1
|
Wang X, Xia X, Riaz M, Babar S, El-Desouki Z, Qasim M, Wang J, Jiang C. Biochar amendment modulate microbial community assembly to mitigate saline-alkaline stress across soil depths. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 385:125574. [PMID: 40328120 DOI: 10.1016/j.jenvman.2025.125574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 04/25/2025] [Accepted: 04/26/2025] [Indexed: 05/08/2025]
Abstract
While microbial community assembly in saline-alkali topsoils is well-documented, distribution patterns across biochar application depths and soil layers remain unclear. This incubation study evaluated five treatment: no biochar (CK), homogeneous application (EB), and concentrated applications in upper (FB: 0-10 cm), middle (MB: 10-20 cm), or bottom layers (DB: 20-30 cm). Biochar application significantly accelerated vertical salt migration, with FB inducing 45.55 % and 61.01 % increases in water-soluble Na+ and Cl- accumulation in the bottom layer. Microbial network complexity and interspecies interactions were highest in the upper layer (edges: 926), contrasting sharply with simplified communities in deeper layer (edges ≤552). Community assembly across layers was primarily driven by salt gradients, with deep-layer communities dominated by salt-tolerant taxa (such as Halomonas and Desulfobacterota). Among treatments, FB led to the highest biomarker abundance and α-diversity. Mechanistically, FB mitigated microbial diversity loss in mid-deep layers by establishing a symbiotic consortium of salt-tolerant keystone taxa (Bacillus-Pseudomonas-Ascomycota), which enhanced stress resilience via cross-feeding. These findings demonstrate that stratified biochar application (FB) optimizes salt redistribution while fostering stress-adapted microbial consortia across soil profiles, offering a targeted strategy for saline-alkali soil remediation.
Collapse
Affiliation(s)
- Xiangling Wang
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China
| | - Xiaoyang Xia
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China
| | - Muhammad Riaz
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, PR China
| | - Saba Babar
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China
| | - Zeinab El-Desouki
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China
| | - Muhammad Qasim
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China
| | - Jiyuan Wang
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China
| | - Cuncang Jiang
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China.
| |
Collapse
|
2
|
Liu W, Yang X, Li Z, Liu Y, Yao M, Pei M, Zhang L, Zhang C, Zhu L, Gao P, Wang J. Soil enzyme activities and bacterial communities respond to co-exposure of butyl benzyl phthalate and TiO 2 nanomaterials: Earthworm-mediated effects. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 372:126049. [PMID: 40081457 DOI: 10.1016/j.envpol.2025.126049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/10/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
Phthalic acid esters (PAEs) are widely used due to their advantageous properties, which enhance the durability, flexibility, and transparency of plastic products. Nanomaterials are also commonly used in plastic additives and agricultural fertilizers. However, both are easy to fall off, diffuse, and release into the environment during production, use, and disposal. The adsorption and transportation of PAEs by nanomaterials may jointly affect soil health. However, less attention is paid to the soil microorganisms caused by co-exposure between PAEs and nanomaterials, especially mediated by earthworms. The present study investigated the effects of BBP (1 mg kg-1) and nTiO2 (1 mg kg-1), alone and in combination, on soil enzyme activities, microbial composition, and bacterial community diversity, with and without mediation by the earthworm Metaphire guillelmi. Results showed that co-exposure to BBP and nTiO2 activated enzyme activities in earthworm-mediated soil. Both contaminants, individually and combined, altered the composition, distribution, diversity, and complexity of the soil bacterial community mediated by earthworms. Bacteroidetes, Proteobacteria, and Actinobacteria were the dominant phyla. However, the complexity of soil bacterial community networks decreased. The findings highlight the importance of considering co-exposure and soil fauna mediation when evaluating the ecological impacts of emerging contaminants and fill the lack of ecotoxicity data on the co-exposure of PAEs and nanomaterials, thus promoting the design and synthesis of safer and more efficient nanomaterials.
Collapse
Affiliation(s)
- Wanjing Liu
- School of Environment & Ecology, Jiangnan University, Wuxi, 214122, China
| | - Xiaoqing Yang
- School of Environment & Ecology, Jiangnan University, Wuxi, 214122, China
| | - Zhuofan Li
- School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yao Liu
- School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Mengyao Yao
- School of Environment & Ecology, Jiangnan University, Wuxi, 214122, China
| | - Mengyuan Pei
- School of Environment & Ecology, Jiangnan University, Wuxi, 214122, China
| | - Lanlan Zhang
- School of Environment & Ecology, Jiangnan University, Wuxi, 214122, China
| | - Cheng Zhang
- School of Environment & Ecology, Jiangnan University, Wuxi, 214122, China.
| | - Lusheng Zhu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, China
| | - Peng Gao
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, United States
| | - Jun Wang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian, 271018, China
| |
Collapse
|
3
|
Liu R, Wei G, Yang Y, Wang J, Zhao S, Zhang B, Hao X, Liu K, Shao Z. Discovery of potentially degrading microflora of different types of plastics based on long-term in-situ incubation in the deep sea. ENVIRONMENTAL RESEARCH 2025; 268:120812. [PMID: 39798661 DOI: 10.1016/j.envres.2025.120812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/03/2025] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Plastic waste that ends up in the deep sea is becoming an increasing concern. However, it remains unclear whether there is any microflora capable of degrading plastic within this vast ecosystem. In this study, we investigated the bacterial communities associated with different types of plastic-polyamide-nylon 4, 6 (PA), polyethylene (PE), polyethylene terephthalate (PET), and polystyrene (PS)-after one year of in situ incubation in the pelagic deep sea of the Western Pacific. The study was conducted via a submarine mooring system, anchored at four sites with water depths ranging from 1167 to 1735 m in an area of seamounts. High-throughput 16S rRNA gene sequencing revealed distinct bacterial diversities associated with specific plastic types and locations. The family Gordoniaceae was enriched by PS and PE plastics, while the abundance of Methyloligellaceae was significantly increased in the presence of PET. In the case of PA, Bdellovibrionaceae was enriched. Additionally, all plastic types promoted the relative abundance of Rhodobacteraceae and Sulfurimonadaceae families. Plastics appeared to stimulate bacterial communities involved in nitrate and sulfur cycling in seawater, suggesting that nitrogen and sulfur potentially play significant roles in plastic degradation in deep-sea environments. The dominant family Kordiimonadaceae was identified as a significantly different taxon in non-plastic seawater. Furthermore, the addition of plastics enhanced negative interactions among the bacterial communities in the surrounding seawater, with Proteobacteria and Bdellovibrionota selected for the core microbiome. Overall, this in situ deep-sea incubation revealed the response of indigenous microflora to man-made polymeric materials and highlighted the bacterial communities that may be involved in plastic degradation in oceanic areas.
Collapse
Affiliation(s)
- Renju Liu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen, 361005, China
| | - Guangshan Wei
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen, 361005, China
| | - Yongpeng Yang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen, 361005, China
| | - Jiannan Wang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen, 361005, China
| | - Sufang Zhao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen, 361005, China
| | - Benjuan Zhang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen, 361005, China
| | - Xun Hao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen, 361005, China
| | - Kaixin Liu
- School of Engineering, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang, China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen, 361005, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| |
Collapse
|
4
|
Tan Q, Wang X, Zheng L, Wu H, Xing Y, Tian Q, Zhang Y. Anthropogenic pressure induced discontinuities of microbial communities along the river. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123764. [PMID: 39693982 DOI: 10.1016/j.jenvman.2024.123764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 12/20/2024]
Abstract
Microorganisms play a fundamental role in driving biogeochemical functions within rivers. Theoretically, the directional flowing nature of river contributes to the continuous downstream change pattern of microbial communities. This continuity is anticipated to be influenced by human activities as anthropogenic materials lead to the mixing of environmental substances and their resident microorganisms with local communities. Here, we conducted a field investigation along the Beiyun River, which successively flows through pristine forest areas, artificial urban and agricultural areas with a length of 184 km, to explore the influence of anthropogenic events on microbial similarity, diversity, composition, co-occurrence, and assembly mechanisms in sediments along the river. Piecewise linear regression tests showed that discontinuities of microbial similarity occurred following the transitions from low to high anthropogenic pressure. LEfSe analysis illustrated that microorganisms associated with wastewater treatment plants and gut were differentially abundant in urban and agricultural streams. By quantifying contributions of ecological assembly processes, we found that the dominant role shifted from variable selection (60.78% in forest group) to homogenous selection (79.52% in urban group and 57.14% in agriculture group) as the differences in NH4+-N, NO3--N and NO2--N content decreased. Moreover, the complexity and stability of microbial networks were reduced from upstream forest streams to downstream urban and agricultural streams, indicating more fragmented networks. Our study provides enhanced knowledge about the factors controlling the microbial community assembly in rivers under increasing human pressure through the integration of physical, environmental, and ecological mechanisms, which can serve as a basis for predicting and responding to changes in ecosystem function under the intensified human pressure.
Collapse
Affiliation(s)
- Qiuyang Tan
- College of Water Science, Beijing Normal University, Beijing, 100875, PR China
| | - Xue Wang
- College of Water Science, Beijing Normal University, Beijing, 100875, PR China
| | - Lei Zheng
- College of Water Science, Beijing Normal University, Beijing, 100875, PR China.
| | - Haoming Wu
- College of Water Science, Beijing Normal University, Beijing, 100875, PR China
| | - Yuzi Xing
- College of Water Science, Beijing Normal University, Beijing, 100875, PR China
| | - Qi Tian
- College of Water Science, Beijing Normal University, Beijing, 100875, PR China
| | - Yaoxin Zhang
- College of Water Science, Beijing Normal University, Beijing, 100875, PR China
| |
Collapse
|
5
|
Chen J, Lin Y, Zhu Y, Zhang Y, Qian Q, Chen C, Xie S. Spatiotemporal profiles and underlying mechanisms of the antibiotic resistome in two water-diversion lakes. ENVIRONMENTAL RESEARCH 2024; 263:120051. [PMID: 39322056 DOI: 10.1016/j.envres.2024.120051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/13/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
Human-induced interventions have altered the local characteristics of the lake ecosystems through changes in hydraulic exchange, which in turn impacts the ecological processes of antibiotic resistance genes (ARGs) in the lakes. However, the current understanding of the spatiotemporal patterns and driving factors of ARGs in water-diversion lakes is still seriously insufficient. In the present study, we investigated antibiotic resistome in the main regulation and storage hubs, namely Nansi Lake and Dongping Lake, of the eastern part of the South-to-North Water Diversion project in Shandong Province (China) using a metagenomic-based approach. A total of 653 ARG subtypes belonging to 25 ARG types were detected with a total abundance of 0.125-0.390 copies/cell, with the dominance of bacitracin, multidrug, and macrolide-lincosamide streptogramin resistance genes. The ARG compositions were sensitive to seasonal variation and also interfered by artificial regulation structures along the way. Human pathogenic bacteria such as Acinetobacter calcoaceticus, Acinetobacter lwoffii, Klebsiella pneumoniae, along with the multidrug resistance genes they carried, were the focus of risk control in the two studied lakes, especially in summer. Plasmids were the key mobile genetic elements (MGEs) driving the horizontal gene transfer of ARGs, especially multidrug and sulfonamide resistance genes. The null model revealed that stochastic process was the main driver of ecological drift for ARGs in the lakes. The partial least squares structural equation model further determined that seasonal changes of pH and temperature drove a shift in the bacterial community, which in turn shaped the profile of ARGs by altering the composition of MGEs, antibacterial biocide- and metal-resistance genes (BMGs), and virulence factor genes (VFGs). Our results highlighted the importance of seasonal factors in determining the water transfer period. These findings can aid in a deeper understanding of the spatiotemporal variations of ARGs in lakes and their driving factors, offering a scientific basis for antibiotic resistance management.
Collapse
Affiliation(s)
- Jianfei Chen
- Fujian Key Laboratory of Pollution Control & Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350007, China; State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Yiyong Lin
- Fujian Key Laboratory of Pollution Control & Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Ying Zhu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Yanru Zhang
- Fujian Key Laboratory of Pollution Control & Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Qinrong Qian
- Fujian Key Laboratory of Pollution Control & Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Chao Chen
- Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou, 215163, China; State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
6
|
Fan X, Mao Q, Zou D, Guo P, Du H, Chen T, He C, Xiong B, Ma M. Responses of Brassica napus to soil cadmium under elevated CO 2 concentration based on rhizosphere microbiome, root transcriptome and metabolome. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109127. [PMID: 39284252 DOI: 10.1016/j.plaphy.2024.109127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/28/2024] [Accepted: 09/12/2024] [Indexed: 11/08/2024]
Abstract
Rising atmospheric carbon dioxide (CO2) and soil heavy metal pollution affect crop safety and production. Exposure to elevated CO2 (ECO2) increases cadmium (Cd) uptake in some crops like wheat and rice, however, it remains unclear how ECO2 affects Cd uptake by Brassica napus. Here, we investigated the responses of B. napus seedlings exposed to ECO2 and Cd through analyses of physiology, transcriptome, metabolome, and rhizosphere microbes. Compared with Cd-stress alone (Cd50_ACO2), ECO2 boosted the uptake of Cd by B. napus roots by 38.78% under coupled stresses (Cd50_ECO2). The biomass and leaf chlorophyll a content increased by 38.49% and 79.66% respectively in Cd50_ECO2 relative to Cd50_ACO2. Activities of superoxide dismutase (SOD) and peroxidase (POD) enhanced by 8.42% and 185.01%, respectively, while glutathione (GSH) and ascorbic acid (AsA) contents increased by 16.44% and 52.48%, and abundances of rhizosphere microbes changed significantly under coupled stresses (Cd50_ECO2) relative to Cd-stress alone (Cd50_ACO2). Also, the upregulation of glutathione, glutathione transferase genes, and heavy metal ATPase expression promoted the detoxification effect of rapeseed on Cd. Changes in the expression of transcription factors like MAPK, WRKY, BAK1 and PR1, as well as changes in metabolic pathways like β-alanine, may be involved in the regulatory mechanism of stress response. These findings provide new insights for studying the regulatory mechanism of rapeseed under ECO2 on soil Cd stress, and also provide a basis for further research on Cd tolerant rapeseed varieties in the future climate context.
Collapse
Affiliation(s)
- Xu Fan
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, 400715, PR China
| | - Qiaozhi Mao
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, 400715, PR China
| | - Dongchen Zou
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, 400715, PR China
| | - Pan Guo
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, 400715, PR China
| | - Hongxia Du
- Chongqing Key Laboratory for Innovative Application of Genetic Technology, College of Resources and Environment, Southwest University, Chongqing, 400715, PR China
| | - Tingting Chen
- Meishan Vocational & Technical College, Meishan, 620010, PR China
| | - Chen He
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, 400715, PR China
| | - Bingcai Xiong
- Chongqing Key Laboratory for Innovative Application of Genetic Technology, College of Resources and Environment, Southwest University, Chongqing, 400715, PR China
| | - Ming Ma
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
7
|
Ding J, Yang W, Liu X, Zhao J, Fu X, Zhang F, Liu H. Hydraulic conditions control the abundance of antibiotic resistance genes and their potential host microorganisms in a frequently regulated river-lake system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174143. [PMID: 38908594 DOI: 10.1016/j.scitotenv.2024.174143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
Antibiotic resistance genes (ARGs) are a growing problem that is widespread in river-lake ecosystems, where they pose a threat to the aquatic environment's health and public safety. These systems serve as critical nodes in water management, as they facilitate the equitable allocation of water resources through long-term and frequent water diversions. However, hydrological disturbances associated with water-regulation practices can influence the dynamics of their potential host microorganisms and associated resistance genes. Consequently, identifying the key ARGs and their resistance mechanisms in heavily regulated waters is vital for safeguarding human health and that of river-lake ecosystems. In this study, we examined the impact of water-regulation factors on ARGs and their hosts within a river-lake continuum using 16S rRNA and metagenomic sequencing. We found that a significant increase in ARG abundance during regulation periods (p < 0.05), especially in the aquatic environment. Key resistance genes were macB, tetA, evgS, novA, and msbA, with increased efflux pinpointed as their principal resistance mechanism. Network analysis identified Flavobacteriales, Acinetobacter, Pseudomonas, Burkholderiaceae, and Erythrobacter as key potential host microorganisms, which showed increased abundance within the water column during regulation periods (p < 0.05). Flow velocity and water depth both drove the host microorganisms and critical ARGs. Our findings underscore the importance of monitoring and mitigating the antibiotic resistance risk during water transfers in river-lake systems, thereby supporting informed management and conservation strategies.
Collapse
Affiliation(s)
- Jiewei Ding
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Wei Yang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Xinyu Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Jiayue Zhao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xianting Fu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Fangfei Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Haifei Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
8
|
Zhang L, Zhao X, Yan X, Huang X, She D, Liu X, Yan X, Xia Y. Improving denitrification estimation by joint inclusion of suspended particles and chlorophyll a in aquaculture ponds. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121681. [PMID: 38963966 DOI: 10.1016/j.jenvman.2024.121681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/17/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
The denitrification process in aquaculture systems plays a crucial role in nitrogen (N) cycle and N budget estimation. Reliable models are needed to rapidly quantify denitrification rates and assess nitrogen losses. This study conducted a comparative analysis of denitrification rates in fish, crabs, and natural ponds in the Taihu region from March to November 2021, covering a complete aquaculture cycle. The results revealed that aquaculture ponds exhibited higher denitrification rates compared to natural ponds. Key variables influencing denitrification rates were Nitrate nitrogen (NO3--N), Suspended particles (SPS), and chlorophyll a (Chla). There was a significant positive correlation between SPS concentration and denitrification rates. However, we observed that the denitrification rate initially rose with increasing Chla concentration, followed by a subsequent decline. To develop parsimonious models for denitrification rates in aquaculture ponds, we constructed five different statistical models to predict denitrification rates, among which the improved quadratic polynomial regression model (SQPR) that incorporated the three key parameters accounted for 80.7% of the variability in denitrification rates. Additionally, a remote sensing model (RSM) utilizing SPS and Chla explained 43.8% of the variability. The RSM model is particularly valuable for rapid estimation in large regions where remote sensing data are the only available source. This study enhances the understanding of denitrification processes in aquaculture systems, introduces a new model for estimating denitrification in aquaculture ponds, and offers valuable insights for environmental management.
Collapse
Affiliation(s)
- Li Zhang
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 211100, China; State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Nanjing, 210008, China
| | - Xuemei Zhao
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 211100, China; State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Nanjing, 210008, China
| | - Xing Yan
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Nanjing, 210008, China
| | - Xuan Huang
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 211100, China
| | - Dongli She
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 211100, China
| | - Xuemei Liu
- East China Jiaotong University, Nanchang, 330013, China
| | - Xiaoyuan Yan
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Nanjing, 210008, China; University of Chinese Academy of Sciences, Nanjing, 211135, China
| | - Yongqiu Xia
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Nanjing, 210008, China; University of Chinese Academy of Sciences, Nanjing, 211135, China.
| |
Collapse
|
9
|
Zhang D, Liu F, Al MA, Yang Y, Yu H, Li M, Wu K, Niu M, Wang C, He Z, Yan Q. Nitrogen and sulfur cycling and their coupling mechanisms in eutrophic lake sediment microbiomes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172518. [PMID: 38631637 DOI: 10.1016/j.scitotenv.2024.172518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/13/2024] [Accepted: 04/14/2024] [Indexed: 04/19/2024]
Abstract
Microorganisms play important roles in the biogeochemical cycles of lake sediment. However, the integrated metabolic mechanisms governing nitrogen (N) and sulfur (S) cycling in eutrophic lakes remain poorly understood. Here, metagenomic analysis of field and bioreactor enriched sediment samples from a typical eutrophic lake were applied to elucidate the metabolic coupling of N and S cycling. Our results showed significant diverse genes involved in the pathways of dissimilatory sulfur metabolism, denitrification and dissimilatory nitrate reduction to ammonium (DNRA). The N and S associated functional genes and microbial groups generally showed significant correlation with the concentrations of NH4+, NO2- and SO42, while with relatively low effects from other environmental factors. The gene-based co-occurrence network indicated clear cooperative interactions between N and S cycling in the sediment. Additionally, our analysis identified key metabolic processes, including the coupled dissimilatory sulfur oxidation (DSO) and DNRA as well as the association of thiosulfate oxidation complex (SOX systems) with denitrification pathway. However, the enriched N removal microorganisms in the bioreactor ecosystem demonstrated an additional electron donor, incorporating both the SOX systems and DSO processes. Metagenome-assembled genomes-based ecological model indicated that carbohydrate metabolism is the key linking factor for the coupling of N and S cycling. Our findings uncover the coupling mechanisms of microbial N and S metabolism, involving both inorganic and organic respiration pathways in lake sediment. This study will enhance our understanding of coupled biogeochemical cycles in lake ecosystems.
Collapse
Affiliation(s)
- Dandan Zhang
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Fei Liu
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Mamun Abdullah Al
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuchun Yang
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Huang Yu
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China; School of Resources Environment and Safety Engineering, Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China
| | - Mingyue Li
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Kun Wu
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Mingyang Niu
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Cheng Wang
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhili He
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Qingyun Yan
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Ecology, Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
10
|
Zheng T, Wang P, Hu B, Bao T, Qin X. Mass variations and transfer process of shrimp farming pollutants in aquaculture drainage systems: Effects of DOM features and physicochemical properties. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133978. [PMID: 38461667 DOI: 10.1016/j.jhazmat.2024.133978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 03/12/2024]
Abstract
The expansion of aquaculture produces increasing pollutant loads, necessitating the use of drainage systems to discharge wastewater into surface water. To assess the mass variations and transfer process of aquaculture wastewater, an entire aquaculture drainage investigation lasting for 48 h was conducted, focusing on the nutrients, heavy metals, dissolved organic matter (DOM), and physicochemical properties of drainage in a commercial shrimp farm. The findings revealed that early drainage produced more heavy metals, total nitrogen (TN), dissolved organic nitrogen (DON), and feed-like proteins from aquaculture floating feed and additives, whereas late drainage produced more PO43--P and total dissolved phosphorus (TP). A few pollutants, including DON, Cu, and feed-like proteins, were effectively removed, whereas the contents of TN, dissolved inorganic nitrogen, and Zn increased in the multi-level aquaculture drainage system. Limited dilution indicated that in-stream transfer was the main process shaping pollutant concentrations within the drainage system. In the lower ditches, NO3--N, heavy metals, and feed-like proteins exhibited evident in-stream attenuation, while TN and NH4+-N underwent significant in-stream enrichment processes, especially in ditch C, with the transfer coefficient values (vf) of -1.74E-5 and -2.04E-5. This indicates that traditional aquaculture drainage systems serve as nitrogen sinks, rather than efficient nutrient purge facilitators. Notably, DOM was identified as a more influential factor in shaping the in-stream transfer process in aquaculture drainage systems, with an interpretation rate 40.79% higher than that of the physiochemical properties. Consequently, it is necessary to eliminate the obstacles posed by DOM to pollutant absorption and net zero emissions in aquaculture drainage systems in the future. ENVIRONMENTAL IMPLICATIONS: Nutrients, heavy metals, and dissolved organic matter are hazardous pollutants originating from high-density aquaculture. As the sole conduit to natural waters, aquaculture drainage systems have pivotal functions in receiving and purifying wastewater, in which the in-stream transfer process is affected by ambient conditions. This field study investigated the spatial variations, stage distinctions, effects of physicochemical properties, and dissolved organic matter (DOM) features. This finding suggests that the aquaculture drainage system as a nitrogen sink and DOM source. While the DOM is the key factor in shaping the in-stream transfer process, and obstacles for pollutant elimination. This study helps in understanding the fate of aquaculture pollutants and reveals the drawbacks of traditional aquaculture drainage systems.
Collapse
Affiliation(s)
- Tianming Zheng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Bin Hu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Tianli Bao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Xingmin Qin
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
11
|
Shi Z, She D, Pan Y, Abulaiti A, Huang Y, Liu R, Wang F, Xia Y, Shan J. Ditch level-dependent N removal capacity of denitrification and anammox in the drainage system of the Ningxia Yellow River irrigation district. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170314. [PMID: 38272083 DOI: 10.1016/j.scitotenv.2024.170314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/20/2023] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
Drainage networks, consisting of different levels of ditches, play a positive role in removing reactive nitrogen (N) via self-purification before drainage water returns to natural water bodies. However, relatively little is known about the N removal capacity of irrigation agricultural systems with different drainage ditch levels. In this study, we employed soil core incubation and soil slurry 15N paired tracer techniques to investigate the N removal rate (i.e., N2 flux), denitrification, anaerobic ammonium oxidation (anammox), and dissimilatory nitrate reduction to ammonium (DNRA) rates in the Ningxia Yellow River irrigation district at various ditch levels, including field ditches (FD), paddy field ditches (PFD), lateral ditches (LD1 and LD2), branch ditches (BD1, BD2, BD3), and trunk ditches (TD). The results indicated that the N removal rate ranged from 44.7 to 165.22 nmol N g-1 h-1 in the ditches, in the following decreasing order: trunk ditches > branch ditches > paddy field ditches > lateral ditches > field ditches. This result suggested that the N removal rate in drainage ditches is determined by the ditch level. In addition, denitrification and anammox were the primary pathways for N removal in the ditches, contributing 68.40-76.64 % and 21.55-30.29 %, respectively, to the total N removal. In contrast, DNRA contributed only 0.82-2.15 % to the total nitrate reduction. The N removal rates were negatively correlated with soil EC and pH and were also constrained by the abundances of denitrification functional genes. Overall, our findings suggest that the ditch level should be considered when evaluating the N removal capacity of agricultural ditch systems.
Collapse
Affiliation(s)
- Zhenqi Shi
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China; Jiangsu Province Engineering Research Center for Agricultural Soil-Water Efficient Utilization, Carbon Sequestration and Emission Reduction, Nanjing 210098, China
| | - Dongli She
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China; College of Soil and Water Conservation, Hohai University, Changzhou 213200, China.
| | - Yongchun Pan
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China; Jiangsu Province Engineering Research Center for Agricultural Soil-Water Efficient Utilization, Carbon Sequestration and Emission Reduction, Nanjing 210098, China
| | - Alimu Abulaiti
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China; Jiangsu Province Engineering Research Center for Agricultural Soil-Water Efficient Utilization, Carbon Sequestration and Emission Reduction, Nanjing 210098, China
| | - Yihua Huang
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China; Jiangsu Province Engineering Research Center for Agricultural Soil-Water Efficient Utilization, Carbon Sequestration and Emission Reduction, Nanjing 210098, China
| | - Ruliang Liu
- Institute of Agricultural Resources and Environment, Ningxia Academy of Agro-forestry Science, Yinchuan 750002, China
| | - Fang Wang
- Institute of Agricultural Resources and Environment, Ningxia Academy of Agro-forestry Science, Yinchuan 750002, China
| | - Yongqiu Xia
- Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jun Shan
- Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
12
|
Li F, Yang Y. Impacts of the Middle Route of China's South-to-North Water Diversion Project on the water network structure in the receiving basin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:15611-15626. [PMID: 38296927 DOI: 10.1007/s11356-024-32181-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/21/2024] [Indexed: 02/02/2024]
Abstract
The Middle Route of South-to-North Water Diversion Project (MRSNWD) is the main skeleton of China's National Water Network, its construction has changed the structure of the original water network, and analyzing the topological change of the water network in context with MRSNWD is significant for water network planning and management. In this study, the overall network characteristics of the water network in 2010 and 2020 were analyzed based on the small-world and scale-free characteristics of complex network theory. The topological changes of the water network from a node perspective were examined using three network centrality indexes: degree centrality (DC), closeness centrality (CC), and betweenness centrality (BC), while assessing the important nodes of the water network and recognizing functional areas of cold-hot spots. The results show that the water network's centrality in the study area improved after the project construction, with the average degree of the water network increasing from 2.39 to 2.42 and the average path length decreasing from 111.81 to 97.08. The propagation efficiency and network stability also increased, with a rise in important node proportion from 9.8 to 14.4%. The nodes in the DC hotspot zone along the project route have increased by 1.5%, implying an increase in the connectivity of the water network, while MRSNWD optimizes its north-south hub propagation path. "Small-worldness" indicates that most nodes of a network can be accessed and connected over shorter paths. The water network has a significant "small-worldness" and has been enhanced by the MRSNWD's construction. Approximating the water network as a scale-free network can impact its security by identifying critical nodes. The results of this research can provide the necessary technical support and reference significance for China's National Water Network.
Collapse
Affiliation(s)
- Fawen Li
- State Key Laboratory of Hydraulic Engineering Intelligent Construction and Operation, Tianjin University, Tianjin, 300072, China.
| | - Yang Yang
- State Key Laboratory of Hydraulic Engineering Intelligent Construction and Operation, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
13
|
Wu D, Xu Z, Min S, Wang J, Min J. Characteristics of microbial community structure and influencing factors of Yangcheng Lake and rivers entering Yangcheng Lake during the wet season. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:9565-9581. [PMID: 38191738 DOI: 10.1007/s11356-023-31810-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/28/2023] [Indexed: 01/10/2024]
Abstract
Yangcheng Lake, a typical fishery lake in the middle and lower reaches of the Yangtze River, is threatened by eutrophication. As the main performers of biogeochemical cycles, microorganisms affect the ecological stability of the lake. To study the structural characteristics of the microbial community in Yangcheng Lake and rivers entering Yangcheng Lake and the response relationship with environmental factors, the microbial community was categorized based on the contour of Yangcheng Lake, the major rivers entering Yangcheng Lake, and the pollution sources. The distribution characteristics of seven physicochemical indices were analyzed, including total organic carbon (TOC), total nitrogen (TN), total phosphorus (TP), water temperature (WT), pH, dissolved oxygen (DO), and ratio of total nitrogen to total phosphorus (TN/TP). Characterization of microbial community structure based on 16S rRNA high-flux sequencing technology and ANOSIM analysis were used to explore the differences in the relative abundance of microorganisms at each sampling point in the lake and rivers, and redundancy analysis (RDA) was used to analyze the relationship between the microbial community and physicochemical factors. The results showed that the dominant phyla, genera of microorganisms, and the total number of OTUs in the lake and rivers were similar. The dominant phyla included Proteobacteria, Actinobacteria, Bacteroidetes, Cyanobacteria, and Verrucomicrobia; the dominant genera included the hgcI clade, CL500-29 marine group, Microcystis PCC-7914, Chloroplast_norank, Clade III_norank, and Flavobacterium. ANOSIM analyses revealed that the microbial community of Yangcheng Lake exhibited an association with geographical space, while the microbial community in the rivers that was linked to the type of pollution source. Redundancy analysis (RDA) indicated that dissolved oxygen (DO), total nitrogen (TN), and pH were significantly correlated with the dominant phyla in Yangcheng Lake (p < 0.05), while total nitrogen (TN), water temperature(WT), and the ratio of total nitrogen to total phosphorus (TN/TP) were significantly related with the dominant genera in Yangcheng Lake (p < 0.05). Total nitrogen (TN) was also significantly linked to the dominant phyla and genera of the tributaries (p < 0.05). Despite the structural similarities in microbial communities between Yangcheng Lake and its inflowing rivers, environmental factors demonstrated significant associations with these communities, providing crucial data support for pollution prevention and the ecological restoration of Yangcheng Lake.
Collapse
Affiliation(s)
- Dan Wu
- Jiangsu Provincial Academy of Environmental Science, Nanjing, 210036, People's Republic of China
| | - Zhipeng Xu
- Kunshan Water Conservancy Design Institute Co., Ltd., Suzhou, 215300, People's Republic of China.
| | - Songao Min
- Kunshan Bacheng Construction Bureau, Suzhou, 215300, People's Republic of China
| | - Jinhui Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Jiang Min
- Kunshan United Water Purification Co., Suzhou, 215300, People's Republic of China
| |
Collapse
|
14
|
Nshimiyimana JB, Zhao K, Wang W, Kong W. Diazotrophic abundance and community structure associated with three meadow plants on the Qinghai-Tibet Plateau. Front Microbiol 2024; 14:1292860. [PMID: 38260880 PMCID: PMC10801153 DOI: 10.3389/fmicb.2023.1292860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Symbiotic diazotrophs form associations with legumes and substantially fix nitrogen into soils. However, grasslands on the Qinghai-Tibet Plateau are dominated by non-legume plants, such as Kobresia tibetica. Herein, we investigated the diazotrophic abundance, composition, and community structure in the soils and roots of three plants, non-legume K. tibetica and Kobresia humilis and the legume Oxytropis ochrocephala, using molecular methods targeting nifH gene. Diazotrophs were abundantly observed in both bulk and rhizosphere soils, as well as in roots of all three plants, but their abundance varied with plant type and soil. In both bulk and rhizosphere soils, K. tibetica showed the highest diazotroph abundance, whereas K. humilis had the lowest. In roots, O. ochrocephala and K. humilis showed the highest and the lowest diazotroph abundance, respectively. The bulk and rhizosphere soils exhibited similar diazotrophic community structure in both O. ochrocephala and K. tibetica, but were substantially distinct from the roots in both plants. Interestingly, the root diazotrophic community structures in legume O. ochrocephala and non-legume K. tibetica were similar. Diazotrophs in bulk and rhizosphere soils were more diverse than those in the roots of three plants. Rhizosphere soils of K. humilis were dominated by Actinobacteria, while rhizosphere soils and roots of K. tibetica were dominated by Verrumicrobia and Proteobacteria. The O. ochrocephala root diazotrophs were dominated by Alphaproteobacteria. These findings indicate that free-living diazotrophs abundantly and diversely occur in grassland soils dominated by non-legume plants, suggesting that these diazotrophs may play important roles in fixing nitrogen into soils on the plateau.
Collapse
Affiliation(s)
- Jean Bosco Nshimiyimana
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
- Department of Life and Geography Sciences, Qinghai Normal University, Xining, China
| | - Kang Zhao
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
- Department of Life and Geography Sciences, Qinghai Normal University, Xining, China
| | - Wenying Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Biodiversity Formation Mechanism and Comprehensive Utilization in Qinghai Tibet Plateau, Xining, China
| | - Weidong Kong
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
- Department of Life and Geography Sciences, Qinghai Normal University, Xining, China
| |
Collapse
|
15
|
Song W, Li Y. Tidal flat microbial communities between the Huaihe estuary and Yangtze River estuary. ENVIRONMENTAL RESEARCH 2023; 238:117141. [PMID: 37717808 DOI: 10.1016/j.envres.2023.117141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/02/2023] [Accepted: 09/13/2023] [Indexed: 09/19/2023]
Abstract
Tidal flats have important ecological functions and offer great economic value. Using field sampling, numerical simulation, and high-throughput sequencing, the ecological state of typical tidal flats along the eastern coast of China was investigated. The findings demonstrated that the area may be separated into subregions with notable differences in the features of microbial communities due to the variations in water quality and total pollutant discharge of seagoing rivers. With a ratio of 62%, the development of the microbial community revealed that homogenous selection predominated. In general, the formation of microbial communities follows deterministic processes, especially those of environmental selection. The wetland microbial communities are impacted by pollutants discharged into the sea from the Huaihe River and the Yangtze River. The Yangtze River's nitrogen pollutants affected the wetland zone, and denitrification dominated. The study established ecological patterns between the river and the sea and we offer suggestions for managing watersheds and safeguarding the ecology of coastal tidal flats.
Collapse
Affiliation(s)
- Weiwei Song
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Hohai University, Nanjing, 210098, China.
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Hohai University, Nanjing, 210098, China.
| |
Collapse
|
16
|
Liu B, Wang Y, Zhang H, Zhou Y, Zhang C, Yang N, Wang W. The Variations of Microbial Diversity and Community Structure Along Different Stream Orders in Wuyi Mountains. MICROBIAL ECOLOGY 2023; 86:2330-2343. [PMID: 37222804 DOI: 10.1007/s00248-023-02240-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 05/08/2023] [Indexed: 05/25/2023]
Abstract
The surface water is an important habitat for freshwater microorganisms, but there is a lack of understanding of the pattern of microbial diversity and structure in stream continuums of small subtropical forest watersheds. Therefore, this study aimed to understand the variations in microbial diversity and community structure along stream orders (1-5) in the small subtropical forest catchments of the Wuyi Mountains. Using GIS software, 20 streams were chosen and classified into 5 orders. Illumina sequencing was used to analyze the dynamics of microbial communities, along with stream orders and hydro-chemical properties of stream water were also determined. Our results indicated that the bacterial and fungal richness (ACE index) was higher in low-order (1 and 2 orders) streams than in high-order (3, 4, and 5 orders) streams, with the highest value in the order 2 streams (P < 0.05). The water temperature and dissolved oxygen were positively correlated with fungal richness (P < 0.05). The bacterial rare taxa had a significant correlation with the abundance taxa (P < 0.05). The relative abundances of Bacteroidetes, Actinobacteria, and Chytridiomycota microbial phyla were significantly different among different order streams (P < 0.05). Using the neutral community model, we found that the fungal community structure was significantly shaped by hydro-chemical properties, while the bacterial community structure was largely regulated by stochastic processes. Our findings suggest that variations in microbial community structure in subtropical headwaters are largely shaped by the water temperature and dissolved oxygen.
Collapse
Affiliation(s)
- Boran Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
- National Observation and Research Station of Fujian Wuyishan Forest Ecosystem, Wuyishan, 354300, Fujian, China
| | - Yuchao Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
- National Observation and Research Station of Fujian Wuyishan Forest Ecosystem, Wuyishan, 354300, Fujian, China
| | - Huiguang Zhang
- National Observation and Research Station of Fujian Wuyishan Forest Ecosystem, Wuyishan, 354300, Fujian, China
- Wuyishan National Park Research and Monitoring Center, Wuyishan, 354300, Fujian, China
| | - Yan Zhou
- National Observation and Research Station of Fujian Wuyishan Forest Ecosystem, Wuyishan, 354300, Fujian, China
- Wuyishan National Park Research and Monitoring Center, Wuyishan, 354300, Fujian, China
| | - Chenhui Zhang
- National Observation and Research Station of Fujian Wuyishan Forest Ecosystem, Wuyishan, 354300, Fujian, China
- Wuyishan National Park Research and Monitoring Center, Wuyishan, 354300, Fujian, China
| | - Nan Yang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China.
| | - Weifeng Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China.
- National Observation and Research Station of Fujian Wuyishan Forest Ecosystem, Wuyishan, 354300, Fujian, China.
| |
Collapse
|
17
|
Wang L, Shang S, Liu W, She D, Hu W, Liu Y. Hydrodynamic controls on nitrogen distribution and removal in aquatic ecosystems. WATER RESEARCH 2023; 242:120257. [PMID: 37356159 DOI: 10.1016/j.watres.2023.120257] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023]
Abstract
The impact of nitrogen (N) on water eutrophication is well-known, but the specific influence of hydrodynamic factors on N occurrence in aquatic systems has remained unclear. This lack of understanding has hindered our ability to assess the self-purification function of aquatic ecosystems and address water pollution problem. Here, we collected overlying water and sediment samples from different aquatic ecosystems (ditch, pond, river, and reservoir) in the Danjiangkou Reservoir area and compared the variation characteristics of various N components, and further conducted an incubation experiment to investigate the rate of N removal. We found that the concentration of total N and its N components decreased from ditches and ponds to rivers and reservoirs, indicating that N removal occurred during water flow, with up to 43% of total N concentration reduction rate. Additionally, we observed higher heterogeneity in eco-stoichiometric characteristics of N components in ditches and ponds compared to rivers and reservoirs. Interestingly, the ditches and ponds exhibited stronger interactions between overlying water and sediment, with higher rates of denitrification and anaerobic ammonium oxidation (anammox). Our findings highlight the need to focus on the upper reaches of agricultural catchments, such as ditches and ponds, for N removal and emphasize the importance of developing region-specific conservation strategies to mitigate N pollution and protect water resources.
Collapse
Affiliation(s)
- Lin Wang
- State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China
| | - Songhao Shang
- State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China.
| | - Wenzhi Liu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, PR China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, the Chinese Academy of Sciences & Hubei Province, Wuhan, 430074, PR China
| | - Dongli She
- College of Agricultural Sciences and Engineering, Hohai University, Nanjing 210098, China
| | - Wei Hu
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 4704, Christchurch 8140, New Zealand
| | - Yi Liu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, PR China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, the Chinese Academy of Sciences & Hubei Province, Wuhan, 430074, PR China.
| |
Collapse
|
18
|
Li Y, Liao Z, Hui C, Zheng J, Yuan S, Zhang W. Hydraulic characteristics in channel confluence affect the nitrogen dynamics through altering interactions among multi-trophic microbiota. WATER RESEARCH 2023; 235:119882. [PMID: 36947927 DOI: 10.1016/j.watres.2023.119882] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
Identifying the distribution of multi-trophic microbiota under the complicated hydrodynamic characteristics of channel confluences and evaluating the microbial contributions to biogeochemical processes are vital for river regulation and ecological function protection. However, relevant studies mainly focus on bacterial community distribution in confluence, neglecting the essential role of multi-trophic microbiota in the aquatic ecosystems and biogeochemical processes. To address this knowledge gap, this study investigated the distribution of multi-trophic microbiota and the underlying assembly process under the hydraulic characteristics in the confluence and described the direct and indirect effects of multi-trophic microbiota on the nitrogen dynamics. Results revealed that, in a river confluence, eukaryotic communities were governed by deterministic processes (52.4%) and bacterial communities were determined by stochastic processes (74.3%). The response of higher trophic levels to environmental factors was intensively higher than that of lower trophic microbiota, resulting in higher trophic microbiota were significantly different between regions with varied environmental conditions (P < 0.05). Flow velocity was the driving force controlling the assembly and composition of multi-trophic microbiota and interactions among multi-trophic levels, and further made a significant difference to nitrogen dynamics. In regions with lower flow velocity, interactions among multi-trophic levels were more complex. There were intense nitrate and nitrite reduction and anammox reactions via direct impacts of protozoan and metazoan and the top-down control (protozoan and metazoan prey on heterotrophic bacteria) among multi-trophic microbiota. Results and findings reveal the ecological effect on river nitrogen removal in a river confluence under complex hydraulic conditions and provide useful information for river management.
Collapse
Affiliation(s)
- Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Ziying Liao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Cizhang Hui
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Jinhai Zheng
- Key Laboratory of Ministry of Education for Coastal Disaster and Protection, Hohai University, Nanjing 210024, China
| | - Saiyu Yuan
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
19
|
Chen X, Qi X, Ren G, Chang R, Qin X, Liu G, Zhuang G, Ma A. Niche-mediated bacterial community composition in continental glacier alluvial valleys under cold and arid environments. Front Microbiol 2023; 14:1120151. [PMID: 36970702 PMCID: PMC10033870 DOI: 10.3389/fmicb.2023.1120151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/14/2023] [Indexed: 03/11/2023] Open
Abstract
Introduction Bacteria are an essential component of glacier-fed ecosystems and play a dominant role in driving elemental cycling in the hydrosphere and pedosphere. However, studies of bacterial community composition mechanisms and their potential ecological functions from the alluvial valley of mountain glaciers are extremely scarce under cold and arid environments. Methods Here, we analyzed the effects of major physicochemical parameters related to soil on the bacterial community compositions in an alluvial valley of the Laohugou Glacier No. 12 from the perspective of core, other, and unique taxa and explored their functional composition characteristics. Results and discussion The different characteristics of core, other, and unique taxa highlighted the conservation and difference in bacterial community composition. The bacterial community structure of the glacial alluvial valley was mainly affected by the above sea level, soil organic carbon, and water holding capacity. In addition, the most common and active carbon metabolic pathways and their spatial distribution patterns along the glacial alluvial valley were revealed by FAPTOTAX. Collectively, this study provides new insights into the comprehensive assessment of glacier-fed ecosystems in glacial meltwater ceasing or glacier disappearance.
Collapse
Affiliation(s)
- Xianke Chen
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish Center for Education and Research, Beijing, China
| | - Xiangning Qi
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Ge Ren
- National Institute of Metrology, Beijing, China
| | - Ruiying Chang
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, China
| | - Xiang Qin
- Qilian Shan Station of Glaciology and Eco-Environment, State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Guohua Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Guoqiang Zhuang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Anzhou Ma
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
20
|
Luo F, Zhang J, Wei Q, Jiang Z, Jiang D, Liu S, Xia Z, Zhang J, Qi L, Wang H, Liu G. Insights into the relationship between denitrification and organic carbon release of solid-phase denitrification systems: Mechanism and microbial characteristics. BIORESOURCE TECHNOLOGY 2022; 364:128044. [PMID: 36182014 DOI: 10.1016/j.biortech.2022.128044] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/20/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Solid-phase denitrification is a promising alternative denitrification technology when facing a shortage of carbon sources. Nevertheless, it is still unclear whether there is a certain interaction between the denitrification process and the carbon release process in a solid-phase denitrification system. In this study, the concept of "Self-adaptation" was proposed for the relationship between denitrification and carbon release. At various influent nitrate loads, the PCL-supported denitrification system achieved an average nitrate removal rate of over 90.59 ± 7.01 % and a maximum denitrification rate of 0.67 ± 0.06 gN/(L·d). Microorganisms can spontaneously regulate the carbon release rate of PCL in response to changes in influent nitrate load, demonstrating "self-adaptation" of the PCL-supported solid-phase denitrification system. Regulation of carbon release rate via the "Self-adaptation" was achieved by changes in extracellular depolymerase activity. Acidovorax_sp. played a key role in "Self-adaptation", for its function of both denitrification and PCL degradation.
Collapse
Affiliation(s)
- Fangzhou Luo
- Research Center for Low Carbon Technology of Water Environment, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, China
| | - Jinsen Zhang
- Research Center for Low Carbon Technology of Water Environment, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, China
| | - Qi Wei
- Research Center for Low Carbon Technology of Water Environment, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, China
| | - Zhao Jiang
- Research Center for Low Carbon Technology of Water Environment, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, China
| | - Danyang Jiang
- Research Center for Low Carbon Technology of Water Environment, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, China
| | - Shuai Liu
- Research Center for Low Carbon Technology of Water Environment, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, China
| | - Zhiheng Xia
- Research Center for Low Carbon Technology of Water Environment, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, China
| | - Jingbing Zhang
- Research Center for Low Carbon Technology of Water Environment, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, China
| | - Lu Qi
- Research Center for Low Carbon Technology of Water Environment, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, China.
| | - Hongchen Wang
- Research Center for Low Carbon Technology of Water Environment, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, China
| | - Guohua Liu
- Research Center for Low Carbon Technology of Water Environment, School of Environment & Natural Resource, Renmin University of China, 59 Zhongguancun Street, Beijing 100872, China
| |
Collapse
|