finland
| | - Md. Aminul Islam
- COVID-19 Diagnostic Lab, Department of Microbiology, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
- Advanced Molecular Lab, Department of Microbiology, President Abdul Hamid Medical College, Karimganj 2310, Bangladesh
| | - Ocean Thakali
- Department of Civil Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Sarawut Sangkham
- Department of Environmental Health, School of Public Health, University of Phayao, Muang District, Phayao 56000, Thailand
| | - Mohamed N. F. Shaheen
- Department of Water Pollution Research, Environment and Climate Change Research Institute, National Research Center, Giza 2310, Egypt
| | - Guangming Jiang
- School of Civil, Mining, Environmental and Architecture Engineering, University of Wollongong, Wollongong 2522, Australia
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong 2522, Australia
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu 400-8511, Yamanashi, Japan
| | - Payal Mazumder
- Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun 248007, Uttarakhand, India
| | - Bikash Malla
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu 400-8511, Yamanashi, Japan
| | - Manish Kumar
- Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun 248007, Uttarakhand, India
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterey, Monterrey 64849, Nuevo Leon, Mexico
| | - Tarja Pitkänen
- Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare, 70701 Kuopio, Finland
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Samendra P. Sherchan
- Department of Biology, Morgan State University, Baltimore, MD 11428, USA
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70118, USA
| |
Collapse
|
11
|
Hoar C, McClary-Gutierrez J, Wolfe MK, Bivins A, Bibby K, Silverman AI, McLellan SL. Looking Forward: The Role of Academic Researchers in Building Sustainable Wastewater Surveillance Programs. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:125002. [PMID: 36580023 PMCID: PMC9799055 DOI: 10.1289/ehp11519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND In just over 2 years, tracking the COVID-19 pandemic through wastewater surveillance advanced from early reports of successful SARS-CoV-2 RNA detection in untreated wastewater to implementation of programs in at least 60 countries. Early wastewater monitoring efforts primarily originated in research laboratories and are now transitioning into more formal surveillance programs run in commercial and public health laboratories. A major challenge in this progression has been to simultaneously optimize methods and build scientific consensus while implementing surveillance programs, particularly during the rapidly changing landscape of the pandemic. Translating wastewater surveillance results for effective use by public health agencies also remains a key objective for the field. OBJECTIVES We examined the evolution of wastewater surveillance to identify model collaborations and effective partnerships that have created rapid and sustained success. We propose needed areas of research and key roles academic researchers can play in the framework of wastewater surveillance to aid in the transition from early monitoring efforts to more formalized programs within the public health system. DISCUSSION Although wastewater surveillance has rapidly developed as a useful public health tool for tracking COVID-19, there remain technical challenges and open scientific questions that academic researchers are equipped to address. This includes validating methodology and backfilling important knowledge gaps, such as fate and transport of surveillance targets and epidemiological links to wastewater concentrations. Our experience in initiating and implementing wastewater surveillance programs in the United States has allowed us to reflect on key barriers and draw useful lessons on how to promote synergy between different areas of expertise. As wastewater surveillance programs are formalized, the working relationships developed between academic researchers, commercial and public health laboratories, and data users should promote knowledge co-development. We believe active involvement of academic researchers will contribute to building robust surveillance programs that will ultimately provide new insights into population health. https://doi.org/10.1289/EHP11519.
Collapse
Affiliation(s)
- Catherine Hoar
- Department of Civil and Urban Engineering, New York University Tandon School of Engineering, Brooklyn, New York, USA
| | - Jill McClary-Gutierrez
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Marlene K. Wolfe
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Aaron Bivins
- Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Kyle Bibby
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Indiana, USA
| | - Andrea I. Silverman
- Department of Civil and Urban Engineering, New York University Tandon School of Engineering, Brooklyn, New York, USA
| | - Sandra L. McLellan
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| |
Collapse
|
12
|
Cutrupi F, Cadonna M, Manara S, Postinghel M, La Rosa G, Suffredini E, Foladori P. The wave of the SARS-CoV-2 Omicron variant resulted in a rapid spike and decline as highlighted by municipal wastewater surveillance. ENVIRONMENTAL TECHNOLOGY & INNOVATION 2022; 28:102667. [PMID: 35615435 PMCID: PMC9122782 DOI: 10.1016/j.eti.2022.102667] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 05/10/2023]
Abstract
This paper highlights the extraordinarily rapid spread of SARS-CoV-2 loads in wastewater that during the Omicron wave in December 2021-February 2022, compared with the profiles acquired in 2020-21 with 410 samples from two wastewater treatment plants (Trento+suburbs, 132,500 inhabitants). Monitoring of SARS-CoV-2 in wastewater focused on: (i) 3 samplings/week and analysis, (ii) normalization to calculate genomic units (GU) inh-1 d-1; (iii) calculation of a 7-day moving average to smooth daily fluctuations; (iv) comparison with the 'current active cases'/100,000 inh progressively affected by the mass vaccination. The time profiles of SARS-CoV-2 in wastewater matched the waves of active cases. In February-April 2021, a viral load of 1.0E+07 GU inh-1 d- 1 corresponded to 700 active cases/100,000 inh. In July-September 2021, although the low current active cases, sewage revealed an appreciable SARS-CoV-2 circulation (in this period 2.2E+07 GU inh-1 d-1 corresponded to 90 active cases/100,000 inh). Omicron was not detected in wastewater until mid-December 2021. The Omicron spread caused a 5-6 fold increase of the viral load in two weeks, reaching the highest peak (2.0-2.2E+08 GU inh-1 d-1 and 4500 active cases/100,000 inh) during the pandemic. In this period, wastewater surveillance anticipated epidemiological data by about 6 days. In winter 2021-22, despite the 4-7 times higher viral loads in wastewater, hospitalizations were 4 times lower than in winter 2020-21 due to the vaccination coverage >80%. The Omicron wave demonstrated that SARS-CoV-2 monitoring of wastewater anticipated epidemiological data, confirming its importance in long-term surveillance.
Collapse
Affiliation(s)
- Francesca Cutrupi
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, via Mesiano 77, 38123 Trento, Italy
| | - Maria Cadonna
- ADEP, Agenzia per la Depurazione (Wastewater Treatment Agency), Autonomous Province of Trento, via Gilli 3, 38121 Trento, Italy
| | - Serena Manara
- Department of Cellular Computational and Integrative Biology-CIBIO, Via Sommarive 9, 38123 Trento, Italy
| | - Mattia Postinghel
- ADEP, Agenzia per la Depurazione (Wastewater Treatment Agency), Autonomous Province of Trento, via Gilli 3, 38121 Trento, Italy
| | - Giuseppina La Rosa
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Elisabetta Suffredini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Paola Foladori
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, via Mesiano 77, 38123 Trento, Italy
| |
Collapse
|
13
|
Rauch W, Schenk H, Insam H, Markt R, Kreuzinger N. Data modelling recipes for SARS-CoV-2 wastewater-based epidemiology. ENVIRONMENTAL RESEARCH 2022; 214:113809. [PMID: 35798267 PMCID: PMC9252867 DOI: 10.1016/j.envres.2022.113809] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/15/2022] [Accepted: 06/29/2022] [Indexed: 05/19/2023]
Abstract
Wastewater based epidemiology is recognized as one of the monitoring pillars, providing essential information for pandemic management. Central in the methodology are data modelling concepts for both communicating the monitoring results but also for analysis of the signal. It is due to the fast development of the field that a range of modelling concepts are used but without a coherent framework. This paper provides for such a framework, focusing on robust and simple concepts readily applicable, rather than applying latest findings from e.g., machine learning. It is demonstrated that data preprocessing, most important normalization by means of biomarkers and equal temporal spacing of the scattered data, is crucial. In terms of the latter, downsampling to a weekly spaced series is sufficient. Also, data smoothing turned out to be essential, not only for communication of the signal dynamics but likewise for regressions, nowcasting and forecasting. Correlation of the signal with epidemic indicators requires multivariate regression as the signal alone cannot explain the dynamics but - for this case study - multiple linear regression proofed to be a suitable tool when the focus is on understanding and interpretation. It was also demonstrated that short term prediction (7 days) is accurate with simple models (exponential smoothing or autoregressive models) but forecast accuracy deteriorates fast for longer periods.
Collapse
Affiliation(s)
- Wolfgang Rauch
- Unit of Environmental Engineering, Department of Infrastructure, University of Innsbruck, Technikerstrasse 13, 6020, Innsbruck, Austria.
| | - Hannes Schenk
- Unit of Environmental Engineering, Department of Infrastructure, University of Innsbruck, Technikerstrasse 13, 6020, Innsbruck, Austria
| | - Heribert Insam
- Department of Microbiology, University of Innsbruck, Austria
| | - Rudolf Markt
- Department of Microbiology, University of Innsbruck, Austria
| | - Norbert Kreuzinger
- Institute for Water Quality and Resource Management, Technische Universität Wien, Austria
| |
Collapse
|
14
|
Viveros ML, Azimi S, Pichon E, Roose-Amsaleg C, Bize A, Durandet F, Rocher V. Wild type and variants of SARS-COV-2 in Parisian sewage: presence in raw water and through processes in wastewater treatment plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:67442-67449. [PMID: 36029443 PMCID: PMC9418656 DOI: 10.1007/s11356-022-22665-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 08/18/2022] [Indexed: 05/30/2023]
Abstract
The presence of SARS-CoV-2 RNA has been extensively reported at the influent of wastewater treatment plants (WWTPs) worldwide, and its monitoring has been proposed as a potential surveillance tool to early alert of epidemic outbreaks. However, the fate of the SARS-CoV-2 RNA in the treatment process of WWTP has not been widely studied yet; therefore, in this study, we aimed to evaluate the efficiency of treatment processes in reducing SARS-CoV-2 RNA levels in wastewater. The treatment process of three WWTPs of the Parisian area in France was monitored on six different weeks over a period of 2 months (from April 14 to June 9, 2021). SARS-CoV-2 RNA copies were detected using digital polymerase chain reaction (dPCR). Investigation on the presence of variants of concern (Del69-70, E484K, and L452R) was also performed. Additionally, SARS-CoV-2 RNA loads in the WWTPs influents were expressed as the viral concentration in per population equivalent (PE) and showed a good correlation with French public health indicators (incidence rate). SARS-CoV-2 RNA loads were notably reduced along the water treatment lines of the three WWTPs studied (2.5-3.4 log reduction). Finally, very low SARS-CoV-2 RNA loads were detected in effluents (non-detected in over half of the samples) which indicated that the potential risk of the release of wastewater effluents to the environment is probably insignificant, in the case of WWTPs enabling an efficient biological removal of nitrogen.
Collapse
Affiliation(s)
| | - Sam Azimi
- SIAAP - Direction Innovation, 82 avenue Kléber, 92700, Colombes, France
| | - Elodie Pichon
- GEOBIOMICS, 335 rue Louis Lépine, 34000, Montpellier, France
| | | | - Ariane Bize
- PRocédés biOtechnologiques Au Service de L'Environnement, INRAE Université Paris-Saclay, INRAE, 92761, Antony, France
| | | | - Vincent Rocher
- SIAAP - Direction Innovation, 82 avenue Kléber, 92700, Colombes, France
| |
Collapse
|
15
|
Dall'Alba G, Casa PL, Abreu FPD, Notari DL, de Avila E Silva S. A Survey of Biological Data in a Big Data Perspective. BIG DATA 2022; 10:279-297. [PMID: 35394342 DOI: 10.1089/big.2020.0383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The amount of available data is continuously growing. This phenomenon promotes a new concept, named big data. The highlight technologies related to big data are cloud computing (infrastructure) and Not Only SQL (NoSQL; data storage). In addition, for data analysis, machine learning algorithms such as decision trees, support vector machines, artificial neural networks, and clustering techniques present promising results. In a biological context, big data has many applications due to the large number of biological databases available. Some limitations of biological big data are related to the inherent features of these data, such as high degrees of complexity and heterogeneity, since biological systems provide information from an atomic level to interactions between organisms or their environment. Such characteristics make most bioinformatic-based applications difficult to build, configure, and maintain. Although the rise of big data is relatively recent, it has contributed to a better understanding of the underlying mechanisms of life. The main goal of this article is to provide a concise and reliable survey of the application of big data-related technologies in biology. As such, some fundamental concepts of information technology, including storage resources, analysis, and data sharing, are described along with their relation to biological data.
Collapse
Affiliation(s)
- Gabriel Dall'Alba
- Computational Biology and Bioinformatics Laboratory, Biotechnology Institute, Department of Life Sciences, University of Caxias do Sul, Caxias do Sul, Brazil
- Genome Science and Technology Program, Faculty of Science, The University of British Columbia, Vancouver, Canada
| | - Pedro Lenz Casa
- Computational Biology and Bioinformatics Laboratory, Biotechnology Institute, Department of Life Sciences, University of Caxias do Sul, Caxias do Sul, Brazil
| | - Fernanda Pessi de Abreu
- Computational Biology and Bioinformatics Laboratory, Biotechnology Institute, Department of Life Sciences, University of Caxias do Sul, Caxias do Sul, Brazil
| | - Daniel Luis Notari
- Computational Biology and Bioinformatics Laboratory, Biotechnology Institute, Department of Life Sciences, University of Caxias do Sul, Caxias do Sul, Brazil
| | - Scheila de Avila E Silva
- Computational Biology and Bioinformatics Laboratory, Biotechnology Institute, Department of Life Sciences, University of Caxias do Sul, Caxias do Sul, Brazil
| |
Collapse
|
16
|
Filip C, Covali R, Socolov D, Akad M, Carauleanu A, Vasilache IA, Scripcariu IS, Pavaleanu I, Butureanu T, Ciuhodaru M, Boiculese LV, Socolov R. Brixia and qSOFA Scores, Coagulation Factors and Blood Values in Spring versus Autumn 2021 Infection in Pregnant Critical COVID-19 Patients: A Preliminary Study. Healthcare (Basel) 2022; 10:1423. [PMID: 36011083 PMCID: PMC9408262 DOI: 10.3390/healthcare10081423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
(1) Background: From the recent variants of concern of the SARS-CoV-2 virus, in which the delta variant generated more negative outcomes than the alpha, we hypothesized that lung involvement, clinical condition deterioration and blood alterations were also more severe in autumn infection, when the delta variant dominated (compared with spring infections, when the alpha variant dominated), in severely infected pregnant patients. (2) Methods: In a prospective study, all pregnant patients admitted to the ICU of the Elena Doamna Obstetrics and Gynecology Hospital with a critical form of COVID-19 infection-spring group (n = 11) and autumn group (n = 7)-between 1 January 2021 and 1 December 2021 were included. Brixia scores were calculated for every patient: A score, upon admittance; H score, the highest score throughout hospitalization; and E score, at the end of hospitalization. For each day of Brixia A, H or E score, the qSOFA (quick sepsis-related organ failure assessment) score was calculated, and the blood values were also considered. (3) Results: Brixia E score, C-reactive protein, GGT and LDH were much higher, while neutrophil count was much lower in autumn compared with spring critical-form pregnant patients. (4) Conclusions: the autumn infection generated more dramatic alterations than the spring infection in pregnant patients with critical forms of COVID-19. Larger studies with more numerous participants are required to confirm these results.
Collapse
Affiliation(s)
- Catalina Filip
- Department of Vascular Surgery, Grigore T. Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania;
| | - Roxana Covali
- Department of Radiology, Elena Doamna Obstetrics and Gynecology University Hospital, Grigore T. Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania
| | - Demetra Socolov
- Department of Obstetrics and Gynecology, Cuza Voda Obstetrics and Gynecology University Hospital, Grigore T. Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania; (D.S.); (A.C.); (I.A.V.); (I.S.S.)
| | - Mona Akad
- Department of Obstetrics and Gynecology, Grigore T. Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania
| | - Alexandru Carauleanu
- Department of Obstetrics and Gynecology, Cuza Voda Obstetrics and Gynecology University Hospital, Grigore T. Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania; (D.S.); (A.C.); (I.A.V.); (I.S.S.)
| | - Ingrid Andrada Vasilache
- Department of Obstetrics and Gynecology, Cuza Voda Obstetrics and Gynecology University Hospital, Grigore T. Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania; (D.S.); (A.C.); (I.A.V.); (I.S.S.)
| | - Ioana Sadiye Scripcariu
- Department of Obstetrics and Gynecology, Cuza Voda Obstetrics and Gynecology University Hospital, Grigore T. Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania; (D.S.); (A.C.); (I.A.V.); (I.S.S.)
| | - Ioana Pavaleanu
- Department of Obstetrics and Gynecology, Elena Doamna Obstetrics and Gynecology University Hospital, Grigore T. Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania; (I.P.); (T.B.); (M.C.); (R.S.)
| | - Tudor Butureanu
- Department of Obstetrics and Gynecology, Elena Doamna Obstetrics and Gynecology University Hospital, Grigore T. Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania; (I.P.); (T.B.); (M.C.); (R.S.)
| | - Madalina Ciuhodaru
- Department of Obstetrics and Gynecology, Elena Doamna Obstetrics and Gynecology University Hospital, Grigore T. Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania; (I.P.); (T.B.); (M.C.); (R.S.)
| | - Lucian Vasile Boiculese
- Department of Statistics, Grigore T. Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania;
| | - Razvan Socolov
- Department of Obstetrics and Gynecology, Elena Doamna Obstetrics and Gynecology University Hospital, Grigore T. Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania; (I.P.); (T.B.); (M.C.); (R.S.)
| |
Collapse
|
17
|
Hrudey SE, Bischel HN, Charrois J, Chik AHS, Conant B, Delatolla R, Dorner S, Graber TE, Hubert C, Isaac-Renton J, Pons W, Safford H, Servos M, Sikora C. Wastewater Surveillance for SARS-CoV-2 RNA in Canada. Facets (Ott) 2022. [DOI: 10.1139/facets-2022-0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Wastewater surveillance for SARS-CoV-2 RNA is a relatively recent adaptation of long-standing wastewater surveillance for infectious and other harmful agents. Individuals infected with COVID-19 were found to shed SARS-CoV-2 in their faeces. Researchers around the world confirmed that SARS-CoV-2 RNA fragments could be detected and quantified in community wastewater. Canadian academic researchers, largely as volunteer initiatives, reported proof-of-concept by April 2020. National collaboration was initially facilitated by the Canadian Water Network. Many public health officials were initially skeptical about actionable information being provided by wastewater surveillance even though experience has shown that public health surveillance for a pandemic has no single, perfect approach. Rather, different approaches provide different insights, each with its own strengths and limitations. Public health science must triangulate among different forms of evidence to maximize understanding of what is happening or may be expected. Well-conceived, resourced, and implemented wastewater-based platforms can provide a cost-effective approach to support other conventional lines of evidence. Sustaining wastewater monitoring platforms for future surveillance of other disease targets and health states is a challenge. Canada can benefit from taking lessons learned from the COVID-19 pandemic to develop forward-looking interpretive frameworks and capacity to implement, adapt, and expand such public health surveillance capabilities.
Collapse
Affiliation(s)
- Steve E. Hrudey
- Professor Emeritus, Analytical & Environmental Toxicology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2G3 Canada
| | - Heather N. Bischel
- Associate Professor, Department of Civil & Environmental Engineering, University of California, Davis, Davis, CA 95616 USA
| | - Jeff Charrois
- Senior Manager, Analytical Operations and Process Development Teams, EPCOR Water Services Inc, Edmonton, AB T5K 0A5 Canada
| | - Alex H. S. Chik
- Project Manager, Wastewater Surveillance Initiative, Ontario Clean Water Agency, Mississauga, ON L5A 4G1 Canada
| | - Bernadette Conant
- Past Chief Executive Officer, Canadian Water Network, Waterloo, ON N2L 3G1 Canada
| | - Rob Delatolla
- Professor, Civil Engineering, University of Ottawa, Ottawa, ON K1N 6N5 Canada
| | - Sarah Dorner
- Professor, Civil, Geological & Mining Engineering, Polytechnique Montréal, Montréal, PQ H3T 1J4 Canada
| | - Tyson E. Graber
- Associate Scientist, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, K1H 8L1 Canada
| | - Casey Hubert
- Professor, Campus Alberta Innovates Program Chair in Geomicrobiology, Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4 Canada
| | - Judy Isaac-Renton
- Professor Emerita, Dept. Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Calgary, AB, T2N 3V9 Canada
| | - Wendy Pons
- Professor, Bachelor of Environmental Health Program Conestoga College Institute of Technology and Advanced Learning, Kitchener, ON N2P 2N6 Canada
| | - Hannah Safford
- Associate Director of Science Policy, Federation of American Scientists, Arlington, VA 22205 USA
| | - Mark Servos
- Professor & Canada Research Chair, Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1 Canada
| | - Christopher Sikora
- Medical Officer of Health, Edmonton Region, Alberta Health Services, Edmonton, AB T5J 3E4 Canada
| |
Collapse
|